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Phase transitions in the frustrated Ising ladder with stoquastic and nonstoquastic catalysts
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The role of nonstoquasticity in the field of quantum annealing and adiabatic quantum computing is an
actively debated topic. We study a strongly-frustrated quasi-one-dimensional quantum Ising model on a two-leg
ladder to elucidate how a first-order phase transition with a topological origin is affected by interactions of the
±XX -type. Such interactions are sometimes known as stoquastic (negative sign) and nonstoquastic (positive
sign) “catalysts”. Carrying out a symmetry-preserving real-space renormalization group analysis and extensive
density-matrix renormalization group computations, we show that the phase diagrams obtained by these two
methods are in qualitative agreement with each other and reveal that the first-order quantum phase transition of
a topological nature remains stable against the introduction of both XX -type catalysts. This is the first study of
the effects of nonstoquasticity on a first-order phase transition between topologically distinct phases. Our results
indicate that nonstoquastic catalysts are generally insufficient for removing topological obstacles in quantum
annealing and adiabatic quantum computing.
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I. INTRODUCTION

Quantum annealing exploits quantum-mechanical fluctua-
tions to solve combinatorial optimization problems [1–8]. In
a typical formulation, the combinatorial optimization problem
one wants to solve is expressed as an Ising model, repre-
sented in terms of the z components of the Pauli matrices,
and quantum fluctuations are introduced as a transverse field
(sometimes called the X term), the sum of the x components
of the Pauli matrices over all sites. One of the bottlenecks
of quantum annealing under unitary Schrödinger dynamics
is a first-order quantum phase transition as a function of the
relative weight of the Ising Hamiltonian and the X term, which
exists in almost all cases of interest. At a first-order quantum
phase transition, the energy gap between the ground state and
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the first excited state closes exponentially as a function of
the system size except for a few very limited cases [9–11].
This leads to exponentially long computation times within
the framework of adiabatic time evolution, according to the
adiabatic theorem of quantum mechanics [12–14]. There has
been a large amount of effort to circumvent this difficulty
including, but not limited to, the introduction of nonstoquas-
tic catalysts [15–25], inhomogeneous field driving [26–32],
reverse annealing [33–44], pausing [39,45–47], and diabatic
quantum annealing [48]. In the present paper, we focus on the
approach of nonstoquastic catalysts.

A Hamiltonian is called stoquastic if there is a choice of
a local (tensor-product) basis in which the Hamiltonian off-
diagonal matrix elements are all real and nonpositive [49].
Otherwise the Hamiltonian is called nonstoquastic, and the
inevitable positive or complex off-diagonal matrix elements
of the Hamiltonian lead to the infamous sign problem [50,51].
We note that even when the Hamiltonian is stoquastic, but it is
presented in a form in which this stoquasticity is unapparent,
the problem of deciding whether there exists a local trans-
formation to a basis that “cures the sign problem” (makes it
stoquastic) by making all of the Hamiltonian matrix elements
real and nonpositive, is NP-complete [52,53].

Many interesting quantum models are stoquastic, e.g.,
the transverse-field Ising model of conventional quantum
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annealing, the Bose-Hubbard model, and particles subject to a
position-dependent potential, which includes superconducting
flux circuits if we associate flux with position and charge
with momentum [49,54]. The partition-function decomposi-
tion of a stoquastic Hamiltonian leads to a sum of nonnegative
weights (i.e., the absence of sign problem, which means that
the path-integral quantum Monte Carlo algorithm [55] can
typically be used efficiently for sampling tasks). Moreover,
the ground state of a stoquastic Hamiltonian has only non-
negative amplitudes by the Perron-Frobenius theorem. These
two observations are often cited as reasons that stoquastic
Hamiltonians should be considered to be less computationally
powerful than their nonstoquastic counterparts. In addition, it
is well known that nonstoquastic adiabatic quantum computa-
tion is universal [56–58], while universality in the stoquastic
case requires excited states [59]. From a computational com-
plexity perspective, the class StoqMA associated with the
task of estimating the ground-state energy of stoquastic local
Hamiltonians is known to be no harder than QMA and no eas-
ier than MA (and hence no easier than NP) [60] (see Ref. [7]
for more background).

However, recently evidence has been mounting that
nonstoquasticity does not have a clear-cut computational
benefit even in the ground state setting. For example, very
recently examples were found for which evolution in the
ground state of a stoquastic Hamiltonian can solve a prob-
lem superpolynomially [61] or even subexponentially [62]
faster than is possible classically. In addition, there is both
theoretical and numerical evidence that adiabatic paths based
on nonstoquastic Hamiltonians generically have smaller gaps
between the ground state and the first excited state, with
the implication that they are less useful than stoquastic
Hamiltonians for adiabatic quantum optimization [25]. In
this paper we contribute further evidence that nonstoquas-
ticity is not necessarily useful for efficiently solving a
problem.

The setting for our paper is the conventional transverse-
field Ising model used in quantum annealing, but with added
antiferromagnetic XX interactions (XX terms with posi-
tive coefficients). Such terms, which can turn a stoquastic
Hamiltonian into a nonstoquastic one, are sometimes called
nonstoquastic “catalysts” when they are turned on only at
intermediate times [typically as s(1 − s), where s ∈ [0, 1] is
the dimensionless time along the anneal] [7,22], a termi-
nology inspired by its use in entanglement theory [63,64].
One of the outstanding features of the introduction of an
XX -type nonstoquastic catalyst lies in the universality and
QMA-completeness of the resulting Hamiltonian, assuming
independent control of each term in the Hamiltonian [65]. Our
focus is, however, on another aspect, namely, that a certain
set of nonstoquastic catalysts of the XX type is known to
reduce the order of quantum phase transitions from first to
second [16,17,19,21–23]. This means that adiabatic evolution
converges to the ground state of the final Hamiltonian in
quantum annealing with an exponential speedup relative to
the stoquastic case. However, it does not guarantee a quantum
speedup relative to classical solution methods, and in addition
examples are known where XX -type nonstoquastic catalysts
do not lead to performance improvements [20,23,25,26]. All

of these studies concern problems with relatively simple phase
transitions without a drastic change in the topological struc-
ture of thermodynamic phases.

The frustrated ladder model introduced by Laumann et al.
[11] is an exceptional case in that it undergoes a first-order
quantum phase transition between topologically different
phases despite the simplicity of the problem, which is defined
on a quasi-one-dimensional two-leg ladder with nearest-
neighbor interactions. The model is closely related to a dimer
problem defined on a dual ladder, through which the topologi-
cal aspect of its phase transition can be understood intuitively,
as will be detailed in Sec. II. For this reason, we study the
effects of nonstoquastic XX catalysts on the phase transition
of the frustrated Ising ladder, and the stoquastic case is also
treated for completeness.

We employ theoretical and numerical tools, i.e., the real-
space renormalization group (RG) method and the density-
matrix renormalization group (DMRG) method, to study the
structure of the phase diagram with and without XX catalysts
of both signs (stoquastic and nonstoquastic). We find that the
phase diagrams obtained by the two methods are qualitatively
consistent with each other and conclude that the XX -type
catalysts, both stoquastic and nonstoquastic, keep the order
of the phase transition intact. This is the first example where
the role of stoquastic and nonstoquastic catalysts is revealed
systematically in a low-dimensional system that exhibits a
first-order phase transition with a change of the topological
structure.

This paper is organized as follows: In the next section we
formulate the problem and describe the known properties of
the model system. In Sec. III we analyze the problem via
the real-space RG method. The results of extensive numeri-
cal computations are explained in Sec. IV and are compared
with those from the real-space RG method. We conclude
in Sec. V. Additional technical details are given in the
Appendices.

II. MODEL

We consider the frustrated Ising ladder with transverse
fields and XX interactions. This is a generalization of the
model proposed and analyzed in Ref. [11], where the trans-
verse field was uniformly applied to all sites and no XX
interactions were taken into account. This section describes
the definition of the model and its basic properties in the case
without XX interactions, and is largely a recapitulation of
Ref. [11].

A. Definition of the model

As depicted in Fig. 1, the system is composed of qubits
(spin-1/2 particles) located on sites of a two-leg ladder.
The ladder has a top row (t) and a bottom row (b).
Nearest-neighbor interactions are of magnitude K > 0 with
ferromagnetic (solid lines) or antiferromagnetic (dashed lines)
signs. Local longitudinal fields applied to the top and bottom
rows have magnitudes K and U/2 > 0, respectively, and are
oppositely directed. With transverse fields (X terms) of mag-
nitude �t or �b and transverse interactions (XX terms) with
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FIG. 1. Frustrated Ising ladder with transverse fields and XX
interactions. Spin-1/2 particles are located at the black circles on
the top row and white circles on the bottom row. The black solid
lines are ferromagnetic interactions of magnitude K and the black
dashed lines are antiferromagnetic interactions of magnitude K . Lo-
cal longitudinal fields K and U/2 are applied at each black circle
and each white circle, respectively, and have opposite directions.
A transverse field �t is appended at every site on the top row and
�b on the bottom row. An XX interaction �tt is applied on each
horizontal bond on the top row, �bb on each horizontal bond on the
bottom row, and �tb on each vertical bond between the two rows. The
interactions and fields are indicated by operators in the figure, where
the subscripts of the Pauli operators X̂a,i, Ŷa,i, and Ẑa,i are omitted.
Periodic boundary conditions are imposed by identifying the sites at
the horizontal position i = L + 1 with those at i = 1.

magnitude �tt , �tb, or �bb, the Hamiltonian is written as

Ĥ =
L∑

i=1

[
K (Ẑt,iẐt,i+1 − Ẑb,iẐb,i+1 − Ẑt,iẐb,i − Ẑt,i )

+ U

2
Ẑb,i − (�tX̂t,i + �bX̂b,i )

− (�ttX̂t,iX̂t,i+1 + �bbX̂b,iX̂b,i+1 + �tbX̂t,iX̂b,i )

]
, (1)

where X̂a,i, Ŷa,i, and Ẑa,i are the Pauli operators at sites i =
1, . . . , L on row a = t, b. We assume the length L to be even
and impose the periodic boundary conditions

X̂a,L+1 = X̂a,1, Ŷa,L+1 = Ŷa,1, Ẑa,L+1 = Ẑa,1. (2)

The classical part of Ĥ (the terms involving Z operators)
is highly frustrated due to the competition between positive
and negative interactions as well as between interactions and
longitudinal fields.

Let us discuss the stoquasticity of the Hamiltonian Ĥ . As
is easily checked, Ĥ is stoquastic for �tt, �bb, �tb � 0. Addi-
tionally, when �tt < 0, �bb < 0, or �tb < 0, there are cases
where a local curing transformation makes the Hamiltonian
stoquastic. For example, if �t = �b = 0 and �tt, �bb, �tb �
0, consider the transformation obtained by conjugating some
qubits by Ẑa,i, an operation under which X̂a,i �→ −X̂a,i. Then,
the following is a curing transformation: for odd i, conjugate
the qubits on the top row and for even i, conjugate the bottom
row. This transformation is equivalent to flipping the signs of
�tt , �bb, and �tb when �t = �b = 0.

It can be shown [66] that Ĥ remains nonstoquastic under
single-qubit Clifford transformations if the following set of
conditions is satisfied:

�t, �b > 0,

�tt < 0 ∨ �bb < 0 ∨ �tb < 0,

|U/2|, |�tb| < K. (3)

Since the general problem of deciding whether a local curing
transformation exists is NP-complete even for single-qubit
Clifford transformations [52,53], we do not consider here
the nonstoquasticity of Ĥ in more general cases than the
conditions given by Eq. (3). In the following, we refer to Ĥ as
nonstoquastic if there is no curing transformation that is a
product of single-qubit Clifford unitaries, and as stoquastic
otherwise.

B. Phase diagram for the case without XX terms

Laumann et al. [11] studied the phase diagram in the case
of the uniform transverse field �t = �b = � and no XX inter-
actions �tt = �bb = �tb = 0 using numerical diagonalization
of small-size systems and perturbation from the large-K and
small-K limits. We confirm their findings in Fig. 2, which
shows that a first-order transition exists as a function of �/U
with K/U fixed to a large value, while a second-order transi-
tion appears for small K/U . The values of �/U that minimize
the energy gap between the ground state and the first excited
state (which we refer to henceforth as “minimum gap points”)
for L = 10 and fixed values of K/U are indicated in Fig. 2
by black squares. According to perturbation theory, the first-
order transition line for K/U � 1 is �/U ≈ 1/c + U/(4Kc3)
(c ≈ 0.6) and the second-order transition line for K/U � 1
is �/U ≈ K/U [11]. These two lines meet at (�/U, K/U ) ≈
(2.2, 2.2).

Note that the perturbation theory prediction agrees with the
location of the minimum gap points for K/U � 2.2 or K/U �
1.5, but the agreement breaks down for 1.5 � K/U � 2.2,
where the numerically computed locations of the minimum
gap deviate from the perturbative second-order transition line.
A jump in the minimum gap points is observed at K/U ≈ 1.5
between �/U ≈ 1.5 and 1.9. We provide an explanation of
this phenomenon in terms of the appearance of a “double-
well” in the energy gap as a function of �/U at the critical
value K/U ≈ 1.5, which is the origin of the observed discon-
tinuity. See Appendix A for additional details.

Figure 2 also shows the staggered magnetization of the top
row

m′
t =
〈∣∣∣∣∣ 1L

L∑
i=1

(−1)iẐt,i

∣∣∣∣∣
〉

(4)

and the magnetization of the bottom row

mb =
〈

1

L

L∑
i=1

Ẑb,i

〉
(5)

for L = 10, where 〈· · ·〉 denotes the expectation value in the
ground state. We see that m′

t and mb have discontinuities as
functions of �/U for large K/U , which indicate the exis-
tence of the first-order transition. On the other hand, m′

t and
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FIG. 2. Phase diagram of the Ising ladder with uniform transverse field � and no XX terms, where the staggered magnetization of the
top row m′

t is color coded in (a) and the magnetization of the bottom row mb in (b). The black squares in (a) and (b) are the locations of the
minimum energy gap for fixed values of K/U . Here, we set the system size to L = 10. In both (a) and (b), the first- and second-order phase
boundaries predicted by perturbation theory are shown as solid and dotted lines, respectively. The first-order transition line for K/U � 1 is
�/U ≈ 1/c + U/(4Kc3) (c ≈ 0.6) and the second-order transition line for K/U � 1 is �/U ≈ K/U [11].

mb change continuously around the second-order transition,
which occurs as �/U is decreased with K/U fixed to a small
value.

The “symmetric” and “staggered” phases shown in Fig. 2
are associated with columnar and staggered configurations,
which are defined as follows:

(i) Columnar configurations are product states of local
eigenstates of Ẑa,i in which all the bottom-row spins are up
and there are no nearest-neighbor (consecutive) down spins
on the top row.

(ii) Staggered configurations are product states of local
eigenstates of Ẑa,i in which all the bottom-row spins are down
and nearest-neighbor top-row spins are antiparallel (antiferro-
magnetically ordered).

When K is large, the two phases can be characterized by
perturbation theory in K−1. The leading-order part of the
state in the symmetric phase is a superposition of columnar
configurations (e.g., the red arrows in the top panel of Fig. 3),
while that in the staggered phase has staggered configura-
tions (red arrows in the middle and bottom panels of Fig. 3).
The name “symmetric phase” means that all columnar spin
configurations have comparable amplitudes with the wave
function exhibiting translational invariance, and this invari-
ance is broken in the staggered phase. The system is in the
symmetric phase for large �/U and is in the staggered phase
for small �/U . Reference [11] also verified that the energy
gaps at the first-order transition points decay exponentially as
the length L grows and that the decay rate is proportional to
ln(K/�). This can be intuitively understood from the fact that
the transition from a columnar configuration to a staggered
configuration requires flipping all the bottom spins as shown
in Fig. 3.

FIG. 3. Examples of the correspondence between states in the
frustrated Ising model and the dimer model on two-leg ladders. The
lattice for the former model is depicted in a similar way to Fig. 1
(namely, the black circles, the black-solid lines, and the black-dashed
lines are longitudinal fields, ferromagnetic interactions, and antifer-
romagnetic interactions, respectively, of equal magnitude K), while
the dual lattice for the latter model is indicated by the dotted lines.
The rightmost points are identified with the leftmost points for each
lattice, which is subject to periodic boundary conditions. The red
arrows are spins and the blue thick line segments are dimers. The
topological number is w = 0, +1, −1 from top to bottom, the first
being a columnar configuration and the second and the third being
staggered ones.
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As reviewed in Appendix B1, the ground states of the non-
perturbative Hamiltonian proportional to K ,

Ĥ (0) = K
L∑

i=1

(Ẑt,iẐt,i+1 − Ẑb,iẐb,i+1 − Ẑt,iẐb,i − Ẑt,i ), (6)

are the columnar and staggered configurations. In the presence
of the perturbative terms with the coefficients U and �, the
degeneracy of Ĥ (0) is lifted as described above.

The number of columnar configurations is the sum of two
Fibonacci numbers FL−1 + FL−3, which is exponentially large
in the length L. Here, FL is defined by the recurrence relation
FL = FL−1 + FL−2 and the initial values F1 = 2 and F2 = 3.
On the other hand, there are only two staggered configura-
tions. These basic properties are confirmed in Appendix B1.

In the opposite limit U → ∞, the bottom spins are fixed
to down, and the top row of the original Ising ladder
(1) with �t = �b = � and �tt = �bb = �tb = 0 is effec-
tively an antiferromagnetic Ising chain in a transverse field,∑L

i=1(KẐt,iẐt,i+1 − �X̂t,i ). This results in a second-order tran-
sition approximately at � = K for small K/U , as shown in
Fig. 2. The symmetric and staggered phases of the ladder cor-
respond to the quantum paramagnetic and antiferromagnetic
phases on the top row, respectively.

C. Dimer model on the dual lattice

A significant property of the frustrated Ising ladder is that
in the limit of large frustration K → ∞ the model is equiv-
alent to the quantum dimer model on a two-leg ladder, as
shown in Ref. [11]. We can find this equivalence by locating
dimers on the dual lattice according to the types and positions
of frustration exhibited by the columnar and staggered config-
urations. The dual lattice is a two-leg ladder whose position is
shifted horizontally and vertically by half of the unit length
from the Ising ladder (see Fig. 3). Types of frustration in
the columnar and staggered configurations are classified as
(i) a down spin on the top row (opposite to the longitudinal
field), (ii) a horizontally aligned ferromagnetic pair on the top
row (opposite to the antiferromagnetic interaction), and (iii) a
vertically aligned antiferromagnetic pair (opposite to the fer-
romagnetic interaction). In the dimer picture these three types
become (i) a top horizontal dimer, (ii) a vertical dimer, and
(iii) a bottom horizontal dimer, respectively. In this manner the
columnar and staggered configurations in the frustrated Ising
ladder are mapped one-to-one onto hardcore dimer coverings
on the dual two-leg ladder.

Dimer coverings on a two-leg ladder are classified into
three topological sectors: the columnar sector w = 0 and the
two staggered sectors w = ±1, where w denotes the differ-
ence in the number of dimers between the top and bottom
rows on an arbitrarily given unit square (plaquette). The fact
that one cannot transform a dimer covering into another dimer
covering with a different w by a series of local movements of
dimers allows us to regard w as a topological number.

From this mapping of the columnar and staggered config-
urations in the frustrated Ising ladder onto dimer coverings,
it follows that the Hamiltonian of the frustrated Ising lad-
der (1) in the limit K → ∞ is equivalent to the following

Hamiltonian of the quantum dimer model:

Ĥdimer = U

(∑
|

||〉〈|| + 2
∑
�

|=〉〈=|
)

− �t

∑
�

(|‖〉〈=| + |=〉〈‖|)

− �tt

∑
��

(|=|〉〈|=| + ||=〉〈=||), (7)

where a constant energy shift was ignored. The summations∑
|,
∑

�, and
∑

�� are performed over vertical lines |, pla-
quettes �, and pairs of two neighboring plaquettes �� on
the dual lattice, respectively. The line segments in the kets
and bras denote dimers that are located in the summation
“variables” |, �, and ��. We call the limit K → ∞ the dimer
limit. Note that the terms with the coefficients �b, �bb, and
�tb do not appear in the dimer model, because the bottom
spins should exhibit complete ferromagnetic order in the limit
K → ∞.

Since the only nonvanishing matrix elements of Ĥdimer are
those between states in the columnar sector, it naturally fol-
lows that there is a strict (not avoided) energy-level crossing
between the columnar and staggered sectors in the quantum
dimer model on a two-leg ladder. Indeed, the Hamiltonian
Ĥdimer has a strict level crossing at �t/U ≈ 1/0.6 in the �tt =
0 case (vanishing XX interactions on the top row) according
to numerical diagonalization results for small-size systems
[11]. Although for the frustrated Ising ladder with large but
finite K the level crossing turns into an avoided crossing [due
to nonvanishing transition probabilities to defect states with
energy penalties O(K )], the numerical consequence that the
energy gap at the first-order transition decays exponentially at
least for �tt = 0 reflects the topological nature relating to the
quantum dimer model [11].

III. REAL-SPACE RG ANALYSIS

We perform the real-space RG analysis of the frustrated
Ising ladder in the limit of large frustration K → ∞, namely
the dimer limit, in Sec. III A. Subsequently we analyze the
limit of small frustration U → ∞, in Sec. III B.

A. Large frustration limit

We analyze the zero-temperature phase transition of the
frustrated Ising ladder in the dimer limit K � U, �a, �aa′ us-
ing the real-space RG method. Technical details are delegated
to Appendix B.

Although the standard real-space RG transformation
amounts to separating the Hamiltonian into intrablock and
interblock terms and projecting the Hilbert space onto a
low-energy space of the intrablock Hamiltonian [67], this
procedure will fail to find a low-energy subspace due to the
presence of the strong interblock interactions with magnitude
K . To circumvent this problem, we employ a real-space RG
method in which the projector onto a low-energy space is
variationally determined such that the dimer structure is pre-
served at each RG step. Here, the dimer structure means that
the columnar and staggered configurations remain the ground

043013-5



KABUKI TAKADA et al. PHYSICAL REVIEW RESEARCH 3, 043013 (2021)

states of the leading-order Hamiltonian in K−1. Since the
columnar and staggered configurations will be the low-energy
states with a small energy splitting near the transition, such a
variational ansatz may enable us to extract critical properties
of the entire system at zero temperature.

1. Effective Hamiltonian

To write down the RG equations, let us define the general-
ized Hamiltonian that appears in our RG analysis:

Ĥ =
∑

σ :nondimer

Kσ |σ 〉 〈σ | +
L∑

i=1

[
U

2
Ẑb,i − �X̂t,i

+ V Ẑt,i − �X̂t,iX̂t,i+1

]
+ Ô, (8)

where nondimer configurations |σ 〉 indicate product states
of local eigenstates of Ẑa,i that are neither columnar nor
staggered configurations. The coefficients 0 < Kσ = O(K )
stand for energy penalties on nondimer configurations σ . We
denoted �t = � and �tt = � for notational simplicity. The
longitudinal field on the top row V is produced after a step
of the RG transformation. The operator Ô has a magnitude
comparable to U , �, V , and �, but is irrelevant in the sense of
RG theory. The couplings �b, �bb, and �tb are included in Ô.
For a more detailed version of the generalized Hamiltonian,
see Eq. (B14) (although the operators with the coefficients �,
V , and � are slightly different from Eq. (8), the differences
are irrelevant). The bare Hamiltonian (1) can be obtained by
setting V = 0 except for a constant energy difference propor-
tional to K , as described in Appendix B1.

2. RG equations

Let us perform the RG transformation repeatedly. We de-
note the coupling constants that have been renormalized l
times by U (l ), �(l ), V (l ), and �(l ). The bare couplings
are U (0), �(0), V (0) = 0, and �(0). Our RG transformation
has the scaling factor b = 3 (note that the scaling factor b
should be an odd number to keep the antiferromagnetic order
in the staggered phase through the RG transformation) and
the system size scales as L(l ) = b−lL(0), where L(0) is the
length of the original ladder. As derived in Appendix B, the
renormalized coupling constants are determined by the RG
equations

U (l + 1) = 3U (l ) − �(l )[2β2(l )(β1(l ) + z(l )α1(l ))

+(1 − z(l )2)α1(l )α2(l )]

+V (l )[2 − (1 − z(l )2)α1(l )2 − β1(l )2]

+2�(l )β2(l )z(l )α2(l ), (9a)

�(l + 1) = �(l )[2β2(l )α2(l ) + z(l )(α1(l )2 − α2(l )2)]

−2V (l )z(l )α1(l )α2(l ) + 2�(l )β2(l )α1(l ), (9b)

V (l + 1) = �(l )[2β2(l )(β1(l ) + z(l )α1(l ))

−(1 + z(l )2)α1(l )α2(l )]

+V (l )[1 − (1 + z(l )2)α1(l )2 + β1(l )2]

−2�(l )β2(l )z(l )α2(l ), (9c)

�(l + 1) = �(l )α2(l )2β2(l )2. (9d)

Here, α1(l ), α2(l ), z(l ), β1(l ), β2(l ) ∈ R are the variational
parameters that minimize the function

f�(l ),V (l ),�(l )(α1, α2, z, β1, β2)

= −�(l )[(ϕ2 − z2)α1α2 + 2β2(β1 + zα1)]

− V (l )
[
(ϕ2 − z2)α2

1 + β2
1

]+ 2�(l )β2zα2 (10)

under the constraint

α2
1 + α2

2 = z2 + β2
1 + 2β2

2 = 1, (11)

where ϕ = (1 + √
5)/2 is the golden ratio. This minimization

is equivalent to minimizing the trace of the renormalized
Hamiltonian in the subspace spanned by the columnar and
staggered configurations at each RG step.

Note that the function (10) and the constraint (11) are
invariant under the transformations (α1, α2, z) �→ (−α1,−α2,

−z) and (z, β1, β2) �→ (−z,−β1,−β2). Each of these trans-
formations is equivalent to changing the phase of a variational
state included in the projector onto the coarse-grained space
and thus leaves the projector invariant. Therefore, the opti-
mal set of the variational parameters α1(l ), α2(l ), z(l ), β1(l ),
β2(l ) ∈ R is four-fold degenerate and we choose one of the
solutions. The choice among the four solutions does not affect
the critical properties of the system since the multiplication
of (α1(l ), α2(l ), z(l )) or (z(l ), β1(l ), β2(l )) by −1 only flips
the sign of the renormalized transverse field �(l + 1), which
corresponds to the gauge transformation (X̂a,i, Ŷa,i, Ẑa,i ) �→
(−X̂a,i,−Ŷa,i, Ẑa,i ) in the renormalized Hamiltonian.

Let us describe important features of the RG equations.
Since Eqs. (9b)–(9d) do not contain U (l ) explicitly and the
variational parameters minimizing f�(l ),V (l ),�(l ) subject to the
constraint (11) can be regarded as functions of �(l ), V (l ), and
�(l ), the renormalized coupling constants �(l + 1), V (l + 1),
and �(l + 1) are expressed as functions of �(l ), V (l ), and
�(l ), not including U (l ). In addition, it is convenient to write
the coupling constant U (l ) as

U (l ) = 3l (U (0) − U (l )), (12)

which yields the initial value U (0) = 0 and the recurrence
relation

U (l + 1) = U (l ) + 3−l−1{�(l )[2β2(l )(β1(l ) + z(l )α1(l ))

+ (1 − z(l )2)α1(l )α2(l )]

− V (l )[2 − (1 − z(l )2)α1(l )2 − β1(l )2]

− 2�(l )β2(l )z(l )α2(l )}. (13)

Now Eqs. (9b)–(9d) and (13) are independent of U (l ) as well
as U (0). Since U (0) = V (0) = 0, it follows by mathematical
induction that U (l ), �(l ), V (l ), and �(l ) are determined only
by the “time” l and the initial values �(0) and �(0).

Although the penalty constants Kσ for nondimer config-
urations σ are also renormalized, their specific values are
unimportant for our analysis of the zero-temperature phase
transition in the dimer limit. The only essential point is that all
the penalty constants are positive and proportional to K . This
means that any spin configuration that is not mapped onto a
dimer covering does not contribute to the leading-order part
of the ground state.
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FIG. 4. Coupling constants U (l ), U (l ), �(l ), V (l ), and �(l ) as functions of l for the bare couplings (�(0),V (0), �(0)) = (1, 0, −1) in (a),
(1,0,0) in (b), and (1,0,1) in (c). In each of the cases, U (0) = 0.3,U �(0),�(0), 0.7. Note that U (l ), �(l ), V (l ), and �(l ) do not depend on U (0).

3. RG flow and fixed points

We show the coupling constants U (l ), �(l ), V (l ), and
�(l ) as functions of l for the initial values (�(0), �(0)) =
(1,−1), (1, 0), (1, 1) in Fig. 4 [see the next paragraph on U (l )
and its initial value U (0)]. For the behavior of the coupling
constants that have other initial values and the behavior of the
variational parameters, see Figs. 14–16 in Appendix B7. Note
that multiplying all the bare couplings by a positive constant
c leaves the variational parameters at each l unchanged and
multiplies every renormalized coupling by c. This operation
corresponds to a rescaling of the vertical axis of each graph in
Fig. 4.

We find that U (l ) and V (l ) converge to finite positive
values and �(l ) and �(l ) vanish in the limit l → ∞. The
coupling constant U (l ) asymptotically behaves as

U (l ) ≈ 3l (U (0) − U �(0),�(0) ) (l → ∞), (14)

where U �(0),�(0) := liml→∞ U (l ) is the limiting value of U (l )
determined by the bare couplings �(0) and �(0) [recall that
V (0) = 0]. Figure 4 shows the behavior of U (l ) for several
values of U (0) including U �(0),�(0). It turns out that the limit
of U (l ) is

U (l ) →

⎧⎪⎨⎪⎩
−∞, U (0) < U �(0),�(0),

0, U (0) = U �(0),�(0),

+∞, U (0) > U �(0),�(0)

(l → ∞).

(15)
This indicates that the fixed points of the present RG
transformation are (U, �,V, �) = (0, 0,V, 0), (±∞, 0,V, 0)
with V being an arbitrary positive value. Indeed, we can
confirm that these points are fixed points by finding that
f�=0,V,�=0(α1, α2, z, β1, β2) is minimized at α2

1 = β2
1 = 1 and

α2 = z = β2 = 0 under the constraint (11) and substituting
these values into the RG equations (9).

To gain a clearer understanding of the behavior of the
coupling constants, we depict the RG flow diagrams in Fig. 5.
We see that the coupling constants approach the following

values in the limit l → ∞:

lim
l→∞

(U (l ), �(l ),V (l ), �(l ))

=

⎧⎪⎨⎪⎩
(−∞, 0, liml→∞ V (l ), 0), U (0) < U �(0),�(0),

(0, 0, liml→∞ V (l ), 0), U (0) = U �(0),�(0),

(+∞, 0, liml→∞ V (l ), 0), U (0) > U �(0),�(0),

(16)

where liml→∞ V (l ) is a finite positive value.
The fixed points (U, �,V, �) = (±∞, 0,V, 0) (V > 0) are

stable (i.e., any coupling constant is irrelevant around these
fixed points [68]) and these correspond to the two phases:

(i) (U, �,V, �) = (−∞, 0,V, 0): symmetric phase
(ii) (U, �,V, �) = (+∞, 0,V, 0): staggered phase
On the other hand, the fixed point (U, �,V, �) =

(0, 0,V, 0) for each V > 0 is unstable to variations in U .
Around this fixed point, U is relevant and the other coupling
constants are irrelevant [68]. Recalling that the scaling factor
of our RG transformation is b = 3 and U (l ) is asymptoti-
cally proportional to 3l as shown in Eq. (14), we find that
the scaling dimension of U around the unstable fixed point
(U, �,V, �) = (0, 0,V, 0) is yU = 1. Here, the scaling di-
mension yU around a fixed point U = U ∗ is defined as U (l +
1) − U ∗ ≈ byU (U (l ) − U ∗) in the vicinity of U (l ) = U ∗ for
any scaling factor b.

In addition, Eq. (16) shows the bare coupling U (0) =
U �(0),�(0) to be the critical point for each �(0) and �(0),
meaning that only the fine-tuned U (0) = U �(0),�(0) flows
into the unstable fixed point (U, �,V, �) = (0, 0,V, 0) in
the sense of RG theory. Other values of the bare coupling
U (0) are absorbed into the stable fixed points [namely,
U (0) < U �(0),�(0) into the symmetric phase (U, �,V, �) =
(−∞, 0,V, 0) and U (0) > U �(0),�(0) into the staggered phase
(U, �,V, �) = (+∞, 0,V, 0)] under repeated application of
the RG transformation.

4. Phase diagram

We now obtain the phase diagram of the frustrated Ising
ladder in the dimer limit. In the following, we denote the
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FIG. 5. RG flow diagrams of the frustrated Ising ladder in the dimer limit K → ∞. We plot (�(l ),U (l )), (�(l ),V (l )), and (�(l ), �(l ))
(l = 0, 1, . . . , 10) in (a), (b), and (c), respectively. The bare couplings are set to �(0) = 1, V (0) = 0, �(0) = 0, ±0.5, ±1, and U (0) =
0.3,U �(0),�(0), 0.7. Note that �(l ), V (l ), and �(l ) do not depend on U (0). The inset in (a) is a magnification of (�(l ),U (l )) for U (0) =
U �(0),�(0). The arrows on each line indicate the direction of the RG flow. It can be seen that l = 10 is sufficient for convergence of U (l )
[U (0) = U �(0),�(0)], �(l ), V (l ), and �(l ).

bare couplings by U , �, and � [not U (0), �(0), and �(0)]
for notational simplicity. Although there are three couplings
U , �, and �, it suffices to plot the phase diagram in the
�/U -�/U plane because dividing these couplings by U > 0
does not change the phase [note, as already remarked above,
that U c�,c� = cU �,� for any c > 0 and thus liml→∞ U (l ) is
unchanged under multiplication of every bare coupling by c].
We can draw the phase diagram by marking the critical points
(�/U, �/U ) = (�/U �,�,�/U �,�) for a number of sets of �

and �. The resulting phase diagram is shown in Fig. 6.
We can deduce from scaling theory [67], which is closely

related to RG theory, that the phase boundary shown in Fig. 6
is of first order. The fact that the scaling dimension of the
longitudinal field on the bottom row yU is equal to the spatial
dimensionality of the system d = 1 indicates that the phase
transition is of first order, because the correlation function on
the bottom row at the critical point does not decay:

Gbi,b j := 〈Ẑb,iẐb, j〉U=U �,�
∼ |i − j|−2(d−yU ) = 1, (17)

where 〈· · ·〉U=U �,�
denotes the expectation value at the critical

point U = U �,� and the approximation is a consequence of
scaling theory [67]. This behavior of the correlation function
leads to the value of the anomalous dimension η, one of the
critical exponents defined by Gbi,b j ∼ |i − j|2−d−η:

η = 2 + d − 2yU = 2 − d = 1. (18)

Recall that in general the scaling law for a quantum sys-
tem is Gbi,b j ∼ |i − j|−2(d+z−yU ) with z being the dynamic

critical exponent [69] (which should not be confused with
the variational parameter z) instead of Eq. (17). However,
we find that z = 0 for the present system, because under a
sufficiently large number of RG transformations the system
becomes (almost) classical, by elimination of the transverse
field � and the XX interaction �.

Consequently, Fig. 6 demonstrates that there is a first-order
phase boundary that completely separates the staggered phase

FIG. 6. Phase diagram of the frustrated Ising ladder in the dimer
limit K → ∞ predicted by the real-space RG method. The first-
order transition points (blue plus signs) indicate that adding XX
catalysts (stoquastic or nonstoquastic) does not remove the first-order
transition.
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from the symmetric phase on the �/U -�/U plane. In other
words, the first-order phase transition encountered during
quantum annealing cannot be removed by stoquastic or non-
stoquastic XX catalysts.

Note that whether the bare Hamiltonian (1) is nonsto-
quastic depends not only on � (= �tt) but also on � (=
�t), �b, �bb, and �tb [recall that the Hamiltonian is nonsto-
quastic if the fields and interactions satisfy Eq. (3), whose
third condition |U/2|, |�tb| < K holds in the dimer limit
K � U, �a, �aa′ ]. For example, consider the case of sgn �b =
sgn � and sgn �bb, sgn �tb ∈ {0, sgn �}, where the sign func-
tion is defined as sgn x = x/|x| for x �= 0 and sgn x = 0 for
x = 0. Then, the Hamiltonian is stoquastic if � = 0 ∨ � � 0
and nonstoquastic if � > 0 ∧ � < 0. Stoquasticity for � =
0 ∧ � < 0 follows from the curing transformation that flips
the signs of �tt , �bb, and �tb, as pointed out in Sec. II A.
The existence of this transformation indicates that the critical
points on � = 0, U �=0,�, are invariant under a change of the
sign of �.

It is noteworthy that the transition point derived from our
real-space RG method in the absence of XX interactions,
�/U = �/U �,�=0 = 1.9314900, is not far from that obtained
by numerical diagonalization of the quantum dimer model
[whose Hamiltonian is given by Eq. (7) with �tt = 0], �/U ≈
1/0.6 = 1.66 · · · [11], in spite of the fact that our RG analysis
is not an exact method.

B. Small frustration limit of the Ising chain

In this section we step back from the full Ising ladder and
analyze the phase transition in the limit of small frustration
U � K, �a, �aa′ at zero temperature. Since the bottom spins
are fixed to down in this limit, we obtain an antiferromagnetic
Ising chain with a transverse field and XX interactions as an
effective model:

Ĥchain =
L∑

i=1

(KẐt,iẐt,i+1 − �tX̂t,i − �ttX̂t,iX̂t,i+1). (19)

Our purpose in this section is to reveal how the XX interac-
tions affect the second-order transition that appears in the case
of no XX interaction and large U (see Fig. 2 or Ref. [11]).
Readers who are interested only in the effects of the XX
interactions on the first-order transition can proceed to the
next section on the DMRG calculations.

Similar analyses were conducted by Langari [70,71]. He
carried out the real-space RG analysis of the XXZ chain
in a magnetic field [70], whose Hamiltonian is equivalent
to Eq. (19) with

∑
i KŶt,i, Ŷt,i+1 added, and derived the

zero-temperature phase diagram. In addition, he obtained
the zero-temperature phase diagram of the model given by
the Hamiltonian (19) for �tt � 0 using the real-space RG
method [71].

To compare the effects of ferromagnetic and antiferromag-
netic XX interactions, we perform the real-space RG analysis
for positive and negative �tt . Instead of the Hamiltonian (19),
we consider the ferromagnetic Ising chain with a transverse
field and XX interactions,

Ĥ =
L∑

i=1

(−KẐiẐi+1 − �X̂i − �X̂iX̂i+1), (20)

which is obtained by the gauge transformation (X̂i, Ŷi, Ẑi ) �→
(X̂i,−Ŷi,−Ẑi ) for every odd i (we omitted the subscript t in
�t , �tt , and the Pauli operators for notational simplicity).

The real-space RG analysis of the model (20) proceeds in
the standard manner [67], which is detailed in Appendix C.
We first separate the Hamiltonian into intrablock and in-
terblock Hamiltonians after partitioning the chain every two
sites, which is valid when � is not a negative large value (if
� < 0 and |�| is large, block partitioning every odd number
of sites will be needed to retain the antiferromagnetic order in
the x direction). Then, we diagonalize the intrablock Hamil-
tonian and project the Hilbert space onto the two-dimensional
low-energy subspace in each block. Our real-space RG trans-
formation is slightly different from that in Ref. [71], in the
sense that the intrablock Hamiltonian in our transformation
includes the magnetic field only at the left site in each block
while that in Ref. [71] includes the fields at both sites. An
advantage of our scheme is that the critical point � = �c and
the critical exponent ν for � = 0 coincide with the exact re-
sults �c = K and ν = 1, where ν is defined by the correlation
length Lcorr ∼ |� − �c|−ν near the critical point [67].

We focus on the case where the magnitude of the XX inter-
actions is not large, or more precisely |�| <

√
K2 + �2. Since

the overall energy scale is unimportant at zero temperature,
we consider the ratios of the coupling constants γ = �/K
and ξ = �/K . As derived in Appendix C, we find the RG
equations

γ (l + 1) = γ (l )2 + ξ (l )(1 + 2γ (l )2)√
1 + γ (l )2

, ξ (l + 1) = 0 (21)

for l � 0, where γ (l ) and ξ (l ) denote the coupling constants
after l RG steps.

It turns out that there are three fixed points (γ , ξ ) = (0, 0),
(1, 0), (∞, 0). The two fixed points (γ , ξ ) = (0, 0), (∞, 0)
are stable and correspond to the staggered and symmetric
phases in the original Ising ladder (1), respectively. The other
fixed point (γ , ξ ) = (1, 0) is unstable under deviations in γ .
Around this fixed point, γ has the scaling dimension yγ = 1
since γ (l + 1) − 1 = γ (l )2 − 1 ≈ 2(γ (l ) − 1) for l � 1 and
the present scaling factor is two. Thus, we have the critical
exponent ν = 1/yγ = 1 [67].

Equation (21) indicates that the XX interaction is irrel-
evant in the limit U → ∞ unless the bare magnitude |�|
is large. This consequence is consistent with the result in
Ref. [71], which predicts that the antiferromagnetic XX in-
teraction gradually disappears when its bare magnitude is not
large. It is also known for the model (19) with the antifer-
romagnetic YY interactions of the magnitude K that � is
irrelevant for |�/K| � 1 regardless of the sign of � [70].

The critical points are determined by the equation

γ 2 + ξ (1 + 2γ 2)√
1 + γ 2

= 1 ⇐⇒ ξ = (1 − γ 2)
√

1 + γ 2

1 + 2γ 2
(22)

for the bare couplings γ and ξ . Note that all the critical points
but (γ , ξ ) = (0, 1) are inside the region |ξ | <

√
1 + γ 2, in

which our analysis can be applied. Since the RG equations
(21) imply that the antiferromagnetic Ising chain with the
transverse field and the XX interactions belongs to the same
universality class as the transverse-field Ising chain, there
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FIG. 7. Phase diagram of the Ising ladder in the limit U → ∞
(the Ising chain) predicted by the real-space RG method. The blue
line indicates second-order transition points.

will be second-order transitions at the critical points (22).
We show the phase diagram in Fig. 7, which indicates that
the ±XX -type catalysts do not eliminate the second-order
phase transition encountered during quantum annealing. The
phase diagram is in qualitative agreement with the diagrams
obtained by Langari [70,71], though the model in Ref. [71]
covers only the case of the antiferromagnetic XX interactions
and that in Ref. [70] includes the YY interactions that have the
same sign and magnitude as the ZZ interactions.

IV. DMRG CALCULATION

We next employ the DMRG method [72–75] to obtain the
phase diagram with a moderate coupling magnitude of K/U in
Sec. IV A, which supplements the real-space RG analysis. In
addition, we compute the energy gap of the finite-size system
with a nonstoquastic XX catalyst in Sec. IV B.

A. Phase diagram

We perform the DMRG calculations for the frustrated Ising
ladder with the transverse fields �t = �b = � and the XX
interactions �tt = � and �bb = �tb = 0 in Eq. (1).

To avoid trapping of the calculations in one of energy local
minima, we start with several sweeps by taking not only the
ground state but also the first excited state as the target states
in the finite DMRG procedure, followed by the single target
DMRG procedure to obtain the convergence of the ground-
state energy. The truncation number m of the density-matrix
eigenvalues in the DMRG calculations is set as large as m =
200 to achieve a maximal truncation error less than 10−12.

We first show the ground-state phase diagram for K/U = 5
and L = 20 in Fig. 8 [76]. Since the third condition of Eq. (3)
is satisfied, the Hamiltonian is stoquastic for � = 0 ∨ � � 0
and nonstoquastic for � > 0 ∧ � < 0. It is significant that
the phase diagram obtained by the DMRG method has a

FIG. 8. Ground-state phase diagram of the frustrated Ising lad-
der obtained by the DMRG calculations with K/U = 5 and L = 20
under periodic boundary conditions. We set �t = �b = �, �tt = �,
and �bb = �tb = 0 in Eq. (1). The staggered and symmetric phases
are separated by a line of first-order transitions.

similar shape to that for K → ∞ in the thermodynamic limit
L → ∞ predicted by the real-space RG method (see Fig. 6 for
the latter diagram). As explained below, the phase boundary
between the staggered phase and the symmetric phase in Fig. 8
is characterized by first-order transitions.

In order to determine the phase boundary in Fig. 8, we
calculate the staggered order parameter for spins on the top
row defined as

S = 1

L2

L∑
i=1

L∑
j=1

(−1)i− j 〈Ẑt,iẐt, j〉 , (23)

where 〈· · ·〉 denotes an average over the ground-state wave
function. Figure 9(a) shows the results for K/U = 5 and L =
20 as a function of �/U with several representative values of
�/U . When �/U = −0.4, the staggered order parameter S
remains approximately 1 for �/U up to ∼2.2, indicating that
the ground state is in the staggered phase, and then suddenly
decreases to almost zero (S ≈ 0.08) as �/U increases further,
which corresponds to a first-order transition to the symmetric
phase. A similar behavior continues until �/U ≈ −2.65 with
varying �/U as shown in Fig. 9(a), e.g., for �/U = −2.6,
where the first-order transition occurs at �/U ≈ 1.1. On the
other hand, when �/U = −3.0, the staggered order parameter
S gradually increases from S ≈ 0.08 with �/U , implying that
the ground state remains in the symmetric phase. Indeed, as
shown in Fig. 9(b), the first-order transition from the staggered
phase to the symmetric phase occurs at �/U ≈ ±2.65 when
� = 0.

To support these results, we calculate the first derivatives
of the ground-state energy E0 = 〈Ĥ〉 with respect to � and
� since a first-order transition is characterized by a point
where ∂E0/∂� or ∂E0/∂� is discontinuous. According to the
Hellmann-Feynman theorem [77], the first derivatives of the
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FIG. 9. Staggered order parameter on the top row S (a) as a function of �/U with several values of �/U and (b) as a function of �/U with
� = 0. The results are obtained by the DMRG method for K/U = 5 and L = 20 under periodic boundary conditions.

ground-state energy E0 with respect to � and � are calculated
as

∂E0

∂�
= −

L∑
i=1

〈X̂t,i + X̂b,i〉, (24a)

∂E0

∂�
= −

L∑
i=1

〈X̂t,iX̂t,i+1〉. (24b)

As shown in Fig. 10, the first derivatives of the ground-state
energy E0 with respect to � and � exhibit discontinuities
exactly at the points where the staggered order parameter S
changes abruptly in Fig. 9, confirming the first-order nature of
the transition.

B. Energy gap

We next obtain the energy gap between the ground state
and the first excited state of the finite-size system with a
nonstoquastic XX catalyst using the DMRG method. We
adopt the multitarget DMRG procedure with the ground state
as well as the two lowest excited states as the target states,

taking the truncation number m as large as 2000. We show
in Fig. 11 the finite-size scaling of the minimum gap 
(L)
through the first-order transition driven by varying �/U at
K/U = 5 for �/U = 0,−1,−2. We find that the gap 
(L)
decreases exponentially with L, i.e., ln 
(L) ∼ −αL, for all
three values of �/U (for �/U = 0 and L � 12, we reproduce
the previously reported results in Ref. [11]). It is noteworthy
that the absolute value of the slope, α, in ln 
(L) tends to
be smaller in the presence of negative �. From the point
of view of quantum annealing and optimization this im-
plies a quantitative, if not qualitative, improvement by the
nonstoquastic XX catalyst, since a larger gap implies a faster
time-to-solution by the adiabatic theorem [6,7].

We now discuss why the nonstoquastic XX catalyst re-
duces the decay rate α of the minimum gap 
(L). Consider
the sum of the terms with the coefficients U , �, and � in
the Hamiltonian Ĥ as a perturbation. It may be expected that
the ground state and the first excited state at the transition are
superpositions of columnar and staggered configurations and
ln 
(L) is roughly proportional to L ln(�/K ), because all the
bottom spins need to be flipped by the bottom transverse field

FIG. 10. First derivatives of the ground-state energy E0 (a) with respect to � for several values of �/U and (b) with respect to � for � = 0.
The results are obtained by the DMRG method for K/U = 5 and L = 20 under periodic boundary conditions. The inset in (a) is a magnification
around �/U = 1.
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FIG. 11. The finite-size scaling of the minimum gap through
the first-order transition driven by varying �/U at a fixed value of
K/U = 5. The results are obtained by the DMRG method for three
values of �/U under periodic boundary conditions.

�b = � to move from the symmetric phase to the staggered
phase (note that the present XX interactions � are applied
only along the top row and cannot flip the bottom spins).
Indeed, log10(1.85/5) = −0.43 and log10(2.85/5) = −0.24
are close to the slopes of the lines for �/U = 0,−2 in Fig. 11,
respectively, where �/U = 1.85 is the transition point for
�/U = 0 and �/U = 2.85 is for �/U = −2 when K/U = 5
(see Fig. 8). This is consistent with the fact that the decay
rate α is proportional to ln(K/�) when K/U is varied in
the absence of the XX catalyst [11]. Our argument suggests
that the nonstoquastic XX catalyst on the top row with an
appropriate magnitude � increases the transverse field � at
the transition and reduces the exponential decay rate of the
gap in the present system. Although we have not carried out
a numerical calculation of the gap of the model with the sto-
quastic XX catalyst due to the associated heavy computational
cost, it is implied that the decay rate α of the minimum gap

(L) becomes larger for � > 0 (as well as for �/U � −2.5)
than for � = 0, because �/U at the transition is smaller in the
former case, as shown in Fig. 8.

Similar arguments were presented for a geometrically lo-
cal Ising model on two connected rings [22]. There it was
shown by numerical diagonalization that the nonstoquastic
XX catalyst makes the minimum gap larger than in the case
without the XX catalyst and in the case with the stoquastic XX
catalyst. It was argued that one of the possible reasons for the
softening of the avoided level crossing with the nonstoquastic
catalyst is that the driver with the nonstoquastic XX catalyst
causes the level crossing earlier in quantum annealing (which
means a larger transverse field) than with the stoquastic XX
catalyst, which is a consequence of perturbation theory.

V. SUMMARY AND CONCLUSIONS

We have studied the effects of stoquastic and non-
stoquastic catalysts, implemented via ferromagnetic and
antiferromagnetic XX interactions, in the setting of the
frustrated Ising ladder. This model—without the XX

interactions—is known to have a first-order phase transition
with an exponentially decaying energy gap, which is charac-
terized by a change in the topology of dimer configurations in
the limit of strong frustration K → ∞ [11]. We have formu-
lated a real-space RG transformation such that the symmetry
of the problem is preserved and used it to obtain the phase
diagram in the presence of XX interactions of both signs,
stoquastic and nonstoquastic. The result shows that the first-
order transition persists in the presence of XX interactions
of moderate magnitude. The transition point obtained by the
real-space RG method in the case without XX interactions
is close to the value obtained by numerical diagonalization
[11]. This is surprising, given that the real-space RG approach
involves a number of uncontrolled approximations. In addi-
tion, we applied the real-space RG method to the case with
small frustration and found that the second-order transition
persists under the influence of XX interactions of moderate
magnitude.

We next performed extensive numerical computations by
the DMRG method for a large but finite value of K in order to
directly study the behavior of various physical quantities. The
results for the order parameter and derivatives of the ground-
state energy clearly indicate the existence of first-order phase
transitions in the presence of stoquastic or nonstoquastic XX
interactions, which is consistent with the conclusion from
the real-space RG study. The structure of the phase diagram
qualitatively and even semiquantitatively resembles the one
obtained by the real-space RG analysis. Our DMRG results
furthermore confirm that the energy gap decays exponentially
as a function of system size at the first-order transition points,
both with or without XX interactions on the top row of the
ladder. However, the nonstoquastic XX catalyst reduces the
decay rate of the gap, as we showed numerically. We pointed
out that this softening of the exponential decay of the gap may
be due to an increase of the transverse field at the transition in
the presence of a nonstoquastic catalyst.

A first-order phase transition is a sudden change of the sys-
tem state between very different phases, e.g., between water
and ice, and is unlikely to be induced or reduced by a series
of gradual local changes. In the case of spin systems, the
latter gradual change is exemplified by the introduction of XX
interactions, which change the state of the system in the com-
putational basis by flipping only pairs of spins simultaneously.
Nevertheless, there exist examples in which nonstoquastic XX
interactions change the order of a phase transition from first
to second [16,17,19,21–23], meaning a drastic reduction of
the “strength” of the phase transition by nonstoquastic XX
interactions, although counterexamples abound [25].

The first-order transition in the problem of the frustrated
Ising ladder without XX interactions belongs to a more stable
class in the sense that the two phases are separated by dif-
ferent topological structures in the limit of strong frustration.
These topological structures are generated by the columnar
and staggered configurations, which have magnetizations with
opposite signs on the bottom row of the ladder. In the presence
of frustration of infinite magnitude, the addition of any local
operators of finite magnitude does not allow transitions be-
tween the topologically distinct states. It is therefore expected
that the first-order transition is stable against the introduction
of the XX interactions of either sign.
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From the perspective of quantum annealing, the persistence
of the first-order transition means that the computational com-
plexity of the problem, exponential in the system size, remains
intact under the introduction of stoquastic or nonstoquastic
XX catalysts as long as the system evolves under adiabatic
unitary dynamics. It is an important and interesting open ques-
tion to study whether any of these conclusions are modified
under nonunitary (open-system) dynamics or diabatic evolu-
tion, both of which take place in real quantum devices [48].
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APPENDIX A: ENERGY GAP OF THE MODEL WITHOUT
XX TERMS

This Appendix displays additional data to supplement the
phase diagram of the Ising ladder without XX terms in Fig. 2.
As mentioned in Sec. II B, it appears that the minimum gap
point (namely, the location at which the energy gap between
the ground state and the first excited state is minimized for a
fixed K/U ) has a discontinuity at K/U ≈ 1.5 between �/U ≈
1.5 and 1.9. To examine whether this phenomenon is a finite-
size effect, we plot the minimum gap points for L = 4, 6, 8, 10
in Fig. 12. We find near convergence already for L = 10,
which suggests that the discontinuity of the minimum gap
point location is not a finite size effect.

An explanation is provided in Fig. 13, which shows the
energy gap 
E as a function of �/U for L = 10 and K/U =
1.25, 1.49, 1.5, 1.75. It turns out that the energy gap for
K/U ≈ 1.5 takes a “double-well” form, which is the origin
of the discontinuity of the minimum gap point. The energy
gap 
E is minimized in the left “well” for K/U � 1.5, while

E is minimized in the right “well” for K/U � 1.5. We leave
a detailed understanding of this phenomenon as a future topic
of research.

APPENDIX B: DERIVATION OF RG EQUATIONS IN THE
LIMIT OF LARGE FRUSTRATION

We derive the RG equations of the frustrated Ising ladder in
the limit of large frustration (i.e., the dimer limit), which were
used in Sec. III A. Appendix B 1 gives a review of basic prop-
erties of the model. In Appendix B 2, we define a Hamiltonian
that appears in the RG analysis. In Appendices B 3–B 7, we
explain the way to construct the real-space RG transformation

FIG. 12. Locations of the minimum energy gap of the Ising lad-
der with uniform transverse field � and no XX terms for several
system sizes L, at fixed values of K/U . The first- and second-order
phase boundaries predicted by perturbation theory are indicated by
black-solid and dashed lines, respectively.

including the variational ansatz in detail and write down the
RG equations. We also calculate the renormalized couplings
and show their behavior.

FIG. 13. Energy gap 
E as a function of �/U for L = 10 at
different values of K/U . The inset is a magnification of the lines
for K/U = 1.49, 1.5, which shows that the global minimum of 
E
moves from the left “well” to the right “well” as K/U changes.
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1. Preliminary analysis

To prepare for the real-space RG analysis, we demonstrate why the columnar and staggered configurations are the low-energy
states of the frustrated Ising ladder (1) in the dimer limit K → ∞ and derive the number of low-energy states, as indicated in
Ref. [11].

Since the overall energy scale does not change the statistical properties in the zero-temperature limit, we consider the
dimensionless Hamiltonian ĥ = Ĥ/K :

ĥ =
L∑

i=1

(
Ẑt,iẐt,i+1 − Ẑb,iẐb,i+1 − Ẑt,iẐb,i − Ẑt,i + u

2
Ẑb,i − (γtX̂t,i + γbX̂b,i ) − (ξttX̂t,iX̂t,i+1 + ξbbX̂b,iX̂b,i+1 + ξtbX̂t,iX̂b,i )

)
,

(B1)

where u = U/K , γa = �a/K , and ξaa′ = �aa′/K are sufficiently small dimensionless parameters. We assume that u, γa, and ξaa′

are of the same order δ � 1. We separate the Hamiltonian ĥ into ĥ(0) = O(δ0) and ĥ(1) = O(δ1):

ĥ = ĥ(0) + ĥ(1), (B2a)

ĥ(0) =
L∑

i=1

(Ẑt,iẐt,i+1 − Ẑb,iẐb,i+1 − Ẑt,iẐb,i − Ẑt,i ), (B2b)

ĥ(1) =
L∑

i=1

(u

2
Ẑb,i − (γtX̂t,i + γbX̂b,i ) − (ξttX̂t,iX̂t,i+1 + ξbbX̂b,iX̂b,i+1 + ξtbX̂t,iX̂b,i )

)
. (B2c)

Using translational invariance yields
∑

i Ẑt,i =∑i(Ẑt,i + Ẑt,i+1)/2 and
∑

i Ẑt,iẐb,i =∑i(Ẑt,iẐb,i + Ẑt,i+1Ẑb,i+1)/2. We can
thus rewrite the zeroth-order Hamiltonian ĥ(0) as

ĥ(0) =
L∑

i=1

(
Ẑt,iẐt,i+1 − Ẑb,iẐb,i+1 − Ẑt,i

1 + Ẑb,i

2
− Ẑt,i+1

1 + Ẑb,i+1

2

)
. (B3)

Next, let us rewrite the same Hamiltonian as a linear combination of projectors:

ĥ(0) =
L∑

i=1

(
− 2

∣∣∣∣↑↑
↑↑

〉〈↑↑
↑↑

∣∣∣∣− 2

∣∣∣∣↓↑
↑↑

〉〈↓↑
↑↑

∣∣∣∣− 2

∣∣∣∣↑↓
↑↑

〉〈↑↓
↑↑

∣∣∣∣+ 2

∣∣∣∣↓↓
↑↑

〉〈↓↓
↑↑

∣∣∣∣+ 0

∣∣∣∣↑↑
↓↓

〉〈↑↑
↓↓

∣∣∣∣− 2

∣∣∣∣↓↑
↓↓

〉〈↓↑
↓↓

∣∣∣∣
− 2

∣∣∣∣↑↓
↓↓

〉〈↑↓
↓↓

∣∣∣∣+ 0

∣∣∣∣↓↓
↓↓

〉〈↓↓
↓↓

∣∣∣∣+ 1

∣∣∣∣↑↑
↓↑

〉〈↑↑
↓↑

∣∣∣∣− 1

∣∣∣∣↓↑
↓↑

〉〈↓↑
↓↑

∣∣∣∣+ 1

∣∣∣∣↑↓
↓↑

〉〈↑↓
↓↑

∣∣∣∣+ 3

∣∣∣∣↓↓
↓↑

〉〈↓↓
↓↑

∣∣∣∣
+ 1

∣∣∣∣↑↑
↑↓

〉〈↑↑
↑↓

∣∣∣∣+ 1

∣∣∣∣↓↑
↑↓

〉〈↓↑
↑↓

∣∣∣∣− 1

∣∣∣∣↑↓
↑↓

〉〈↑↓
↑↓

∣∣∣∣+ 3

∣∣∣∣↓↓
↑↓

〉〈↓↓
↑↓

∣∣∣∣
)

i,i+1

. (B4)

Here, each state vector containing an array of arrows means a product state and the positions in the array correspond to those in
the ladder: ∣∣∣∣ σt,i

σb,i

σt,i+1

σb,i+1

〉
i,i+1

:= |σt,i〉t,i |σb,i〉b,i |σt,i+1〉t,i+1 |σb,i+1〉b,i+1 (σa, j =↑,↓). (B5)

We denoted the normalized eigenstates of Ẑa,i with the eigenvalues +1 and −1 by |↑〉a,i and |↓〉a,i, respectively.
Since a constant energy difference is unimportant, we add 2Î to ĥ(0), where Î is the identity operator, and redefine ĥ(0) + 2Î

as ĥ(0):

ĥ(0) =
L∑

i=1

(
+ 4

∣∣∣∣↓↓
↑↑

〉〈↓↓
↑↑

∣∣∣∣+ 2

∣∣∣∣↑↑
↓↓

〉〈↑↑
↓↓

∣∣∣∣+ 2

∣∣∣∣↓↓
↓↓

〉〈↓↓
↓↓

∣∣∣∣+ 3

∣∣∣∣↑↑
↓↑

〉〈↑↑
↓↑

∣∣∣∣+ 1

∣∣∣∣↓↑
↓↑

〉〈↓↑
↓↑

∣∣∣∣+ 3

∣∣∣∣↑↓
↓↑

〉〈↑↓
↓↑

∣∣∣∣
+ 5

∣∣∣∣↓↓
↓↑

〉〈↓↓
↓↑

∣∣∣∣+ 3

∣∣∣∣↑↑
↑↓

〉〈↑↑
↑↓

∣∣∣∣+ 3

∣∣∣∣↓↑
↑↓

〉〈↓↑
↑↓

∣∣∣∣+ 1

∣∣∣∣↑↓
↑↓

〉〈↑↓
↑↓

∣∣∣∣+ 5

∣∣∣∣↓↓
↑↓

〉〈↓↓
↑↓

∣∣∣∣
)

i,i+1

. (B6)

These terms can be regarded as energy penalties for the 11 configurations of each pair (i, i + 1). A state that does not pay a
penalty for any pair (i, i + 1) is a ground state of ĥ(0) if such a state exists. We find that the ground states of ĥ(0) are the columnar
and staggered configurations defined in Sec. II and their superpositions, on which no energy penalties are imposed. In other
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words, the ground space of ĥ(0) is given by DL = span{ |σ 〉 }σ∈DL , where

DL :=
{(

σt,1

↑
· · ·
· · ·

σt,L

↑

)∣∣∣∣ σt,1, . . . , σt,L ∈ {↑,↓} ∧ (σt,1, σt,2), (σt,2, σt,3), . . . , (σt,L−1, σt,L ), (σt,L, σt,1) �= (↓,↓)

}

∪
{(↓↑ · · · ↓↑

↓↓ · · · ↓↓

)
,

(↑↓ · · · ↑↓
↓↓ · · · ↓↓

)}
. (B7)

Although the full Hilbert space is HL = span{ |σ 〉 }σ∈HL with

HL :=
{(

σt,1

σb,1

· · ·
· · ·

σt,L

σb,1

)∣∣∣∣ σt,1, . . . , σt,L, σb,1, . . . , σb,L ∈ {↑,↓}
}
, (B8)

ĥ(0) imposes a penalty on every state in HL \ DL. As mentioned in Sec. II, the elements of DL can be assigned to dimer coverings
on a two-leg ladder.

What is the dimension of the nonpenalized subspace, dim DL = |DL|? First consider the open-ladder counterpart of DL:

D′
L :=
{(

σt,1

↑
· · ·
· · ·

σt,L

↑

)∣∣∣∣ σt,1, . . . , σt,L ∈ {↑,↓} ∧ (σt,1, σt,2), (σt,2, σt,3), . . . , (σt,L−1, σt,L ) �= (↓,↓)

}

∪
{(↓↑ · · ·

↓↓ · · ·

)
,

(↑↓ · · ·
↓↓ · · ·

)}
. (B9)

In particular, we focus on the columnar configurations:

D′ columnar
L :=

{(
σt,1

↑
· · ·
· · ·

σt,L

↑

)∣∣∣∣ σt,1, . . . , σt,L ∈ {↑,↓} ∧ (σt,1, σt,2), (σt,2, σt,3), . . . , (σt,L−1, σt,L ) �= (↓,↓)

}
. (B10)

The number of elements of this set FL := |D′ columnar
L | satisfies

F1 = 2, F2 = 3, FL = FL−1 + FL−2, (B11)

which means that FL are the Fibonacci numbers (note the values of F1 and F2). We can obtain the recurrence relation for the
following reason: If σt,L is up, (σt,1, . . . , σt,L−1) can be regarded as an open chain of length L − 1. On the other hand, if σt,L is
down, σt,L−1 should be up and (σt,1, . . . , σt,L−2) is an open chain of length L − 2.

We can express the dimension of the nonpenalized subspace for the original periodic ladder |DL| using the Fibonacci numbers.
If the bottom spins are up, setting σt,L =↑ yields an open chain of length L − 1 while setting σt,L =↓ fixes σt,L−1 and σt,1 to
up and yields an open chain of length L − 3. If the bottom spins are down, the top spins can take the two antiferromagnetic
configurations. Thus, we have

|DL| = FL−1 + FL−3 + 2. (B12)

Since the Fibonacci sequence asymptotically behaves as

FL ∼ ϕL (L → ∞) (B13)

with ϕ = (1 + √
5)/2 being the golden ratio, |DL| is exponentially large as a function of L. Thus, the ground state of ĥ(0) is

exponentially degenerate.

2. Generalized Hamiltonian

The bare dimensionless Hamiltonian is given by Eqs. (B2a), (B6), and (B2c). Now we define a more general Hamiltonian,
because an RG transformation will produce interactions not included in the bare Hamiltonian:

ĥ = ĥ(0) + ĥ(1), (B14a)

ĥ(0) =
L∑

i=1

∑
(σi,σi+1 )∈H2\D′

2

k(σi, σi+1)(|σiσi+1〉 〈σiσi+1|)i,i+1, (B14b)

ĥ(1) =
L∑

i=1

[
u

2
Ẑb,i − γ X̂t,i

1 + Ẑb,i

2
+ vẐt,i

1 + Ẑb,i

2
− ξ

(∣∣∣∣↑↓
↑↑

〉〈↓↑
↑↑

∣∣∣∣+ ∣∣∣∣↓↑
↑↑

〉〈↑↓
↑↑

∣∣∣∣)
i,i+1

]
+ ôP̂(D⊥

L ) + P̂(D⊥
L )ô†, (B14c)
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where 0 < k(σi, σi+1) = O(δ0) for all (σi, σi+1) ∈ H2 \ D′
2 and u, γ , v, ξ = O(δ1). The length L is even and position L + 1 is

identified with 1 due to the assumption of periodic boundary conditions. We denoted an arbitrary operator of O(δ1) by ô and the
projection operator onto D⊥

L by P̂(D⊥
L ), where D⊥

L is the orthogonal complement of DL. The operator ôP̂(D⊥
L ) + P̂(D⊥

L )ô† in
ĥ(1) will disappear after an RG transformation and is irrelevant in the sense of RG theory. The bare Hamiltonian can be obtained
by assigning the coefficients in Eq. (B6) to k(σi, σi+1) and setting γ = γt , v = 0, and ξ = ξtt .

In Eq. (B14b), we denoted configurations of two spins at each position i by

σi ∈ H1 =
{(↑

↑

)
,

(↓
↑

)
,

(↑
↓

)
,

(↓
↓

)}
. (B15)

Every configuration (σi, σi+1) ∈ H2 \ D′
2 costs energy of O(δ0) for each pair (i, i + 1), where D′

2 and H2 \ D′
2 are given by

D′
2 =
{(↑↑

↑↑

)
,

(↓↑
↑↑

)
,

(↑↓
↑↑

)
,

(↓↑
↓↓

)
,

(↑↓
↓↓

)}
, (B16a)

H2 \ D′
2 =
{(↓↓

↑↑

)
,

(↑↑
↓↓

)
,

(↓↓
↓↓

)
,

(↑↑
↓↑

)
,

(↓↑
↓↑

)
,

(↑↓
↓↑

)
,

(↓↓
↓↑

)
,

(↑↑
↑↓

)
,

(↓↑
↑↓

)
,

(↑↓
↑↓

)
,

(↓↓
↑↓

)}
. (B16b)

Since (σi, σi+1) ∈ H2 \ D′
2 (∀i = 1, . . . , L) is equivalent to (σ1, . . . , σL ) ∈ HL \ DL, any |ψ〉 ∈ HL \ DL has a nonvanishing

zeroth-order energy expectation value 0 < 〈ψ |ĥ(0)|ψ〉 = O(δ0). Hence, the zeroth-order Hamiltonian ĥ(0) imposes an energy
penalty on every state in HL \ DL.

3. Block partition

As a first step of an RG transformation, we partition the
ladder into L̃ = L/b blocks of spins, where b is the scaling
factor. We project the Hilbert space onto a four-dimensional
space for each block. The projector is written as

Q̂ =
L̃⊗

I=1

Q̂I =
∑
σ∈HL̃

|̃σ 〉〈̃σ |, (B17a)

Q̂I =
(∣̃∣∣∣↑↑
〉〈̃↑

↑

∣∣∣∣+ ∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣+ ∣̃∣∣∣↑↓
〉〈̃↑

↓

∣∣∣∣+ ∣̃∣∣∣↓↓
〉〈̃↓

↓

∣∣∣∣
)

I

, (B17b)

where |̃σ 〉 =⊗L̃
I=1 |̃σI〉I for σ = (σ1, . . . , σL̃ ) and

{ |̃σI〉I }σI ∈H1 is a set of four orthonormal states in the
Ith block constituted by the 2b sites (a, i) (a = t, b;
i = b(I − 1) + 1, . . . , bI). In the present system, the
scaling factor b should be an odd number to prevent the
RG transformation from breaking the antiferromagnetic order
in the staggered phase (an RG transformation with even b
would turn antiferromagnetic order into ferromagnetic order).
We take b = 3 in the following.

Each |̃σI〉I is a superposition of |τ3I−2τ3I−1τ3I〉I =
|τ3I−2〉3I−2 |τ3I−1〉3I−1 |τ3I〉3I ((τ3I−2, τ3I−1, τ3I ) ∈ H3). We
suppose that for each σ1 ∈ H1, |̃σ1〉I take the same form
except for the difference of the block. In other words, when
we express |̃σ1〉I as a linear combination of |τ1τ2τ3〉I , the
coefficients are independent of I .

We expand the states |̃σI〉I (σI ∈ H1) up to first order in
powers of δ:

|̃σI〉I = |̃σI〉(0)
I + |̃σI〉(1)

I + O(δ2). (B18)

These states satisfy the orthonormality

δτI σI = 〈̃τII |σ̃I〉I = 〈̃τI
(0)

I |σ̃I〉(0)
I + 〈̃τI

(0)
I |σ̃I〉(1)

I

+ 〈̃τI
(1)

I |σ̃I〉(0)
I + O(δ2), (B19)

which yields the constraint at each order:

〈̃τI
(0)

I |σ̃I〉(0)
I = δτI σI , 〈̃τI

(0)
I |σ̃I〉(1)

I + 〈̃τI
(1)

I |σ̃I〉(0)
I = 0.

(B20)
The block-product state

|̃σ 〉 =
L̃⊗

I=1

|̃σI〉I =
L̃⊗

I=1

(
|̃σI〉(0)

I + |̃σI〉(1)
I + O(δ2)

)
(B21)

has the zeroth- and first-order parts

|̃σ 〉(0) = |̃σ1〉(0)
1 · · · |̃σL̃〉(0)

L̃ , (B22a)

|̃σ 〉(1) =
L̃∑

I=1

|̃σ1〉(0)
1 · · · ˜|σI−1〉

(0)

I−1 |̃σI〉(1)
I

˜|σI+1〉
(0)

I+1 · · · |̃σL̃〉(0)
L̃ .

(B22b)

4. Variational ansatz for the projector

The renormalized Hamiltonian is given by ˆ̃h = Q̂ĥQ̂. Now
we need to construct the projector Q̂. In the standard real-
space RG method, the Hilbert space would be projected
onto a low-energy space of the intrablock Hamiltonian af-
ter separating the Hamiltonian into intrablock and interblock
Hamiltonians [67]. However, we do not adopt this method,
because the interblock interactions are strong and diagonaliza-
tion of the intrablock Hamiltonian will not yield a low-energy
space of the entire system correctly (recall that the interblock
operators are of O(δ0)). In order to find a low-energy space
not of an intrablock Hamiltonian but of the whole Hamiltonian
ĥ, we propose a new RG procedure in which the projector Q̂
is variationally determined.

Let us construct the zeroth-order projector Q̂(0) =∑
σ∈HL̃

|̃σ 〉(0) 〈̃σ |(0)
. It is sufficient to take into account only

the penalty Hamiltonian ĥ(0) to determine the forms of |̃σI〉(0)
I .

The construction proceeds as follows:
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(1) Each |̃σI〉(0)
I is a superposition of |τ3I−2τ3I−1τ3I〉I

with (τ3I−2, τ3I−1, τ3I ) ∈ D′
3 because configurations with

(τ3I−2, τ3I−1, τ3I ) ∈ H3 \ D′
3 pay energy penalties.

(2) Each |̃σI〉(0)
I does not include both components of

| · · ·
↑↑↑〉I and | · · ·

↓↓↓〉I . If |̃σI〉(0)
I has both components of | · · ·

↑↑↑〉I and

| · · ·
↓↓↓〉I for at least one of σI ∈ H1, any state of length L in which

the state in the Ith block is |̃σI〉(0)
I has a component including

↓↑ or ↑↓ on the bottom row whether the (3I + 1)th spin on
the bottom row is up or down. This state pays a penalty.

(3) We suppose that |̃↑↑〉
(0)

I
and |̃↓↑〉

(0)

I
are superpositions of

|↑↓↑
↑↑↑〉I , |↑↑↑

↑↑↑〉I , |↓↑↓
↑↑↑〉I , |↑↑↓

↑↑↑〉I , and |↓↑↑
↑↑↑〉I , while |̃↑↓〉

(0)

I
= |↑↓↑

↓↓↓〉I

and |̃↓↓〉
(0)

I
= |↓↑↓

↓↓↓〉I . The reason is that we should keep both
columnar and staggered configurations to study the phase
transition in the dimer limit. Note that we do not need to take
superpositions of |↑↓↑

↓↓↓〉I and |↓↑↓
↓↓↓〉I because the projector Q̂(0)

is independent of what superpositions of these states are taken.

(4) We assume that |̃↑↑〉
(0)

I
is a superposition of |↑↓↑

↑↑↑〉I and

|↑↑↑
↑↑↑〉I , while |̃↓↑〉

(0)

I
is a superposition of |↑↓↑

↑↑↑〉I , |↑↑↑
↑↑↑〉I , |↓↑↓

↑↑↑〉I ,

|↑↑↓
↑↑↑〉I , and |↓↑↑

↑↑↑〉I . This assumption is motivated by the ex-
pectation that the dimer structure will be kept around the
fixed point that dominates the phase transition as the RG
transformation is applied many times (we need to explore a
neighborhood of a fixed point to derive critical properties).
The dimer structure means that the set of low-energy states has
a one-to-one correspondence with the set of dimer coverings
on a two-leg ladder. We can preserve the dimer structure

by constructing a zeroth-order renormalized Hamiltonian ˆ̃h
(0)

that imposes a penalty on ˜|σIσI+1〉
(0)

I,I+1 = |̃σI〉(0)
I

˜|σI+1〉
(0)

I+1 for
(σI , σI+1) ∈ H2 \ D′

2 and no penalty for (σI , σI+1) ∈ D′
2. To

prevent |̃↑↑
↑↑〉

(0)

I,I+1
from paying a penalty, |̃↑↑〉

(0)

I
does not in-

clude |↓↑↓
↑↑↑〉I or both of |↑↑↓

↑↑↑〉I and |↓↑↑
↑↑↑〉I . If |̃↑↑〉

(0)

I
includes

|↑↑↓
↑↑↑〉I (but neither |↓↑↓

↑↑↑〉I nor |↓↑↑
↑↑↑〉I ), then |̃↓↑〉

(0)

I
is also a superpo-

sition of |↑↓↑
↑↑↑〉I , |↑↑↑

↑↑↑〉I , and |↑↑↓
↑↑↑〉I to prevent |̃↑↓

↑↑〉
(0)

I,I+1
from

paying a penalty. In this case, however, |̃↓↓
↑↑〉

(0)

I,I+1
does not

cost energy of O(δ0) and we cannot keep the dimer structure.
In addition, there is no reason why the (3I − 2)th spin on
the top row is up for any I . It is thus necessary to require

that |̃↑↑〉
(0)

I
does not include |↑↑↓

↑↑↑〉I . Likewise, |̃↑↑〉
(0)

I
will not

include |↓↑↑
↑↑↑〉I . Therefore, |̃↑↑〉

(0)

I
contains only the components

|↑↓↑
↑↑↑〉I and |↑↑↑

↑↑↑〉I , while |̃↓↑〉
(0)

I
can contain all the elements

in D′ columnar
3 . Then, |̃↓↓

↑↑〉
(0)

I,I+1
pays a penalty and |̃↑↑

↑↑〉
(0)

I,I+1
,

|̃↓↑
↑↑〉

(0)

I,I+1
, and |̃↑↓

↑↑〉
(0)

I,I+1
do not. This means that we reproduce

the dimer structure after projecting the Hilbert space.

(5) Since |̃σI〉(0)
I are orthonormal, we obtain

∣̃∣∣∣↑↑
〉(0)

I

= α1

∣∣∣∣↑↓↑
↑↑↑

〉
I

+ α2

∣∣∣∣↑↑↑
↑↑↑

〉
I

, (B23a)

∣̃∣∣∣↓↑
〉(0)

I

= −z∗α∗
2

∣∣∣∣↑↓↑
↑↑↑

〉
I

+ z∗α∗
1

∣∣∣∣↑↑↑
↑↑↑

〉
I

+ β∗
1

∣∣∣∣↓↑↓
↑↑↑

〉
I

+β∗
2

∣∣∣∣↑↑↓
↑↑↑

〉
I

+ β∗
3

∣∣∣∣↓↑↑
↑↑↑

〉
I

, (B23b)

∣̃∣∣∣↑↓
〉(0)

I

=
∣∣∣∣↑↓↑
↓↓↓

〉
I

, (B23c)

∣̃∣∣∣↓↓
〉(0)

I

=
∣∣∣∣↓↑↓
↓↓↓

〉
I

, (B23d)

where the parameters α1, α2, z, β1, β2, β3 ∈ C satisfy the nor-
malization conditions:

〈̃σI
(0)

I |σ̃I〉(0)
I = 1 (∀σI ∈ H1) ⇐⇒

{|α1|2 + |α2|2 = 1,

|z|2(|α1|2 + |α2|2) + |β1|2 + |β2|2 + |β3|2 = 1

⇐⇒
{|α1|2 + |α2|2 = 1,

|z|2 + |β1|2 + |β2|2 + |β3|2 = 1.
(B24)

Equation (B23) can be regarded as a variational ansatz for the projector Q̂(0). We will determine the variational parameters α1,
α2, z, β1, β2, and β3 in Appendix B 6.

5. Projection of the Hamiltonian

Let us compute the renormalized Hamiltonian ˆ̃h = Q̂ĥQ̂ up to first order. First, the zeroth-order Hamiltonian ĥ(0) is projected
onto

Q̂ĥ(0)Q̂ =
∑

σ,τ∈HL̃

|̃τ 〉〈̃τ |ĥ(0) |̃σ 〉〈̃σ | =
∑

σ,τ∈HL̃

[
|̃τ 〉
(

〈̃τ |(0)
ĥ(0) |̃σ 〉(0) + 〈̃τ |(0)

ĥ(0) |̃σ 〉(1) + 〈̃τ |(1)
ĥ(0) |̃σ 〉(0)

)
〈̃σ |
]

+ O(δ2). (B25)
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It is convenient to write the zeroth-order Hamiltonian as a
summation over the block index I:

ĥ(0) =
L̃∑

I=1

ĥ(0)
I,I+1, (B26a)

ĥ(0)
I,I+1 =

∑
(σ1,σ2 )∈H2\D′

2

k(σ1, σ2)

[
1

2
(|σ1σ2〉〈σ1σ2|)3I−2,3I−1

+ 1

2
(|σ1σ2〉〈σ1σ2|)3I−1,3I + (|σ1σ2〉〈σ1σ2|)3I,3I+1

+ 1

2
(|σ1σ2〉〈σ1σ2|)3I+1,3I+2

+ 1

2
(|σ1σ2〉〈σ1σ2|)3I+2,3I+3

]
. (B26b)

Since

(|ρ1ρ2〉〈ρ1ρ2|)3I−2,3I−1 |̃σI〉(0)
I

= (|ρ1ρ2〉〈ρ1ρ2|)3I−1,3I |̃σI〉(0)
I = 0 (B27)

for (ρ1, ρ2) ∈ H2 \ D′
2 and σI ∈ H1, we obtain

˜〈τIτI+1|
(0)

I,I+1 ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1

=
∑

(ρ1,ρ2 )∈H2\D′
2

k(ρ1, ρ2) ˜〈τIτI+1|
(0)

I,I+1

× (|ρ1ρ2〉〈ρ1ρ2|)3I,3I+1 ˜|σIσI+1〉
(0)

I,I+1 (B28)

for (σI , σI+1), (τI , τI+1) ∈ H2. After calculations, we find that

the matrix ˜〈τIτI+1|
(0)

I,I+1 ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1 is diagonal:

˜〈τIτI+1|
(0)

I,I+1 ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1

= δ(τI ,τI+1 ),(σI ,σI+1 ) ˜〈σIσI+1|
(0)

I,I+1 ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1, (B29)

whose diagonal elements are written as

˜〈σIσI+1|
(0)

I,I+1 ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1

=
{

0, (σI , σI+1) ∈ D′
2,

k̃(σI , σI+1), (σI , σI+1) ∈ H2 \ D′
2.

(B30)

Here, k̃(σI , σI+1) are given by

k̃

(↓↓
↑↑

)
= k

(↓↓
↑↑

)
(|β1|2 + |β2|2)(|β1|2 + |β3|2), (B31a)

k̃

(↑↑
↓↓

)
= k

(↑↑
↓↓

)
, (B31b)

k̃

(↓↓
↓↓

)
= k

(↓↓
↓↓

)
, (B31c)

k̃

(↑↑
↑↓

)
= k

(↑↑
↑↓

)
, (B31d)

k̃

(↑↑
↓↑

)
= k

(↑↑
↓↑

)
, (B31e)

k̃

(↑↓
↑↓

)
= k

(↑↓
↑↓

)
, (B31f)

k̃

(↓↑
↓↑

)
= k

(↓↑
↓↑

)
, (B31g)

k̃

(↓↑
↑↓

)
= k

(↑↑
↑↓

)
(|z|2 + |β3|2) + k

(↓↑
↑↓

)
(|β1|2 + |β2|2),

(B31h)

k̃

(↑↓
↓↑

)
= k

(↑↑
↓↑

)
(|z|2 + |β2|2) + k

(↑↓
↓↑

)
(|β1|2 + |β3|2),

(B31i)

k̃

(↓↓
↑↓

)
= k

(↑↓
↑↓

)
(|z|2 + |β3|2) + k

(↓↓
↑↓

)
(|β1|2 + |β2|2),

(B31j)

k̃

(↓↓
↓↑

)
= k

(↓↑
↓↑

)
(|z|2 + |β2|2) + k

(↓↓
↓↑

)
(|β1|2 + |β3|2).

(B31k)

Then, we obtain

Q̂ĥ(0)Q̂ =
L̃∑

I=1

∑
σ1,...,σI−1,σI+2,...,σL̃∈H1

×
∑

(σI ,σI+1 )∈H2\D′
2

k̃(σI , σI+1) ˜|σ1 · · · σL̃〉 ˜〈σ1 · · · σL̃|

+
⎛⎝∑

τ∈HL̃

∑
σ∈HL̃\DL̃

|̃τ 〉 〈̃τ |(1)
ĥ(0) |̃σ 〉(0) 〈̃σ | + H.c.

⎞⎠
+ O(δ2), (B32)

where H.c. stands for the Hermitian conjugate. Here, we

used σ ∈ DL̃ �⇒ ĥ(0) |̃σ 〉(0) = 0, which follows from σ ∈
DL̃ ⇐⇒ (σI , σI+1) ∈ D′

2 (∀I = 1, . . . , L̃) and (σI , σI+1) ∈
D′

2 �⇒ ĥ(0)
I,I+1

˜|σIσI+1〉
(0)

I,I+1 = 0. Next, the projection of the

first-order Hamiltonian ĥ(1) is given by

Q̂ĥ(1)Q̂ =
∑

σ,τ∈HL̃

|̃τ 〉〈̃τ |ĥ(1) |̃σ 〉〈̃σ |

=
∑

σ,τ∈HL̃

|̃τ 〉 〈̃τ |(0)
ĥ(1) |̃σ 〉(0) 〈̃σ | + O(δ2), (B33)

where we used |̃σ 〉 = |̃σ 〉(0) + O(δ1).
We can regard Q̂ĥ(0)Q̂ and Q̂ĥ(1)Q̂ as operators on the

coarse-grained Hilbert space HL̃ = span{ |̃σ 〉 }σ∈HL̃
. Omitting

O(δ2) terms in Eqs. (B32) and (B33), we derive the expression

of the renormalized Hamiltonian ˆ̃h = Q̂ĥQ̂ as an operator
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on HL̃:

ˆ̃h = ˆ̃h
(0) + ˆ̃h

(1)
, (B34a)

ˆ̃h
(0) =

L̃∑
I=1

∑
(σI ,σI+1 )∈H2\D′

2

k̃(σI , σI+1)
(

˜|σIσI+1〉 ˜〈σIσI+1|
)

I,I+1
,

(B34b)

ˆ̃h
(1) =

∑
σ,τ∈HL̃

|̃τ 〉 〈̃τ |(0)
ĥ(1) |̃σ 〉(0) 〈̃σ | + ˆ̃oP̂

(
D⊥

L̃

)+ P̂
(
D⊥

L̃

)
ˆ̃o

†
,

(B34c)

where P̂(D⊥
L̃

) is the projector onto the orthogonal complement
of DL̃ and

ˆ̃o :=
∑
τ∈HL̃

∑
σ∈HL̃\DL̃

|̃τ 〉 〈̃τ |(1)
ĥ(0) |̃σ 〉(0) 〈̃σ | = O(δ1).

(B35)

Note that ˆ̃o = ˆ̃oP̂(D⊥
L̃

) because |̃σ 〉 ∈ D⊥
L̃

for σ ∈ HL̃ \ DL̃.

The operator ˆ̃oP̂(D⊥
L̃

) + P̂(D⊥
L̃

)ˆ̃o
†

will be irrelevant.
It follows from Eq. (B31) and 0 < k(ρ1, ρ2) = O(δ0) for

(ρ1, ρ2) ∈ H2 \ D′
2 that if

|β1|2 + |β2|2 > 0 ∧ |β1|2 + |β3|2 > 0 ⇐⇒ β1 �= 0 ∨ (β2 �= 0 ∧ β3 �= 0), (B36)

then

∀(σI , σI+1) ∈ H2 \ D′
2, 0 < k̃(σI , σI+1) = O(δ0). (B37)

This means that the zeroth-order renormalized Hamiltonian ˆ̃h
(0)

imposes an energy penalty k̃(σI , σI+1) on any ˜|σIσI+1〉I,I+1 with
(σI , σI+1) ∈ H2 \ D′

2, which involves a penalty on every state in HL̃ \ DL̃.
Using Eqs. (B14c), (B23), and (B34c), we obtain

ˆ̃h
(1) =

L̃∑
I=1

[
3

2
u

(∣̃∣∣∣∣↑↑
〉〈̃↑

↑

∣∣∣∣+ ∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣− ∣̃∣∣∣↑↓
〉〈̃↑

↓

∣∣∣∣− ∣̃∣∣∣↓↓
〉〈̃↓

↓

∣∣∣∣
)

− γ

(
2 Re(α∗

2α1)

∣̃∣∣∣↑↑
〉〈̃↑

↑

∣∣∣∣+ 2 Re[(β∗
2 + β∗

3 )(β1 + zα1) − |z|2α∗
2α1]

∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣
+ [(β2 + β3)α2 + z

(
α2

1 − α2
2

)]∣̃∣∣∣↓↑
〉〈̃↑

↑

∣∣∣∣+ [(β2 + β3)α2 + z
(
α2

1 − α2
2

)]∗ ∣̃∣∣∣↑↑
〉〈̃↓

↑

∣∣∣∣
)

+ v

(
(|α1|2 + 3|α2|2)

∣̃∣∣∣↑↑
〉〈̃↑

↑

∣∣∣∣+ [|z|2(3|α1|2 + |α2|2) − |β1|2 + |β2|2 + |β3|2]

∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣
+ 2zα1α2

∣̃∣∣∣↓↑
〉〈̃↑

↑

∣∣∣∣+ (2zα1α2)∗
∣̃∣∣∣↑↑
〉〈̃↓

↑

∣∣∣∣
)

− ξ

(
(β2 + β3)α1

∣̃∣∣∣↓↑
〉〈̃↑

↑

∣∣∣∣+ (β∗
2 + β∗

3 )α∗
1

∣̃∣∣∣↑↑
〉〈̃↓

↑

∣∣∣∣− 2 Re[(β∗
2 + β∗

3 )zα2]

∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣
)]

I

−
L̃∑

I=1

ξ

(
|α2|2β∗

2 β3

∣̃∣∣∣↑↓
↑↑

〉〈̃↓↑
↑↑

∣∣∣∣+ |α2|2β2β
∗
3

∣̃∣∣∣↓↑
↑↑

〉〈̃↑↓
↑↑

∣∣∣∣
)

I,I+1

+ ˆ̃oP̂
(
D⊥

L̃

)+ P̂
(
D⊥

L̃

)
ˆ̃o

†
. (B38)

6. Determination of the variational parameters

Now we determine the parameters α1, α2, z, β1, β2, β3 ∈
C. We should construct the projector Q̂ such that the subspace
HL̃ = span{ |̃σ 〉 }σ∈HL̃

⊂ HL is a low-energy space. One may
argue that we should minimize the sum of the eigenenergies

of the renormalized Hamiltonian, i.e., the trace of ˆ̃h. How-
ever, minimizing the ordinary trace Tr ˆ̃h is inappropriate for
our purpose. We wish to study the transition between the
states without energy penalties of O(δ0). This implies that we
should ignore states that cost energies of O(δ0). Hence, we

minimize the partial trace Tr|DL̃

ˆ̃h, where Tr|DL̃
is the trace in

the subspace DL̃ = span{ |̃σ 〉 }σ∈DL̃
⊂ HL̃:

Tr|DL̃
· · · := Tr P̂(DL̃ ) · · · P̂(DL̃ ) = Tr P̂(DL̃ ) · · · . (B39)

We denoted the projector onto DL̃ by P̂(DL̃ ). The projector
P̂(DL̃ ) has the spectral decomposition

P̂(DL̃ ) =
∑
σ∈DL̃

|̃σ 〉〈̃σ | (B40)
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and the partial trace can be written as

Tr|DL̃
· · · =

∑
σ∈DL̃

〈̃σ | · · · |̃σ 〉. (B41)

Since 〈̃σ | ˆ̃h(0) |̃σ 〉 = 0 for any σ ∈ DL̃, we have Tr|DL̃

ˆ̃h = Tr|DL̃

ˆ̃h
(1)

. To calculate the partial trace of ˆ̃h
(1)

, we use the formulas

Tr|DL̃

(∣̃∣∣∣↑↑
〉〈̃↑

↑

∣∣∣∣
)

I

= F̃L−1, (B42a)

Tr|DL̃

(∣̃∣∣∣↓↑
〉〈̃↓

↑

∣∣∣∣
)

I

= F̃L−3, (B42b)

Tr|DL̃

(∣̃∣∣∣↑↓
〉〈̃↑

↓

∣∣∣∣
)

I

= Tr|DL̃

(∣̃∣∣∣↓↓
〉〈̃↓

↓

∣∣∣∣
)

I

= 1 (B42c)

for I = 1, . . . , L̃, where F̃L−1 and F̃L−3 are the Fibonacci numbers defined by Eq. (B11). For the present first-order renormalized
Hamiltonian (B38), the partial trace of the renormalized Hamiltonian is

Tr|DL̃

ˆ̃h = L̃

(
3

2
u(F̃L−1 + F̃L−3 − 2) − γ {2F̃L−1 Re(α∗

2α1) + 2F̃L−3 Re[(β∗
2 + β∗

3 )(β1 + zα1) − |z|2α∗
2α1]}

+ v{F̃L−1(|α1|2 + 3|α2|2) + F̃L−3[|z|2(3|α1|2 + |α2|2) − |β1|2 + |β2|2 + |β3|2]} + 2ξ F̃L−3 Re[(β∗
2 + β∗

3 )zα2]

)
.

(B43)

Minimization of Tr|DL̃

ˆ̃h is equivalent to minimizing the function

fγ ,v,ξ (α1, α2, z, β1, β2, β3) = −1

2

{
γ
[(

ϕ2
L̃ − |z|2)α∗

2α1 + (ϕ2
L̃ − |z|2)α2α

∗
1 + (β∗

2 + β∗
3 )(β1 + zα1) + (β2 + β3)(β∗

1 + z∗α∗
1 )
]

+ 2v
[(

ϕ2
L̃ − |z|2)|α1|2 + |β1|2] − ξ [(β∗

2 + β∗
3 )zα2 + (β2 + β3)z∗α∗

2 ]
}

(B44)

under the constraint given by Eq. (B24), where ϕ2
L̃

:= F̃L−1/F̃L−3. Since the difference of ϕ2
L̃

from the golden ratio squared ϕ2

becomes exponentially small for large system size L, we apply the approximation ϕ2
L̃

� ϕ2. The function fγ ,v,ξ is rewritten as

fγ ,v,ξ (α1, α2, z, β1, β2, β3) = −1

2
{γ [(ϕ2 − |z|2)α∗

2α1 + (ϕ2 − |z|2)α2α
∗
1 + (β∗

2 + β∗
3 )(β1 + zα1) + (β2 + β3)(β∗

1 + z∗α∗
1 )]

+ 2v[(ϕ2 − |z|2)|α1|2 + |β1|2] − ξ [(β∗
2 + β∗

3 )zα2 + (β2 + β3)z∗α∗
2 ]}. (B45)

Minimizing this function subject to the constraint (B24) determines the variational parameters α1, α2, z, β1, β2, and β3.

7. RG equations

We assume that the variational parameters α1, α2, z, β1, β2, and β3 are real and that β2 = β3 for the sake of symmetry. Denote

the Pauli operators in the basis { ˜|σa,I〉a,I }σa,I =↑,↓ by ˆ̃X a,I ,
ˆ̃Y a,I , and ˆ̃Za,I for a = t, b and I = 1, . . . , L̃. It follows from Eq. (B38)

that

ˆ̃h
(1) =

L̃∑
I=1

(
1

2

{
3u − γ [2β2(β1 + zα1) + (1 − z2)α1α2] + v

[
2 − (1 − z2)α2

1 − β2
1

]+ 2ξβ2zα2
} ˆ̃Zb,I

+ {γ [2β2(β1 + zα1) − (1 + z2)α1α2] + v
[
1 − (1 + z2)α2

1 + β2
1

]− 2ξβ2zα2
} ˆ̃Z t,I

1 + ˆ̃Zb,I

2

− {γ [2β2α2 + z
(
α2

1 − α2
2

)]− 2vzα1α2 + 2ξβ2α1
} ˆ̃X t,I

1 + ˆ̃Zb,I

2
− ξα2

2β
2
2

⎛⎝∣̃∣∣∣↑↓
↑↑

〉〈̃↓↑
↑↑

∣∣∣∣+ ∣̃∣∣∣↓↑
↑↑

〉〈̃↑↓
↑↑

∣∣∣∣
⎞⎠

I,I+1

+ 1

2

{− γ [2β2(β1 + zα1) + (1 − z2)α1α2] + v
[
2 − (1 − z2)α2

1 − β2
1

]+ 2ξβ2zα2
})+ ˆ̃oP̂

(
D⊥

L̃

)+ P̂
(
D⊥

L̃

)
ˆ̃o

†
.

(B46)
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FIG. 14. Coupling constants U (l ), U (l ), �(l ), V (l ), and �(l ) and variational parameters α1(l ), α2(l ), z(l ), β1(l ), and β2(l ) = β3(l ) as
functions of l for the bare couplings U (0) = U �(0),�(0) = 0.51773501, �(0) = 1, V (0) = 0, and �(0) = 0. The left graph is identical to
Fig. 4(b) except that the present figure does not contain U (l ) for U (0) �= U �(0),�(0).

Omitting the term proportional to the identity in ˆ̃h
(1)

, we arrive at the expression of the renormalized Hamiltonian:

ˆ̃h = ˆ̃h
(0) + ˆ̃h

(1)
, (B47a)

ˆ̃h
(0) =

L̃∑
I=1

∑
(σI ,σI+1 )∈H2\D′

2

k̃(σI , σI+1)
(

˜|σIσI+1〉 ˜〈σIσI+1|
)

I,I+1
, (B47b)

ˆ̃h
(1) =

L̃∑
I=1

⎡⎣̃u

2
ˆ̃Zb,I − γ̃ ˆ̃X t,I

1 + ˆ̃Zb,I

2
+ ṽ ˆ̃Z t,I

1 + ˆ̃Zb,I

2
− ξ̃

⎛⎝∣̃∣∣∣↑↓
↑↑

〉〈̃↓↑
↑↑

∣∣∣∣+ ∣̃∣∣∣↓↑
↑↑

〉〈̃↑↓
↑↑

∣∣∣∣
⎞⎠

I,I+1

⎤⎦+ ˆ̃oP̂
(
D⊥

L̃

)+ P̂
(
D⊥

L̃

)
ˆ̃o

†
. (B47c)

The renormalized coupling constants ũ, γ̃ , ṽ, and ξ̃ are given
by the following RG equations:

ũ = 3u − γ [2β2(β1 + zα1) + (1 − z2)α1α2]

+ v
[
2 − (1 − z2)α2

1 − β2
1

]+ 2ξβ2zα2, (B48a)

γ̃ = γ
[
2β2α2 + z

(
α2

1 − α2
2

)]− 2vzα1α2 + 2ξβ2α1, (B48b)

ṽ = γ [2β2(β1 + zα1) − (1 + z2)α1α2]

+v
[
1 − (1 + z2)α2

1 + β2
1

]− 2ξβ2zα2, (B48c)

ξ̃ = ξα2
2β

2
2 , (B48d)

where α1, α2, z, β1, β2 ∈ R are the arguments minimizing the
function

fγ ,v,ξ (α1, α2, z, β1, β2)

= −γ [(ϕ2 − z2)α1α2 + 2β2(β1 + zα1)]

− v[(ϕ2 − z2)α2
1 + β2

1 ] + 2ξβ2zα2 (B49)

under the constraint α2
1 + α2

2 = z2 + β2
1 + 2β2

2 = 1. As ex-
plained in Sec. III A, there are four optimal sets of
the variational parameters due to the invariance of the
minimized function and the constraint under the trans-
formations (α1, α2, z) �→ (−α1,−α2,−z) and (z, β1, β2) �→
(−z,−β1,−β2), which correspond to multiplying the varia-

tional states |̃↑↑〉
(0)

I
and |̃↓↑〉

(0)

I
by a phase factor −1, respectively.

The renormalized penalty constants k̃(σ1, σ2) are given by
Eq. (B31), but their specific values are not needed to analyze
critical properties at leading order in δ.

Now we perform the RG transformation repeatedly. De-
noting the number of RG steps by l , we write the coupling
constants as U (l ) = Ku(l ), �(l ) = Kγ (l ), V (l ) = Kv(l ),
and �(l ) = Kξ (l ), and the variational parameters minimiz-
ing fγ (l ),v(l ),ξ (l )(α1, α2, z, β1, β2) as α1(l ), α2(l ), z(l ), β1(l ),
and β2(l ) = β3(l ) (one of the four optimal sets of the
variational parameters is chosen). The coupling constants
U (l ), �(l ), V (l ), and �(l ) satisfy the recurrence relations
(9). We plot the coupling constants and the variational
parameters as functions of l for several sets of the bare cou-
plings (U (0), �(0),V (0), �(0)) = (U �(0),�(0), �(0), 0, �(0))
in Figs. 14–16, where U (l ) := U (0) − 3−lU (l ) satisfies the
recurrence relation (13) and U �(0),�(0) := liml→∞ U (l ) deter-
mines the first-order transition point as indicated in Sec. III A.
Figure 14 is for the case of no XX interactions �(0) =
0, Fig. 15 for the case of the antiferromagnetic XX in-
teractions on the top row �(0) < 0, and Fig. 16 for the
case of the ferromagnetic XX interactions on the top row
�(0) > 0. Note that U (l ), �(l ), V (l ), and �(l ) as well as
all the variational parameters do not depend on U (0), and
thus U �(0),�(0) is determined only by �(0) and �(0) [V (0)
is fixed to zero]. It turns out that �(l ) and �(l ) vanish in
the limit l → ∞ while U (l ) and V (l ) converge to finite
positive values. In addition, U (l ) converges to zero when
U (0) = U �(0),�(0).
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FIG. 15. Coupling constants U (l ), U (l ), �(l ), V (l ), and �(l ) and variational parameters α1(l ), α2(l ), z(l ), β1(l ), and β2(l ) =
β3(l ) as functions of l for �(0) < 0. We set (U (0), �(0),V (0), �(0)) = (0.51144374, 1, 0, −0.1) in (a), (0.52956828, 1, 0, −1) in (b),
(2.47583092, 1, 0, −10) in (c), and (0.23570226, 0, 0, −1) in (d), all of which satisfy U (0) = U �(0),�(0). The left graph of (b) is identical
to Fig. 4(a) except that the present figure does not contain U (l ) for U (0) �= U �(0),�(0).
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FIG. 16. Coupling constants U (l ), U (l ), �(l ), V (l ), and �(l ) and variational parameters α1(l ), α2(l ), z(l ), β1(l ), and β2(l ) = β3(l ) as
functions of l for �(0) > 0. We set (U (0), �(0),V (0), �(0)) = (0.52489031, 1, 0, 0.1) in (a), (0.61474501,1,0,1) in (b), (2.46771358,1,0,10)
in (c), and (0.23570226,0,0,1) in (d), all of which satisfy U (0) = U �(0),�(0). The left graph of (b) is identical to Fig. 4(c) except that the present
figure does not contain U (l ) for U (0) �= U �(0),�(0).
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APPENDIX C: DERIVATION OF RG EQUATIONS IN THE
LIMIT OF SMALL FRUSTRATION

We apply the standard real-space RG method [67] to the
frustrated Ising ladder (1) in the limit of small frustration,
or the limit of a large longitudinal field on the bottom row
U → ∞. The model reduces to the ferromagnetic Ising chain
with a transverse field and XX interactions (20) after taking
the limit U → ∞ and performing the gauge transformation
that changes the antiferromagnetic ZZ interactions into ferro-
magnetic ones.

We partition the chain into L̃ = L/2 blocks and split the
Hamiltonian into intrablock and interblock Hamiltonians:

Ĥ =
L̃∑

I=1

(
Ĥ intra

I + Ĥ inter
I,I+1

)
, (C1)

where

Ĥ intra
I = −KẐ2I−1Ẑ2I − �X̂2I−1 − �X̂2I−1X̂2I , (C2a)

Ĥ inter
I,I+1 = −KẐ2I Ẑ2I+1 − �X̂2I − �X̂2I X̂2I+1. (C2b)

The intrablock Hamiltonian Ĥ intra
I , which is formed by the

(2I − 1)th and (2I)th spins, has the eigenvalues

εs1s2 = −s1

√
K2 + �2 − s2� (s1, s2 = ±) (C3)

and the corresponding eigenvectors

|++〉 = +c+|→→〉 + c−|←←〉, (C4a)

|−+〉 = −c−|→→〉 + c+|←←〉, (C4b)

|+−〉 = +c+|→←〉 + c−|←→〉, (C4c)

|−−〉 = −c−|→←〉 + c+|←→〉. (C4d)

Here, |→〉 := (|↑〉 + |↓〉)/
√

2 and |←〉 := (|↑〉 − |↓〉)/
√

2
are the eigenvectors of the Pauli operator X̂ and

c± :=
√

1

2

(
1 ± �√

K2 + �2

)
. (C5)

Now we assume |�| <
√

K2 + �2 and project the Hilbert
space onto the two-dimensional low-energy subspace of the
intrablock Hamiltonian Ĥ intra

I . Since the two lowest eigenval-

ues of Ĥ intra
I are ε+±, the projector is given by

Q̂ =
L̃⊗

I=1

Q̂I , Q̂I = (|++〉〈++| + |+−〉〈+−|)2I−1,2I .

(C6)
Calculating the projections of operators results in

Q̂I Ĥ
intra
I Q̂I = ε++|++〉〈++| + ε+−|+−〉〈+−|, (C7a)

Q̂I Ẑ2I−1Q̂I = 2c+c−(|+−〉〈++| + |++〉〈+−|), (C7b)

Q̂I Ẑ2I Q̂I = |+−〉〈++| + |++〉〈+−|, (C7c)

Q̂I X̂2I−1Q̂I = (c2
+ − c2

−)(|++〉〈++| + |+−〉〈+−|),
(C7d)

Q̂I X̂2I Q̂I = (c2
+ − c2

−)(|++〉〈++| − |+−〉〈+−|).
(C7e)

We define |̃↑〉 := (|++〉 + |+−〉)/
√

2 and |̃↓〉 :=
(|++〉 − |+−〉)/

√
2 and denote the Pauli operators in

the basis { |̃σ 〉I }σ=↑,↓ by ˆ̃X I ,
ˆ̃Y I , and ˆ̃ZI . Then, we obtain the

renormalized Hamiltonian ˆ̃H = Q̂ĤQ̂ as an operator on the

coarse-grained space span{⊗L̃
I=1 |̃σI〉I }σ1,...,σL̃=↑,↓:

ˆ̃H =
L̃∑

I=1

(−K̃ ˆ̃ZI
ˆ̃ZI+1 − �̃ ˆ̃X I − �̃ ˆ̃X I

ˆ̃X I+1), (C8)

where we set

K̃ = K2

√
K2 + �2

, (C9a)

�̃ = �2

√
K2 + �2

+ �

(
1 + �2

K2 + �2

)
, (C9b)

�̃ = 0 (C9c)

and ignored a constant energy difference. Note that the above
choice of the basis { |̃σ 〉I }σ=↑,↓ makes it possible to represent
the renormalized Hamiltonian as a summation of the same
operators as those in the bare Hamiltonian (20). Finally we
derive the RG equations

γ̃ = γ 2 + ξ (1 + 2γ 2)√
1 + γ 2

, ξ̃ = 0, (C10)

where (γ , ξ ) = (�/K, �/K ) and (γ̃ , ξ̃ ) = (�̃/K̃, �̃/K̃ ).
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