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Coupled oscillators have been used to study synchronization in a wide range of social, biological, and
physical systems, including pedestrian-induced bridge resonances, coordinated lighting up of firefly swarms,
and enhanced output peak intensity in synchronizing laser arrays. Here we advance this subject by studying a
variant of the Kuramoto model, where the coupling between the phase oscillators is heterogeneous and nonlinear.
In particular, the quenched disorder in the coupling strength and the intrinsic frequencies are correlated, and the
coupling itself depends on the amplitude of the mean field of the system. We show that the interplay of these
factors leads to a fascinatingly rich collective dynamics, including explosive synchronization transitions, hybrid
transitions with hysteresis absence, abrupt irreversible desynchronization transitions, and tiered phase transitions
with or without a vanishing onset. We develop an analytical treatment that enables us to determine the observed
equilibrium states of the system, as well as to explore their asymptotic stability at various levels. Our research
thus provides theoretical foundations for a number of self-organized phenomena that may be responsible for the
emergence of collective rhythms in complex systems.
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I. INTRODUCTION

The Kuramoto model is a well-known and widely ap-
plicable paradigm for theoretically describing and modeling
collective behavior in large ensembles of interacting units [1].
Since its conception in 1975, the model has been used to
explore synchronization dynamics in numerous social, bio-
logical, and physical systems, with examples ranging from
arrays of Josephson junctions [2], flashing fireflies [3], cardiac
pacemaker cells [4], to economic markets [5]. The model has
been particularly popular in physics and mathematics because
it often affords analytical insights towards better understand-
ing different types of collective behavior and synchronization
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transitions that occur in systems consisting of a large number
of coupled nonlinear self-sustained oscillators [6–9].

In its original version, the Kuramoto model elucidates syn-
chronization at the onset of a phase transition that emerges
due to the interplay of the intrinsic frequencies of individual
oscillators and the global coupling among them. Specifically,
the heterogeneity of the natural frequencies of oscillators,
which are distributed randomly across the population accord-
ing to a prescribed probability density, tends to desynchronize
the system, while the attracting global coupling between the
oscillators opposes this disorder and tends towards synchrony.
These two competing forces result in the rich dynamics of the
Kuramoto model that has been explored in great detail during
the past decades [10].

In addition to the heterogeneity in natural frequencies,
recent work in physics and network science has highlighted
the importance of heterogeneous coupling between dynami-
cal units. Namely, the coupling strength between individual
oscillators need not be uniform, but rather oscillator depen-
dent [11,12]. Such heterogeneities can be encoded by means
of quenched random interactions, which often represent a
realistic setup for a wide range of systems and applications
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that go beyond the traditional identical coupling [13–16]. For
example, such heterogeneous interactions have been used to
shed light on the collective dynamics of excitatory-inhibitory
neurons or to describe opinion formation among conformists
and contrarians in sociology [17–19]. In terms of theoretical
results obtained with heterogeneous coupling between phase
oscillators, previous works have reported the emergence of
traveling waves, standing waves, π states, glass states, cluster
states, as well as chimera states [20–24].

Almost in parallel to coherent phases observed in net-
work dynamics that emerge from heterogeneous coupling,
explosive synchronization transitions have also received a
lot of attention [25–28]. The latter represent first-order-like
phase transitions that switch abruptly between incoherent and
coherent states, and they are typically due to correlations
in network topology and oscillator dynamics [29–31]. Since
abrupt transitions between two stable states underlie many
real-life systems, the phenomenon has received ample at-
tention, for example to better understand bistable perception
in the brain dynamics [32] and the robustness and optimal
functioning of large-scale power grids [33]. More recently, it
has also been shown that explosive synchronization transitions
can be due to higher-order interactions, where a link con-
nects more than two oscillators, or due to nonlinear coupling,
where, for example, the coupling strength between oscillators
is proportional to the coherence of the system [34–38]. Re-
search has also shown that these two effects can actually be
considered equivalent [39–41].

But despite the wealth of findings and insights related to
the Kuramoto model and its variants, an unexplored question
is what novel effects could different coupling patterns have on
the macroscopic dynamics of the system, particularly if both
heterogeneity and nonlinearity are present in the coupling
among phase oscillators. In this case, indeed little is known
about the possible collective behaviors and the phase transi-
tions between them that may be observed as a result. In this
paper, we therefore consider a variant of the Kuramoto model,
which incorporates heterogeneity and nonlinearity in the cou-
pling. More specifically, we consider correlations between the
quenched disorder in the coupling strength and the intrinsic
frequencies, and we also consider the coupling to be depen-
dent on the amplitude of the mean field of the population. As
we will show, the interplay between these effects significantly
shapes the overall collective dynamics of the system, giving
rise to a number of fascinating phenomena of relevance for
the emergence of synchronization. Importantly, the studied
model is analytically tractable, so that our research provides
theoretical foundations, and in fact a natural mechanism, for
the spontaneous emergence of various rhythmic states and
the bifurcations associated with them in complex systems,
and it does so with relatively small changes to the system
parameters.

The remainder of this paper is organized as follows. In
Sec. II, we present the variant of the Kuramoto model and
we establish the self-consistency approach to determine the
long-term macroscopic dynamics. In Sec. III, we carry out
a linear stability analysis for the fully locked, two-cluster
states in a special one-dimensional manifold, and we set up
a necessary stability criterion for their occurrence. In Sec. IV,
we extend this stability result to all perturbed directions in

the phase space and we explore the characteristic dynamics
of the system due to perturbations. In Sec. V, we investigate
the asymptotic stability of the steady states in the infinite
limit and we obtain the associated eigenspectrum by using
the Ott-Antonsen reduction. In Sec. VI, we investigate the
transitions by means of which the system can move between
different coherent states. Various types of phase transitions to-
wards synchronization are identified, including the explosive
synchronization transition, the abrupt irreversible desynchro-
nization transition, and the tiered synchronization transition
with or without a vanishing onset. In Sec. VII, we summarize
our main conclusions and briefly discuss their possible wider
implications.

II. MATHEMATICAL MODEL AND ITS
STATIONARY SOLUTIONS

As noted, we consider an extension of the Kuramoto
model, whose governing equations are

θ̇i = ωi + Ki f (R)

N

N∑
j=1

sin(θ j − θi ). (1)

Here, θi is the phase of the ith oscillator with i = 1, . . . , N .
{ωi} are the natural frequencies selected from a probability
density function g(ω), which is assumed to be symmetric
throughout the paper, i.e., the mean frequency is set to zero
and g(ω) = g(−ω).

Equation (1) differs from the classical Kuramoto model in
that the uniform coupling strength has been replaced by the
heterogeneous coupling Ki with a feedback factor f (R), which
is a generic function of the amplitude of the Kuramoto order
parameter defined by

Z (t ) = R(t )ei�(t ) = 1

N

N∑
j=1

eiθ j . (2)

R(t ) measures the level of coherence of the system and �(t )
denotes the average phase of the population. Ki and f (R)
account for the inhomogeneity and nonlinearity of the cou-
pling, respectively. Without loss of generality, we set f (R) >

0 (which can be made by rescaling the time) and Ki = KN−i.
As we will show below, the long-term dynamics of this model
is significantly richer than the dynamics of the traditional
Kuramoto mode with linear homogeneous coupling.

We emphasize that the inherent nonlinearity, quenched ran-
dom interactions, and the large number of degrees of freedom
make it difficult to understand the quantitative dynamics of
Eq. (1) with arbitrary choices of Ki and f (R). We there-
fore consider only the case where the coupling is symmetric
around index i of each oscillator. Aside from this constraint,
however, we are free to choose Ki and f (R) arbitrarily.

We first focus on a particular case in which the inhomo-
geneities of natural frequencies and the couplings are chosen
deterministically rather than randomly. Namely, we set Ki =
K|ωi|, and f (R) = Rβ−1 with K, β > 0. In this setting, the
randomness is intrinsic to the oscillators themselves rather
than to the coupling between them [42–50]. Moreover, β � 1
(β < 1) sets up a positive (negative) feedback between the
coupling and the coherence of the system [51–57].
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Before proceeding with the analysis, we make a few
comments regarding the model. As mentioned above, the
heterogeneous interactions have been used to shed light on
the intrinsic dynamics of glass states or to describe opinion
formation among conformists and contrarians in sociology.
On the other hand, the natural frequencies, as a typical het-
erogeneity of the population, are the intrinsic properties of
the oscillators themselves. Therefore, it is reasonable to es-
tablish correlations between the coupling strength and natural
frequencies [12,46,58]. In all the quoted studies, the coupling
strength depends on the natural frequencies implicitly, and
the aim is to uncover the traveling waves and glass states in
coupled oscillator populations.

In our model, instead, the coupling strength depends on the
natural frequencies explicitly, i.e., we set Ki = K|ωi| corre-
sponding to a frequency-weighted coupling (FWC). The FWC
was proposed by Ref. [42] and then it was generalized in
Refs. [43,45]. In all those studies, it was shown that a FWC
is equivalent to the frequency-degree correlations in complex
networks reported in Ref. [29]. Both models turn out to give
rise to explosive synchronization phenomena [59].

Regarding the nonlinear coupling (NC), where f (R) is a
nonlinear function with respect to R, relevant examples are
given in Refs. [51,60], where NC can be achieved by means of
phase reduction in a system of Stuart-Landau oscillators. For
convenience, one may set f (R) = Rβ−1 (a power-law func-
tion), which serves as a typical NC. Similar discussions can
be found in Refs. [52,55]. At the same time, recent works in
physics and neuroscience highlight the potential importance
of higher-order (or group) interactions, e.g., three way or more
connections that may be organized via higher-order simplexes
or a simplicial complex. The effect of such interactions on
the dynamics thus represents an important topic of research
in the complex system community. More importantly, recent
research has also shown that the higher-order interactions are
equivalent to NC [41,61].

The definition of the order parameter given by Eq. (2)
allows us to rewrite Eq. (1) as

θ̇i = ωi + K|ωi|Rβ sin(� − θi ). (3)

By doing so, Eq. (3) retains the mean-field character, and
K|ωi|Rβ displays an effective force acting on each phase os-
cillator θi.

Next, we briefly outline the self-consistency approach to
analyze the stationary dynamics of Eq. (1). The key idea for
the self-consistent method is to assume that in the long-term
evolution, the macroscopic quantity R(t ) is a constant and
�(t ) rotates uniformly, i.e., �(t ) = �t + �0. Indeed, we may
set � = �0 = 0 by entering into an appropriate rotating frame
and shifting the initial conditions [62,63]. Then, Eq. (3) can be
reformulated as

θ̇i = ωi − q|ωi| sin θi, (4)

where the auxiliary parameter q = KRβ is defined to simplify
notation.

We can see from Eq. (4) that each individual oscillator
exhibits two types of long-term behavior, depending on the
magnitude of q. Specifically, if q > 1, all oscillators become

phase locked with

sin θi = ωi

q|ωi| (5)

and

cos θi =
√

1 − q−2. (6)

When q < 1, all oscillators are drifting, i.e., they rotate
nonuniformly on the unit circle and form a stationary distri-
bution given by

ρd (θ, ω) = sgn(ω)
√

ω2(1 − q2)

2π (ω − q|ω| sin θ )
. (7)

The sign function sgn(ω) appearing in Eq. (7) is needed to
ensure the positivity of the distribution.

In contrast to the traditional Kuramoto model and its previ-
ously studied variants, we find that in our case, the coexistence
of the phase-locked and the drifting populations can never
occur. In other words, the system remains either in the fully
phase-locked or the totally drifting state for a fixed value of q.
The splitting of the system into the fully phase-locked or the
completely drifting state allows us to obtain an expression for
the order parameter R self-consistently,

Z = R = 〈eiθ 〉q<1 (8)

and

Z = R = 〈eiθ 〉q>1, (9)

where 〈·〉 denotes the average over the population.
Remarkably, the symmetry of the system implies that

〈sin θ〉q>1 = 〈eiθ 〉q<1 = 0. Therefore, for q < 1, the only so-
lution to Eq. (8) is R = q = 0, which corresponds to the
incoherent state with the phases scattered uniformly around
the unit circle. Conveniently, for q > 1, the expression for R
becomes simply

R = cos θi (10)

or (
1

K

) 1
β

= F (q) = q− 1
β

√
1 − q−2. (11)

The derivations presented above reveal three important re-
sults. In the first place, the presence of correlations between
frequency and coupling results in a universal phase transition
towards synchronization, whose equilibrium is independent
of the frequency distribution and system size. Second, there
are no solutions to Eq. (11) for a sufficiently small value
of K since F (q) remains finite for q ∈ (1,+∞). And third,
there exists a critical coupling Kc, beyond which the two
coherent state solutions exist located at q < qc and q > qc,
respectively. The critical parameter qc satisfies the condition
F ′(qc) = 0, i.e.,

qc =
√

β + 1, (12)

which in turn determines the critical coupling Kc and the
critical order parameter Rc, yielding

Kc = (β + 1)
β+1

2

β
β

2

(13)
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and

Rc =
√

β

β + 1
. (14)

In what follows, we will prove that the solutions for R > Rc

and q > qc are attractive and, moreover, correspond exactly to
the solutions along the F ′(q) < 0 branch.

III. STABILITY IN THE ONE-DIMENSIONAL MANIFOLD

We have shown by means of Eqs. (5) and (6) that depend-
ing on the sign of the natural frequencies and depending on
the intensity of q, the oscillator population splits into two
populations in the long run at opposite locations. These ob-
servations lead us to consider the following question: What is
the stability property of the steady states described by Eq. (11)
in this manifold? As we will show, this consideration is quite
convenient because the low-dimensional description of the
dynamics in Eq. (1) allows us to deduce the associated critical
points and gain some intuition about the stability of phase-
locked states in the presently studied modified Kuramoto
model.

In the fully locked scenario, the system acts like two gi-
ant oscillators, labeled as θ±, which correspond to natural
frequencies ±ω, respectively. In such a manifold, Eq. (1)
reduces to

θ̇+ = ω + K|ω|
2

Rβ−1 sin(θ− − θ+) (15)

and

θ̇− = −ω + K|ω|
2

Rβ−1 sin(θ+ − θ−). (16)

Without loss of generality, we assume that ω > 0, thus having
sin θ± = ±q−1 and cos θ± =

√
1 − q−2, and the order param-

eter becoming

R = 1
2 (eiθ+ + eiθ− ). (17)

Since θ+ + θ− = 0, Eqs. (15) and (16) become one dimen-
sional if we introduce the phase difference φ = θ+ − θ− =
2θ+, which then yields

φ̇ = ω[2 − K
(φ)], (18)

with


(φ) = cosβ−1 φ

2
sin φ. (19)

In this one-dimensional manifold, the dynamics is rela-
tively simple to analyze. The steady state solution of Eq. (18)
requires that

2

K
= 
(φ), φ ∈ (0, π ), (20)

which implies that the coupling strength K � Kc, such that

2

K
� max[
(φ)]. (21)

We can then show that

Kc = 2

max[
(φ)]
= 2


(φ0)
= (β + 1)

β+1
2

β
β

2

, (22)

and that the critical order parameter Rc is given by

Rc = cos
φ0

2
=

√
β

β + 1
, (23)

which are exactly the expressions obtained previously in
Eqs. (13) and (14).

In order to consider the stability of the solutions beyond Kc,
we impose a small perturbation δφ away from φ in Eq. (20)
and neglect higher-order terms of δφ. In doing so, we obtain

δφ̇ = −ωK
′(φ)δφ, (24)

from which it follows that the characteristic value of the
perturbation in this direction is proportional to −
′(φ). This
means further that the stable (unstable) condition for φ is
equivalent to 
′(φ) > 0 [
′(φ) < 0]. To corroborate this con-
clusion, we note that


′(φ) = 1

2
cosβ−1 φ

2

(
cos2 φ

2
− β sin2 φ

2

)
, (25)

which can be simplified significantly by taking into account
Eqs. (17) and (20), thus obtaining


′(φ) = 1
2 Rβ−1[R2(β + 1) − β]. (26)

From this, we find that R > Rc leads to 
′(φ) > 0, thereby
determining a stable branch of the solution, while R < Rc

leads to 
′(φ) < 0, corresponding to an unstable solution.
Based on the above treatment, we conclude that the steady

state solution along the branch q > qc [or F ′(q) < 0] is sta-
ble, at least in this special perturbed direction. However, the
stationary solution along the branch q < qc [or F ′(q) > 0] is
unstable in all perturbed directions because it has a positive
characteristic value of the perturbation even in the synchro-
nized manifold.

In the subsequent two sections, we will show that these
stability criteria can be extended to any perturbation direction,
and this regardless of whether N is finite or infinite.

IV. STABILITY IN THE N-DIMENSIONAL MANIFOLD

It is worth pointing out that what is unusual about the cur-
rently studied system is that the dynamics of Eq. (4) naturally
entrains the oscillators into two groups with equal numbers
and with opposite positions. To better understand the nature of
these fixed points, we restrict our attention to their asymptotic
stability in the N-dimensional manifold. We will show that the
solutions obtained with R > Rc or q > qc are indeed stable in
all the perturbed directions, while the solutions obtained with
R < Rc or q < qc are not.

For the locked states (θ1, θ2, . . . , θN ), let θi(t ) = θi + xi(t )
and x = (x1, x2, . . . , xN ) be the small perturbations. The lin-
earization of the dynamics described by Eq. (1) is given by the
following equation [64]:

ẋ = Jx, (27)
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where J is the Jacobian matrix, whose entries are

Ji j = ∂θ̇i

∂θ j
= ∂

∂θ j

[
ωi + K|ωi|

N
Rβ−1

N∑
k=1

sin(θk − θi )

]

= ∂Rβ−1

∂θ j

K|ωi|
N

N∑
k=1

sin(θk − θi )

+ K|ωi|
N

Rβ−1
N∑

k=1

∂ sin(θk − θi )

∂θ j

= |ωi|
[

βq

NR
sin θi sin θ j + q

NR
cos θi cos θ j − q cos θiδi j

]
.

(28)

We note that the rotational invariance of the dynamics
described by Eq. (1) implies that J always has a trivial eigen-
value λ = 0 corresponding to an eigenvector (1, 1 . . . 1). To
verify that this indeed holds, we point out that the rows of J
all sum to 0, i.e.,

N∑
j=1

Ji j = |ωi|q cos θi

(∑N
j=1 cos θ j

NR
−

N∑
j=1

δi j

)
= 0, (29)

where we have taken into account
∑N

j=1 sin θ j = 0 and∑N
j=1 cos θ j = NR. Aside from λ = 0, the stable condition for

the locked states requires that the remaining N − 1 eigenval-
ues are all negative.

Before a more in-depth exploration of the eigenvalues of J,
here we provide an intuitive argument. We first express

Ji j = |ωi|
(

βq

NR
sis j + q

NR
cic j − qciδi j

)
, (30)

where c = (c1, c2, . . . , cN ) with ci = cos θi, and s =
(s1, s2, . . . , sN ) with si = sin θi. Hence, the stability condition
is equivalent to Jxx < 0 for all x ∈ RN with ‖x‖ �= 0, and x
is orthogonal to (1, 1 . . . 1). That is,

∑N
i=1 xi = 0, and we thus

have

Jxx = βq

NR

N∑
i=1

|ωi|sixi

N∑
j=1

s jx j − q
N∑

i=1

|ωi|cix
2
i . (31)

Following Ref. [64], it becomes apparent that J has, at most,
one positive eigenvalue. If there are two or more positive
eigenvalues for J, the span of the corresponding eigenvec-
tors defines at least a two-dimensional subspace, on which
Jxx > 0. On the other hand, one can find a nonzero vector x
on a space that is orthogonal to s, but from the identity above,
we have Jxx < 0, which thus leads to a contradiction.

To explore the eigenvalues of J more conveniently and
in further detail, we introduce a change of coordinates in
order to partially diagonalize the system. In particular, if
y = (y1, y2, . . . , yN ) with yi = √|ωi|cixi, we obtain

Jxx = βq

NR
(u · y)(v · y) − q‖y‖2. (32)

The vectors u = (u1, u2, . . . , uN ) with ui =
√

|ωi|
ci

si, and v =
(v1, v2, . . . , vN ) with vi = si√|ωi|ci

, are introduced to ease nota-

tion and their product is

u · v =
N∑

i=1

s2
i

ci
= N

q−2√
1 − q−2

. (33)

In this new coordinate system, we can express

y = a
u

‖u‖ + b
v

‖v‖ + y⊥, (34)

with a and b being the projections to the unit vector u
‖u‖

and v
‖v‖ , respectively. y⊥ is the remaining vector, such that

y⊥ · u = y⊥ · v = 0. We thus have

Jxx = (a2 + b2)

(
βq−1

R2
− q

)
− q‖y⊥‖2

+ ab

[
βq

NR
‖u‖‖v‖ +

(
βq−3

R3
− 2q−1

R

)
N

‖u‖‖v‖
]
.

(35)

In particular, for b = 0, the term around ab vanishes and the
identity above becomes a quadratic form. Since the coefficient
a could be arbitrarily small, the stability condition Jxx < 0
requires that

β < R2q2, (36)

which again recovers the necessary stability condition ob-
tained in Eqs. (22) and (23).

To proceed with extracting more details about the eigen-
values of J, we now compute its characteristic polynomial.
We therefore express J in the matrix form

J = W(C − D), (37)

where W and D are the diagonal matrices with the entries
|ωi| and qci along the diagonal, respectively. The matrix C is
given by

Ci j = βq

NR
sis j + q

NR
cic j . (38)

The characteristic polynomial is

P(λ) = det(J − λI)

= det[W(C − D) − λI]

= det[W(C − D − W−1λ)]

= det{W(D + W−1λ)[(D + λW−1)−1C − I]}

=
N∏

i=1

|ωi|
(

qci + λ

|ωi|
)

det[(D + λW−1)−1C − I].

(39)

The key task from here on is to determine the second
term above. We recall that the rank of C is only two, and
det[(D + λW−1)−1] �= 0. The same is true for the matrix
(D + λW−1)−1C. Inspired by this property, we choose an or-
thogonal basis ( c

‖c‖ ,
s

‖s‖ ) and extend it into RN . The remaining

N − 2 vectors span the kernel of (D + λW−1)−1C. Therefore,
the matrix (D + λW−1)−1C if restricted to the orthogonal
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basis ( c
‖c‖ ,

s
‖s‖ ) reduces to a 2 × 2 matrix given by

(D + λW−1)−1C =
(

Q11(λ) Q12(λ)

Q21(λ) Q22(λ)

)
, (40)

where its entries are defined as

Q11(λ) = c
‖c‖ · (D + λW−1)−1C · c

‖c‖

= q

NR

N∑
i=1

|ωi|c2
i

λ + |ωi|qci
,

(41)

Q12(λ) = c
‖c‖ · (D + λW−1)−1C · s

‖s‖

= βq−1

R‖c‖‖s‖
N∑

i=1

|ωi|sici

λ + |ωi|qci
,

(42)

Q21(λ) = s
‖s‖ · (D + λW−1)−1C · c

‖c‖

= qR

‖c‖‖s‖
N∑

i=1

|ωi|sici

λ + |ωi|qci
,

(43)

Q22(λ) = s
‖s‖ · (D + λW−1)−1C · s

‖s‖

= βq

NR

N∑
i=1

|ωi|s2
i

λ + |ωi|qci
.

(44)

We note further that the terms Q12(λ) and Q21(λ) are, in
fact, all zero because the natural frequencies are grouped into
plus-minus pairs, i.e., ωi = −ωN−i. This symmetrical case
significantly simplifies the characteristic polynomial into

P(λ) =
N∏

i=1

|ωi|
(

qci + λ

|ωi|
)

[1 − Q11(λ)][1 − Q22(λ)].

(45)

The eigenvalues λ corresponding to P(λ) = 0 are therefore
determined by(

1

K

) 1
β

= Hc(λ) = q
β−1
β

N

N∑
i=1

|ωi|(1 − q−2)

λ + |ωi|
√

q2 − 1
(46)

and (
1

K

) 1
β

= Hs(λ) = βq
β−1
β

N

N∑
i=1

|ωi|q−2

λ + |ωi|
√

q2 − 1
. (47)

For convenience, we order the natural frequencies so that
|ω1| � |ω2| � · · · � |ωN |.

The obtained eigenvalues merit three important com-
ments. In the first place, we note that λ = 0 is a trivial
solution of Eq. (46) because K− 1

β = Hc(0) is precisely the
self-consistent equation described by Eq. (11). As already
mentioned, this property stems from the rotational symmetry
of the dynamical equation. Second, if λ < −|ωN |

√
q2 − 1,

both functions Hc(λ) and Hs(λ) are negative. This im-
plies that the characteristic Eqs. (46) and (47) have no
roots in the region λ ∈ (−∞,−|ωN |

√
q2 − 1). And lastly,

lim
λ

0∓−→−|ωi|
√

q2−1
Hc(s)(λ) = ±∞, which reflects that away

from their poles, the functions Hc(λ) and Hs(λ) are strictly
decreasing. Accordingly, the characteristic equations must
each have exactly one root between any two consecutive poles
(−|ωi+1|

√
q2 − 1,−|ωi|

√
q2 − 1).

Since functions Hc(λ) and Hs(λ) are decreasing for λ ∈
(−|ω1|

√
q2 − 1,+∞), and limλ→+∞ Hc(s)(λ) = 0, the re-

maining one eigenvalue is completely determined by the
difference � defined by

� = Hs(0) −
(

1

K

) 1
β

. (48)

Specifically, � < 0 implies that there is a negative root to
Eq. (47) in the region λ ∈ (−|ω1|

√
q2 − 1, 0). On the other

hand, for � > 0, a positive root to Eq. (47) exists in the region
λ ∈ (0,+∞). By combining this with the self-consistency
equation, we obtain the elegant identity

� = βqF ′(q), (49)

which directly relates the stability criterion for the locked
states to the shape of the self-consistent equation F (q).
Namely, if F ′(q) > 0, the steady state solutions are unstable,
whereas if F ′(q) < 0, the steady state solutions are attractive
and stable, which completes the proof.

V. STABILITY IN THE INFINITE LIMIT

Next, to better understand the dynamics that emerges from
the above considerations, we study the system in the thermo-
dynamical limit. In particular, we investigate two aspects of
the asymptotic stability of the equilibrium states, for which
we reduce the system to a low-dimensional equation that
governs the long-term macroscopic dynamics. Under the limit
N → ∞, the dynamical system is equivalent to the continuity
equation for the probability density function ρ(θ, ω, t ),

∂ρ

∂t
+ ∂ (ρv)

∂θ
= 0. (50)

Here the velocity v(θ, ω, t ) is given by

v(θ, ω, t ) = ω + K|ω|
2i

Rβ−1(Ze−iθ − Z̄eiθ ), (51)

and the complex order parameter Z (t ) becomes

Z (t ) =
∫ +∞

−∞

∫ 2π

0
eiθρ(θ, ω, t )g(ω)dωdθ. (52)

By applying the Ott-Antonsen ansatz [65,66], the probabil-
ity density function can be expressed as

ρ(θ, ω, t ) = g(ω)

2π

[
1 +

∞∑
n=1

ᾱneinθ +
∞∑

n=1

αne−inθ

]
, (53)

where the variable α(ω, t ) is a complex valued function with
|α(ω, t )| � 1, and the bar denotes the complex conjugate.
This consideration underlines the Poisson kernel that is dy-
namically invariant, as long as α(ω, t ) evolves according to

dα

dt
= iωα + K|ω|Rβ−1

2
(Z − Z̄α2). (54)
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Meanwhile, Z (t ) reduces to

Z (t ) =
∫ +∞

−∞
g(ω)α(ω, t )dω = ĝα(ω, t ), (55)

where we have defined the operator ĝ to denote the integral
with respect to ω. In this setting, the quantity α(ω, t ) can be
interpreted as the local order parameter that is formed by the
oscillators with frequencies near ω.

With respect to Eq. (54), we are interested in the steady
states α̇ = 0, which yields two composed solutions,

α0(ω) =
⎧⎨
⎩

isgn(ω)
1−

√
1−q2

q , q < 1√
1 − q−2 + i ω

q|ω| , q > 1.

(56)

We note that the first branch of Eq. (56) corresponds to the
drifting population, whereas the second branch corresponds
to the phase-locked case. Other possible steady state solutions
of α0(ω) are ruled out by the constraints |α0(ω)| � 1 and
R � 0 [67].

To perform the linear stability analysis of α0(ω), we intro-
duce a small perturbation to it. Namely, let

α(ω, t ) = α0(ω) + εη(ω, t ), (57)

with ε being the perturbation magnitude and η(ω, t ) the
perturbation function. The order parameter Z (t ) under pertur-
bation becomes

Z (t ) = R + εĝη(ω, t ). (58)

By taking into account Rβ−1 = Z
β−1

2 · Z̄
β−1

2 , substituting
Eqs. (57) and (58) into Eq. (54), and neglecting the higher-
order terms of ε, we get the linear evolution equation for the
perturbation,

dη(ω, t )

dt
= c(ω)η(ω, t ) + a(ω)ĝη(ω, t ) + b(ω)ĝη̄(ω, t ),

(59)

where

c(ω) =
{

iω
√

1 − q2, q < 1

−|ω|
√

q2 − 1, q > 1
(60)

and

a(ω) = |ω|q
2R

(
β + 1

2
− α2

0
β − 1

2

)
, (61)

b(ω) = |ω|q
2R

(
β − 1

2
− α2

0
β + 1

2

)
. (62)

Since η(ω, t ) is a complex valued function, we need to
switch to a system of two equations containing η̄(ω, t ). Thus,
if V = (η, η̄), the V evolves according to

dV
dt

= MV + PĝV, (63)

where the matrix M is a multiplication operator,

M =
(

c(ω) 0

0 c̄(ω)

)
, (64)

and P is the coefficient matrix given by

P =
(

a(ω) b(ω)

b̄(ω) ā(ω)

)
. (65)

Finally, to conclude the linear stability analysis, let
λ ∈ C, and

dV
dt

= MV + PĝV = λV. (66)

The steady state solution V is then solved as

V = (λI − M)−1PĝV. (67)

By applying the integral operator ĝ to both sides of Eq. (67),
we have the linear equations for the vector ĝV,

(T − I)ĝV = 0, (68)

where the matrix T is defined by

T = ĝ(λI − M)−1P

=
(

ĝ a(ω)
λ−c(ω) ĝ b(ω)

λ−c(ω)

ĝ b̄(ω)
λ−c̄(ω) ĝ ā(ω)

λ−c̄(ω)

)

=
(

T11(λ) T12(λ)

T21(λ) T22(λ)

)
. (69)

Therefore, the nontrivial solution of ĝV in Eq. (68) requires
that

det(T − I) = 0. (70)

For real λ, we have T11(λ) = T̄22(λ), T12(λ) = T̄21(λ), and
it is possible to show that for a symmetric g(ω), T11 and
T12 are real. Hence, T11(λ) = T22(λ) and T12(λ) = T21(λ). The
characteristic equation (70) reduces to

(1 − T11 − T12)(1 − T11 + T12) = 0 (71)

or, equivalently, to [68]

1 = ĝ
a(ω) + b(ω)

λ − c(ω)
, (72)

1 = ĝ
a(ω) − b(ω)

λ − c(ω)
. (73)

These equations require the consideration of two different
scenarios. First, for q < 1, the equations reduce to(

1

K

) 1
β

= ĝ
λβ|ω|q− β+1

β (1 −
√

1 − q2)

λ2 + ω2(1 − q2)
(74)

and (
1

K

) 1
β

= ĝ
λ|ω|q− β+1

β (q2 − 1 +
√

1 − q2)

λ2 + ω2(1 − q2)
. (75)

According to Eq. (8), the only solution to the
self-consistency equation is R = q = 0. For β < 1,

lim
q→0

q− β+1
β (1 −

√
1 − q2) = lim

q→0
q− β+1

β (q2 − 1 +
√

1 − q2) =
lim
q→0

1
2 q

β−1
β = +∞, which implies that the incoherent state

loses its stability once K > 0. This in fact corresponds
to the so-called vanishing onset. Moreover, for β > 1,
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FIG. 1. Phase diagrams of the time-averaged order parameter 〈R〉 vs the global coupling strength K , as obtained for different values
of the exponent β. The panels show results for β = 1 (left column), β < 1 (middle column), and β > 1 (right column). For (a1)–(a3), we

have used β = 1 and g(ω) = �

2π
[ 1

(ω−ω0 )2+�2 + 1
(ω+ω0 )2+�2 ], Kf = 4/

√
1 + (ω0/�)2, Kc = 2, and Rc = √

2/2. In (a1), ω0 = � = 0.1 and Kf =
2
√

2 > Kc, which leads to a first-order-like phase transition. In (a2), ω0 = √
3/10, � = 0.1, and Kf = 2 = Kc, which, on the other hand, leads

to a hybrid phase transition. In (a3), ω0 = √
15/10, � = 0.1, and Kf = 1 < Kc, for which the system undergoes a tiered phase transition,

where the oscillatory state arises in the region K ∈ (1, 2). For (b1)–(b3), we have used β < 1, g(ω) = 1/2 with ω ∈ (−1, 1), Kf = 0, and

Kc = (β + 1)
β+1

2 β− β
2 . Under these conditions, the system undergoes a tiered phase transition with a vanishing onset from the oscillatory

state to the two-cluster state. Parameter values are as follows: (b1) β = 0.2, Kc = 1.31, Rc = 0.41; (b2) β = 0.5, Kc = 1.61, Rc = 0.58; (b3)
β = 0.8, Kc = 1.86, Rc = 0.67. For (c1)–(c3), we have used β > 1, g(ω) = 1/

√
2πe−ω2/2, Kf = +∞, and Kc = (β + 1)

β+1
2 β− β

2 , leading to
an irreversible abrupt desynchronization transition. Parameter values are as follows: (c1) β = 1.5, Kc = 2.32, Rc = 0.77; (c2) β = 2, Kc =
2.60, Rc = 0.82; (c3) β = 3, Kc = 3.08, Rc = 0.87. For the simulations, we have used N = 100 000, t = 950 with time step �t = 0.01, and
T = 50. The red circles and the blue crosses represent the forward and backward continuations, respectively. The black lines depict theoretical
predictions obtained with the mean-field approach, whereby solid and dashed lines depict stable and unstable branches, respectively.

lim
q→0

q− β+1
β (1 −

√
1 − q2) = lim

q→0
q− β+1

β (q2 − 1 +
√

1 − q2) =
lim
q→0

1
2 q

β−1
β = 0. In order to balance Eqs. (74) and (75),

λ = ±iω must correspond to a continuous spectrum,
implying that the incoherent state remains neutrally, or
asymptotically, stable for all K > 0. Particularly, for β = 1,

lim
q→0

q− β+1
β (1 −

√
1 − q2) = lim

q→0
q− β+1

β (q2 − 1 +
√

1 − q2) =
lim
q→0

1
2 q

β−1
β = 1

2 , so that Eqs. (74) and (75) degenerate to the

same characteristic equation [69],

2

K
= ĝ

λ|ω|
λ2 + ω2

, (76)

which is consistent with the results obtained in Ref. [48]. The
incoherent state loses its stability at a critical point Kf which
is determined by the condition Re(λ) → 0+.

Second, and last, for q > 1, Eqs. (74) and (75) precisely
correspond to the limit formula of Eqs. (46) and (47), respec-
tively, where ĝ → 1

N

∑N
i=1, which thus completes the proof.

VI. NUMERICAL RESULTS

To show how the heterogeneous and nonlinear coupling
affects the phase coherence, we study the system numerically.
Figures 1 and 2 illustrate the macroscopical and microscopical

synchronization properties, respectively. When the exponent
β is fixed and the natural frequencies are drawn independently
from a symmetric distribution g(ω), we can indeed observe
rich collective dynamics from the still relatively simple ex-
tension of the traditional Kuramoto model. In Fig. 1, we
show the time-averaged amplitude of the order parameter,
〈R〉 = 1

T

∫ t+T
t R(t )dt with T being the time-averaged win-

dow, as a function of the global coupling strength K . In the
simulations, both directions for synchronization transitions
are considered, i.e., K is first increased adiabatically from
0 and then decreased. The presented simulation results re-
veal that the inhomogeneity and nonlinearity in the coupling
combines together to affect the overall collective dynamics
of the system, leading to a number of interesting dynamical
phenomena.

In particular, for β = 1 (left column), the system displays
three types of phase transitions to synchronization depending
on the difference between Kf and Kc. Specifically, if Kf > Kc

[Fig. 1(a1)], the system exhibits a first-order (explosive) phase
transition to synchronization. As the system transitions from
the completely incoherent state (〈R〉 ∼ 0) to the fully locked
state (〈R〉 ∼ 1) at the critical coupling Kf under forward
continuation, when K is gradually decreased, another abrupt
transition from synchronization to incoherence occurs at Kc.
In the hysteretic region, K ∈ (Kc, Kf ), the system admits a
bistability, where the stable incoherent state and synchronized
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FIG. 2. Microscopic properties of the different oscillatory states. The top columns show the instantaneous phases in dependence on
the natural frequencies, while the bottom columns show the effective frequencies 〈ωi〉 = 1/T

∫ t+T
t θ̇i(t )dt in dependence on the natural

frequencies. The insets show the time series of the order parameter. The following parameters have been used: in (a1) and (a2), β = 0.5,
g(ω) = 1/2 with ω ∈ (−1, 1), K = 1.5; in (b1) and (b2), β = 0.8, g(ω) = 1/2 with ω ∈ (−1, 1), K = 1.7; in (c1) and (c2), β = 1.0,

g(ω) = �

2π
[ 1

(ω−ω0 )2+�2 + 1
(ω+ω0 )2+�2 ] (i.e., g(ω) is a bimodal Lorentzian distribution with ±ω0 being the locations of the two peaks of the

distribution, and � is the half width of the distribution) with ω0 = 0.3, � = 0.1, K = 1.6; and in (d1) and (d2), β = 1.0, the bimodal Lorentzian

distribution g(ω) = �

2π
[ 1

(ω−ω0 )2+�2 + 1
(ω+ω0 )2+�2 ], with ω0 = 0.3, � = 0.1, K = 1.8. For the simulations, we have used the same values for N ,

t , �t , and T as in Fig. 1.

state coexist. If Kf = Kc [Fig. 1(a2)], the system undergoes a
hybrid phase transition, which is characterized by a vanishing
hysteresis loop. Interestingly, if Kf < Kc [Fig. 1(a3)], a tiered
phase transition to synchronization occurs, where the system
converts from the incoherent state to the fully synchronized
state, which is mediated by an oscillatory state that emerges
when K ∈ (Kf , Kc).

When the exponent β �= 1, the phase diagrams change
considerably. For β < 1 (middle column), we have shown
that Kf = 0 < Kc, so that the system displays a tiered
phase transition to synchronization with a vanishing onset,
where the incoherent state is replaced by an oscillatory
state and the amplitude of the mean field is time vary-
ing that arises in the region K ∈ (0, Kc). However, for β >

1 (right column), Kf = +∞ > Kc, an irreversible abrupt
desynchronization transition is observed, featuring a hys-
teresis area, whose width is infinite. The system experi-
ences a discontinuous transition from the fully locked state
to the incoherent state at Kc in the backward continua-
tion, where 〈R〉 jumps from Rc to 0 directly. In contrast,
there is no corresponding counterpart of this abrupt tran-
sition when going from the incoherent to the coherent
state.

In Fig. 2, we highlight the oscillatory states that emerge for
the intermediate region of coupling strengths [70]. We show
the instantaneous phases, effective frequencies, and the time
series of R(t ). These results illustrate that in the oscillatory
state, the oscillators form coexisting synchronized and drift-
ing groups or spontaneously partition into different clusters
according to their natural frequencies. Moreover, the effective
frequencies remain entrained in each cluster, but they do not
synchronize with one another. As a result, the instantaneous
phases show a correlation at a fixed time, thereby causing
the order parameter to behave periodically. For further details,
we refer to the results shown in Fig. 2 and the corresponding
description of the parameter values in the figure caption.

VII. DISCUSSION

In summary, we have studied an extension of the Kuramoto
model, where the randomness of the coupling strength is
related to the natural frequencies of the coupled oscillators,
and the mean field is modified to depend on the global co-
herence of the system. In doing so, we have thus jointly
considered heterogeneity and nonlinearity in the coupling
of the Kuramoto model, which has led us to uncover a
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number of fascinating dynamical states and transitions as-
sociated with their emergence. These include coherent and
incoherent states, two-cluster states, and oscillatory states,
which can emerge via various transitions among them, includ-
ing explosive synchronization transitions, hybrid transitions
with hysteresis absence, abrupt irreversible desynchronization
transitions, and tiered phase transitions with or without a
vanishing onset.

Despite the wealth of different dynamical states and the
transitions between them, our model still proved to be ana-
lytically tractable, thus allowing us to provide firm theoretical
foundations for the observed collective behavior. In particular,
we have provided a rigorous stability analysis of the equilib-
rium states by studying their eigenspectrum properties in the
finite and infinite size limit. Moreover, we have shown that the
critical points that correspond to bifurcations of steady states
and the stable conditions for their occurrence in the phase
space can be obtained by means of the matrix theory and the
Ott-Antonsen reduction.

Although the Kuramoto model and its many variants have
been studied extensively in the past decades, we have shown
that the joint consideration of heterogeneity and nonlinear-
ity in the coupling among oscillators affords insights into
the emergent collective dynamics that could be of relevance
for complex systems where such conditions apply. Previous
research has already highlighted the importance of heteroge-

neous interactions for the dynamics of excitatory-inhibitory
neurons, and for the emergence of consensus among con-
formists and contrarians in different social settings [17–19].
Heterogeneity and nonlinearity are also often related to plas-
ticity, which leads to changes in the connection strength
among individuals to achieve efficient global states. This may
have implications in neuroscience as well as in the social
sciences, where such interaction scenarios often unfold. More
generally, our research reveals how an alternative coupling
scheme can lead to the emergence of diverse rhythmic states in
complex systems that exhibit synchronization transitions with
relatively small changes to system parameters. Since such
complexity is rarely analytically tractable, we hope that our
model will prove to be inspirational for future research along
these lines and find applicability also in realistic complex
systems.
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