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Wave topology brought to the coast
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Since the pioneering work of Kelvin on Laplace tidal equations, a zoology of trapped waves have been found
in the context of coastal dynamics. Among them, the one originally computed by Kelvin plays a particular role,
as it is a unidirectional mode filling a frequency gap between different wave bands. The existence of such Kelvin
waves is robust to changes in the boundary shape and in changes of the underlying model for the coast. This
suggests a topological interpretation that has yet up to now remained elusive. Here we rectify the situation, by
taking advantage of a reformulation of the shallow water dynamics that highlights an analogy with the celebrated
Haldane model in condensed matter physics. For any profile of bottom topography, the number of modes that
transit from one wave band to another in the dispersion relation is predicted by computing a first Chern number
describing the topology of complex eigenmodes in a dual, simpler wave problem.
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I. INTRODUCTION

Coastal Kelvin waves were derived in 1880 in an attempt
to solve tidal Laplace equations in oceanic basins [1]. These
equations model the linear dynamics of surface shallow wa-
ter in the presence of the Coriolis force. Kelvin waves are
trapped modes that have the noteworthy properties to fill a
frequency gap between different wavebands and to travel as
surface waves in a cyclonic manner along the coasts. Such
waves are now routinely observed along continental margins
or sufficiently large lakes.

These remarkable features bear striking similarities with
peculiar electronic states found over the last decades at the
boundary of exotic materials called topological insulators,
and more specifically Chern insulators. In such material, the
number of unidirectional trapped waves along the boundary
is ruled by a single number, the first Chern number, that
describes the topology of normalized eigenmode bundles in
an abstract dual bulk problem. This bulk problem describes
similar waves, but in unbounded geometries and with homo-
geneous coefficients in the linear operator. The first Chern
number of the abstract bulk problem predicts the number of
unidirectional boundary trapped modes in the original wave
problem through a celebrated bulk-boundary correspondence
[2]. Such boundary trapped modes are often said to have a
topological origin, or to be topologically protected.

Topology offers a powerful tool to make predictions on a
complicated problem without having to solve this problem.
Here, robust properties of partial differential equations with
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inhomogeneous coefficients can be deduced by looking at the
topological properties of the much simpler dual bulk problem.
In the literature on coastal waves, a number of impressive
analytical results exist in one-dimensional configuration, as-
suming a straight coastline and bottom topography variations
perpendicular to the coast [3,4]. Exhibiting topological fea-
tures in this context allows one to predict which features
of those one-dimensional spectra are robust to coastal de-
formations or to fluctuations of topography along the coast
direction. This method has already been proven extremely
useful in condensed matter, photonics, acoustics, or mechan-
ics [5]. Here we show how these concepts can be transferred to
coastal dynamics. A major difficulty comes from the fact that
fluids are continuous media, by contrast with usual condensed
matter systems admitting a lattice structure. This fundamental
difference prohibits a straightforward application of bulk-
boundary correspondence theorems that make use of this
lattice structure.

Recently, the existence of two unidirectional shallow water
wave modes trapped along the equator has been related to
a topological invariant through a bulk-interface correspon-
dence [6], that can now be understood as a manifestation
of the Atiyah-Singer index theorem [7]. More precisely, two
modes of the equatorial wave spectrum transit from one wave
band to another when the zonal (eastward direction) wave
number kx is varied. This spectral flow of two modes has
been related to a (monopole) Chern numberC = 2 that char-
acterizes bulk eigenmodes twisting around a band-crossing
point in parameter space (kx, ky, f ), with ky the meridional
(northward direction) wave number, and f the Coriolis pa-
rameter, that is twice the projection of the planet’s angular
velocity onto the local vertical axis [6]. The indexC de-
scribes how bulk properties are changed when f is varied
and changes sign. It thus yields topological information about
the interface wave problem defined by a change of sign
of f . This equatorial interface Chern number cannot be
used to discuss coastal problems, as the Coriolis parameter
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is held fixed in those problems: coastal Kelvin waves and
equatorial Kelvin waves belong to two different classes of
problems.

In condensed matter, wave problems involving the bulk-
boundary correspondence usually make use of another
topological invariant, that we denote here as the bulk Chern
number C. This bulk invariant is defined independently on
each side of the interface between different materials that
own a spectral gap. In the equatorial case, this would amount
to compute a bulk Chern number for each hemisphere. In
this framework, the interface Chern numberC of the equator
would just be given by the difference of bulk Chern numbers
in each hemisphere, for each wave band. The existence of
a bulk Chern number C computed for a given value of f
would then be suited to address the coastal problem. It turns
out that this strategy is doomed, owing to the continuous
nature of fluids. Indeed, the bulk Chern number C is well
defined for the wave bands of a two-dimensional condensed
matter system admitting an underlying lattice structure that
makes compact the two-dimensional (2D) parameter space
(kx, ky) over which this topological index is computed. This
structure is lost in continuous media such as fluids, so that
C is in general ill-defined for eigenmodes parameterized on
the plane (kx, ky). Formally, a regularization parameter can be
introduced to fix this problem [8,9], but its introduction cannot
be justified from first principles in the geophysical context. In
addition, the bulk-boundary correspondence must be carefully
stated to be valid in that case, since the value of the bulk Chern
number C does not necessarily correspond to the number of
states that fill the gap in continuous media with a boundary
[10,11].

To bypass this difficulty, we follow in this paper a dif-
ferent strategy by showing that coastal Kelvin waves can be
apprehended as an interface problem at fixed f but with a
varying bottom topography. We demonstrate their topologi-
cal origin through the computation of an interface monopole
Chern numberC = 1 associated to a two-band crossing point
for bulk waves in parameter space. We introduce for that
purpose a new parameter: the relative local gradient of bottom
topography denoted βt , whose importance has recently been
highlighted in other shallow water wave transport problems
[12]. A change of sign of this parameter allows us to inter-
pret the coast as an interface rather than a hard boundary.
This makes possible the use of bulk-interface correspondence
machinery in (kx, ky, βt ) parameter space, at fixed f . The
historical Kelvin wave for a hard-wall boundary condition
is then recovered as a limiting case of our theory, and other
classes of coastal waves can be predicted and classified using
this method.

The paper is organized as follows. We recall in Sec. II
a useful solvable case of rotating shallow water waves with
varying bottom topography, and introduce the concept of
spectral flow. We propose in Sec. II a new formulation of
the model on a convenient vectorial form to study topological
properties of bulk eigenmodes. We show in Sec. III that these
topological properties explain a variety of spectra obtained for
different problems in coastal dynamics. Details on the actual
computation of the Chern number of two-band degeneracy
points are recalled in the Appendix.

FIG. 1. Shallow fluid layer with a varying bottom topography
H (x, y). A perturbation around a state of rest induces a small ele-
vation η(x, y, t ). The horizontal velocity field u(x, y, t ) (blue arrows)
is uniform in the vertical direction.

II. SHALLOW WATER MODEL FOR COASTAL WAVES

A. Shallow water model with bottom topography

We consider a rotating shallow water model with varying
bottom topography, that describes the dynamics of a thin
fluid layer with homogeneous density [4,13], as sketched in
Fig. 1. In this approximation, the fluid is hydrostatic along the
vertical direction, and the horizontal velocity field u(x, y, t ) =
(u(x, y, t ), v(x, y, t )) is depth independent. The layer thick-
ness at a given point (x, y) is h = η + H (x, y) with η(x, y, t )
the interface elevation around a state of rest. The bottom
topography is thus encoded in the field H (x, y). The shallow
water dynamics is derived in the absence of dissipation effects
using momentum conservation in the horizontal direction and
mass conservation. The linearized dynamics around a state of
rest is described by

∂t

⎛
⎝u

v

η

⎞
⎠ =

⎛
⎝ 0 f −g∂x

− f 0 −g∂y

−∂x(H ·) −∂y(H ·) 0

⎞
⎠

⎛
⎝u

v

η

⎞
⎠, (1)

where f is the Coriolis parameter and g is the standard gravity
constant at the surface of the planet. Time unit is chosen in the
remainder of this paper such that g = 1.

We review in the next section important previous results
obtained in the 1960s for particular bottom topography pro-
files. This allows us to introduce some standard terminology
used in coastal dynamics, and to set the stage for a classifi-
cation of coastal waves in a much more general framework,
using tools from topology.

B. A solvable case for coastal waves with varying
bottom topography

Depending on the topography profile at hand, a variety
of wave spectra satisfying Eq. (1) have been previously de-
scribed both analytically and numerically, together with some
experimental observations of the corresponding waves (see,
e.g., [3,4,14,15], and references therein). In particular, Ball
[16,17] obtained analytical results in the case of a continental
shelf

H (y) = H0(1 − e−y/a) (2)

for y > 0. The resulting spectrum is plotted in Fig. 2. The
results obtained in this particular case are generic to coastal
problems where half a flat-bottom f plane is connected to
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FIG. 2. Dispersion relation of coastal rotating shallow water
waves with an exponential ocean depth as in Eq. (2), following [16].
This result is generic to other bottom topography profiles with a
shore line h(0) = 0 [3,4,14]. “Edge” refers to inertial-gravity trapped
waves at the coast. “Shelf” refers to continental shelf waves trapped
at the coast. The index i gives the number of nodes in the wave am-
plitude. The gray region corresponds to the continuous spectrum of
delocalized inertia-gravity Poincaré modes. The spectral flow across
the frequency gap is one, and corresponds to the presence of the
Kelvin wave.

a shore line [14,15,17]. Those configurations exhibit both a
discrete spectrum associated with trapped waves and a contin-
uous spectrum associated with delocalized bulk waves.

The nonzero frequency bulk waves are akin to those com-
puted on an unbounded flat-bottom f plane, and are therefore
referred to as the Poincaré continuum. This corresponds to two
symmetric wave bands satisfying ω = ±

√
c2k2

x + c2k2
y + f 2 ,

with (kx, ky) the wave number of the bulk waves and c =√
gH0 the phase speed of nonrotating shallow water gravity

waves. Those waves are also called inertia-gravity waves,
since they are surface waves influenced by rotation.

In the case of a continental shelf with the exponential pro-
file (2), Ball found three additional classes of trapped waves.
In the remainder of this paper, we shall follow the terminology
used in [14] for those waves:

(1) Edge waves: Inertia-gravity waves that are trapped
along the coast. Their frequency is always larger than the
inertial one, f . Edge waves are indexed by i ∈ N for kx < 0
and by i ∈ N∗ for kx > 0, with the index giving the number of
nodes in the wave amplitude for the interface height variation.

(2) Continental shelf waves: Geostrophic modes trapped
along the coast. Those shelf waves are indexed by i ∈ N∗
(whatever the value of kx ), with i giving the number of
nodes in the wave amplitude for the interface height varia-
tion. Geostrophy means a balance between Coriolis force and
pressure forces on the horizontal.

(3) Kelvin wave: Unidirectional wave whose frequency
varies from −∞ to +∞ when increasing kx over the same
range. Its dispersion relation thus fills the frequency gap be-
tween the negative and positive Poincaré wave bands. The

amplitude of the corresponding eigenmodes does not have any
node. Following the convention for other edge waves, it is
indexed by i = 0.

C. Hard-wall spectrum as a limiting case

Textbooks in geophysical fluid dynamics usually present
coastal waves by following the original work by Kelvin where
the eponymous trapped wave is computed by considering a
flat-bottom f -plane problem with a lateral wall (see, e.g.,
[13]). This boundary imposes an impermeability constraint
expressed as a condition of vanishing velocity across the wall.
No other trapped wave than the Kelvin wave is found in this
problem. In particular, there is neither inertia-gravity edge
waves nor shelf waves.

Consistently, it was noticed by Ball that this original
Kelvin’s spectrum is recovered in the limit a → 0 of an abrupt
edge arbitrarily close to the vertical, for any given finite range
of wave number kx in the direction along the wall. In this limit,
the trapped shelf modes asymptote to the flat geostrophic
continuum, the inertia-gravity edge modes have frequencies
that tend to infinity, and the only remaining trapped mode with
finite frequency is the Kelvin wave that connects the nega-
tive frequency Poincaré wave band to the positive frequency
Poincaré wave band.

D. Spectral flow

Whatever the model for the coast, the dispersion relation
of the Kelvin wave crosses the frequency gap between the
geostrophic (ω = 0) and the Poincaré (|ω| > f ) continuum
when varying kx. This transition of a mode from one wave
band to another when a parameter is varied is called a spectral
flow.

In the following, we argue that this spectral flow of Kelvin
mode is a manifestation of the Atiyah-Singer theorem, which,
in very loose terms, relates this property to a topological index
for bundles of complex eigenmodes of a dual matrix problem
that is much simpler to solve than the original linear wave
operator [7,18]. This simpler problem is referred to as the bulk
problem in the following.

III. BULK TOPOGRAPHIC SHALLOW WATER WAVES

A. The bulk problem: Symbol of the shallow water
wave operator

To define the bulk problem, we use a standard mapping be-
tween operators and their symbols provided by Weyl calculus
[19]. Simply put, the symbol Hbulk of an operator Hop for a
multicomponent wave problem such as in Eq. (1) is a matrix
that is obtained through a Wigner transform of the operator.
Similarly, it is possible to define an operator from a symbol,
using for instance Weyl calculus. (See [7,12] for details and
previous use of these transformations in the context of shallow
water dynamics.) In this framework, we get the following
correspondence between derivatives and wave numbers:

c(y)∂y︸ ︷︷ ︸
Operator

↔ ikyc(y) − 1

2
∂yc︸ ︷︷ ︸

Symbol

. (3)
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The study of symbols is at the heart of microlocal analysis
that relates the solutions of partial differential equations to ray
tracing. Those tools were initially developed in the context of
quantum physics and semiclassical analysis (see, e.g., [20]).
This formalism has recently been proven fruitful in geophys-
ical fluid dynamics; it has been used to prove the topological
origin of equatorial waves [7], to explain the generic emer-
gence of internal wave attractors in bounded stratified fluids
[21], and to describe wave transport properties in geophys-
ical flows [12]. This last application addressed specifically
rotating shallow water waves with bottom topography. Our
contribution is to unveil the role of topology in this problem.

Before applying Weyl calculus, it is convenient to express
the shallow water dynamics (1) as

∂tψ = −iHopψ, ψ ≡ (
√

Hu,
√

Hv,
√

gη)t , (4)

Hop ≡ i

⎛
⎝ 0 f −c∂x

− f 0 −c∂y

−c∂x −c∂y − 2βt 0

⎞
⎠, (5)

where we have introduced the y-dependent wave phase speed
and the relative gradient of bottom topography

c ≡
√

gH , βt ≡ 1

4
c
∂yH

H
. (6)

To simplify the presentation, we restrict ourselves to a
straight coast, with topography variations in the y direc-
tion only. Topologically protected features obtained in this
one-dimensional case will be robust to smooth topography
variations in the other direction [5].

Using Eq. (3) given by Weyl calculus, the symbol asso-
ciated to the multicomponent linear wave operator (5) is the
Hermitian matrix

Hbulk ≡
⎛
⎝ 0 i f ckx

− f 0 cky + iβt

ckx cky − iβt 0

⎞
⎠. (7)

Finding the eigenmodes ψ̂ and eigenvalues ω of this ma-
trix for a given set of parameters kx, ky, βt , c amounts to
computing the (dual) bulk problem of rotating shallow water
waves with varying bottom topography. This bulk problem
is uniquely defined within the framework of Weyl calculus.
The corresponding eigenmodes are called bulk waves, as they
can be interpreted as plane wave solutions of an unbounded
wave problem where βt and c are held constant, with ikx, iky

replaced by ∂x, ∂y. As explained below, global properties of
the shallow water wave spectrum with varying topography is
encoded in the topological properties of the symbol (7).

B. Dispersion relation and discrete symmetries

Before discussing shallow water wave spectrum associ-
ated with a profile βt (y), and its relation with a coast, let
us first focus on the bulk problem, assuming c constant, and
(kx, ky, βt , f ) taken as a set of free parameters.

The eigenmodes of the symbols correspond to three wave
bands with frequencies satisfying

ω3 − ω
(
c2k2

x + c2k2
y + f 2 + β2

t

) + 2 f βt ckx = 0. (8)

These wave bands are plotted in Fig. 3(a). In the flat-
bottom case (βt = 0) without rotation ( f = 0), the three wave
bands consist of one zero-frequency flat band and two sym-
metric dispersionless mode gravity wave modes of frequency
±ω and of phase speed c. Those modes touch each other at
(kx, ky) = (0, 0). In the unbounded f -plane case (| f | > 0),
with a flat bottom (βt = 0), a spectral gap of amplitude | f |—
the inertial period—separates the flat band from the gravity
wave modes. In that case, the flat band modes are called
geostrophic modes. The gravity wave modes influenced by
rotations are called Poincaré or inertia-gravity wave modes.
In the f -plane situation ( f 	= 0) with a gradient of bottom
topography (βt 	= 0), the flat band acquires some dispersion.
Those low frequency waves bear strong similarities with plan-
etary Rossby waves encountered on a flat-bottom ocean with a
varying Coriolis parameter. We therefore identify these modes
as topographic Rossby waves [3,4].

At the critical value |βt | = | f |, the topographic Rossby
band touches the Poincaré band, leading to a twofold de-
generacy point around which the dispersion relation is linear.
This is the key observation that will allow us a topological
analysis of the coastal Kelvin modes in the next section. The
degeneracy points are systematically obtained by vanishing
the discriminant of Eq. (8), which leads to the conditions ky =
0 and c2k2

x = f 2 = β2
t . This defines the subspace of twofold

degenerate eigenstates as lines in (kx, ky = 0, βt , f ) parameter
space, as shown in Fig. 3(c). These lines intersect each other at
the origin (ky, kx, f , βt ) = (0, 0, 0, 0). This intersection cor-
responds to the threefold waveband crossing point visible in
the dispersion relations of Fig. 3(a) [6]. Here, by introducing
a new bottom topography parameter, we describe the con-
sequences of the degeneracy lines associated with twofold
degeneracy points, and discuss applications to coastal waves.

Figure 3(a) reveals a striking parallel between the rotat-
ing shallow water model with a topography gradient and the
celebrated Haldane model for Chern insulators [22]. This
toy model, which turned out to be a building block of var-
ious topological materials, is based on a graphene lattice
model for electrons. While the dispersion relation of graphene
is known to show band crossings, called Dirac points, the
Haldane model introduces additional terms that break either
time-reversal or mirror symmetry. This symmetry breaking
leads to two different gap opening mechanisms associated to
two distinct topological phases. Similarly, here, the Coriolis
parameter f breaks time-reversal symmetry and the topogra-
phy gradient parameter βt breaks mirror symmetry in the y
direction. An important difference with the Haldane model
is that the ( f , βt ) diagram in Fig. 3(a) is not a topological
phase diagram as one cannot assign a bulk Chern num-
ber C at each point. In contrast, the topological aspect of
our continuous model is expressed with a monopole Chern
numberC obtained by considering a variation of either f
or βt around a band-crossing point, which occurs at f =
βt [dashed line in Fig. 3(a)]. In particular, for the coastal
Kelvin wave we focus on, one needs to consider a varia-
tion of βt at fixed f . Therefore, coastal Kelvin waves result
from a concomitant breaking of both time-reversal and mirror
symmetry.
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FIG. 3. (a) Dispersion relations of the bulk problem (7). The frequency gap between Poincaré wave bands and the topographic Rossby wave
bands closes when βt = ± f , at (kx, ky ) = (± f /c, 0). (b) The upper panel sketches the vector bundle of shallow water complex eigenmodes
of the matrix (7), embedded in (kx, ky, βt ) parameter space. These eigenmodes are denoted �. Once normalized, they are parametrized on a
surface that encloses a double degeneracy point and have a phase freedom φ at each point of this surface. The impossibility to smoothly define
this phase over the sphere is a topological property of the vector bundle encoded through the interface Chern numberC. Lower panel: In the
coastal case, there are four such degeneracy points (kx, ky, βt ) = (± f /c, 0, ± f ) to be considered, that result from the intersection of the double
degeneracy lines of the bulk problem with the f 	= 0 constant plane.

C. Topology of eigenmodes around degeneracy points

The rotating shallow water model with a gradient of to-
pography possesses topological properties associated to the
aforementioned twofold degeneracy points. Each of these
crossing points, when considered as isolated points in a three-
dimensional parameter space, are associated with a set of
monopole Chern numbersCn ∈ Z, where n is the wave band
index. In the coastal case we focus on, f is fixed. The three-
dimensional parameter space to be considered is (kx, ky, βt ),
as depicted in Fig. 3(b). It will convenient to use the more
abstract notation λ = (λ1, λ2, λ3) for this parameter space in
the following paragraph.

The Chern numbersCn ∈ Z describe the obstructions to
smoothly define the arbitrary global phase of the normalized
eigenstates �n of the bulk problem (7) parametrized on a
closed surface 
 that encloses the degeneracy point in param-
eter space λ. In Fig. 3(b), this surface is depicted as a sphere
centered on one of the degeneracy points. For a given wave
band n, the first Chern number is a global property of the
eigenmode bundle defined by the closed base space 
 and the
set of eigenmodes �n defined up to a phase on this base space
[18]. It is an integer that somehow describes how twisted the
eigenmodes of a given wave band are on the close surface

. This number can be computed through a generalization of

Gauss-Bonnet formula as

Cn = 1

2π

∫



F(n) · d�, (9)

where F(n) = (F (n)
λ2,λ3

, F (n)
λ3,λ1

, F (n)
λ1,λ2

) is the Berry curvature, de-
fined as

F (n)
λp,λq

= i

(
∂�†

n

∂λp

∂�n

∂λq
− ∂�†

n

∂λq

∂�n

∂λp

)
(10)

with the standard inner scalar product �†
n�n = ∑

j=1 �∗
n j�n j

where �n j is the jth component of �n.
In fluid context, this formula was previously used to com-

pute nontrivial Chern numbers of shallow water eigenmode
bundles enclosing the triple degeneracy point at the origin of
(kx, ky, f ) space [6]. It is tempting to interchange the roles of f
and βt , by considering instead the monopole Chern numbers
associated to the triple degeneracy point at the origin of the
(kx, ky, βt ) space. In that case, we find that the Chern numbers
of the three wave bands vanish. The topography parameter
alone opens a gap but does not induce nontrivial topology on
eigenmode bundles. To find nontrivial topological properties,
we need to consider f 	= 0. This is the reason why we fo-
cus here on the Chern number of twofold degeneracy points
in (kx, ky, βt )-parameter space. Their analytical computation
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through Eq. (9) requires in principle the expression of the
eigenmodes of (7), which can be quite involved for a three-
band problem. This difficulty is bypassed here by focusing on
the absolute value ofC only. Since we deal with two-band
crossing points around which the dispersion relation is linear,
we get |C | = 1 (see Appendix). We explain below how this
number is related to the global shape of shallow water wave
spectra with spatially varying bottom topography.

IV. SPECTRAL FLOW ALONG COASTS, ABYSS,
AND ESCARPMENTS

We now argue that the topological properties of bulk de-
generacy points can be used to explain the global shape of
Ball’s spectrum for coastal waves shown in Fig. 2, and more
generally to predict spectra for any kind of shallow water
problems with varying bottom topography. We start by re-
calling several important mathematical results connecting the
monopole Chern numberC to spectral flow in dual interface
problems.

A. From degeneracy points to spectral flow

We now consider solutions of the wave equation (1) in
a case where the topography H (y) varies spatially. Conse-
quently, both the parameters βt (y) and c(y) vary with y. When
βt (y) is a monotonic function that goes through a critical [23]
latitude yc such that a degeneracy point exists for bulk waves
in [kx, ky, βt (yc)] plane, one gets an interface problem at yc.

The existence of degeneracy points between bands with
nontrivial topological properties for the bulk eigenmodes in
parameter space (kx, ky, βt ) manifests itself in the interface
wave problem as a spectral flow: some of the modes transit
from one wave band to another when kx is varied [7]. The
number of modes that transit from one band ω− to another
one, ω+, close to the degeneracy point, is (algebraically) equal
to the monopole Chern numberC+ = −C− associated with
this degeneracy point. This method has been proven useful
to interpret molecular spectra [24], to show the topological
origin of equatorial [6] and Lamb-like waves in compress-
ible stratified fluids [25], plasma [26,27], and active matter
flows [28,29], and to predict new electromagnetic modes in
gyrotropic media [30].

The state that transits from one band to another is trapped
close to the critical value yc where the value of βt reaches the
degeneracy point. The trapping length scale is generally given
by an intrinsic length of the problem that plays the role of h̄ in
semiclassical analysis. In the present case, this trapping length
scale is the Rossby radius of deformation c/ f .

When the profile βt (y) is associated with several degener-
acy points, one can interpret qualitatively the global shape of
the spectrum by considering these degeneracy points indepen-
dently from each other, provided that the trapping length scale
c/ f is much smaller than the distance between two critical
latitudes yc,i and yc,i+1 associated with different degeneracy
points between the two bands.

For a given degeneracy point, the sign of the spectral flow
changes with the sign of dβt/dy. In other words, a state that
transits from the lower band to the upper band when βt is an
increasing function of y would transit from the upper band to

the lower band if βt (y) was a decreasing function of y that
crosses the same degeneracy point. When a given degeneracy
point is crossed several times by the profile βt (y) over a
distance smaller than the trapping length scale, two cases need
to be considered, depending on the number of crossing points.
If this number is even, then there is no spectral flow. If this
number is odd, then the direction of the spectral flow is given
by the one deduced from the first crossing point.

Thus, topology provides a toolbox that makes possible a
classification of coastal waves, when properly recast as an
interface problem. In the following, we use this toolbox to
interpret three classes of coastal spectra solved numerically
using Dedalus software [31]. The results are summarized in
Fig. 4.

B. Topological origin of the coastal Kelvin wave

The profile βt (y) of the relative topography gradient
parameter associated with the exponential Ball’s bottom to-
pography profile H (y) of Eq. (2) is shown in Fig. 4(a). The key
point is that βt (y) is decreasing from y = 0 to y → +∞, and
goes through the degeneracy point βt = f with β ′

t < 0. We
have thus recast the coastal problem into an interface problem.

As expected from our analysis of the bulk problem, and
from general results on the correspondence between such bulk
indices and spectral flow for the dual interface problems,
we observe that the spectrum of Fig. 4(a) exhibits one state
that transits from the lower frequency Poincaré wave band
to the upper one. This shows the topological origin of the
coastal Kelvin wave. This topological property distinguishes
the coastal Kelvin wave from the other trapped boundary
waves, namely, edge and shelf waves, as it guarantees its
existence against continuous deformations of the topography
profile and constrains its dispersion relation to fill the fre-
quency gap.

We stress that the interface is not the coast itself (at y = 0);
it is rather the critical point yc where βt (yc) = f . In the limit
a → 0, this critical point becomes closer to the coast: yc → 0.

Depending on the detailed shape of H (y), they could actu-
ally be an odd number of degeneracy points, but the difference
between degeneracy points associated with β ′

t < 0 and degen-
eracy points associated with β ′

t > 0 will always be one. We
also notice that the intrinsic length scale vanishes close to the
coast as c(y)/ f ∼ y1/2. Qualitatively, this guarantees that the
actual shore line is screened from the interior dynamics.

C. Topographic Yanai waves at an interface with deep waters

In the previous case, we found that one mode is gained by
the upper band when kx is increased, and related this spectral
flow to a profile βt (y) crossing the degeneracy point from
above. We expect an opposite spectral flow when the profile
βt (y) crossed the same degeneracy point from below. That is
to say, we expect a net loss of one mode in the upper band
when kx is increased. This is the situation depicted in Fig. 4(b),
with the topography profile H (y) = H0(1 + 3e−[(ya−y)/0.1]).
This profile is representative of cases where half a flat-bottom
f plane opens to infinitely deep water (the abyss).

As shown in the spectrum displayed in Fig. 4(b), there is
indeed a mode that transits from the upper Poincaré band
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FIG. 4. Three topologically distinct interface problems. (a) The case of a coast, where βt (y) crosses a degeneracy point yc > 0 from above,
and c vanishes at y = 0. This is related to spectral flow +1 due to the presence of the Kelvin wave in the spectrum below. (b) The case of
a flat-bottom f plane opened to an “abyss” region where bottom topography diverges with y → +∞. The same degeneracy point as in case
(a) is crossed by the profile βt (y), but from below. This is related to spectral flow −1 due to the presence of a topographic Yanai wave. (c) The
case of an escarpment separating two flat-bottom half f planes with different depth. This is a topologically trivial case that can be interpreted
as the concatenation of cases (b) and (a). There is a so-called double Kelvin mode in the frequency gap; this mode is not associated with a
spectral flow.

to the geostrophic wave band when kx is increased. This
topological mode is an inertial mode at kx = 0, where ω = f .
Its branch bears strong similarities with the equatorial Yanai
mode, as it connects the topographic Rossby wave band to the
inertia-gravity wave band. We therefore propose to call it a
topographic Yanai mode; the existence of such modes was ac-
tually described in previous work by Iga in a classification of
shallow water spectra depending on the boundary conditions
in channel geometries [32]. Our study now shows that such a
mode has a topological origin, just as the coastal Kelvin wave.
As far as topology is concerned, the only difference between
those two modes is their opposite group velocity, which can
be related to the different sign of β ′

t at the critical point where
βt (yc) = f .

The topography profile H (y) related to the topographic
Yanai case is peculiar, as it diverges with y. While a number
of interesting and useful results are often derived in a shallow
water context with diverging bottom topography profiles, one
should keep in mind that such profiles are not consistent with
the hypothesis underlying the derivation of shallow water
equations from more comprehensive 3D Euler dynamics. It
will be interesting to ask whether topographic Yanai surface
waves exist in the context of incompressible 3D Euler flows
with gravity. Within the shallow water framework, the connec-
tion from a shallow coastal area to a deeper abysslike area can
only be consistent with the hypothesis required for the model

derivation if the abyss depth H (y) tends to a constant value
at large y. In other words, the profile βt (y) must be decreasing
towards the origin at large y. This leads to the escarpment case
discussed below.

D. Double Kelvin waves over escarpment
are topologically trivial

An escarpment is a variation of topography separating two
oceanic basins with different depths, as illustrated in Fig. 4(c).
We argue below that escarpments result from the concatena-
tion of the two topological cases described above. Since the
singularities cancel each other, this leads to a configuration
that is topologically trivial. This leads, however, to a nontrivial
reinterpretation of the spectra associated with escarpments.

In the case of an escarpment H (y) separating a shal-
low oceanic basin with depth h1 to a deep oceanic basin
with depth h2, a peculiar trapped mode with frequency
lower than the inertial frequency f , and without node in
their amplitude in the y direction, was found in the 1960s
by Longuet-Higgins [33,34]. This mode was dubbed dou-
ble Kelvin wave, because its amplitude is decaying on both
sides of the escarpment. Those waves do not fill the gap
between geostrophic mode and Poincaré modes, as reported
in Fig. 4(c). Instead, their dispersion relation is similar to
Rossby waves, with a group velocity changing sign at high
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wave numbers. In particular, these trapped modes are not
unidirectional.

From a topology and spectral flow perspective, the absence
of modes transiting from one band to another is consistent
with the profile βt (y) that either crosses twice the same degen-
eracy point or does not cross any degeneracy point at all when
the escarpment is not sufficiently steep. The case of a double
crossing of the same degeneracy point with opposite sgn(β ′

t ) is
topologically equivalent to the one without degeneracy points.
The double Kelvin wave is topologically trivial. Our analysis
shows that this peculiar mode can now be understood as a
hybrid mode between a coastal Kelvin wave related to the
first degeneracy point and a coastal topographic Yanai wave
related to the second degeneracy point. The singularities as-
sociated with those two degeneracy points cancel each other.
In other words, the double Kelvin mode of case (c) in Fig. 4
is a footprint of the concatenation of βt profiles described in
cases (a) and (b). As such, those hybrid modes could rather be
dubbed mixed topographic Yanai-Kelvin waves. By this way,
topology gives a complementary point of view to [32] on this
problem.

V. CONCLUSION

Topology makes possible a new classification of shallow
water waves with varying topography. This unifies several
results on coastal waves reported in previous works, e.g.,
[3,4,32]. Topology guarantees that the spectral flow reported
in the case of a straight coastline and one-dimensional topog-
raphy variations in the direction perpendicular to the coast are
also robust to changes in coastline shape or to perturbation of
the topography profile in the direction along the coastline, as
observed in experiments [35].

It is worth stressing similarities and differences between
the use of topology in this study and in condensed matter
physics. Topology is routinely used to characterize trapped
boundary modes in condensed matter or related systems ad-
mitting an underlying lattice structure, via the celebrated
bulk-boundary correspondence. Strictly speaking, this corre-
spondence cannot be applied in continuous media such as
fluid systems in general, unless some regularization terms
are present in the physical model, as it might be the case,
e.g., in certain active fluids [8–10]. This procedure allows a
rigorous investigation of the bulk-boundary correspondence,
accounting for various boundary conditions beyond the imper-
meability one, when the dispersion relation is gapped due to
the introduction of a fixed parameter that breaks a symmetry,
such as f [10,11].

Although the introduction of the regularization term could
be meaningful in active matter systems, it is rather artificial
in the geophysical realm. To avoid the use of such a math-
ematical trick, we found a quite natural geophysical way,
in this study, to define a Chern number in the f plane, by
considering a parameter βt in the equation that introduces new
degeneracy points in the dispersion relation in a 3D parameter
space. The introduction of this parameter does not regularize
the eigenmode vector field at infinity. Instead, it can be seen
as a regularization parameter of the abrupt wall considered in
[8,10]. Concretely, this procedure turns the coastal (boundary)
problem into an interface problem, where monopole Chern

numbers appear. The key difference with the usual bulk-
boundary correspondence being that βt is a varying parameter
that changes sign, and not simply a fixed term that opens a
gap. Those Chern monopoles can naturally be used in fluids
problems or in other continuous media to make predictions
about interface geometries (i.e., partial differential equations
with spatially varying parameter, without a boundary), by
means of the Atiyah-Singer index theorem. This contrasts
with other demonstrations of the bulk-boundary correspon-
dence in the condensed matter context that involve an actual
(sharp) boundary, and that do not refer to the Atiyah-Singer
index theorem [2,36,37].

Using this classification, it is now possible to discover new
classes of “topographic-equatorial” waves, when both param-
eters f and βt vary in the meridional direction. In particular,
since the critical latitudes associated with degeneracy points
are shifted by the presence of a relative topographic gradient
βt 	= 0, we predict that the location of trapped modes will also
be shifted. This is a new example of a dynamical equator that
differs from the usual equator [38]. It will be also interesting
to investigate in future works the dynamics of relatively deep
planetary waves close to the tangent equatorial cylinder in
giant planets such as Jupiter [39]. In fact, this case bears strong
similarities with the topography profile “ f -plane to abyss” in
Fig. 4(b), with possible experimental realization where the
parameter βt/ f has already been shown to play a central
role [40].

The present work dealt with linear waves around a state
of rest; this set the stage for more comprehensive studies ad-
dressing the role of topology in the presence of nonlinearities,
with a possible two-way coupling between coastal boundary
waves and interior dynamics [41,42].

From a fundamental perspective, the bottom line of this
study is an interpretation of Kelvin’s original boundary prob-
lem with an impermeable wall as a limiting case of an
interface problem with a varying bottom topography. This un-
veils the topological origin of the unidirectional trapped mode
computed by Kelvin in his seminal 1880 paper on tides, as
resulting from an interplay between time-reversal and mirror
symmetry breaking.
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APPENDIX: TOPOLOGY OF EIGENMODE BUNDLES
ENCLOSING TWO-BAND DEGENERACY POINTS

We derive here a classical result on the topology of eigen-
mode bundles enclosing two-band degeneracy points. More
details are presented in standard reviews and textbooks on
the physics of topological waves. We consider here two-band
crossing of an Hermitian problem parametrized by a vector
λ = (λ1, λ2, λ3) that vanishes at the band-crossing point. In
our case λ = (kx, ky, βt,y ) − (± f , 0,± f ). After a projection
onto the two bands crossing each other, the two-band crossing
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problem is described by a reduced 2 × 2 matrix, which can
always be written as

Hr (λ) =
(

h3(λ) + ω0 h1(λ) − ih2(λ)
h1(λ) + ih2(λ) −h3(λ) + ω0

)
, (A1)

where h(λ) = (h1(λ), h2(λ), h3(λ)) ∈ R3. The eigen-
values of the matrix Hr are given by ω± = ω0 ±√

h2
1(λ) + h2

2(λ) + h2
3(λ) and cross at ω± = ω0 when h = 0.

Let us for a moment forget the dependence on λ, and
consider h = (h1, h2, h3) as a parameter. Using Eqs. (9) and
(10), it is a classical exercise to show that the Chern number of
the two eigenmode bundles parametrized over a closed surface

h enclosing the degeneracy point h = 0 are

Ch
± = 1

2π

∫

h

F(±)(h) · d�h = ∓1, (A2)

where F(±) is the Berry curvature associated with eigenmodes
of Eq. (A1) denoted �±(h). The computation is explained in
detail in [7,43,44]. One can actually visualize the singular-
ity associated with this nonzero Chern number by a direct
inspection of the eigenmode expression, using polar coor-
dinates (h, θ, φ) in parameter space with h1 = h sin θ cos φ,
h2 = h sin θ sin φ, and h3 = h cos θ :

�+ =
(

e−iφ cos θ
2

sin θ
2

)
, �− =

( − sin θ
2

eiφ cos θ
2

)
. (A3)

Those normalized eigenmodes are defined up to an arbitrary
phase factor eiα± . With our phase choices, the singularity in
�±(h) occurs at θ = π , as h is left invariant by changes in
φ, while �± varies with φ. One can use the phase freedom
to remove the singularity from the location where θ = π .
However, this phase change would only shift the singularity
elsewhere on the eigenmode bundle defined on any surface
enclosing the origin h = 0. We also see that at the singular
point θ = π , the phase factor varying with φ is opposite
for �− and for �+. The Chern number Ch

± quantifies these
singularities.

Now, we want to compute the Chern number for the eigen-
mode bundles defined on a surface denoted 
λ in λ-parameter

space rather than in h space. We assume that the surface

λ encloses the band-crossing point λ = 0. We introduce the
degree deg h that counts how many times the application h :
λ ∈ 
λ → h/|h| ∈ 
h wraps the unit sphere in h-parameter
space when λ is varied over 
λ. A direct computation of
the Chern number through the integral of Berry curvature
expressed either in λ-parameter space or h-parameter space
yields to

C± = 1

2π

∫

λ

F(±)(λ)d�λ (A4)

= 1

2π

∫
h(
λ )

F(±)(h)d�h = (deg h)Ch
±. (A5)

The last equality is obtained by noting that integrating the
Berry curvature over a closed surface 
h enclosing h = 0
yields the same results as integration over the unit sphere in
h space.

A method to find deg h is to consider an arbitrary vector
h0, to find all the vectors λ0 such that λ0 = h−1(h0), and to
compute

deg h =
∑

λ0∈h−1(h0 )

sgn

[
det

(
∂h j

∂λi

)∣∣∣∣
λ0

]
(A6)

(see, e.g., [45] for more details on the degree of an appli-
cation). Generically, the function {h j} depends linearly on
the parameters {λi} when λ → 0, i.e., when 
λ is chosen
sufficiently close to the degeneracy point. In that case, there
is a unique vector λ0 = h−1 to be taken into account in the
sum, so that the possible values of the degree are restricted
to ±1. In other words, close to the degeneracy point there
is a nonsingular linear transformation from λ to h, so that
h/|h| wraps one time the sphere S2 when λ wraps the surface

λ, and the degree accounts for a possible change orientation
induced by the linear transformation. Consequently, the Chern
numbers of the eigenmode bundles enclosing the degeneracy
point are the same up to a sign in λ-parameter space and
h-parameter space.
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