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Thermodynamic uncertainty relation in the overdamped limit with a magnetic Lorentz force
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In nonequilibrium systems, the relative fluctuation of a current has a universal tradeoff relation with the
entropy production, called the thermodynamic uncertainty relation (TUR). For systems with broken time reversal
symmetry, its violation has been reported in specific models or in the linear response regime. Here, we derive a
modified version of the TUR analytically in the overdamped limit for general Langevin dynamics with a magnetic
Lorentz force breaking the microscopic time-reversal symmetry. Remarkably, this modified version is simply
given by the conventional TUR scaled by the ratio of the reduced effective temperature of the overdamped motion
to the reservoir temperature, permitting a violation of the conventional TUR. Without the Lorentz force, this ratio
becomes unity and the conventional TUR is restored. We verify our results both analytically and numerically in
a specific solvable system.
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I. INTRODUCTION

The thermodynamic uncertainty relation (TUR) states that
current fluctuation has a universal tradeoff relation with ther-
modynamic cost [1–3]. To be precise, the product of the
relative error square of an accumulated current � and the total
entropy production 〈�Stot〉ss in the steady state is bounded
from below as

Q� ≡ Varss[�]

(〈�〉ss)2
〈�Stot〉ss � 2kB, (1)

where Q� is called the TUR factor for the current �, the
variance Varss[�] ≡ 〈�2〉ss − (〈�〉ss)2 with a steady-state av-
erage 〈·〉ss, and the Boltzmann constant kB. As an example,
consider a molecular motor in a directional stochastic mo-
tion. Stochastic fluctuations and heat dissipation are two key
quantities needed to be minimized for ideal performance.
The above TUR enlightens that both quantities can not be
minimized simultaneously and there should be a tradeoff
between them.

After the first discovery of the TUR for systems in the
linear response regime and Markov processes on simple net-
works [1], many studies have explored its generality and
applicability by investigating various systems [3,4]. Exploit-
ing a large deviation theory or an information theory, the
TUR was derived for continuous-time Markov jump processes
and overdamped Langevin dynamics [5–10]. It has also been
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reported that the TUR is related to the efficiency bound of
molecular motors [11], the power-efficiency tradeoff relation
for heat engines [12–14], the generic stochastic equation for
entropy production [15,16], the Cramér-Rao inequality [9,10],
and the symmetry of the joint distribution for the current
and the entropy production [17,18] known as the detailed
fluctuation theorem [19–21]. Recently, various studies have
developed methods for the entropy production inference based
on the TUR [22–25].

Some recent studies have shown that the TUR is violated
and should be modified when dynamics has an intrin-
sic timescale [26–31], breaks the time-reversal symmetry
[32–36], or involves any odd-parity variable under time rever-
sal such as velocity [37–39]. Especially, in the underdamped
Langevin dynamics, the TUR is trivially violated for re-
versible currents [38] or for finite duration time [40]. Some
evidence supports that the TUR could be valid for irreversible
currents in the long-time limit [40], but a rigorous proof is
missing. Although a variant of the TUR including dynamic
activity was reported for the underdamped Langevin systems
[38] and then extended to systems with velocity-dependent
forces [39], their use is limited because their lower bounds de-
pend on dynamic details and become trivial in the overdamped
limit.

Recently, Chun et al. [34] showed that, in an exactly solv-
able underdamped Langevin system with a magnetic Lorentz
force, work and heat currents violate the conventional TUR of
Eq. (1) even in the small-mass (overdamped) limit. This viola-
tion may not be surprising as the Lorentz force breaks the time
reversal symmetry. Instead, they reported a modified bound
for the TUR factor in the overdamped limit for infinitely long
duration time. Interestingly, this modified lower bound is very
similar to the conventional TUR bound except for a simple
dimensionless multiplication factor. However, this system is a
special harmonic system, thus the applicability of their finding
to general systems should not be taken for granted.
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FIG. 1. A illustration describing the system.

In this paper, we consider a general underdamped dynam-
ics with a magnetic Lorentz force and rigorously show that
Chun et al.’s finding is surprisingly still intact for general sys-
tems in the overdamped limit. More remarkably, this modified
TUR is valid for general currents (odd under time reversal)
including work and heat currents and even for a finite duration
time. This modified TUR reads

Q� � 2kB
TB

T
, (2)

where T is the reservoir temperature and TB (< T ) is the re-
duced effective temperature of the overdamped motion, which
will be defined in the next section. We note that TB = T
without a Lorentz force and the conventional TUR is restored.

The derivation is rather tricky, mainly because the over-
damped (small-mass) limit in the presence of a Lorentz force
generates a nonwhite noise [41]. We introduce an alternative
but equivalent description with a white noise by employing a
standard small-mass expansion [42] on an extended Fokker-
Planck equation with a current as an additional variable.
The main strategy to derive the modified TUR is based on
the Cramér-Rao inequality with a slightly different pertur-
bation from the conventional one adopted in Refs. [9,10].
We also generalize the modified TUR for an arbitrary ini-
tial state. Finally, we calculate analytically the finite-time
TUR factors for work, heat, and entropy production currents
in the overdamped limit for the solvable harmonic system
with a Lorentz force in two dimensions, which confirm our
modified TUR.

II. THE OVERDAMPED LANGEVIN EQUATION
WITH A MAGNETIC FIELD

For convenience, we consider two-dimensional dynamics
of a charged Brownian particle in thermal contact with a
heat bath at temperature T and subjected to a static magnetic
field perpendicular to the motion plane. We also consider a
general in-plane force f (x) acting on the particle, as shown
in Fig. 1. As the Lorentz force induced by the magnetic
field has an in-plane component only, the particle motion is
constrained on the two-dimensional plane with a proper initial
condition.

The equation of motion of the particle is given by the
Langevin equation as

ẋ(t ) = v(t ),

mv̇(t ) = f [x(t )] − Gv(t ) + ξT (t ), (3)

where ȧ represents the derivative of a variable a with respect
to time t , x(t ) and v(t ) are the two-dimensional position and
velocity vector of the particle, m is the particle mass,

G =
(

γ −B
B γ

)
(4)

is an asymmetric friction coefficient tensor with the friction
constant γ and the magnetic field magnitude B, and ξT (t )
is the thermal noise described by a Gaussian white noise.
The fluctuation-dissipation relation imposes 〈ξT (t )ξ T

T (t ′)〉 =
2γ T Iδ(t − t ′) with the identity matrix I, where the super-
script T denotes the transpose. The particle charge and the
Boltzmann constant are set to be unity.

Under usual experimental conditions, the friction coeffi-
cient is so large that the inertia effects can be ignored. The
equation of motion in this overdamped (small-mass) limit
was obtained by integrating out Eq. (3) (see Appendix A and
Ref. [41]) as

ẋ(t ) = G−1 f [x(t )] + ηT (t ), (5)

where ηT (t ) is a nonwhite Gaussian noise characterized by
〈ηT (t )η T

T (t ′)〉 = Z(t − t ′) with

Z(u) =
{

2T G−1δ(u), for u � 0,

2T (G−1) T
δ(u), for u � 0,

(6)

which is clearly singular at u = 0. We note that the over-
damped equation of motion is derived in the limit of m � γ

and m � B with comparable γ and B. In this sense, we
will use the overdamped limit and the small-mass limit in-
terchangeably.

The symmetric part of the correlation matrix Z is

Zs(u) ≡ Z(u) + Z T(u)

2
= 2TB

γ
Iδ(u), (7)

with TB = 1

1 + (B/γ )2
T, (8)

indicating that the particle in the overdamped limit expe-
riences a heat reservoir with the effective temperature TB

lower than the original reservoir temperature T . This is con-
sistent with the diffusion coefficient decrease for a charged
Brownian particle in the presence of magnetic field, reported
in Ref. [43].

The antisymmetric part of the correlation matrix plays a
crucial role for featuring nonequilibriumness in this subtle
overdamped limit, which generates a rotational probability
current (curl flux), verified recently by numerical simulations
for various systems [44–47]. This can be more transparent by
deriving the probability current directly in the Fokker-Planck
description.

The systematic way to obtain a small-mass expansion of
the underdamped Fokker-Planck (Kramer) equation is well
established [41,42,48]. Its leading order gives the overdamped
Fokker-Planck (FP) equation governing the time evolution of
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the position distribution function pη(x, t ) as [41]

∂t pη(x, t ) = −∇ T · Jη(x, t ), (9)

with the probability current

Jη(x, t ) = G−1( f (x) − T ∇)pη(x, t ), (10)

where the subscript η denotes the nonwhite ηT noise. Note
that the probability current has an asymmetric diffusion
matrix T G−1, which is consistent with the singular correlation
matrix in Eq. (6) (explicitly shown in Ref. [41]) and is also
responsible for the curl flux mentioned above.

Nevertheless, the antisymmetric part of the diffusion
matrix does not contribute to the time evolution of pη(x, t ),
as it is sandwiched between the same gradient operators in the
FP equation. Thus, the distribution pη(x, t ) should be identical
to that for the (naive) overdamped system with the symmetric
diffusion matrix (TB/γ )I, which is the symmetric part of the
original diffusion matrix T G−1.

This naive overdamped Langevin equation can be simply
obtained by setting m = 0 in the underdamped equation of
Eq. (3) as

ẋ(t ) = G−1 f [x(t )] + ξTB
(t ), (11)

with a white Gaussian noise ξTB
(t ) = G−1ξT (t ) satisfying

〈ξTB
(t )ξ T

TB
(t ′)〉 = Zs(t − t ′) = (2TB/γ )Iδ(t − t ′). The corre-

sponding naive probability current is

Jξ (x, t ) =
(

G−1 f (x) − TB

γ
∇

)
pξ (x, t ). (12)

We will refer this naive dynamics as ξ dynamics, whereas the
original overdamped dynamics with the nonwhite noise as η

dynamics.
The equivalence of the distribution functions for both dy-

namics as pη(x, t ) = pξ (x, t ) guarantees that the average of
any position-dependent observable (internal energy, system
Shannon entropy, etc.) does not discriminate the true over-
damped η dynamics and the naive (incorrect) ξ dynamics.
However, the average of path-dependent observables such as
currents could depend on the antisymmetric part of the diffu-
sion matrix. One specific example has been already reported
in Ref. [41] by an explicit calculation of the average work
currents for two different dynamics for an exactly solvable
model, which turn out to be clearly different from each other.
Therefore, one should be careful in discussing the TUR in-
volving the current average as well as its variance in the
presence of a magnetic Lorentz force.

III. EXTENDED FP EQUATION AND ALTERNATIVE
DYNAMICAL OBSERVABLE

Consider a general accumulated current � in the over-
damped regime as

�(	) =
∫ t

0
dt ′� T[x(t ′)] ◦ ẋ(t ′), (13)

where 	 = {x(t ′)|t ′ ∈ (0, t )} denotes a trajectory in the state
space, �(x) is an arbitrary state-dependent vector (“weight”
function), and ◦ represents the Stratonovich product. For
brevity, we do not use an extra symbol for the Ito product.

It is convenient to consider the joint distribution p̂(x,�, t )
for the position and the current, from which the current av-
erage and its fluctuations can be easily calculated. As an
additional stochastic variable, the current satisfies

�̇(t ) = � T[x(t )] ◦ ẋ(t ). (14)

Together with Eq. (11), one can derive the extended FP
equation for the naive ξ dynamics as

∂t p̂ξ (x,�, t ) = L̂ξ,� p̂ξ (x,�, t ), (15)

with the FP operator

L̂ξ,� = −∇̃ T
� ·

(
G−1 f (x) − TB

γ
∇̃�

)
, (16)

where ·̂ denotes quantities and operators in the extended phase
space and ∇̃� = ∇ + ∂��(x) is a tilted gradient operator. For
detailed derivation, see Appendix B. By integrating out over
� in Eq. (15), one can recover the ordinary FP equation with
the probability current given in Eq. (12).

Now, let us derive the extended FP equation for the original
η dynamics. As the ηT noise is nonwhite, it is not straight-
forward to derive the extended FP operator directly. Thus,
we again go back to the underdamped version and take the
small-mass expansion. After a lengthy but straightforward
calculation (shown in Appendix C), we obtain

∂t p̂η(x,�, t ) = L̂η,� p̂η(x,�, t ), (17)

with

L̂η,� = −∇̃ T
�G−1[ f (x) − T ∇̃�] = L̂ξ,� − ∂�ϕ(x), (18)

where the scalar function

ϕ(x) = −T ∇ TG−1
a �(x), (19)

with G−1
a = [G−1 − (G−1) T]/2. Note that the gradient opera-

tor in Eq. (19) works only inside the scalar function (not on the
distribution function). This scalar function is originated from
the antisymmetric part of the diffusion matrix and contributes
to the time evolution of the joint distribution, in contrast to
the ordinary distribution case. Thus, p̂η(x,�, t ) 	= p̂ξ (x,�, t )
and thus 〈A(�)〉η 	= 〈A(�)〉ξ for an arbitrary function A(�).

Our key observation is that the extended FP operator L̂η,�

has the same mathematical structure with the time evolution
operator L̂ξ,� for the joint distribution p̂ξ (x, �, t ) with the
alternative dynamic observable

�(	) = �(	) +
∫ t

0
dt ′ϕ[x(t ′)] (20)

in the ξ dynamics. In short, we find the operator correspon-
dence relation

L̂η,� = L̂ξ,�

∣∣
�→�

, (21)

where (·)|�→� stands for the replacement of the operators
with respect to � with those with respect to �. This relation
is easily verified from Eq. (B5) in Appendix B for the explicit
derivation of L̂ξ,� and Eq. (18). Note that the alternative
dynamic observable � and the original current � differ by
the accumulated state-dependent observable ϕ, meaning that
� is not antisymmetric under time reversal in contrast to �.
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FIG. 2. A schematic description representing the relation be-
tween the original η dynamics and the naive ξ dynamics.

The correspondence relation between the extended FP op-
erators implies that the random variables � in the η dynamics
and � in the ξ dynamics should be equivalent in their dis-
tributions at any time during the evolution, starting with the
same initial distribution. In other words, we can identify the
equivalence relations as

p̂η(x,�, t ) = p̂ξ (x, �, t )|
�=�

and 〈A(�)〉η = 〈A(�)〉ξ .
(22)

Using these relations, we can avoid complex calculations for
the averages, caused by the singular nature of the nonwhite
noise in the original η dynamics. Figure 2 shows the schematic
description of this relation. For example, the current average
and its variance in the η dynamics are identical to those of the
alternative dynamic observable in the ξ dynamics as

〈�〉η = 〈�〉ξ and Varη[�] = Varξ [�], (23)

which are useful to calculate the TUR factor Q� for the
original η dynamics.

The time evolution of the alternative dynamic observable
� reads from Eq. (20)

�̇(t ) = � T[x(t )] ◦ ẋ(t ) + ϕ[x(t )], (24)

yielding the relation between the average current rates

〈�̇〉η = 〈�̇〉ξ = 〈�̇〉ξ + 〈ϕ〉ξ . (25)

It is worth mentioning that the nonzero average scalar term
〈ϕ〉ξ represents the difference of two different averages of the
current �.

As in the traditional stochastic thermodynamics like in the
ξ dynamics, the average current rate in the η dynamics is also
written in an integral form involving the probability current
(shown in Appendix D) as

〈�̇〉η =
∫

dx � T(x) · Jη(x, t ). (26)

The average rate of � in the ξ dynamics is also written in a
similar form, using Eq. (24), as

〈�̇〉ξ =
∫

dx
(
� T(x) · Jξ (x, t ) + ϕ(x)pξ (x, t )

)
(27)

≡
∫

dx � T(x) · J ξ (x, t ) (28)

with the effective probability current

J ξ (x, t ) = Jξ (x, t ) − T G−1
a ∇pξ (x, t ) (29)

= G−1( f (x) − T ∇)pξ (x, t ), (30)

where we used Eq. (19) and the relation
∫

dx (G−1
a ∇) T ·

�(x)pξ (x, t ) = 0. Comparing this with Jη(x, t ) in Eq. (10),
we find the relation of

J ξ (x, t ) = Jη(x, t ), (31)

with the distribution equivalence of pη(x, t ) = pξ (x, t ). This
relation along with Eqs. (26) and (28) confirms Eq. (25).

To discuss the TUR, we consider the steady-state entropy
production rate for the η dynamics. Its stochastic version in
the steady state can be written as

Ṡtot(t ) = � T
S [x(t )] ◦ ẋ(t ) with �S (x) = GJss

η (x)

T pss
η (x)

, (32)

where the superscript “ss” denotes a steady-state quantity
such as Jss

η (x) = G−1[ f (x) − T ∇]pss
η (x) with the steady-state

distribution pss
η (x) (see Appendix D 3 for its derivation). Using

Eqs. (32) and (26), we obtain the average steady-state rate

〈Ṡtot〉ss
η = γ

T

∫
dx

|Jss
η (x)|2

pss
η (x)

, (33)

= γ

T

∫
dx

|J ss
ξ (x)|2

pss
ξ (x)

≡ 〈�̇〉ss
ξ , (34)

where the relation of Eq. (31) is used with J ss
ξ (x) =

G−1[ f (x) − T ∇]pss
ξ (x) and Eq. (25) guarantees 〈Ṡtot〉ss

η =
〈�̇〉ss

ξ with the corresponding alternative dynamic variable
�, defined as �̇(t ) = Ṡtot(t ) + ϕS[x(t )] with the scalar func-
tion ϕS (x) = −T ∇ TG−1

a �S (x) (see the explicit calculation in
Appendix D 4).

Using Eqs. (23) and (34), the TUR factor Q� for the η

dynamics is now expressed in terms of quantities in the ξ

dynamics as

Q� = Varss
η [�]

(〈�〉ss
η )2

〈�Stot〉ss
η = Varss

ξ [�]

(〈�〉ss
ξ )2

〈��〉ss
ξ ≡ R�, (35)

with 〈��〉ss
ξ = ∫ t

0 dt ′〈�̇(t ′)〉ss
ξ . We refer to R� as the alterna-

tive TUR factor for � in the perspective of the ξ dynamics.
In the normal overdamped ξ dynamics, the conventional TUR
should be valid for general irreversible currents of the generic
type in Eq. (13) with an arbitrary duration time t [9,10].
However, our alternative dynamic observable � is not of the
generic type, but is given by the combination of the current �

and the accumulated state-dependent variable ϕ. Furthermore,
�� is not the entropy production for the ξ dynamics [see
Eq. (D19) for the true entropy production]. Thus, the alterna-
tive TUR factor R� may violate the conventional TUR bound
of 2kB. In the next section, we show that this violation indeed
occurs and derive a new bound analytically.

IV. MODIFIED TUR

The derivation of the conventional TUR is based on
the observation that the TUR is a special case of the
Cramér-Rao (CR) inequality [49,50]. Here, we take a simi-
lar but slightly different approach from the conventional one
adopted in Refs. [9,10], to derive a new lower bound for the
alternative TUR factor R� in the ξ dynamics.

The CR inequality generally provides a lower bound of
the variance of any dynamic observable O(	) in a stochastic
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process with a parameter θ as

Varθ [O]

|∂θ 〈O〉θ |2 I (θ ) � 1, (36)

where 〈O〉θ = ∫
d	O(	)Pθ (	) with the trajectory probability

Pθ (	) and the Fisher information is defined as

I (θ ) = 〈−∂2
θ lnPθ (	)〉θ . (37)

If the dynamics of our interest is defined at θ = 0, then it
is crucial to find an appropriate modified dynamics with a
nonzero θ , which yields limθ→0 ∂θ 〈O〉θ = 〈O〉0. Then, the
(alternative) TUR factor in Eq. (35) naturally comes into the
CR inequality at θ = 0.

We take the ξ dynamics as the unperturbed one at θ = 0.
Similar to the perturbation term in the previous studies [9,10],
we consider a linear perturbation on the force as

f θ (x) = f (x) + θG
J ss

ξ (x)

pss
ξ (x)

. (38)

The steady-state distribution pss
ξ (x) satisfies ∇ T · Jss

ξ (x) = 0
and we also find ∇ T · J ss

ξ (x) = 0 as well from Eq. (29). In the
previous studies for the conventional TUR [9,10], γ Jss

ξ (x) was
used instead of GJ ss

ξ (x) in the perturbation term of Eq. (38).
It is easy to see that the perturbed steady-state distribution

is identical to the unperturbed one, i.e., pss
ξ,θ (x) = pss

ξ (x), as
the perturbed steady-state probability current

Jss
ξ,θ (x) =

[
G−1 f θ (x) − TB

γ
∇

]
pss

ξ,θ (x) (39)

satisfies the steady-state condition of ∇ T · Jss
ξ,θ (x) = 0. The

perturbed effective probability current in the steady state
becomes

J ss
ξ,θ (x) = G−1[ f θ (x) − T ∇]pss

ξ,θ (x) = (1 + θ )J ss
ξ (x),

(40)

which yields 〈�̇〉ss
ξ,θ = (1 + θ )〈�̇〉ss

ξ from Eq. (28), thus
we find

∂θ 〈�̇〉ss
ξ,θ = 〈�̇〉ss

ξ . (41)

The remaining task is to express the Fisher information
I (θ ) at θ = 0 in terms of 〈��〉ss

ξ . Using the Onsager-Machlup
theory [51] in Eq. (11), the trajectory probability is written as

Pθ [	] = pss
ξ,θ [x(0)]Nθe− γ

4TB

∫ t
0 dt ′{ẋ(t ′ )−G−1 f θ [x(t ′ )]}2

, (42)

where the initial probability pss
ξ,θ [x(0)] and the normalization

factor Nθ are θ -independent. Then, one can easily find the
explicit form of the Fisher information from Eq. (37) as

I (θ ) = tγ

2TB

∫
dx

|J ss
ξ (x)|2

pss
ξ (x)

, (43)

which is θ -independent. Using Eq. (34), we find

I (θ ) = t
T

2TB
〈�̇〉ss

ξ = T

2TB
〈��〉ss

ξ . (44)

Using Eqs. (35), (36), (41), and (44) along with Eq. (8)
and setting θ = 0, we finally obtain the modified TUR for the

overdamped η dynamics as

Q� = Varss
η [�]

(〈�〉ss
η )2

〈�Stot〉ss
η = R� � 2kB

TB

T
= 2kB

1 + (B/γ )2
,

(45)

which is the main result of our paper. Note that we restored the
Boltzmann constant kB here. The result shows that the Lorentz
magnetic force always lowers the threshold of the TUR factor,
which weakens the tradeoff constraint. Obviously, the conven-
tional TUR is recovered at B = 0. Interestingly, Chun et al.
[34] found the same form of the TUR lower bound in an
exactly solvable linear model for the work and heat current in
the long-time (t → ∞) limit. Our result applies to a general
current in a general nonlinear system for an arbitrary duration
time. In the next section, we derive the TUR factors exactly
for the linear model for a finite duration time and confirm the
validity of our modified TUR.

The equality condition of the modified TUR can be deter-
mined by the equality condition of the Cramér-Rao inequality
in Eq. (36) as

∂θ lnPθ (	) ∝ O(	) − 〈O〉θ for any 	. (46)

After a straightforward calculation following a similar proce-
dure in Ref. [9], we find that the equality holds with the two
constraints as (see Appendix E)

�(x) = μ
Jss

η (x)

pss
η (x)

, (47)

with an arbitrary constant μ, and

〈Ṡtot〉ss
η = γ

T

∣∣∣∣Jss
η (x)

pss
η (x)

∣∣∣∣
2

− γ
∇ TG−1

a Jss
η (x)

pss
η (x)

. (48)

Note that the entropy production current automatically sat-
isfies the first constraint for B = 0, but not for B 	= 0 [see
Eq. (32)]. Other currents may satisfy the first constraint for
some specific dynamics (see the example in the next section),
but not in general. The second constraint is independent of the
choice of currents, �(x), and more interesting. For B = 0, the
second term in the right hand side of Eq. (48) vanishes, thus it
reduces to the equality condition for the conventional TUR
[9], which requires uniform local entropy production. This
second constraint becomes trivially satisfied in the equilib-
rium limit where Jss

η (x) vanishes (detailed balance). For B 	=
0, however, the second term exists and in fact dominates near
equilibrium, as it is of the first order in Jss

η (x), while the others,
including 〈Ṡtot〉ss

η , are of the second order. Hence, the equality
condition is violated even in the equilibrium limit. Instead, the
second constraint can be satisfied by tuning B (thus, G−1

a ) to
make the second term also be of the second order in Jss

η (x). In
the next section, we will show this example explicitly, where
the equality of the modified TUR holds out of equilibrium.

It is straightforward to extend our modified TUR to the η

dynamics with an arbitrary initial state. This generalization
in the normal overdamped ξ dynamics was reported recently
in Refs. [52,53]. We also study this generalization in the η

dynamics and find the modified TUR with an arbitrary initial
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state for a finite duration time t as

Varη[�]

〈t�̇(t )〉2
η

〈�Stot〉η � 2kB
TB

T
, (49)

where �̇(t ) is the current at the final time t of duration and
Eq. (45) is recovered in the steady state. The derivation details
are given in Appendix F.

A generalization to higher-dimensional cases is also pos-
sible. The overdamped motion in the perpendicular plane to
the magnetic field follows the same behavior discussed be-
fore with the effective temperature TB. In the parallel plane,
the particle does not feel the Lorentz force and the normal
overdamped motion is expected with the temperature T . The
contribution to the Fisher information in Eq. (43) from this
normal overdamped motion in the parallel plane is smaller as
T > TB, thus the total Fisher information is smaller than the
entropy production of the η dynamics in Eq. (33). Therefore,
our main result still holds in higher dimensions, even though
the TUR equality condition can not be satisfied for nonzero B.
For details, see Appendix G.

V. EXAMPLE

To confirm our main result, we consider an analytically
solvable system with a linear force as

f (x) = −Fx with F =
(

k −ε

ε k

)
. (50)

The diagonal elements represent a force applied by a harmonic
potential with spring constant k, while the off-diagonal ele-
ments indicate a nonequilibrium driving force with strength
ε. This system has been investigated in various studies
[34,39,41,54–56], because it is analytically solvable. In the
remaining text, we will omit the subscript η for brevity.

We consider two accumulated currents: (i) work W done on
the system and (ii) heat Q dissipated into the reservoir. These
currents are of form in Eq. (13) with weight functions

�W (x) = Wx, with W =
(

0 ε

−ε 0

)
for workW, (51)

�Q(x) = Qx, with Q = −F for heat Q. (52)

Since the model basically belongs to the Ornstein-
Uhlenbeck process [42,57,58], the steady-state distribution
pss(x) should be Gaussian as

pss(x) = 1√
det(2πC)

exp −1

2
xT C−1x, (53)

with the covariance matrix C = 〈xx T〉. From the steady-state
condition, we can easily find in Eq. (H3) as

C = γ T

γ k + εB
I, (54)

which is stable for γ k + εB > 0. The steady-state probability
current is then obtained from Eq. (10) as

Jss(x) = 1

γ
Wxpss(x). (55)

The steady-state averages of work W and heat Q are calcu-
lated by Eq. (26) as

〈W 〉ss = t
∫

dx � T
W (x) · Jss(x) (56)

= t
2ε2T

γ k + εB
= 〈Q〉ss, (57)

which agrees with the result in Ref. [41]. The scalar function
in Eq. (19) becomes a constant as ϕ(x) = 2εBT/(γ 2 + B2)
for both currents, which represents the difference between the
true and the naive average in Eq. (25).

One can also consider the total entropy production �Stot

with �S (x) = GJss(x)/[T pss(x)] in the steady state [see
Eq. (32)]. Using Eq. (55), we find the weight function as

�S (x) = Sx with S = GW/(T γ ) for �Stot, (58)

from which we obtain 〈�Stot〉ss = 〈Q〉ss/T and the
corresponding scalar function ϕS (x) = 2εB/(γ 2 + B2), as
expected.

The most complex task is to find the variance of work,
heat, and entropy production. From the extended FP equation
of p̂(x,�, t ) in Eqs. (17) and (18), we derive the formal
solution for the variance in terms of auxiliary matrices (see
Appendix H). Finding the explicit forms of the auxiliary ma-
trices, we obtain the variance and the TUR factor in the steady
state with a finite duration time t .

First, the TUR factor for work is given as

QW = 2(1 + ε2
0 )

(1 + ε0B0)2
− 2(B0 − ε0)2

(1 + B2
0)(1 + ε0B0)2

1 − e−t0

t0
, (59)

where the dimensionless parameters are

ε0 = ε

k
, B0 = B

γ
, t0 = 2t

τ

(
1 + ε0B0

1 + B2
0

)
, (60)

with τ = γ /k and the stability condition becomes 1 + ε0B0 >

0. It monotonically increases with t0 with the minimum,
Qm

W = 2/(1 + B2
0) at t0 = 0+, which is exactly the same as

the TUR lower bound in Eq. (45). This confirms the validity
of our modified TUR.

Equation (55) indicates that the work current obeys the first
equality constraint in Eq. (47). In addition, it is easy to show
that the second constraint in Eq. (48) is satisfied at ε0 = B0,
where the TUR equality should hold. From Eq. (59) with
this condition, the TUR factor takes its minimum QW = Qm

W ,
which is independent of t0. Thus, the TUR lower bound is
achieved out of equilibrium with ε0 	= 0. This may be use-
ful in inferring the entropy production by measuring current
statistics [22–25], which should be more feasible in nonequi-
librium.

We check our analytic results numerically by simulating
the underdamped dynamics with a very small mass m. Using
a generalized velocity-Verlet algorithm [59], we perform nu-
merical integrations of the underdamped Langevin equation
in Eq. (3) with dimensionless mass m0 = km/γ 2 = 0.001.
Numerical data are plotted in Fig. 3(a) for several values of
ε0 with B0 = 0.5 and k = γ = T = 1. We used 107 samples
to evaluate the average and the variance of work as well as
the average entropy production. The numerical data are in an
excellent agreement with Eq. (59) with a small deviation due
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FIG. 3. Duration-time-dependent behavior of the TUR factors (a) for work QW , (b) for heat QQ, and (c) for the entropy production QS .
The symbols represent the numerical data from the underdamped dynamics with m0 = 0.001. Lines represent the analytic results obtained in
the overdamped η dynamics. Black dotted lines indicate the modified TUR bound in Eq. (45). We fixed (a) B0 = 0.5 with several values of
ε0 = 0.1 (red circle), 0.5 (blue triangle), and 1 (cyan square) for work, (b) B0 = 0.75 with ε0 = −0.6 (red circle), −0.5 (blue triangle), 0.75
(cyan square), and 2 (violet diamond) for heat, and (c) B0 = 0.6 and ε0 = −0.1 (red circle), 0.6 (blue triangle), 1.875 (cyan square), and 2
(violet diamond) for entropy production.

to finite-mass corrections. The results obtained for larger m0

are presented in Appendix I. Note that QW takes the modified
TUR bound value, independent of t0 at ε0 = B0 = 0.5, as
expected.

We also find the TUR factor for heat as

QQ = 2(1 + ε2
0 )

(1 + ε0B0)2
− 2(1 + ε2

0 )(ε2
0 − 1 − 2ε0B0)

ε2
0 (1 + B2

0)(1 + ε0B0)2

1 − e−t0

t0
,

(61)

which monotonically increases with t0 for ε2
0 − 1 − 2ε0B0 >

0 and decreases for ε2
0 − 1 − 2ε0B0 < 0. Interestingly, the

heat TUR factor QQ is always larger than the work TUR factor
QW as

QQ − QW = 1

ε2
0 (1 + B2

0)

1 − e−t0

t0
� 0, (62)

with the equality in the t0 → ∞ limit. Thus, QQ also sat-
isfies the modified TUR. The equivalence of QW = QQ in
the t0 → ∞ limit was also reported in Ref. [34]. Numerical
data for QQ also agree with the analytic results very well,
shown in Fig. 3(b). The TUR equality can not be achieved
for heat current, as the first equality constraint in Eq. (47) is
not satisfied.

The TUR factor for the entropy production (also called the
entropy Fano factor [15]) is

QS = 2(1 + ε2
0 )

(1 + ε0B0)2
− 2ε0(ε0 − 2B0 − ε0B2

0)

(1 + ε0B0)2

1 − e−t0

t0
, (63)

which is always larger than the work TUR factor as

QS − QW = 2B2
0

1 + B2
0

1 − e−t0

t0
� 0. (64)

Thus, QS also satisfies the modified TUR. Interestingly, all
three TUR factors take the same value of 2(1 + ε2

0 )/(1 +
ε0B0)2 in the limit of t0 → ∞. The first equality constraint for
QS is satisfied only for B0 = 0, where the friction tensor G
becomes proportional to I. As the second equality constraint
of Eq. (48) is satisfied at ε0 = B0, we find the TUR equality
only at B0 = ε0 = 0 with QS = 2.

It is also interesting to see that limt0→0+ QS = 2, indepen-
dent of the values of B0 and ε0. This may hint a possibility

of the short-time TUR for inferring the entropy production
[23] even with the presence of a magnetic field. However, this
does not come from the TUR equality constraint and may not
hold with a nonlinear force. Figure 3(c) shows this property
of QS and the consistency between the numerical data and the
analytic results.

Now, we make some remarks on near equilibrium with
small ε0, where the TUR factors for work, heat, and the
entropy production become

QW ≈ 2 − 2B2
0

1 + B2
0

1 − e−t0

t0
< 2, (65)

QQ ≈ 2 + 2

ε2
0 (1 + B2

0)

1 − e−t0

t0
> 2, (66)

QS ≈ 2 − 4ε0B0

(
1 − 1 − e−t0

t0

)
≈ 2. (67)

Even in the equilibrium limit, the work current always vio-
lates the conventional TUR for finite t0, which implies that
any simulation result should show a violation even with
very small ε0 and very long t0. In contrast, the heat cur-
rent always satisfies the conventional TUR for small ε0, but
its finite-ε0 correction is huge, implying that it is almost
impossible to reach the conventional TUR lower bound in
any practical simulation near equilibrium. In the case of the
entropy production, the TUR factor approaches the conven-
tional bound from below for B0ε0 > 0 and from above for
B0ε0 < 0. In the limit of t0 → ∞ and ε0 → 0, the TUR factor
for all currents approaches 2 (the conventional TUR bound),
independent of B0.

Finally, we point out that a variant of the TUR including
the dynamic activity for the underdamped dynamics [38,39]
is not useful in the overdamped limit, as the dynamic ac-
tivity diverges with m → 0 (see Eq. (40) in Ref. [39] for
this specific example). The other variant underdamped TUR,
derived recently in Ref. [60], provides a nontrivial bound in
the overdamped limit, but it is less universal and dependent on
the details of the system. We also note that the result from the
linear response theory is not informative [32] as the Onsager
matrix is symmetric in this example [58].
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VI. CONCLUSION

We present the modified TUR for the Langevin sys-
tems subject to a static magnetic field in the overdamped
limit. The system is described by the overdamped Langevin
equation with a nonwhite singularly correlated noise. By
using the extended Fokker-Planck equation with a current
variable in addition, we find the alternative dynamics with
the conventional white noise and an alternative dynamic ob-
servable, which generates the extended distribution function
equivalent to the original one.

Utilizing the Cramér-Rao inequality, we derive the modi-
fied TUR, which turns out to be surprisingly simple with one
scale factor on the conventional TUR bound. This factor is
given by the ratio of the reduced effective temperature of the
overdamped motion to the reservoir temperature. This TUR is
universal in the sense that the lower bound is independent of
system parameters. We emphasize that this TUR is valid for
a finite duration time and for general currents. Our modified
TUR shows that the magnetic field lowers down the bound
and the standard TUR is recovered without the magnetic field.
From the exactly solvable models, we confirm the validity
of our results. We also find that the TUR lower bound can
be reached out of equilibrium with the magnetic field, which
may be useful in inferring the entropy production by measur-
ing nonentropic current statistics in nonequilibrium. We also
generalize our TUR for an arbitrary initial state.

Our analysis is limited to systems with isotropic thermal
reservoirs. It could be interesting to extend it to systems with
anisotropic baths such as microscopic heat engines with bro-
ken time-reversal symmetry.
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APPENDIX A: DERIVATION OF THE OVERDAMPED
LANGEVIN EQUATION

We start from the formal solution of the underdamped
equation, Eq. (3), as

v(t ) = 1

m

∫ t

−∞
dτ e− 1

m G(t−τ ) f [x(τ )] + ηm(t ), (A1)

where

ηm(t ) = 1

m

∫ t

−∞
dτ e− 1

m G(t−τ )ξT (τ ), (A2)

with 〈ξT (t )ξ T
T (t ′)〉 = 2γ T Iδ(t − t ′).

Then, the noise-noise correlation matrix Zm(t − t ′) =
〈ηm(t )ηT

m(t ′)〉 can be easily obtained as

Zm(u) = T

m
e− 1

m Gu and Zm(−u) = Z T
m (u) (A3)

for u > 0. Its Laplace transform becomes∫ ∞

0
du e−suZm(u) = T (msI + G)−1, (A4)

which becomes T G−1 in the m → 0 limit. Its inverse Laplace
transform gives Z(u) = 2T G−1δ(u) and Z(−u) = Z T(u)
from Eq. (A3).

We note that Eq. (6) is equivalent to the definition in
Ref. [41], which is

Z(u) = T G−1δ+(u) + T (G−1) Tδ−(u), (A5)

with variants of the Dirac δ function δ±(u) satisfying∫ ∞
0 duδ+(u) = 1,

∫ 0
−∞ duδ+(u) = 0, and δ−(u) = δ+(−u).

Then, the standard Dirac δ function is given by δ(u) =
[δ+(u) + δ−(u)]/2.

APPENDIX B: THE EXTENDED FP EQUATION FOR THE
OVERDAMPED ξ DYNAMICS

We consider the ξ dynamics in Eq. (11) and the current dy-
namic equation of Eq. (14). The extended equation of motion
can be rewritten as

q̇(t ) = Aq(q(t )) + Bq[q(t )] ◦ ξq(t ), (B1)

with q =
(

x
�

)
, Aq(q) =

(
G−1 f (x)

� T(x)G−1 f (x)

)
,

ξq =
(

ξTB

0

)
, and Bq(q) =

(
I 0

� T(x) 0

)
, (B2)

where ẋ in Eq. (14) is replaced in terms of x and ξTB
by

Eq. (11) and 〈ξTB
(t )ξ T

TB
(t ′)〉 = (2TB/γ )Iδ(t − t ′).

The corresponding FP operator for the Langevin equation
of Eq. (B1) with a Stratonovich-type multiplicative noise is
well established, e.g., see the textbook [57], which yields

L̂ξ,� = −∂ T
q · Aq(q) + TB

γ

[
∂ T

q Bq(q)
] · [

∂ T
q Bq(q)

] T
,

with ∂q =
(∇

∂�

)
. (B3)

From Eq. (B2), we finally obtain

L̂ξ,� = −∇̃ T
�G−1 f (x) + TB

γ
∇̃ T

� · ∇̃�, (B4)

where ∇̃� = ∇ + ∂��(x) is the tilted gradient operator.
We can derive the extended FP equation with the alterna-

tive dynamic observable � given in Eqs. (20) and (24) for
the ξ dynamics. This new variable changes only the second
component of Aq(q) by adding ϕ(x). Therefore, we find the
extended FP operator for this case as

L̂ξ,� = −∇̃ T
�G−1 f (x) + TB

γ
∇̃ T

� · ∇̃� − ∂�ϕ(x), (B5)

with ∇̃� = ∇ + ∂��(x).

APPENDIX C: THE OVERDAMPED LIMIT
OF THE EXTENDED FP EQUATION FOR THE

UNDERDAMPED DYNAMICS

We start with the extended FP equation for the under-
damped dynamics and then take the overdamped (small-mass)
limit to find the extended FP equation for the original η dy-
namics. This procedure is quite similar to that for deriving the
ordinary overdamped FP equation of Eqs. (9) and (10).
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The underdamped equation of motion is given by Eq. (3)
and the accumulated current is written as

�(	) =
∫ t

0
dt ′� T[x(t ′)] · v(t ′), (C1)

with a trajectory 	 = {x(t ), v(t )|t ∈ (0, τ )}, of which the dy-
namic evolution is given by

�̇(t ) = � T[x(t )] · v(t ). (C2)

As v is a state variable in the underdamped description, the
extended equation of motion including � does not induce
any multiplicative noise, in contrast to the overdamped ξ

dynamics. Thus, the type of stochastic calculus such as Ito
and Stratonovich is meaningless for the FP operator.

Considering the underdamped equation of motion in
Eq. (3) together with the above current dynamic equation, we
can write the extended FP equation as

∂t p̂(x, v,�, t ) = (L̂rev,� + Lirr ) p̂(x, v,�, t ), (C3)

where the extended FP operator is split into the reversible and
the irreversible part as

L̂rev,� = −∇̃ T
� · v − 1

m
∇ T

v · [ f (x) − Bv], (C4)

Lirr = γ

m
∇ T

v ·
(
v + T

m
∇v

)
, (C5)

with ∇̃� = ∇ + ∂��(x), the velocity gradient operator ∇v ,
and the magnetic-field matrix B = Ga (the antisymmetric part
of G). For convenience, we include the Lorentz term (Bv) in
the reversible operator.

Note that the information of the current variable � is
fully contained in the tilted position gradient operator ∇̃�

in the exactly same way as in the overdamped case (Ap-
pendix B). Hence, we can easily expect that the overdamped
(small-mass) limit of the extended FP equation should be the
same as that for the ordinary FP equation of Eqs. (9) and (10),
except for replacing ∇ by ∇̃�, which is presented in Eq. (18).

For completeness, we briefly sketch the standard procedure
for the small-mass expansion [41,42,48]. The strategy is to
find a series expansion of the distribution p̂(x, v,�, t ) in
terms of the orthonormal basis of the irreversible operator
Lirr . Then, the extended FP equation provides a hierarchy of
coupled differential equations for the expansion coefficients
known as the Brinkman’s hierarchy [42,61]. In the small-mass
limit, most of higher-order coefficients can be neglected in this
expansion and the overdamped extended FP equation can be
rather easily obtained.

First, it is convenient to rotate the operator Lirr in a
Hermitian form by introducing

L̄irr = [
√

pss(v)]−1Lirr

√
pss(v), (C6)

with

pss(v) = m

2πT
exp

[
− m

2T
|v|2

]
, (C7)

which is the steady-state solution of Lirr , satisfying
Lirr pss(v) = 0.

In terms of the classical analog of the bosonic ladder
operators

a± = 1

2

√
m

T
v ∓

√
T

m
∇v, (C8)

the rotated operator is written as

L̄irr = − γ

m
a T

+ · a−, (C9)

which is reminiscent of the Hamiltonian of the quantum har-
monic oscillator. Its orthonormal eigenfunctions ψ̄n1,n2 (v) are
well known with two quantum numbers (n1, n2), which are
simply related to each other by the raising and lowering lad-
der operators, a±. The ground-state eigenfunction is given as
ψ̄0,0(v) = √

pss(v). It is useful to consider the same rotation
on the reversible operator L̂rev,� as

L̄rev,� = −
√

T

m
∇̃ T

� · a− −
√

T

m

[
∇̃� − f (x)

T

] T

· a+

− 1

m
a T

+B a−. (C10)

The FP Eq. (C3) can be rewritten in terms of the rotated
operators as

∂t p̄(x, v,�, t ) = (L̄rev,� + L̄irr ) p̄(x, v,�, t ), (C11)

with the transformed distribution

p̄(x, v,�, t ) ≡ [ψ̄0,0(v)]−1 p̂(x, v,�, t ). (C12)

We expand p̄(x, v,�, t ) in terms of the orthonormal eigen-
functions as

p̄(x, v,�, t ) =
∞∑

n1,n2=0

Ĉn1,n2ψ̄n1,n2 (v), (C13)

with the expansion coefficient Ĉn1,n2 = Ĉn1,n2 (x,�, t ). By
putting this expansion form into Eq. (C11) and focusing on
the lower-order terms for small m [41], we find

∂tĈ0,0 = −
√

T

m
∇̃ T

� · Ĉ1, (C14)

GĈ1 = −
√

mT

[
∇̃� − f (x)

T

]
Ĉ0,0 + O(m), (C15)

with Ĉ1 =
(

Ĉ1,0

Ĉ0,1

)
.

The overdamped extended distribution p̂η(x,�, t ) is ob-
tained by integrating out the velocity variable of p̂(x, v,�, t ).
Using Eqs. (C12) and (C13) with the orthogonality property
of the eigenfunctions, we find Ĉ0,0 = p̂η(x,�, t ). Combining
Eqs. (C14) and (C15), we find the overdamped extended FP
operator as

L̂η,� = −∇̃ T
�G−1( f (x) − T ∇̃�). (C16)

APPENDIX D: STOCHASTIC THERMODYNAMICS
FOR THE η DYNAMICS

In this Appendix, we develop the stochastic thermody-
namics for the η dynamics. As the noise ηT has a singular
character in the noise-noise correlation, the framework of the
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stochastic thermodynamics should be reexamined. Thus, we
start from the underdamped dynamics where the stochastic
thermodynamics is well established.

1. FP operator and probability distribution

The underdamped FP equation with the Lorentz force is

∂t p(x, v, t ) = (Lrev + Lirr )p(x, v, t ), (D1)

where the ordinary FP operators Lrev and Lirr are given
in Eqs. (C4) and (C5) with the replacement ∇̃� by ∇.
With the same series expansion, we finally get the same
equations as Eqs. (C14) and (C15) for the expansion coef-
ficients Cn1,n2 (x, t ) = ∫

d�Ĉn1,n2 (x,�, t ), again by replacing
∇̃� with ∇. As we have

pη(x, t ) =
∫

dv p(x, v, t ) = C0,0 (D2)

and

Jη(x, t ) =
√

T

m
C1 = G−1[ f (x) − T ∇]pη(x, t ), (D3)

then the overdamped FP operator becomes

Lη = −∇ TG−1[ f (x) − T ∇]. (D4)

The underdamped distribution for the small-mass limit is
obtained from the expansion like in Eq. (C13)

p(x, v, t ) ≈ ψ̄0,0(v)

[
C0,0ψ̄0,0(v) + C T

1 ·
(

ψ̄1,0(v)
ψ̄0,1(v)

)
+ · · ·

]

≈ pss(v)

[
pη(x, t ) + m

T
J T

η (x, t ) · v + · · ·
]

≈ pη(x, t )

(
m

2πT

)
exp

[
− m

2T

∣∣∣∣v − Jη(x, t )

pη(x, t )

∣∣∣∣
2]

,

(D5)

where we used the eigenfunction relations as ψ̄1,0(v) =
v1

√m
T ψ̄0,0(v) and ψ̄0,1(v) = v2

√m
T ψ̄0,0(v). As expected,

the average local velocity 〈v〉v = ∫
dv vp(x, v, t ) = Jη(x, t ).

This approximate probability distribution form near the over-
damped limit is also valid for the normal ξ dynamics.

2. Average current and entropy production

The average current of Eq. (C2) is calculated as

〈�̇〉 =
∫

dxdv � T(x) · v p(x, v, t )

=
∫

dx � T(x) · Jη(x, t ), (D6)

where we used Jη(x, t ) = ∫
dv vp(x, v, t ). This form is the

same as that for the normal overdamped ξ dynamics. How-
ever, note that the probability current Jη(x, t ) 	= Jξ (x, t ).

The total entropy production rate is given as [62,63]

〈Ṡtot〉 = m2

γ T

∫
dxdv

|Jirr(x, v, t )|2
p(x, v, t )

, (D7)

where the irreversible probability current is given by

Jirr (x, v, t ) = − γ

m

(
v + T

m
∇v

)
p(x, v, t ). (D8)

Note that the Lorenz term is not included for the irreversible
current, so the total entropy production here does not involve
the so-called unconventional entropy production term and be-
comes the Clausius entropy in the steady state [63–65].

Using the approximate distribution function in Eq. (D5) for
the overdamped limit, we find

Jirr (x, v, t ) ≈ − γ

m

Jη(x, t )

pη(x, t )
p(x, v, t ), (D9)

which yields the entropy production rate in the overdamped
limit as

〈Ṡtot〉 ≈ γ

T

∫
dx

|Jη(x, t )|2
pη(x, t )

. (D10)

This form is also standard for the normal overdamped
Langevin system with the probability current Jη(x, t ).

3. Stochastic currents

The stochastic work current done by the external force
f ext(x) is given as

Ẇ (t ) = f T
ext[x(t )] · v(t ), (D11)

in the underdamped dynamics. Thus, it is natural to define its
overdamped η dynamics as

Ẇ (t ) = f T
ext[x(t )] ◦ ẋ(t ), (D12)

which is consistent with its average in Eq. (D6).
The stochastic heat current dissipated into the reservoir is

given as

Q̇(t ) = [γ v(t ) − ξT (t )] T ◦ v(t ), (D13)

= { f [x(t )] − Bv(t )} T · v(t ) − d

dt

(
1

2
m|v(t )|2

)
, (D14)

where the underdamped equation of motion, Eq. (3), is used.
The Lorentz term vanishes due to the antisymmetric property
of B. The above form manifests that the heat current is not
of the generic type in Eq. (C2). However, in the overdamped
η dynamics by taking the small-mass limit, the heat current
becomes the generic current type of Eq. (14) as

Q̇(t ) = f T[x(t )] ◦ ẋ(t ). (D15)

The stochastic entropy production rate in the overdamped
η dynamics can be obtained from the system Shannon entropy
production rate and the Clausius entropy production due to the
heat dissipation. Taking the time derivative of the stochastic
system Shannon entropy, we find

Ṡsys
η (t ) = − d

dt
ln pη(t ) = −∂t pη(t )

pη(t )
− ∇ T pη(t )

pη(t )
◦ ẋ(t )

= −∂t pη(t )

pη(t )
− Q̇(t )

T
+ {GJη[x(t ), t]} T

T pη(t )
◦ ẋ(t ),

(D16)
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with pη(t ) = pη(x(t ), t ). We used Eq. (10) for the final equal-
ity, which yields

Ṡtot
η (t ) = Ṡsys

η (t ) + Q̇(t )

T
= −∂t pη(t )

pη(t )
+ � T

S [x(t ), t] ◦ ẋ(t ),

(D17)

with �S (x, t ) = GJη(x, t )/[T pη(x, t )]. We note that this ex-
pression is not of the generic type for currents in Eq. (14)
due to the presence of the first term in the right hand side of
the equation and the explicit time-dependency of the weight
function. But, in the calculation of its average, the first
term does not contribute and Eq. (D10) is easily recovered
using Eq. (D6). Furthermore, in the steady state, the first
term vanishes by definition and the weight function is time-
independent as in Eq. (32), thus the stochastic total entropy
production rate becomes the generic type.

4. Entropy production for the ξ dynamics

It is worthwhile to derive explicitly the stochastic entropy
production rate and its average in the naive ξ dynamics. At
the first glance, one may think that the result may be trivial
because the ξ dynamics is a standard overdamped dynamics
with a white Gaussian noise. It turns out to be rather subtle
due to the mismatch of the asymmetric friction tensor G and
the symmetric diffusion matrix (TB/γ )I. When we take the
distribution equivalence pξ (t ) = pξ [x(t ), t] = pη[x(t ), t] into
account, it is obvious that the time derivative of the stochastic
system entropy has the same form as in Eq. (D16). Following
the similar procedure as above, we get

Ṡtot
ξ (t ) = Ṡsys

ξ (t ) + Q̇(t )

T
= −∂t pξ (t )

pξ (t )
+ � T

S (x(t ), t ) ◦ ẋ(t ),

(D18)

where the heat dissipation rate Q̇(t ) is defined in Eq. (D15)
and �S (x, t ) = GJ ξ (x, t )/[T pξ (x, t )] with the effective
probability current J ξ (x, t ) defined in Eq. (30). From the re-
lation between currents [J ξ (x, t ) = Jη(x, t )] in Eq. (31), we
find that the stochastic entropy expressions for both dynamics
are identical, i.e., Ṡtot

η (t ) = Ṡtot
ξ (t ) ≡ Ṡtot(t ).

However, its average should be different as expected from
Eq. (25). In the ξ dynamics, we find

〈Ṡtot〉ξ =
∫

dx
[GJ ξ (x, t )] T

T pξ (x, t )
· Jξ (x, t )

= γ

T

∫
dx

|J ξ (x, t )|2
pξ (x, t )

+ 〈∇ TG−1
a f 〉ξ

= 〈�̇〉ξ − 〈ϕS〉ξ , (D19)

where the scalar function ϕS (x, t ) = −T ∇ TG−1
a �S (x, t ) with

�S (x, t ) = GJ ξ (x, t )/[T pξ (x, t )] from Eq. (19) and the cor-
responding alternative dynamic observable �, defined as
�̇(t ) = Ṡtot(t ) + ϕS[x(t ), t], satisfies 〈�̇〉ξ = 〈Ṡtot〉η, consis-
tent with Eq. (25).

APPENDIX E: EQUALITY CONDITIONS

The derivation of the equality conditions for our system
is quite parallel to that for the ordinary overdamped sys-

tems in Ref. [9], thus we only briefly sketch the derivation
procedure here.

As mentioned in the main text, the equality condition of the
Cramér-Rao inequality in Eq. (36) is given as

∂θ lnPθ (	) ∝ O(	) − 〈O〉θ for any 	. (E1)

For the perturbed dynamics, it is straightforward to show from
Eq. (42) that the left-hand side becomes

∂θ lnPθ (	) = γ

2TB
�∗(t ) − (1 + θ )

T

2TB
��̄ss(t )

+ γ T

2TB

∫ t

0
dt ′ ∇ TG−1

a J ss
ξ [x(t ′)]

pss
ξ [x(t ′)]

, (E2)

where �∗(t ) is the alternative dynamic observable defined in
Eq. (20) with �(x) = J ss

ξ (x)/pss
ξ (x) and the so-called local

entropy production ��̄ss(t ) is defined as

��̄ss(t ) = γ

T

∫ t

0
dt ′

∣∣∣∣J
ss
ξ [x(t ′)]

pss
ξ [x(t ′)]

∣∣∣∣
2

. (E3)

By adopting � as the observable O and setting θ = 0, we
recast Eq. (E1) as
γ

T
[�(t ) − μ�∗(t )]

= γ

T
〈�〉ss

ξ − μ

{
��̄ss(t ) − γ

∫ t

0
dt ′ ∇ TG−1

a J ss
ξ [x(t ′)]

pss
ξ [x(t ′)]

}
,

(E4)

with an arbitrary constant μ. The left-hand side includes a
current-type observable, whereas the right-hand side is in-
dependent of ẋ(t ). We easily find that the left-hand side
vanishes when

�(x) = μ
J ss

ξ (x)

pss
ξ (x)

, (E5)

which is identical to the first equality condition in Eq. (47)
by exploiting the correspondence relation in Eq. (31).
Plugging the first condition into Eq. (E4), the right-hand side
also vanishes when

〈��〉ss
ξ = ��̄ss(t ) − γ

∫ t

0
dt ′ ∇ TG−1

a J ss
ξ [x(t ′)]

pss
ξ [x(t ′)]

, (E6)

which becomes the second condition in Eq. (48) for
arbitrary t .

APPENDIX F: MODIFIED TUR WITH AN
ARBITRARY INITIAL STATE

We consider a time-dependent perturbation on the force as

f θ (x, t ) = f (x) + θG
J ξ (x, t̄ )

pξ (x.t̄ )
, with t̄ = (1 + θ )t,

(F1)
where the perturbation term is defined by the quantities for
the unperturbed dynamics at a later time scaled by a factor of
1 + θ with respect to the perturbed dynamics at time t .

Similar to the steady-state case, we can easily show that
the perturbed distribution function at t is identical to the

043005-11



JONG-MIN PARK AND HYUNGGYU PARK PHYSICAL REVIEW RESEARCH 3, 043005 (2021)

unperturbed one at the scaled time t̄ , i.e., pξ,θ (x, t ) = pξ (x, t̄ ).
This can be easily checked as the perturbed probability current
with this relation

Jξ,θ (x, t ) =
[

G−1 f θ (x) − TB

γ
∇

]
pξ,θ (x, t ) (F2)

= Jξ (x, t̄ ) + θJ ξ (x, t̄ ) (F3)

satisfies the Fokker-Planck equation for the perturbed
dynamics

∂t pξ,θ (x, t ) = −∇ T · Jξ,θ (x, t ), (F4)

where we used the relation ∇ T · J ξ (x, t ) = ∇ T · Jξ (x, t ).
It is simple to show that

J ξ,θ (x, t ) = G−1[ f θ (x) − T ∇]pξ,θ (x, t )

= (1 + θ )J ξ (x, t̄ ), (F5)

which yields

〈�〉ξ,θ =
∫ t

0
dt ′dx � T(x) · J ξ,θ (x, t ′)

=
∫ (1+θ )t

0
dt̄ ′dx � T(x) · J ξ (x, t̄ ′)

=
∫ (1+θ )t

0
dt̄ ′〈�̇(t̄ ′)〉ξ . (F6)

Thus, we get

lim
θ→0

∂θ 〈�〉ξ,θ = t〈�̇(t )〉ξ = t〈�̇(t )〉η. (F7)

Using the expression for the trajectory probability in
Eq. (42) with the same initial condition for any value of θ ,
we can also find the Fisher information from Eq. (37) as

I (θ ) = 1

2(1 + θ )

(
γ

TB

∫ (1+θ )t

0
dt ′dx

|J ξ (x, t ′)|2
pξ (x, t ′)

)
. (F8)

Setting θ = 0 and using Eq. (31), we find

I (0) = γ

2TB

∫ t

0
dt ′dx

|Jη(x, t ′)|2
pη(x, t ′)

= T

2TB
〈�Stot〉η, (F9)

where 〈�Stot〉η is the total entropy production for duration
time t and Eq. (D10) is used.

Finally, we have a modified TUR for the overdamped η

dynamics with an arbitrary initial state for a finite duration
time t as

Varη[�]

〈t�̇(t )〉2
η

〈�Stot〉η � 2kB
TB

T
, (F10)

where the Boltzmann constant kB is restored.

APPENDIX G: EXTENSION TO HIGHER DIMENSIONS

Consider a three-dimensional dynamics with a magnetic
field in one direction. The two-dimensional plane perpen-
dicular to the magnetic field is spanned by the first and
second component of the position vector x. Its third compo-
nent describes the magnetic field direction. Then, the friction

coefficient tensor in Eq. (4) is given by

G =
⎛
⎝γ −B 0

B γ 0
0 0 γ

⎞
⎠. (G1)

The derivation procedure of the modified TUR is basically
the same as before in the two-dimensional case, so we list here
only the differences. The symmetric part of the correlation
matrix in Eq. (7) becomes

Zs(u) = 2TB

γ

⎛
⎝1 0 0

0 1 0
0 0 T

TB

⎞
⎠δ(u) ≡ 2Dsδ(u), (G2)

and the naive probability current in Eq. (12) becomes

Jξ (x, t ) = [G−1 f (x) − Ds∇]pξ (x, t ). (G3)

For the ξ dynamics, TB/γ should be replaced by Ds every-
where.

The key replacement is in the trajectory probability in
Eq. (42), which yields the Fisher information as

I (θ ) = t

2

∫
dx

[
J ss

ξ (x)
] T

D−1
s J ss

ξ (x)

pss
ξ (x)

(G4)

<
tγ

2TB

∫
dx

|J ss
ξ (x)|2

pss
ξ (x)

, (G5)

where the third component of |J ss
ξ (x)|2 makes the inequality

for TB < T . As the entropy production for the η dynamics in
Eq. (33) does not change in form, we finally get the same
modified TUR in Eq. (45) for three dimensions. The exten-
sions to higher dimensions and also for arbitrary initial states
are obvious. But, due to the inequality in Eq. (G5), the TUR
equality cannot be attained for nonzero B in three or higher
dimensions.

APPENDIX H: EXACT SOLUTIONS IN
THE SOLVABLE MODEL

Consider the FP equation in Eqs. (9) and (10) for the
η dynamics with the linear force f (x) = −Fx in Eq. (50),
given as

∂t p(x, t ) = ∇ T · (Ax + D∇)p(x, t ), (H1)

with the drift matrix A = G−1F and the asymmetric diffusion
matrix D = T G−1. We dropped the subscript η for brevity.
It is easy to show that the covariant matrix C ≡ 〈xx T〉 = C T

should satisfy

AC + CA T = D + D T, (H2)

in the steady state [42,57,58]. Then, we find

C = γ T

γ k + εB
I = T

k(1 + ε0B0)
I, (H3)

where the dimensionless parameters are used with ε0 = ε/k
and B0 = B/γ .

We consider an accumulated current � of the generic type
in Eq. (13) with �(x) = Jx. The linearity in x makes the exact

043005-12



THERMODYNAMIC UNCERTAINTY RELATION IN THE … PHYSICAL REVIEW RESEARCH 3, 043005 (2021)

calculation of their means and variances in the steady state
rather simpler. The extended FP equation in Eqs. (17) and (18)
is written as

∂t p̂(x,�, t ) = ∇̃ T
� · (Ax + D∇̃�) p̂(x,�, t ), (H4)

with the tilted gradient operator ∇̃� = ∇ + ∂�(Jx). By mul-
tiplying a function of variables and integrating out over x
and � on both sides of the extended FP equation, we can
derive the dynamic equation of its average in terms of the
averages of other functions. As we are interested in the steady-
state average only, we take the initial condition p̂(x,�, 0) =
pss(x)δ(�).

For the first moment of �, we can easily obtain, through
simple integrations by parts,

∂t 〈�〉 = Tr{J T(D − AC)} ≡ φ, (H5)

where TrX stands for the trace of a matrix X. As φ is a
constant of time, we get the average accumulated current as
〈�〉 = tφ. Of course, we can get the same result by integrating
Eq. (D6).

It is straightforward but rather involved to calculate 〈�2〉.
Here, we only sketch the calculation procedure. First, we
obtain the dynamic equation for the second moment of � as

∂t 〈�2〉 = 2Tr{φD TJt − J TAM(t ) + J TDJC}, (H6)

with M(t ) = 〈�xx T〉. This equation contains higher moments
M(t ) and its dynamic equation will again contain higher mo-
ments, but only 4th moments of the position variable x. Since
pss(x) is Gaussian as in Eq. (53), the standard Wick’s theorem
splits a fourth moment into a combination of second moments,
which can be given by the covariant matrix C. Finally, the
dynamic equation for M(t ) is given by the following closed
equation,

∂t M(t ) = −AM T(t ) − M(t )A T + φ[C + (D + D T)t]

+ ACJC + CJ TCA T. (H7)

This is a linear differential equation for M(t ), so that the
formal solution is given by

M(t ) = φCt + H − E(t )HE T(t ), (H8)

where an auxiliary symmetric matrix H is defined by the
relation

ACJC + CJ TCA T = AH + HA T, (H9)

and a matrix E(t ) is defined by

E(t ) = e−At = e
− γ k+εB

B2+γ 2 t
(

cos(ωt ) − sin(ωt )
sin(ωt ) cos(ωt )

)
, (H10)

with ω = (kB − γ ε)/(B2 + γ 2). By inserting the solution into
Eq. (H6) and using the relation ∂t Var[�] = ∂t 〈�2〉 − 2φ2t ,
we obtain

∂t Var[�] = 2D� + 2Tr{J TAE(t )HE T(t )}, (H11)

where the diffusion coefficient D� is given by

D� = Tr{J T(DJC − AH)}. (H12)

FIG. 4. Finite-mass TUR factors for work QW versus dimension-
less observation time t0. The symbols represent the numerical data for
m0 = 0.001 (blue up-pointing triangle), 0.01 (orange down-pointing
triangle), and 0.1 (green right-pointing triangle) with fixed B0 = 0.5
and ε0 = 0.4. The horizontal dotted line indicates the modified TUR
bound for the overdamped limit and the vertical dashed line indicates
the t0 = 0.4 line. The inset shows the plots for a wider time range,
where the vertical dashed line indicates the t0 = 1.5 line.

By introducing another auxiliary symmetric matrix K, for
convenience, such that

J TA + A TJ = KA + A TK, (H13)

we finally reach the formal solution

Var[�] = 2D�t + Tr{K[H − E(t )HE T(t )]}. (H14)

The formal solution allows us to obtain the variance by
solving the linear equations in the elements of H and K pro-
vided by Eqs. (H9) and (H13). By determining the auxiliary
matrices for J = W, Q, and S, we obtain the variance for
work, heat, and entropy production.

APPENDIX I: FINITE INERTIA EFFECT FOR THE
LINEAR SYSTEM

We demonstrate the effect of finite mass on the TUR
factor based on the linear force system. Figure 4 shows the
work TUR factor QW for various values of dimensionless
mass m0 = km/γ 2 = 0.1, 0.01, and 0.001 versus dimension-
less duration time t0 defined in Eq. (60). One can see that in
the short duration-time region the modified TUR is violated,
as expected. It seems that the violation occurs at t0 ≈ 0.4 for
m = 0.001 and t0 ≈ 1.5 for m = 0.01 and 0.1, approximately.
As the particle mass increases, the violation region becomes
longer but the TUR factor gets larger after the violation region.
Thus, we may conclude that the modified TUR bound is still
valid for the large-mass particles except for the short duration
time in this example system. A further study would be needed
for demonstrating the effect of increasing mass for general
nonlinear systems.
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