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Non-Hermitian non-Abelian topological insulators with PT symmetry
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We study a non-Hermitian non-Abelian topological insulator preserving PT symmetry, where the non-
Hermitian term represents nonreciprocal hoppings. As it increases, a spontaneous PT symmetry breaking
transition occurs in the perfect-flat band model from a real-line-gap topological insulator into an imaginary-
line-gap topological insulator. By introducing a band bending term, we realize two phase transitions, where
a metallic phase emerges between the above two topological insulator phases. We discuss an electric-circuit
realization of non-Hermitian non-Abelian topological insulators. We find that the spontaneous PT symmetry
breaking as well as the edge states are well observed by the impedance resonance.
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I. INTRODUCTION

Topological insulators are one of the most fascinating ideas
in contemporary physics [1,2]. They are characterized by
topological numbers such as the winding number, the Chern
number, and the Z2 index. However, all of these topological
numbers are Abelian.

Non-Abelian topological numbers have been discussed in
three-band models protected by PT symmetry [3–7] or C2T
symmetry [8,9]. They were realized in nodal line semimetals
[3,4,6,7,10–12] in three dimensions and Weyl points [8] in
two dimensions. Non-Abelian topological insulators in one
dimension were studied for three-band models [5] and four-
band models [13]. They were experimentally observed in
photonic systems [6,9], phononic systems [11,14], and trans-
mission lines [5,13]. In addition, a generalization to multiband
theories was proposed in nodal line semimetals [3].

Non-Hermitian topological physics have attracted much
attention [15–31] . In non-Hermitian systems eigenvalues and
eigenfunctions are complex in general. However, they are
restricted to be real if PT symmetry is imposed [15,20,32–
36]. There is a PT symmetry breaking transition, where the
eigenvalues and eigenfunctions become complex. Nonrecip-
rocal hopping is such a hopping that the right-going and
left-going hopping amplitude are different [37]. It makes a
system non-Hermitian. As far as we are aware of, there is
no study on non-Hermitian non-Abelian topological phases
so far.

In this paper, we study a non-Hermitian non-Abelian topo-
logical insulator in an N band model with PT symmetry. We
show that a spontaneous PT symmetry breaking is induced by
increasing the nonreciprocal hoppings from a phase transition
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from a real-line-gap topological insulator to an imaginary-
line-gap topological insulator in the case of a perfect-flat band
model. Furthermore, by introducing a band bending term, we
may generalize the model to have a metal with two critical
points, where a metallic phase emerges between the above
two topological insulator phases. Finally, we show how to
implement the present model in electric circuits. The edge
states and the spontaneous PT symmetry breaking are found
to be well signaled by the impedance resonance.

II. NON-HERMITIAN NON-ABELIAN TOPOLOGICAL
INSULATORS

A. Hermitian Hamiltonian

We start with a Hermitian system capable to describe
a non-Abelian topological insulator based of the one-
dimensional lattice in Fig. 1(a). We consider generators of
so(N ) rotation Lαβ indexed by α and β, whose ab components
are defined by

(Lαβ )ab = δαbδβa − δαaδβb. (1)

We consider a PT -invariant Hamiltonian in the momentum
space given by [3]

Hαβ (k) = Rαβ

(
k

2

)
diag(ε1, ε2, . . . , εN )Rαβ

(
k

2

)t

, (2)

where 0 � k < 2π , 1 � α, β � N , ε1, ε2, . . . , εN are real,
and

Rαβ

(
k

2

)
= e

k
2 Lαβ (3)

is a rotation matrix given by[
Rαβ

(
k

2

)]
ab

= δab + (δaαδbα + δaβδbβ ) cos
k

2

+ (δaβδbα − δaαδbβ ) sin
k

2
. (4)
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FIG. 1. Illustration of the tight-binding Hamiltonian.
(a) Hermitian and (b) non-Hermitian models. Interactions between
the α and β chains yield a non-Abelian topological number. All
other chains shown in green act as spectators. Red arrows represent
nonreciprocal hoppings.

The Hamiltonian (2) is explicitly written as

Hαβ (k) =εα + εβ

2

+ εα − εβ

2
(δaαδbα − δaβδbβ ) cos k

+ εα − εβ

2
(δaβδbα + δaαδbβ ) sin k. (5)

It is decomposed into two parts,

Hαβ (k) =
⊕
j �=α,β

Hj ⊕ H ′
αβ (k), (6)

where

Hj = ε jI1, (7)

and

H ′
αβ (k) =

[
εα − εβ

2

(
cos k sin k
sin k − cos k

)
+ εα + εβ

2
I2

]
. (8)

The Hamiltonian is nontrivial only for the α and β bands, with
eigenvalues εα and εβ . All other bands are spectators with
respect to the α and β bands. See Fig. 1.

The energy spectrum of the bulk Hamiltonian does not
change by the rotation (3) and is given by

E (k) = ε1, ε2, . . . , εN . (9)

The eigenfunctions for the 2 × 2 matrix H ′
αβ (k) are

ψ+
a = δaα sin

k

2
+ δaβ cos

k

2
, (10)

ψ−
a = −δaα cos

k

2
+ δaβ sin

k

2
, (11)

while those for Hj are ψa = δa j .
The α and β bands are perfectly flat. They are (�–1)-fold

degenerate in a finite chain, where � is the number of sites in
the chain. See Fig. 2(a1).

Let us review non-Abelian topological numbers for Her-
mitian systems [3]. The non-Abelian Berry connection or the
Berry-Wilczek-Zee (BWZ) connection is defined by

Aαβ (k) = 〈ψα|∂k|ψβ〉, (12)

while the BWZ phase is defined by


αβ = 1

2π

∫ 2π

0
Aαβ (k)dk. (13)

It is used to define the topological numbers of the system [3].
The eigenfunctions are analytically solved as

|ψ±〉 = 1√
(ψ1)2 + (ψ2)2

{ψ1, ψ2}, (14)

ψL
1 = −γ0 cos k ±

√
γ 2

0 + ξ 2 sin2 k, (15)

ψL
2 = −(γ0 + ξ ) sin k. (16)

We use these to calculate Eq. (12) as

Aαβ (θ ) = − 1
2 Lαβ. (17)

Then, the topological numbers (13) are


αβ = −Lαβ/2. (18)

All spectator bands are topologically trivial because they are
isolated single bands, which remains true even when we make
the system non-Hermitian later.

B. PT Symmetry

We so far considered PT -symmetric Hermitian systems.
In general, the eigenvalues and the eigenvectors are complex
in non-Hermitian systems. However, they can be real in the
presence of PT symmetry even in non-Hermitian systems
[15,20,32,35]. We review PT symmetry before we investigate
non-Hermitian systems.

We concentrate on nontrivial two bands α and β. We define
the parity operator P = σz, whose action is

P−1H ′
αβ (k)P = H ′

αβ (−k). (19)

We also define the time-reversal operator T = σzK , with K
being the complex-conjugation operator whose action is

T −1H ′
αβ (k)T = H ′∗

αβ (−k). (20)

Here, H ′
αβ (θ ) has PT symmetry

(PT )−1H ′
αβ (k)(PT ) = H ′∗

αβ (k), (21)

where PT = K .

C. Non-Hermitian Hamiltonian

We generalize the Hermitian non-Abelian system (2) to a
non-Hermitian non-Abelian system, keeping PT symmetry.
We consider the Hamiltonian

H ′
αβ (k; γ , ξ ) = H ′

αβ (k) + iγ σy + ξσx sin k, (22)

whose eigenenergies are

E ′
αβ (k; γ , ξ ) = εα + εβ ± √

g(k; γ , ξ )

2
, (23)

with

g(k; γ , ξ ) = (εα − εβ )2 − γ 2 + 4ξ (εα − εβ + ξ ) sin2 k.

(24)
We explain the meanings of the γ term and the ξ term. The
Hamiltonian (22) is Hermitian when γ = 0. When ξ = 0 in
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FIG. 2. Energy spectrum of the non-Hermitian Hamiltonian in nanoribbon geometry. Eigenvalues of (a1) the perfectly flat α and β bands
with ξ = 0 and (a2) the bended bands with ξ = 0.5 shown in blue. The red dots represent the topological edge states. The band structure as
a function of ξ with (b1) γ = 0 and (b2) γ = 0.25. The red lines represent the topological edge states. (c1, c2) Real part of the energy. (d1,
d2) Imaginary part of the energy. We set ξ = 0 for (c1) and (d1), while we set ξ = 0.5 for (c2) and (d2). The bulk bands are colored in blue,
while the edge states are colored in red. The spectator band is colored in green. When ξ = 0, there are two phases, a real-line-gap topological
insulator (real-TI) phase and an imaginary-line-gap topological insulator (im-TI) phase. When ξ �= 0, a metallic phase emerges between these
two topological insulator phases. We set εα = 1 and εβ = 2.

addition, the band structure is highly degenerate as in Fig. 2
(a1). This degeneracy is resolved by introducing the ξ term as
shown in Fig. 2(a2). We show the band structure with γ = 0 as
a function of ξ in Fig. 2(b1). The perfect flat bands at εα and
εβ become bended and have dispersions. We also show the
band structure with γ = 0.25 as a function of ξ in Fig. 2(b2).

We Illustrate Re[E ′
αβ (k; γ , ξ = 0) ] in Fig. 2(c1) and

Im[E ′
αβ (k; γ , ξ = 0)] in Fig. 2(d1) as a function of γ . They

are real for |γ | � γ0 with

γ0 = εα − εβ

2
, (25)

where PT symmetry is preserved. On the other hand, they
are complex for |γ | > γ0, and hence PT symmetry is spon-
taneously broken there. Namely, although the Hamiltonian is
PT -symmetric, eigenvalues and eigenfunctions are no longer
real in the spontaneous symmetry broken phase. We show the
real and imaginary parts of the energy as a function of γ in
Figs. 2(c2) and 2(c2), where the bulk band has a finite width.

We also show the real and imaginary parts of the energy as a
function of the momentum k in Fig. 3, where the bands have
dispersions.

Specifically, we have

E ′
αβ

(π

2
; γ , ξ

)
= εα + εβ ± √

h(γ , ξ )

2
, (26)

with

h(γ , ξ ) = (εα − εβ + 2ξ − 2γ )(εα − εβ + 2ξ + 2γ ). (27)

By solving the condition that E ′
αβ ( π

2 ; γ , ξ ) is complex, or
h(γ , ξ ) < 0, we find a phase transition point γ1 in addition
to the phase transition point γ0 as

γ1 = εα − εβ

2
− ξ = γ0 − ξ . (28)

When ξ > 0, the bulk energy is real for |γ | � γ1, complex for
|γ | > γ1. On the other hand, when ξ < 0, the bulk energy is
real for |γ | � γ0, complex for |γ | > γ0.

FIG. 3. (a1)–(e1) Real part of the energy and (a2)–(e2) imaginary part of the energy. (a1) and (a2) for a real-line-gap topological insulator
(real-TI) with γ = 0; (b1) and (b2) for a phase transition point with γ = γ1 = 0.3; (c1) and (c2) for a metal with γ = 0.4; (d1) and (d2) for a
phase transition point with γ = γ0 = 0.5; (e1) and (e2) for an imaginary-line-gap topological insulator (im-TI) with γ = 0.6. We set ξ = 0.2
for all figures. See also the caption of Fig. 2.
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A comment is in order with respect to the skin effect fa-
miliar in nonreciprocal systems, where all states are localized
at one edge in a finite chain. Such an effect is absent in the
present system although it is nonreciprocal. This is because
the nonreciprocity is induced by the iγ σy term, representing
nonreciprocal hoppings along the y direction as shown by
Fig. 1(b). To induce the skin effect, it is necessary to introduce
nonreciprocal hoppings along the x direction, but they are
prohibited under PT symmetry.

D. Tight-binding Hamiltonian

The tight-binding Hamiltonian (8) is written in the coordi-
nate space as

H ′
αβ = H0 + Hγ + Hξ , (29)

with

H0 = εα − εβ

2

�−1∑
j=1

(|α j〉〈α j+1| + |β j〉〈β j+1|,

+i|α j〉〈β j+1| − i|β j〉〈α j+1|) + H.c., (30)

Hγ = γ

�∑
j=1

(|α j〉〈β j | − |β j〉〈α j |), (31)

Hξ = iξ
�−1∑
j=1

(|α j〉〈β j+1| − |β j〉〈α j+1|) + H.c., (32)

where the first two terms in H0 represent normal hoppings,
while the last two terms represent spin-orbit-like imaginary
hoppings. The ξ term modifies the spin-orbit-like imaginary
hoppings. The γ term represents nonreciprocal hoppings,
which make the system non-Hermitian.

The tight-binding Hamiltonians for the spectator bands are
simply given by

Hj �=α,β =
�∑

j=1

ε j | j〉〈 j| +
�−1∑
j=1

t j | j〉〈 j + 1| + H.c., (33)

where ε j is the on-site energy and t j is the hopping parameter.
In this sense, it is enough to consider only the α and β

bands for an arbitrary N band system. We illustrate the tight-
binding model in Fig. 1.

E. Edge states for non-Hermitian model

We illustrate the tight-binding model (29) in Fig. 1(b). In a
finite chain, two localized states emerge at the edges with the
energy

E (ξ, γ ) = εα + εβ

2
± iγ (34)

in the presence of the γ term and the ξ term. They are degener-
ate only in the Hermitian limit (γ = 0). In contrast to the bulk
band, the eigenenergy (34) is complex once γ is introduced
even for the PT symmetric phase. We show Eq. (34) as a
function of γ in Fig. 2. In contrast to the bulk band, the
eigenenergy (34) has no ξ dependence: See Figs. 2(d1) and
2(d2).

When ξ = 0, the eigenfunctions for the edge states ψα ( j)
and ψβ ( j) at the j site are perfectly localized at the edges and
given by

ψα ( j) = 1√
2
δ1, j, ψβ ( j) = −i√

2
δ1, j, (35)

for the left edge, and

ψα ( j) = 1√
2
δ�, j, ψβ ( j) = i√

2
δ�, j, (36)

for the right edge. Here, 1 in the subscript of δ1, j represents
the left edge, while � in the subscript of δ�, j represents the
right edge. The perfectly localized edge states for ξ = 0 are
transformed to edge states with finite penetration depth for
ξ �= 0.

F. Non-Hermitian non-Abelian topological numbers

We define a non-Hermitian non-Abelian Berry connection
or a non-Hermitian BWZ connection by [38]

ARL
αβ (θ ) = 〈

ψR
α

∣∣∂θ

∣∣ψL
β

〉
, (37)

where

H
∣∣ψL

α

〉 = εα

∣∣ψL
α

〉
(38)

is the left eigenfunction, and

H†
∣∣ψR

α

〉 = εα

∣∣ψR
α

〉
(39)

is the right eigenfunction.
We define a non-Hermitian BWZ phase by


RL
αβ = 1

2π

∫ 2π

0
Re

[
ARL

αβ (θ )
]
dθ, (40)

which we use as a non-Hermitian non-Abelian topological
number. The eigenfunctions are analytically solved as

∣∣ψL
±
〉 = 1√

(ψL
1 )2 + (ψL

2 )2

{
ψL

1 , ψL
2

}
, (41)

ψL
1 = −γ0 cos k ±

√
γ 2

0 − γ 2 + ξ (2γ + ξ ) sin2 k, (42)

ψL
2 = γ − (γ0 + ξ ) sin k, (43)

and
∣∣ψR

±
〉 = 1√

(ψR
1 )2 + (ψR

2 )2

{
ψR

1 , ψR
2

}
, (44)

ψR
1 = γ0 cos k ±

√
γ 2

0 − γ 2 + ξ (2γ + ξ ) sin2 k, (45)

ψR
2 = γ + (γ0 + ξ ) sin k. (46)

When γ = 0 and ξ = 0, using Eqs. (41) and (44), we cal-
culate the non-Hermitian BWZ connection (37) numerically
and find that

ARL
αβ = 1

2

(
0 −1
1 0

)
, (47)

which leads to the non-Hermitian BWZ phase (40) as


RL
αβ = 1

2

(
0 −1
1 0

)
, (48)
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FIG. 4. Non-Abelian topological number marked in red as a
function of γ for various ξ . (a) ξ = 0, (b) ξ = −0.2, (c) ξ =
−0.4, (d) ξ = 0.2, and (e) ξ = 0.4. It is quantized at 1/2 except
for the metallic phase. In the figures, real-TI (im-TI) stands for
real(imaginary)-line-gap topological insulator phase.

where we explicitly wrote only the nontrivial 2 × 2 submatrix
within the N × N matrix. Hence, the topological numbers are
given by


RL
αβ = − 1

2 Lαβ (49)

with Eq. (1). The topological numbers 
 RL
αβ obey essentially

the same non-Abelian algebra as Lαβ .
When γ �= 0 and ξ = 0, we calculate the non-Hermitian

BWZ connection (37) to find that it is no longer a constant.
However, the non-Hermitian BWZ phase (40) is calculated as
in Eq. (48), and hence the topological number is quantized
as in Eq. (49) for any γ . Nevertheless, the eigenfunctions as
well as the eigenvalues are real (i.e., real-line-gap topologi-
cal insulator phase) only for γ 2 � γ 2

0 , while the eigenvalues
and the eigenfunctions are complex (i.e., imaginary-line-gap
topological insulator phase) for γ 2 > γ 2

0 . Hence, PT sym-
metry is preserved only for γ 2 � γ 2

0 , and it is spontaneously
broken for γ 2 > γ 2

0 . The system undergoes a phase transition
at γ = ±γ0.

When γ �= 0 and ξ �= 0, we numerically calculated the
topological number (40) with the use of Eqs. (41) and (44).
We showed the (2, 1) component of the 2 × 2 matrix 
RL

αβ

for various values of ξ in Fig. 4. It is quantized to be 1/2
for γ 2 � γ 2

1 and γ 2 > γ 2
0 when ξ > 0, while γ 2 � γ 2

0 and
γ 2 > γ 2

1 when ξ < 0, where γ1 = γ0 − ξ as in Eq. (28). On
the other hand, it is not quantized for the metallic phase that
emerges between γ0 and γ1, as in Fig. 4. It is concluded that
the topological numbers are quantized and given by Eq. (49)
in the insulator phases.

G. Topological phase diagram

In non-Hermitian systems, there are point-gap insulators
and line-gap insulators [27,39] in general. In the point-gap

FIG. 5. (a) Real and imaginary parts of the bulk-band energy in
the (γ , ξ ) plane. (b) Topological phase diagram in the (γ , ξ ) plane.
Metallic phase appears except for ξ = 0. In the figure, real-TI (im-
TI) stands for real(imaginary)-line-gap topological insulator phase.

insulator, there is a gap in |E |. On the other hand, there are
two types of line-gap insulators. A real-line gap topological
insulator has a gap in Re[E ], while an imaginary-line-gap
topological insulator has a gap in Im[E ]. The non-Hermitian
metal is such a phase that is neither a real-line-gap insulator
nor an imaginary-line-gap insulator nor a point-gap insulator.

We first consider the case ξ > 0. For |γ | < γ1, the sys-
tem is a non-Hermitian line-gap topological insulator along
the Re[E ]. The systems is metallic for γ1 � |γ | � γ0. For
|γ | > γ0, the system is a non-Hermitian line-gap topological
insulator along the Im[E ]. If ξ < 0, the system is a real-
line-gap topological insulator for |γ | < γ0, it is a metal for
γ0 � |γ | � γ1 and it is an imaginary-line-gap topological in-
sulator for |γ | > γ1. We show the topological phase diagram
in Fig. 5(b). It is consistent with the real and imaginary parts
of the energy in the γ -ξ plane as shown in Fig. 5(a).

The real-line-gap topological insulator and the imaginary-
line-gap topological insulator are topologically identical
because the topological numbers are identical. However, it is
obvious that we can differentiate them by a gap position either
along the real or imaginary axis.

III. ELECTRIC CIRCUIT SIMULATION

An electric circuit is described by the Kirchhoff current
law. By making the Fourier transformation with respect to
time, the Kirchhoff current law is expressed as

Ia(ω) =
∑

b

Jab(ω)Vb(ω), (50)

where Ia is the current between node a and the ground, while
Vb is the voltage at node b. The matrix Jab(ω) is called the
circuit Laplacian. Once the circuit Laplacian is given, we can
uniquely setup the corresponding electric circuit. By equating
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FIG. 6. (a) Illustration of the electric circuit corresponding to
the lattice in Fig. 1(b). The hopping along the α-chain (β-chain)
is represented by the inductance L (the capacitance C). (b) Nega-
tive impedance converter RX represents an imaginary hopping [40].
(c) Operational amplifier circuit Cγ represents a nonreciprocal hop-
ping [41].

it with the Hamiltonian H as [42,43]

Jab(ω) = iωHab(ω), (51)

it is possible to simulate various topological phases of the
Hamiltonian by electric circuits [40–53]. The relations be-
tween the parameters in the Hamiltonian and in the electric
circuit are determined by this formula.

In the present problem, only the α-chain and the β-chain
are active in the tight-binding Hamiltonian as in Fig. 1. Thus,
we need only a 2 × 2 matrix. The circuit Laplacian follows
from the Hamiltonian (22) as

J ′
αβ (k) = iω

[(− L
ω2 cos k f+

f− C cos k

)
+ εα + εβ

2
I2

]
, (52)

with

f± = 1

ωRX
(1 + ξ ) sin k ± γ . (53)

We may design the electric circuit to realize this circuit Lapla-
cian as in Fig. 6. The main part consists of the α-channel
and the β-channel corresponding to the α-chain and the β

-chain in the lattice in Fig. 1. Additionally, each node in the
i-channel is connected to the ground via a set of inductor Li

and capacitor Ci, where i = α or β to realize the diagonal term
∝ (εα + εβ ) in Eq. (52).

Hopping terms along the α-chain and the β-chain are de-
scribed by the diagonal terms in Eq. (52), where ± cos k =
±(eik + e−ik )/2 represents the plus (minus) hopping in the
tight-binding model. To simulate the positive and negative
hoppings in the Hamiltonian, we replace them with the ca-
pacitance iωC and the inductance 1/iωL, respectively.

Hopping terms across the α-chain and the β-chain are
described by the off-diagonal terms f± in Eq. (52), which
consist of two terms proportional to sin k and γ .

(i) The term proportional to sin k produces the cross hop-
ping, where sin k = (eik − e−ik )/2i represents an imaginary
hopping in the tight-binding model. The imaginary hopping is

implemented by a negative impedance converter RX with cur-
rent inversion [40], as is constructed based on an operational
amplifier with resistors: See Fig. 6(b). The voltage-current
relation is given by(

I1

I2

)
= 1

RX

(−ν ν

−1 1

)(
V1

V2

)
, (54)

with ν = Rb/Ra, where RX , Ra, and Rb are the resistances
in an operational amplifier. We note that the resistors in the
operational amplifier circuit are tuned to be ν = 1 in the lit-
erature [40] so that the system becomes Hermitian, where the
corresponding Hamiltonian represents a spin-orbit interaction.
It produces the Hamiltonian

H = 1

ωRX

(
i −i
i −i

)
(55)

for the Hermitian limit.
(ii) The term ∝ γ produces the nonreciprocal hopping

terms, which are vertical hoppings represented by red arrows
in Fig. 1(b). The nonreciprocal hopping is constructed by a
combination of an operational amplifier and capacitors [41](

Ii j

I ji

)
= iωCγ

(−1 1
−1 1

)(
Vi

Vj

)
, (56)

as in Fig. 6(c). It corresponds to the Hamiltonian

H = Cγ

(−1 1
−1 1

)
. (57)

In this way, the tight-binding Hamiltonian for the present
non-Hermitian non-Abelian topological system is imple-
mented in the electric circuit given in Fig. 6.

A. Impedance resonance

The band structure as well as edge states are well observed
by impedance resonance, which is defined [42–44] by

Zab = Va/Ib = Gab, (58)

where G = J−1 is the Green’s function. Taking the nodes
a = b at an edge, we show the real and imaginary parts of
the impedance for a finite chain as a function of ω in Fig. 7,
which are marked in red. For comparison, we also show the
impedance for a periodic boundary condition in cyan, where
the edge states are absent.

We first study the Hermitian case (γ = 0) with ξ = 0,
where the impedance is shown in Figs. 7(a1) and 7(a2). The
edge impedance resonance is clear by comparing the periodic
boundary condition and the open boundary condition. There
are only two bulk peaks in cyan at Re[E ′

αβ (k; γ , ξ )]. On the
other hand, there is an additional peak in red due to the edge
states between two bulk peaks, as corresponds to Fig. 2(a1).

Next, we show the impedance for various nonreciprocity γ

with ξ = 0 in Figs. 7(a1) to 7(f1) and Figs. 7(a2) to 7(f2). The
edge impedance resonance rapidly decreases as the increase of
γ , as shown in Fig. 7(b1). This is due to the imaginary contri-
bution in Eq. (34). Then, the distance between two bulk peaks
becomes narrower, which is consistent with Re[E ′

αβ (k; γ , ξ =
0)] as shown in Fig. 2(c1). The two bulk peaks merge into one
peak at the spontaneous PT symmetry breaking point γ0, as
shown in Fig. 7(e1). The bulk impedance resonance is very
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FIG. 7. Real and imaginary parts of impedance Zaa at the edge as a function of frequency ω. (a1)–(a4) Hermitian model with γ = 0.
(b1)–(b4) Non-Hermitian model with γ = 0.025, (c1)–(c4) with γ = 0.04 (phase transition point γ1), (d1)–(d5) with γ = 0.045, (e1)–(e4)
with γ = 0.05 (phase transition point γ0), and (f1)–(f4) with γ = 0.075. We used a finite chain with open boundary condition (red) and
periodic boundary condition (cyan). (a1)–(f2) ξ = 0. (a3)–(f4) ξ = 0.2. We set εα = 1 and εβ = 1.1. The length of the chain is 20.

strong due to the gap closing of the bulk band. We also ob-
serve the edge impedance resonance in the imaginary-line-gap
topological insulating phase, where the impedance resonance
is weak comparing to Fig. 7(a1) as shown in Fig. 7(f1). This is
also the imaginary contribution in Eq. (34). This phenomenon
is understood as follows. The impedance resonance is very
sensitive to the eigenvalues of the Hamiltonian. A notable
point is that it is suppressed by an imaginary part of the
eigenvalue. Since the imaginary component of the eigenvalue
is large as in Eq. (34) in imaginary-line-gap insulators, we
obtain a small impedance.

We also show the impedance for finite ξ in Figs. 7(a3) to
7(f3) and Figs. 7(a4) to 7(f4), as corresponds to Fig. 2(c2).
The bulk impedance peaks become broad, which reflects the
broadening of the bulk bands. As a result, the edge impedance
peak becomes clearer as in Fig. 7(a3) in comparison to
Fig. 7(a1). There are strong cyan resonances at the phase
transition point γ1 point as shown in Figs. 7(c3) and 7(c4).
It is due to the gap closing of the bulk band. In Figs. 7(d3)
and 7(d4), the impedance structure is complicated, which
reflects the metallic band structure. The effect of the ξ term
is negligible for the imaginary-line-gap topological phase as
shown in Figs. 7(f3) and 7(f4) since the peak of the impedance
is broad even for ξ = 0 in Figs. 7(f1) and 7(f2). Here, note that
ξ appears only in the form of (1 + ξ ) in Eq. (53).

IV. CONCLUSION

We proposed a non-Hermitian non-Abelian topological
insulator model by imposing PT symmetry in one dimen-
sion. It describes a real-line-gap topological insulator with
real eigenvalues in the Hermitian limit. The system under-
goes a spontaneous breakdown of PT symmetry as the
non-Hermitian term increases, and turns out to describe an
imaginary-line-gap topological insulator, when the bulk bands
are perfectly flat. When we introduce a bulk bending term,
there are two phase transitions with the emergence of a metal
with complex eigenvalues between the above two topologi-
cal insulators. Finally, we presented how to construct these
models in electric circuits. We showed that the spontaneous
PT symmetry breaking as well as topological edge states are
well signaled by measuring the frequency dependence of the
impedance.
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