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Partitioning dysprosium’s electronic spin to reveal entanglement in nonclassical states
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Quantum spins of mesoscopic size are a well-studied playground for engineering nonclassical states. If the
spin represents the collective state of an ensemble of qubits, its nonclassical behavior is linked to entanglement
between the qubits. In this paper, we report on an experimental study of entanglement between two subsystems of
dysprosium’s electronic spin. Its ground state, of angular momentum J = 8, can formally be viewed as a set of 2J
qubits symmetric upon exchange. To access entanglement properties, we partition the spin by optically coupling
it to an excited state J' = J — 1, which removes a pair of qubits in a state defined by the light polarization.
Starting with the well-known W and squeezed states, we extract the concurrence of qubit pairs, which quantifies
their nonclassical character. We also directly demonstrate entanglement between the 14- and 2-qubit subsystems
via an increase in entropy upon partition. In a complementary set of experiments, we probe decoherence of a
state prepared in the excited level J/ = J + 1 and interpret spontaneous emission as a loss of a qubit pair in a
random state. This allows us to contrast the robustness of nonclassical pairwise correlations of the W state with
the fragility of the coherence involved in a Schrodinger cat state. Our findings open up the possibility to engineer
novel types of entangled atomic ensembles, in which entanglement occurs within each atom’s electronic spin as
well as between different atoms. Qubit ensembles with large entanglement depth could then be realized with a

few atoms only, facilitating the scaling up of quantum-enhanced sensors.
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I. INTRODUCTION

Entanglement is a hallmark of nonclassical behavior in
compound quantum systems. Minimal entangled systems of
qubit pairs, as realized with correlated photon pairs, play a
central role in testing the foundations of quantum mechanics
[1,2]. Entanglement can also be engineered in many-particle
systems [3], such as an ensemble of interacting atoms [4].
In this case, the atoms are not individually addressable, and
quantum correlations are indirectly revealed by measuring
global properties, such as a squeezed spin projection quadra-
ture [5-8] or via the quantum enhancement of magnetic
sensitivity [9-11]. State-of-the-art experiments on photonic
systems [12], superconducting qubits [13], trapped ions [14],
and Rydberg atom arrays [15] can now produce highly entan-
gled states of tens of individually identifiable qubits, in which
entanglement is more readily observable.

Besides quantum state tomography, a wide array of meth-
ods have been developed for the detection of entanglement
[16,17]. In two-qubit systems, the degree of entanglement is
quantified by the concurrence [18,19]. Its direct measurement
remains challenging since it requires nonlinear operations on
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the prepared state [20-23], and it was so far only achieved for
photon pairs in pure quantum states [21]. In the case of multi-
partite systems, the study of entanglement is cuambersome due
to the existence of distinct classes of entanglement [24]. It
is often revealed using entanglement witnesses, by measuring
the fidelity with respect to a given entangled state [25]—the
method being limited to simple enough target states.

In this paper, we study quantum entanglement between
subsystems of the electronic spin of dysprosium atoms, of
angular momentum J = § in its ground state and prepared
in nonclassical spin states. Quantum states with nonclassical
correlations have been extensively studied in single large-spin
systems, including photon qutrits [26], ground-state atomic
spins [27,28], molecules [29], and Rydberg atoms [30]. In
the formal analogy between a spin J and a set of 2J qubits
symmetric upon exchange [31], nonclassicality goes hand in
hand with entanglement between the virtual qubits. However,
as long as the angular momentum J is conserved, the qubit
ensemble cannot be partitioned, and the relevance of entan-
glement is disputable. Here, we use an optical coupling to
an excited electronic state of angular momentum J' = J — 1
to partition the 16-qubit ensemble associated with the spin
J, giving access to entanglement. The virtual absorption of
a photon is interpreted as the annihilation of a qubit pair
in a state defined by the light polarization, leaving a set of
14 qubits in the excited electronic level [see Fig. 1(a)]. This
process thus realizes a partition of the electronic spin J in
two subsystems—the excited electronic spin J' =J — 1 and
the photon angular momentum L = 1. We use this partition
to probe entanglement in nonclassical spin states, either by
characterizing nonclassical behavior of qubit pairs via the
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probing polarized qubit pairs

FIG. 1. Scheme of the experiments manipulating qubit pairs in
the electronic spin of dysprosium. An electronic spin of angular mo-
mentum J can be viewed as a set of 2J virtual qubits symmetric upon
exchange. (a) The coherent coupling to an excited state J' =J — 1
with o_ polarized light probes the probability to find a qubit pair
polarized in |1 1),. (b) The spontaneous emission from an excited
state /' = J + 1 removes a random pair of qubits.

measurement of concurrence or by revealing an increase in
entropy upon partition. We extend this protocol to probe de-
coherence in states prepared in an excited electronic level
J' =J + 1 [see Fig. 1(b)]. There, the spontaneous emission
of a photon drives the system to the electronic ground state
J, which corresponds to the removal of a qubit pair randomly
drawn from the initial state. We reveal the robustness of non-
classical pairwise correlations with respect to qubit loss, as
well as the fragility of coherence in Schrodinger cat states.

This paper is organized as follows. We present in Sec. II
the experimental protocol used to measure the properties
of qubit pairs extracted from the electronic spin, based on
the polarization dependence of the light-spin interaction. In
Sec. III, we investigate the nonclassical character of these
qubit pairs via the measurement of the concurrence of the
reduced two-qubit density matrix and apply it to a W state
and a squeezed state. In Sec. IV, we investigate the increase
of entropy upon the 14|2 partition as a proof of entanglement
for W and Schrodinger cat states, by studying the mixed
nature of the reduced two-qubit density matrix. In Sec. V,
we study the decoherence upon the loss of a qubit pair trig-
gered by spontaneous emission. We show that nonclassical
pairwise correlations are robust with respect to the extraction
of qubits. In contrast, the coherence of a Schrodinger cat state
is completely destroyed upon qubit loss, due to the complete
which path information carried by the spontaneously emitted
photon’s polarization. In another superposition state, we show
the existence of a quantum jump leaving the path information
hidden, such that maximal-order coherence remains visible.
Finally, we present a possible extension of our work to en-
sembles of dysprosium atoms entangled together using an
optical resonator. Such systems would combine entanglement
between atoms and within each electronic spin, allowing one
to scale up entanglement depth and its application to quantum-
enhanced sensing.

II. PAIR HUSIMI FUNCTION MEASUREMENT

A. Probing pairs via light coupling

The electronic ground state J/ = 8 can be interpreted as the
sum of 2J = 16 virtual spin-1/2s, in a state symmetric upon
exchange. We discuss here the partition of this qubit ensem-
ble, prepared in a state p, through the coupling to an excited
electronic level, of angular momentum J' = 7. As sketched
in Fig. 1(a), the coupling to the excited manifold is induced
by light close to the optical transition, via the absorption of a
photon. The photon polarization € defines an L = 1 quantum
state |€) that can be considered as a symmetric two-qubit state.
We restrict ourselves here to the case of a circular polarization
o_, which corresponds to qubits polarized in || | ).. Since the
excited state contains only 2J’ = 14 qubits, two qubits are
removed upon photon absorption. The conservation of angular
momentum requires these removed qubits to be polarized in
[11)., the time-reversed state of the absorbed photon’s polar-
ization. The excited state o’ can be then written as a projected
state o' = (t1.0|1 1);. The probability for a pair chosen
from the 16 qubits to be polarized in |1 1), then reads

Qpair(ez) = Trp’,

defining the pair Husimi function along the direction e,.
Hence the light absorption properties of the electronic spin J
can be linked to the properties of its two-qubit reduced density
matrix.

To probe this behavior, we measure the light shift V
induced by an off-resonant light beam close to the con-
sidered optical transition. The light shift, being induced by
virtual photon absorption processes, is proportional to the pair
Husimi function, as

(dE)
AA
where d = (J — 1]|d||J) is the reduced dipole matrix element,

E is the light electric field amplitude, and A is the detuning
from resonance.

V/VO = Qpair(ez)’ Vo =

B. Application to Dicke states

We illustrate our method by measuring the value of the
Husimi function Qp-(e;) for an arbitrary Dicke state |m)
(with —J < m < J), which we denote Q,, hereafter.

All our experiments are performed on a cloud of 1.0(1) x
10° dysprosium atoms (of the bosonic isotope '>Dy), held
in an optical dipole trap at a temperature 7 = 0.54(3) uK.
The results described in this paper can be understood by
considering a single atom, with the ensemble acting as an
averaging mechanism only. The experimental scheme for the
0,, measurement is shown in Fig. 2(a). We prepare the atoms
in a coherent state |m = J), polarized along a direction n,
parametrized by the spherical angles (6, ¢). The polar an-
gle 6 determines the projection probabilities IT,, along the
Dicke states |m), which are significant for values of m close
to Jcosf. We then push the atomic cloud by applying an
off-centered laser beam, with circular o_ polarization and
blue detuning with respect to an optical transition at 696 nm.
The intensity gradient then leads to a force along x propor-
tional to the light shift [Fig. 2(a)]. After this kick, a magnetic
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FIG. 2. Husimi function measurement for Dicke states.

(a) Scheme of the light shift measurement. We measure the force
induced on the atoms by an off-centered laser beam, blue detuned
with respect to the optical resonance. (b) Image of an atomic gas
prepared in a coherent state of polar angle 6 ~ 100°. The atoms
are kicked along x by the laser beam. Subsequently, we apply a
magnetic field gradient separating the magnetic sublevels |m) along
z during time of flight. The dashed line indicates the mean x position
in the absence of the repulsive laser beam. (¢) Probability Q,, for
a qubit pair taken in the Dicke state |m) to be in |11),, deduced
from the kick amplitudes. In all figures, error bars represent the 1o
statistical uncertainty (here smaller than the blue circles). The black
lines are the theoretical values of Eq. (1).

field gradient is applied to spatially separate the different m
components along z, which allows us to retrieve the light
shift experienced by each Dicke state independently. After a
2.3-ms time of flight, we image the atoms and measure the
x displacement for each Dicke state |m) that is significantly
populated, and hence their values Q,,. A typical absorption
image is shown in Fig. 2(b). Repeating this measurement for
various angles 6, we measure the light shifts for all projections
m and infer the Q,, values shown in Fig. 2(c) [32].

Our measurements are consistent with an absence of light
shift for the states |m = —J) and [m = —J + 1); that is, these
states are dark with respect to the J — J' =J — 1 optical
transition for o_ polarized light. In terms of the underlying
qubits, the state |[m = —J) only contains || ),-polarized qubits,
while the state [m = —J + 1) has a single qubitin |1).. In both
cases, a qubit pair cannot be found polarized in |11); hence
0-;=0-,11=0.

More generally, a Dicke state |[m) is composed of J —m
qubits in || ), and J 4+ m qubits in |1), [33]. The probability
to pick a pair |11), simply reads

0, = J+m 2y _(U+mU+m—1) 0
"2 2 ) 227 -1)
in good agreement with our measurements.

We use these measurements to probe the Husimi function
of states lacking z rotation symmetry. For this, we measure

their projection probabilities IT,,(n) along n by combining
a spin rotation and a Stern-Gerlach projective measurement
along z. We then infer the Husimi function by weighting these
probabilities with the Q,, values, as

Opair(M) = Y O T(m). )

In the following, we use the theoretical values of Eq. (1)
rather than the measured ones to avoid propagating systematic
ITOrS.

C. Coherent and W states

We first apply the above protocol to the quasiclassical
coherent spin state [m = —J) and the W state |m = —J + 1).
The coherent state can be viewed as a set of 2J qubits po-
larized in || ),, forming a nonentangled product state. The W
state, which hosts a single qubit in |1),, is a paradigmatic state
of a fundamental class of entanglement [24], which has been
realized and studied in various settings [34—41].

In our experiment, the atoms are initially spin polarized
in the coherent state |m = —J). To produce the W state,
we confine the system to the two spin states [m = —J) and
|m=—J + 1) by applying a strong quadratic light shift acting
on the other spin states only, leading to a constrained quantum
Zeno dynamics [42-44]. An additional resonant radio-
frequency 7 pulse then brings the system to |m=—J + 1).
The quadratic light shift is produced using the 696-nm laser
beam with a o_ polarization, leading to positive energy shifts
for all Dicke states |m), except for m = —J and —J + 1. We
reach a maximum W-state fidelity of 0.91(1), with residual
overlaps on other Dicke states below 4% [45].

We report in Figs. 3(a) and 3(b) the measured projection
probabilities I1,,(0) for these two states. For a given projec-
tion m, the coherent-state probabilities feature a single peak
centered on the expected maximum at 6,, = arccos(m/J),
shown as red lines. For the W-state probabilities, we observe a
double-peaked distribution for all nonstretched states m # £J.
This behavior results from the interference between two pro-
cesses, depending on whether the spin |1), is projected on
[M)e or |{)e. The first (second) process dominates for 6 ~ 0
(6 ~ ), and the two processes destructively interfere at 6,,,
as observed in our data.

We combine these measurements to infer the pair Husimi
functions using Eq. (2), finding good agreement with theory
for both states [see Fig. 3(c)]. In particular, for the coherent
state, our data match well the probability Qpi(6) = sin*(6 /2)
that two qubits in || ), are projected in |1)y. In the following
sections we use these measurements to probe entanglement
properties.

III. NONCLASSICALITY OF QUBIT PAIRS

Our first characterization of entanglement of the 2J-qubit
state consists in revealing the nonclassical character of qubits
pairs extracted from it.

A. Measure of nonclassicality via the concurrence

The collective state pp,i; of a qubit pair symmetric upon
exchange can be written as the state of an angular momentum
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FIG. 3. Qubit pair properties of coherent and W states. (a) and (b) Measured spin projection probabilities I1,, as a function of the polar
angle 0, for a coherent spin state (a) and for the W state (b). The red vertical lines indicate the expected maxima for the coherent state,
also corresponding to minima for the W state. The top panels represent the considered spin-J states on the Bloch sphere, where the red
circles indicate the spanned measurement projection axis. (c) Pair Husimi function Qp,;; computed from the (a) and (b) data (blue circles
and red squares, respectively). The lines correspond to the expected functions Qy,;-(f) for the coherent and W states (red and blue lines).
(d) Distribution C, of nonclassical correlations as a function of the polar angle 6. The points C, > 0 measured for the W state evidence

nonclassicality.

L = 1. Drawing an analogy with quantum optics [46,47], it
will be called classical if it can be expressed as a statistical
mixture of quasiclassical coherent states [48], as

lassical
Pl = "y m) (], 3)
n

where ||n) is a spin-1 coherent state pointing along n, and
wy = 0, Zn wp = 1. Coherent states are the only pure states
that satisfy the equality

Zm)=2(L) — (Ly)* —1=0 )

for arbitrary measurement axis n. Then it follows by convexity
that Z(n) > 0 for classical states. As shown in Ref. [48],
the existence of a strictly negative value Z(n) constitutes a
necessary and sufficient criterion of nonclassicality.

To apply this criterion to our system, we use the connection
between the mean values of spin projection and the Husimi
function of qubit pairs extracted from the electronic spin J,

(Ln> = Qpair(n) - Qpair(_n)y
(Lﬁ> = Qpair(n) + Qpair(_n)v

leading to the expression Z(n) = o Cy, where we introduce
the coefficient & = (\/Qpair(—M) — /Opair(n))* — 1 and the
distribution

Co = 1 — (/Opair(—1) + /Opair())*.

The parameter « being negative, nonclassicality is character-
ized by the existence of a direction n for which C, is strictly
positive. This criterion of nonclassicality is equivalent to the
bipartite entanglement witness established in Ref. [49].

We show in Fig. 3(d) the distribution C,, computed from the
measured Husimi functions, for the coherent and W states. For
these states, symmetric upon rotations around z, we expect Cy
to only depend on the polar angle 6 of the measurement axis
[50]. For the coherent state, the measured C, remains close to
zero for all angles 6. Indeed, qubit pairs drawn from this state

form themselves a spin-1 coherent state, for which C,, vanishes
according to Eq. (4). For the W state, C, takes significantly
positive values for 6 close to 0 and 7, showing a nonclassical
character.

We now show that the distribution C, can be used to
quantify the degree of nonclassicality of a quantum state,
defined by its distance from the set of nonclassical states [51].
For a system of two qubits, this geometrical measure can be
directly expressed in terms of the concurrence C [52], the
most common measure of pairwise entanglement [18,19]. In
our system, qubit pairs should be considered as indivisible
quantum objects, such that the concurrence only measures the
amount of nonclassical correlations. The concurrence can be
explicitly written in terms of the density matrix, but it does
not correspond to a directly accessible physical observable.
Remarkably, the distribution C, can be used to retrieve the
concurrence, as

C = max [0, max Cy .

This relation was conjectured and numerically checked for
randomly generated states in Ref. [53].

For the W state realized in the experiment, the measured
Cp takes its maximum for @ = 0 leading to a concurrence C =
0.089(5). This value is about 71% of the maximum possible
value C = 1/J = 0.125 in a system of 2J qubits symmetric
upon exchange [54], which would be reached for the W state
in the absence of experimental imperfections. In our system,
the concurrence is limited by the residual population IT_;,, ~
0.03 in the Dicke state |m = —J + 2) that originates from
spin-changing collisions between atoms in [m = —J + 1).

B. Pairwise correlations in a squeezed state

Nonclassical correlations between qubit pairs play a central
role in the squeezing of a spin projection quadrature [55]. In
this section we extend the measurement of qubit pair proper-
ties to a squeezed spin state, which we produce via a nonlinear
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FIG. 4. Qubit pair properties for a squeezed state. (a) and
(b) Measured spin projection probabilities I1,, for a squeezed spin
state, as a function of the polar angle 6 with azimuthal angles ¢,
(a) and ¢max (b). (c) Spin projection uncertainty AJ,, computed from
the (a) and (b) data (blue circles and red squares, respectively).
The lines correspond to the projection uncertainties expected for the
targeted spin state. (d) Distribution C, of nonclassical correlations as
a function of 6.

spin dynamics. We apply a 7ixJ> spin coupling, generated
by the spin-dependent light shift of the 696-nm laser beam,
using a linear polarization e, [56]. This coupling induces a
twisting of the spin distribution, leading to the squeezing of a
spin projection quadrature [55], as first implemented in atomic
Bose-Einstein condensates [8,9]. In our experiment, we apply
a nonlinear coupling of strength x = 27 x32.1(4) kHz for
a duration ¢ >~ 700 ns, in the presence of a z magnetic field
B =75(1) mG.

In contrast to the Dicke states discussed above, the spin
projection probabilities are no longer invariant around z. We
show in Figs. 4(a) and 4(b) the probabilities I1,,(0, ¢) for
two azimuthal angles ¢nin = —0.4(2) rad and ¢max = Pmin +
/2, which feature minimal and maximal spin projection
uncertainties, respectively. For 6 = 7 /2, a minimum spin pro-
jection uncertainty AJpi, = 0.92(16) is measured at ¢, [see
Fig. 4(c)], in agreement with the value AJ;, = 0.85 expected
for an optimally squeezed state (within the one-axis twisting
dynamics). We report in Fig. 4(d) the corresponding distribu-
tion Cy. The measured C,, takes its maximum for 6§ = /2 and
¢ = Pmin, 1.€., along the squeezed quadrature direction. This

maximum gives a value for the concurrence C = 0.058(6), in
agreement with the expected value of 0.055.

Our measurements can be used to check the direct link
between quadrature squeezing and nonclassical pairwise cor-
relations [57]. Indeed, for the states reached via the one-axis
twisting dynamics, one expects the concurrence to be ex-
pressed in terms of the minimum spin projection uncertainty,
as

1 —2AJ% /]
c= s ®

From the measured projection quadrature, we calculate a
value of 0.053(5) for the right-hand side of Eq. (5), in agree-
ment with the direct measurement of the concurrence.

IV. PROBING ENTANGLEMENT VIA
THE SUBSYSTEM ENTROPY

So far, we studied the entanglement of 2J-qubit states via
the nonclassical character of their qubit pairs. In this section,
we access entanglement more directly, by probing whether a
given state of the spin J = 8 is separable with respect to the
14|2 partition performed by the photon absorption. For this,
we use the fact that for a separable state, the global state
is more disordered than its parts [58]. More precisely, we
quantify disorder via the Rényi entropy of infinite order (also
called the min-entropy), defined as [59]

Seo(p) = —In Amax (),

where Apm,x is the maximum eigenvalue of the density ma-
trix p. This eigenvalue corresponds to the maximum possible
overlap of p with a pure state. To reveal entanglement within
a state p of the collective spin J, it is thus sufficient to show
that the entropy of the reduced pair state pp,; is strictly higher
than that of the original state p, i.e., if the conditional entropy
satisfies [58]

So0(1412) = Seo(0) = Soo(Ppair) < 0.

A. Entanglement of the W state

The evaluation of the pair state entropy Seo(0pair) 18 based
on the tomography of the pair density matrix [60]. Full in-
formation on the density matrix is contained in the Husimi
function Qpgi;(n). We fit the measured Husimi function by a
spherical harmonic expansion

1 fir & <&
Opirm) = 2+ 20 D e’ (©)

=1 m=—¢

and infer the density matrix as

1 2
1
Ppair = E]l + Z )‘«l,mcm + Z )\2,QO’ (7)

m=—1 m=—2

where the £,, and Q, matrices correspond to the L =1
angular momentum components and quadrupole moments,
respectively (see Appendix B).
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FIG. 5. Characterization of entanglement in a Schrodinger cat state. (a) Measured spin projection probabilities I1,, for a cat state, as a
function of the polar angle 6. The azimuthal angle ¢ = 0.86(5) rad is chosen such that the two coherent-state Husimi functions destructively
interfere for odd m values around 6 = 7 /2. (b) Distribution C, inferred from the probabilities shown in (a) (blue circles). The solid line is the
expected variation for a perfect cat state. (c) Projection probabilities I1,, measured along equatorial directions (6 = 7 /2) parametrized by the
azimuthal angle ¢. (d) Evolution of the mean parity (P) deduced from (c). (e) Projection probabilities I1,, measured after a Larmor rotation of
angle ¢ followed by a second nonlinear evolution. (f) Evolution of the mean sign of even projections (X) deduced from (e). The solid lines in

(d) and (f) are fits with a Fourier series.

We apply this protocol to the W state, taking into account
the slight variation of the Husimi function Qp-(n) with re-
spect to the azimuthal angle ¢ in the prepared state [50]. We
infer a density matrix

0.88 0.01 +0.05i —0.01 —0.01i
Ppair = | 0.01 — 0.05: 0.12 0.017 ,
—0.01 +0.01: —0.01: 0

with typically 1% statistical uncertainty. The reconstructed
density matrix matches well the expected one

78 0 0
Ppair = 0 1/8 0
0 0 0

Diagonalization of the reconstructed density matrix gives a
maximum eigenvalue Amax(0Opair) = 0.882(5).

We now consider the global spin-J state. The pro-
jection probability TT_;;; = 0.91(1) with the Dicke state
|m=—J + 1) provides a lower bound on the maximum over-
lap Amax (p) With pure states.

Combining these results together, we obtain

Seo(14]2) < —0.03(1).

Its negative value shows that the prepared state is not separa-
ble with respect to a 14|2 partition, and is thus entangled.

B. Entanglement of a Schrodinger cat state

We now consider the case of a Schrodinger cat state,
for which the effect of the 14|2 partition is more striking.
Schrddinger cat states, which constitute archetypal states with

highly nonclassical properties, have been realized in different
types of experiments [30,56,61-77].

The cat state considered here is the coherent superposition
of two quasiclassical spin states |m = £J) [78]. To produce
it, we use the one-axis twisting dynamics discussed above,
with a stronger nonlinear coupling y = 27 x1.25 MHz and
a reduced magnetic field B = 53.7(1) mG. After showing
quadrature squeezing at short times (f ~ 10 ns), the spin
quadratures collapse to a featureless spin distribution, be-
fore a revival at a time f., = 7 /(2x) = 200 ns, at which
the system forms a coherent superposition of stretched states
|m = £J) [56].

In Fig. 5(a), we show the measured probabilities IT,,(n)
for various polar angles 6 with a fixed azimuthal angle
¢. For 6 =0, we confirm the dominant population of the
two stretched states, with IT_; = 0.38(2) and I1; = 0.42(2).
When varying 6, the distribution is a superposition of the
contributions of each of the two coherent states forming the
cat state. Interestingly, we observe an interference between
the two distributions when they overlap, i.e., for 6 >~ 7 /2.
As shown in Fig. 5(c), the interference pattern depends on
the azimuthal angle ¢, with an alternation between even- and
odd-m projections of period 27 /(2J) [79].

We first test whether a qubit pair extracted from this state
features nonclassical behavior. We expect the distribution
Cn to be rotationally invariant around z and thus study its
variation with the polar angle 6 in Fig. 5(b) [80]. Our mea-
surements are consistent with C, < 0 for all angles 6, showing
that the reduced two-qubit state is classical. This measurement
highlights the well-known property of this state that any of its
subsystems is classical.
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We now extend the tomography protocol to the cat state
and obtain the reduced two-body density matrix

0.46 —0.01i —0.03 4 0.05i
Ppair == 0.01i 0.05 —0.01i ,
—0.03 - 0.05; 0.01i 0.49

which we compare with the expected matrix

12 0 0
par={0 0 0 ®)
0 0 12

obtained for a perfect cat state. We compute the maximum
eigenvalue Amax (Opair) = 0.53(1) of the reconstructed matrix.
In order to reveal entanglement in the prepared state,
we evaluate its overlap with perfect cat states |cat(a)) =
(Im = —J) + ¢“|m = J))//2, which constitute a family of
pure quantum states. The simple form of these states in the
Dicke basis allows us to express the overlap with a state p as
0. = Pt + 017 +2Re(p_y s e“)
o — ’
2
where the diagonal elements p,, , correspond to the spin pro-

jection probabilities IT,,. The overlap O, takes its maximum
value O for o = —arg p_, 5, with

Iy + 11, + 2[p—_; |

> .
We present two protocols giving a lower bound on the ex-
tremal coherence |p_; ;|, both based on the measurement of
an observable A defined on the spin J. We consider its mean
value in a state obtained after the cat state preparation, fol-
lowed by a Larmor rotation around z of angle ¢, as

AND) = 3 i D™ .

m,m’

0=

The extremal coherence can be singled out by measuring the
Fourier coefficient Ay; = |ay —;p—y | at frequency 2J [77,79].
We will use observables that can take values in the interval
[—1, 1] only, such that |a; ;| < 1. The coefficient A,; then
provides a lower bound on the extremal coherence |p_; ;|.

The first observable we consider is the parity P of
the spin projection along an equatorial direction n 1 e,—
an observable commonly used to characterize cat states
[64,65,69,70,75-77]. We fit its oscillation, shown in Fig. 5(d),
with a Fourier series, from which we get the Fourier coeffi-
cient P,; = 0.26(1). The second observable uses a nonlinear
evolution, obtained by repeating the one-axis twisting evolu-
tion used to produce the cat state [56,81-84] [see the scheme
in Fig. 5(e)]. In the absence of imperfections, the system is
brought to a superposition sin(J¢)|m= — J)+ cos(J¢p)|m=J),
which allows us to extract the maximal coherence from the
projection probabilities in stretched states only. The projec-
tion probabilities measured with this protocol are shown in
Fig. 5(e). In practice, we observe residual probabilities in
other projection values m, with m even only, as expected from
parity symmetry. We thus use an observable X defined as the
sign of the spin projection on even states, with

(%) = Z sgn(m)I1,,.

m even

Its oscillation, shown in Fig. 5(f), gives a Fourier coefficient
Y,y = 0.247(5). The advantage of the second method will
become clear when we consider a more complex quantum
state in the next section.

The two protocols lead to comparable estimates of the
extremal coherence. Using the measured probabilities I1,;
quoted above, we infer a lower bound on the overlap O >
0.66(2) and thus on the eigenvalue A, (p). Together, these
measurements provide a conditional entropy

S (14[2) < —0.23(3),

which proves entanglement more evidently than for the
W state. We note that the requirement O > Apax(Opair) =
0.53(1), which we used to demonstrate the nonseparability of
the 14|2 partition, is consistent with the entanglement witness
O > 0.5 extensively used for cat states [25].

V. DECOHERENCE UPON QUBIT LOSS

We now consider the removal of a pair of qubits ran-
domly drawn from the electronic spin, irrespective of its
quantum state. For this purpose, we prepare a quantum state
of interest p’ in an excited level of angular momentum
J' =9, corresponding to a symmetric state of 2J’ = 18 qubits
[see Fig. 1(b)]. The spontaneous emission of a photon drives
the system to the ground state J = 8, which has two missing
qubits. Since the emitted photon can carry an arbitrary po-
larization, the process allows for three independent quantum
jumps associated with the polarizations e_, e, e, with eL =
(e, = ie,)/ /2. The ground-state density matrix then reads

p= D (ol
e,=e_.e e
which can be simply written as
p =Tryp',

corresponding to the loss of an arbitrary qubit pair.

A. Robustness of pairwise quantum correlations

We first investigate the effect of particle loss on a W state
prepared in an excited electronic level of angular momen-
tum J' = J + 1, coupled to the ground state with an optical
transition of wavelength 626 nm. To produce the state |m' =
—J' 4+ 1) in the excited level, we start in the coherent state
[m = —J) of the lowest energy manifold and use 7 polar-
ized resonant light to couple the system to the desired state
[see Fig. 6(a)]. As shown in Fig. 6(b), we monitor the Rabi
oscillation via the atom recoil upon light absorption. The
comparison with a master equation model taking into account
spontaneous emission during the Rabi flopping allows us to
estimate a fidelity of 0.98 for a pulse duration #,yse >~ 62 ns—
the excited state lifetime being Texe ~ 1.2 us [85].

Following the light pulse, we wait for spontaneous emis-
sion to occur before measuring the spin state in the ground
level. We observe significant populations only in the states
[m = —J) and |m = —J + 1), as expected from the selection
rule |m' —m| < 1. The state |m = —J + 1) is dominantly
populated, showing that, in most cases, the |1) excitation of
the W state is not removed upon the loss of a qubit pair. The
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FIG. 6. Loss of a qubit pair in a W state. (a) Scheme for the
preparation of the W state in the excited electronic level. (b) Evolu-
tion of the mean atom velocity acquired due to the photon absorption
recoil, as a function of the light pulse duration. The dashed line is
a model taking into account spontaneous emission during the pulse.
(c)—(e) Top panels: expected states, with a scheme of spontaneous
emission in (d) showing the Clebsch-Gordan coefficients for the two
possible quantum jumps. Bottom panels: spin projection probabili-
ties in the absence of the resonant light pulse (c), for a 7w pulse (d),
and for a 27 pulse (e). The solid lines are the probabilities expected
for a perfect W state, while the dashed lines use the same model as
in (b).

projection probabilities, shown in Fig. 6(d), are close to the
expected values I1_;,y =1/(J+ D and I[1_; =1 —T1_,4q,
with a residual difference mostly explained by the imperfect
state preparation.

b = — — o — — =
spontaneous emission  —(.2

The nonclassicality of qubit pairs in the final state is probed
via the distribution C, introduced in Sec. III A. We remind
the reader that C, is obtained from the spin projection prob-
abilities along n. Since its maximum value is expected to
be reached along z, we only consider projections along this
direction, and obtain C, = 0.104(3). This value provides a
lower bound on the qubit pair concurrence, expected to be
C=1/(J +1)>=0.111 in the initial state. The proximity of
the initial state concurrence and the measured one after decay
illustrates that losing qubits does not alter nonclassicality of
the remaining qubit pairs [24].

B. Fragility of macroscopic coherence

We contrast this behavior with the fragility of entanglement
in coherent superpositions of states distant in phase
space [86].

We consider two examples, namely, a cat state |y) =
(Im' = =J'y + |m' = J'))/+/2 and the superposition |i,) =
(Im' = —=J + 1)+|m' = J'—1))/+/2.  Their  preparation
consists in producing a cat state in the ground manifold
(Im = —J) + |m = J))/~/2 (see Sec. IV B) and then applying
resonant light to couple it to the excited manifold. The
state |y;) is produced using an x-linear polarization
e, = (e, + e_)/+/2, which dominantly couples the stretched
states |m = +J) to states |m' = +J') [see Fig. 7(a)].
Couplings to states |m' = £(J'—2)) also occur, albeit
with very small Clebsch-Gordan coefficients, such that these
processes can be neglected [87]. The state |y,) is obtained
using a z-linear polarization [see Fig. 7(d)]. In both cases, a
coherent Rabi oscillation is observed when varying the pulse
duration, and the fidelity of the preparation is limited by that
of the cat state in the ground level. We show in Appendix C
that the coherence of the superposition is maintained during
Rabi flopping, by studying the states reached after 2z pulses.

We study the effect of qubit loss, triggered by sponta-
neous emission, on the superposition states |y;) and |y).
For the cat state |i;), we only expect the population of
the stretched states |m = +J) [see Fig. 7(b)]. To check the

spontaneous emission (.2

FIG. 7. Loss of a qubit pair from superposition states. (a) Preparation method for the Schrodinger cat state |y/;) in the excited electronic
level. Given the small values of their Clebsch-Gordan coefficients, we neglect the couplings between |m = £8) and |m’ = £7). (b) Scheme of
the subsequent spontaneous emission. (c) Top panel: spin projection probabilities measured in the xy plane, as a function of the azimuthal angle
¢. Bottom panel: The corresponding sign observable (X), together with a fit with a Fourier series. The y-axis range has been reduced compared
with Fig. 5(f) to highlight the absence of oscillation. (d)—(f) show the same information for the superposition state |y,) = (|m' = —8) +

Im' = 8))/+/2.
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coherence between them, we measure the sign observable
(X) as a function of the azimuthal angle ¢, as in Sec. IV B.
As shown in the bottom panel of Fig. 7(c), its oscillation is
completely washed out, with a measured Fourier component
3,y = 0.006(10), indicating an absence of coherence. For
the superposition state |y,), we observe dominant projection
probabilities in the states |m = +(J — 1)), corresponding to
the spontaneous emission of a o4 polarized photon, respec-
tively [see Fig. 7(e)]. We do not measure any significant
variation of these probabilities with the azimuthal angle ¢,
excluding coherence between them. We also measure resid-
ual projection probabilities in the stretched states |m = +J),
which occur via the spontaneous emission of a w polarized
photon. The advantage of the sign observable X becomes
clear here: It allows one to test the coherence between the
states |m = +J), without being perturbed by the atoms popu-
lating odd-m states. The measured probabilities in stretched
states coherently oscillate as a function of the angle ¢
[see Fig. 7(f)]. More quantitatively, the sign observable, which
involves even m only, evolves with a Fourier component
3,7 = 0.024(1).

The complete loss of coherence when starting in the cat
state |;) can be interpreted as follows. The spontaneous de-
cay involves two orthogonal polarizations, with a oy polarized
photon emitted when starting in the component |m’' = —J'),
while a o_ polarized photon is associated with the decay of
the state |m’ = J’) [see Fig. 7(b)]. The photon polarization
thus holds complete which path information on the spin state
polarization—a term referring to Einstein’s version of the
double-slit interference experiment [88,89]. In this case, the
coherence between the different paths is erased after sponta-
neous emission.

For the state |,), the most probable quantum jumps corre-
spond to the emission of o and o_ polarized photons, which
carry information about the state polarization [see Fig. 7(e)].
In contrast, the quantum jump associated with the emission
of a r polarized photon does not give this information, which
explains the residual coherence. The measured Fourier coef-
ficient X,; corresponds to 9.7(5)% of the value measured in
the absence of the excitation. This reduction is consistent with
the probability 1/(J + 1) =~ 11.1% of scattering a v polarized
photon for the considered state, showing that this channel fully
preserves coherence.

VI. SUMMARY AND OUTLOOK

In this paper, we show that the 2/-qubit ensemble associ-
ated with an atomic electronic spin J can be partitioned via the
optical coupling to an excited level /' =J — 1. Among these
qubits, 2J — 2 of them constitute the excited level, and the re-
maining two are annihilated by the absorbed photon, in a state
defined by the light polarization. We investigate this process
using atomic dysprosium and use it to probe entanglement in
nonclassical states of spin J = 8. We fully characterize the
nonclassical character of its reduced two-qubit state and study
the increase of entropy upon partition as a smoking gun for
entanglement.

In a second set of experiments, we consider the partition
of an angular momentum J’ = J + 1 of an excited electronic
state. There, a random qubit pair is extracted by spontaneous

Dy atoms B
(2J qubits each)
coherent exchange
of 1 excitations
—Q

el

FIG. 8. Proposed scheme for entangling several Dy atoms in
an optical resonator. An off-resonant optical cavity in the strong-
coupling regime couples an ensemble of N atoms together. For o
polarized cavity light, the total spin projection along z is conserved,
and the cavity mediates the coherent exchange of 1 qubit excita-
tions between atoms. Such couplings can be used to stabilize a W
state, with a single 1 excitation symmetrically shared between the
N x(2J) qubits.

emission towards the ground state J. We show that nonclassi-
cal pairwise correlations are robust to particle loss. In contrast,
we observe that coherent superpositions of states distant in
phase space are very fragile.

In this paper, the study of light-spin interaction is lim-
ited to measurements of the electronic spin. A first extension
would be to collect the spontaneously emitted photon, whose
polarization is entangled with the electronic spin, as for exper-
iments performed with trapped ions, atoms in optical cavities,
or solid-state qubits [90-93]. One would thus explicitly access
the which path information carried by the photon upon spon-
taneous emission of a Schrodinger cat state. More generally,
the photon would allow one to couple qubit pairs from the
electronic spin J = 8 to “flying qubits,” which could then be
manipulated to entangle distant atoms [94], and generalize
quantum communication schemes to a mesoscopic degree of
freedom [95].

Another interesting perspective would be to place the
atomic gas in an optical cavity. The electronic spin J of a
single atom would be coherently coupled to the cavity light
mode, leading to a compound light-spin object [96]. For
an atomic ensemble, the cavity light would also couple the
electronic spins together, similarly to standard ensembles of
spin-1/2 atoms coupled to optical cavities [4,97,98]. For a set
of N dysprosium atoms—each hosting 2J qubits—the size of
the Hilbert space would be (27 + 1), much smaller than the
size 2%V for the same number of qubits realized with spin-
1/2 atoms. This favorable scaling will mitigate decoherence
effects associated with, for example, particle loss.

To be more concrete, we show in Fig. 8 an example of an
application, with an ensemble of N atoms coupled to o po-
larized cavity light. The light mediates the coherent exchange
of |1) excitations among the atoms, which could serve to
stabilize a W state with one excitation symmetrically shared
among N x (2J) qubits. Such many-body entangled states
could feature a strong quantum enhancement of magnetic
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sensitivity [99,100] or serve as a playground for studies of
decoherence.
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APPENDIX A: DEVIATION FROM z ROTATION
SYMMETRY IN THE W AND CAT STATES

The W state |m = —J + 1) is invariant upon rotations
around z, such that all observables should depend on the
polar angle 6 only. In practice, the state prepared close to
the W state is not perfectly rotationally symmetric, because

a) 8 :
AN e f

a0
5
-0.1} o 1
Se® | O os9°
-1 —0.5 0 0.5 1
0 [n]

FIG. 9. Deviation from z rotation symmetry in the prepared W
state. (a) and (b) Projection probabilities I1,, as a function of the
polar angle 0, for ¢; = 0.36(5) rad and ¢, = ¢p; — 7 /2. (c) Pair
Husimi functions Q. inferred from the (a) and (b) data (blue circles
and red squares, respectively). The error bars represent the statistical
uncertainty from a bootstrap random sampling analysis. The line
corresponds to the expected variation for the W state. (d) Distribution
C, as a function of 0. The two azimuthal angles ¢; and ¢, are chosen
to minimize and maximize the measured C,, respectively.

09 = ¢

Y fag? fg
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FIG. 10. Deviation from z rotation symmetry in the prepared
Schrodinger cat state. (a) Pair Husimi functions Qp,;; as a function
of the polar angle 6, for ¢; = 3.3(1) rad and ¢, = ¢; — /2 (blue
circles and red squares, respectively). The line corresponds to the
expected variation for a perfect cat state. (b) Distribution C, as a
function of 6 deduced from the data in (a).

of a residual coherent admixture with other Dicke states. We
measure a small ¢ variation of the measured probability dis-
tributions I1,,(n), as well as the pair Husimi function Qpqi
and distribution C,, deduced from them. We show in Fig. 9 the

FIG. 11. (a) Scheme of the 27 Rabi oscillation starting in a
Schrodinger cat state of the electronic ground level, for an x-
polarized laser excitation. (b) Top panel: spin projection probabilities
measured in the xy plane, as a function of the azimuthal angle ¢.
Bottom panel: the corresponding sign observable (X), together with
a fit with a Fourier series. (c) and (d) show the same information for
a z-polarized laser excitation.
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measured data for two azimuthal angles ¢; = 0.36(5) rad and
¢ = ¢ — /2, for which C, is minimized and maximized,
respectively. The data shown in Fig. 3 of the main text corre-
spond to an average over ¢, the error bars taking into account
this dispersion.

The cat state |m = —J) + |m = J) is not rotationally in-
variant. Yet, its reduced two-body density matrix, given by
Eq. (8), is invariant such that the pair Husimi function Qpai
and distribution C, should depend on 6 only. As for the W
state, we measure a slight variation of these quantities with
¢, as shown in Fig. 10. Since we focus on extracting the
concurrence from the maximum of C,, we show in the main
text the data measured for an azimuthal angle ¢; = 3.3(1) rad
that maximizes C,,.

APPENDIX B: SPIN-1 TOMOGRAPHY USING
THE PAIR HUSIMI FUNCTION

The Husimi function of a spin-1 quantum state p expands
on the spherical harmonics Y;” with £ = 1,2 and |m| < ¢,
as written in Eq. (6). This linear decomposition allows us to
retrieve the density matrix p, as given by Eq. (7), where we
introduce the operators

Ly =L, (BI)

Ly =F(Le £iL,)/V2, (B2)

Q) = \/g (3L - 2), (B3)

Oy = jF\/g [(Ly £iLy)L; + L(L, £iLy)], (B4)
5
Qi = @(Lx +iL,). (B5)

APPENDIX C: COHERENCE OF SUPERPOSITION
STATES DURING RABI FLOPPING

The preparation of superposition states in the excited
electronic state, as studied in Sec. V B, uses coherent Rabi
oscillations, starting in a Schrodinger cat state of the ground
electronic level (|m = —J) + |m = J))/ V2. To check that co-
herence is maintained during the Rabi oscillation, we study it
after a 277 excitation, by measuring the oscillation of the sign
observable (X).

As shown in Fig. 11, we find that the coherence |p_; ;|, es-
timated by the Fourier component X,;, is reduced to 0.202(2)
[0.211(6)] for the x-polarized (z-polarized) excitation, i.e.,
above 80% of the value obtained with no Rabi pulse. These
measurements confirm that coherence is preserved during the
Rabi oscillation.
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