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Comment on “Kosterlitz-Thouless-type caging-uncaging transition
in a quasi-one-dimensional hard disk system”
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Huerta et al. [Phys. Rev. Research 2, 033351 (2020)] report a power-law decay of positional order in numerical
simulations of hard disks confined within hard parallel walls, which they interpret as a Kosterlitz-Thouless
(KT)-type caging-uncaging transition. The proposed existence of such a transition in a quasi-one-dimensional
system, however, contradicts long-held physical expectations. To clarify if the proposed ordering persists in the
thermodynamic limit, we introduce an exact transfer matrix approach to expeditiously generate configurations
of very large subsystems that are typical of equilibrium thermodynamic (infinite-size) systems. The power-
law decay of positional order is found to extend only over finite distances. We conclude that the numerical
simulation results reported are associated with a crossover unrelated to KT-type physics, and not with a proper
thermodynamic phase transition.
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I. INTRODUCTION

The work of Huerta et al. identifies a Kosterlitz-Thouless
(KT)-type caging-uncaging transition in a system of hard
disks confined between parallel walls [1]. That identification
is based on the power-law decay of positional order in numer-
ical simulations near close packing, and is supported by the
detection of a narrow subpeak in the pair distribution function
and of transverse excitation modes in the caging and uncaging
regimes. The proposal is intriguing because the presence of a
phase transition in such a system is physically unexpected.
One-dimensional (1D) and quasi-one-dimensional (q1D) sys-
tems with short-ranged interactions have indeed long been
considered incapable of exhibiting macroscopic phase transi-
tions, and only structural crossovers exist [2–4]. (Singularities
with respect to changes in structural quantities nevertheless
remain possible [5].) KT transitions, however, differ from con-
ventional phase transitions in many respects [6,7]. They leave
no thermal feature in the partition function and its derivatives,
such as the specific heat [8], and are thus “infinite order” in
nature. The critical phase below the KT transition temperature
also differs from conventional ordered phases in that it only
exhibits quasi-long-range order. That critical phase is only
identified from the power-law decay of spatial correlations,
with a critical exponent value that changes with system con-
ditions [7]. Do these features exempt KT transitions from
traditional expectations for q1D systems? If not, how can one
explain the power-law decay of the positional order observed
in the simulations of Ref. [1]?
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These questions motivate our consideration of an exact
transfer matrix scheme that provides equilibrium observ-
ables and correlation lengths in the thermodynamic limit,
and thus sidesteps hurdles associated with thermalization and
finite-size corrections in numerical simulations. Although the
memory and computational complexities of transfer matrix
treatments increase exponentially with the number of pos-
sible pair interactions [9], the approach has already been
demonstrated for q1D hard disks with up to next-nearest-
neighbor interactions [10,11]. The model studied by Huerta
et al. hence lies comfortably within the computationally ac-
cessible regime. However, because KT transitions leave no
thermal signature and because the correlation length given by
the transfer matrix is not directly related to the decay of the
longitudinal pair distribution function g(x), standard transfer
matrix schemes do not suffice. We thus introduce an approach
for planting equilibrium configurations at minimal computa-
tional cost. By broadening the range of g(x) compared to what
Ref. [1] reports, we find that its power-law decay is truncated
at large distances, and hence that the KT-like scaling observed
in numerical simulations results from a smooth crossover
rather than a genuine thermodynamic phase transition.

II. PLANTING METHOD

Because the planting scheme proposed is generic and could
be applied to any system solvable by transfer matrices, we first
describe it in general terms, and then apply it to the specific
q1D system of interest.

A. Transfer matrix setup

Consider a system described by the Hamiltonian

H =
N∑

i=1

V (ai, a′
i ), (1)
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for interactions between a unit ai and its subsequent unit, a′
i =

ai+1. A unit could be, for instance, m subsequent spins (in
a lattice model) or particles (in an off-lattice model) with at
most mth nearest-neighbor interactions.

The key step consists of writing the partition function as
the trace of a product of transfer matrices, such as Z = tr(KN)
for N identical units. For lattice models at inverse temperature
β, matrix entries are

Kaa′ = exp[−βV (a, a′)], (2)

with a and a′ indexing rows and columns, respectively, for
the n possible states taken by a. For continuum-space (off-
lattice) models, a discretization of space in n segments of size
δa similarly gives

Kaa′ = exp[−βV (a, a′)]δa, (3)

In both cases, the resulting n × n transfer matrix can be used
to write

Z = tr(KN) = tr(U�U−1) = λN
0

[
1 + O

(
λ1

λ0

)N]
, (4)

where U = (u0, u1, . . .) is a matrix of eigenvectors. In the
thermodynamic, N → ∞, limit, the leading eigenvalue λN

0
asymptotically dominates the partition function, and hence
the free energy per site is f = − log λ0/β. The ith subleading
eigenvalue can then also be used to obtain the ith correlation
length, ξi = 1/ log(λ0/|λi|).

For 1D and q1D systems with finite-range interactions
between units, the transfer matrix is finite with non-negative
entries. According to the Perron-Frobenius theorem, the lead-
ing eigenvalue λ0 is nondegenerate, i.e., λ0 > |λ1|, and the
entries of left and right eigenvectors associated with λ0, u0

and u−1
0 , are real and non-negative. It then follows that a

system described by transfer matrices always presents a finite
correlation length for finite β and thus cannot undergo a finite-
temperature phase transition. This reasoning should also apply
to finite-pressure KT-type transitions in q1D hard disks, as we
consider below.

B. Generating an equilibrium configuration

Unlike molecular simulations, which provide configura-
tions in real space, transfer matrices are probabilistic objects.
Structural observables commonly accessible in the former
may thus not as easily be obtained from the latter. For in-
stance, although the pair correlation g(x) can be computed
by (inverse) Fourier transforming the structure factor [12],
this approach is not straightforwardly generalizable to many
other structural observables. To sidestep this difficulty, equi-
librium states can be planted for subsequent analysis from the
eigenvectors of these matrices. The marginal probability P(a)
[or P(a)δa in off-lattice models] of a state a in equilibrium
configurations is indeed given by

P(a) = u−1
0 (a)u0(a)∑
i u−1

0 (i)u0(i)
, (5)

and the conditional probability that, given a state of a, the
subsequent state is a′, P(a′|a) [or P(a′|a)δa′ in off-lattice

models] is

P(a′|a) = u−1
0 (a)Kaa′u0(a′)∑
i u−1

0 (a)Kaiu0(i)
= Kaa′u0(a′)

λ0u0(a)
. (6)

Once the leading eigenvector of the transfer matrix is
known, we can propagate an equilibrium configuration of
arbitrary size by the following algorithm.

(1) Generate a “starting” configuration according to Eq. (5)
by initializing a cumulative probability distribution array Q(a)
based on the marginal probability P(a) such that

Q(a) =
a∑

i=1

u−1
0 (i)u0(i) ∼

a∑
i=1

P(i), (7)

for indexed states a = 1, . . . , n, and Q(0) = 0.
(2) Generate a uniformly distributed random variable γ ∈

[0, 1) and choose a state with index a such that Q(a − 1) �
γ Q(n) < Q(a).

(3) Initialize another cumulative probability distribution
array Q(a′|a) for the conditional probability P(a′|a), such that

Q(a′|a) =
a′∑

i=1

Kaiu0(i) ∼
a′∑

i=1

P(i|a), (8)

for indexed states a′ = 1, . . . , n, and Q(0|a) = 0.
(4) Generate a random variable γ again and choose the

subsequent state a′ from Q(a′ − 1|a) � γ Q(n|a) < Q(a′|a).
(5) Propagate subsequent states by setting a ← a′ and re-

peating steps (3) and (4).
Because the state index a denotes a continuous variable

in off-lattice models, the sampling must then be interpo-
lated. Specifically, a and a′ are found by a = f (γ Q(n)) and
a′ = f (γ Q(n|a)|a), where f (·) and f (·|a) are interpolation
functions that map Q(a) �→ a and Q(a′|a) �→ a′, respectively.
For sufficiently large n, the choice of interpolation method
does not significantly affect the result, and for the q1D hard
disk model considered a simple cubic interpolation scheme
suffices.

C. q1D hard disk scenario

We now specialize to the case of hard disks of radius of d in
a channel infinite in the x (longitudinal) direction, and defined
by hard walls a distance D apart in the y (transverse) direction.
The scaled transverse length free to disk centers is thus h =
(D − d )/d . As in Ref. [1], we further specialize to the case
D/d = 3/2. For 1 < D/d < 1 + √

3/2 = 1.866 . . ., at most
nearest-neighbor interactions between disks are geometrically
possible, and thus ai in Eq. (3) is naturally taken as the vertical
coordinates of disk centers, yi. For such a q1D system, the
partition function for the isothermal-isobaric (constant NPT )
ensemble can be written using a transfer matrix approach
[13–15]. Note that the simulations of Ref. [1] were conducted
in the NV T ensemble, for which an exact expression for the
equation of state was recently obtained by one of the authors
[16,17]. Because the differences between ensembles vanish in
the thermodynamic limit (see, e.g., Ref. [18]), however, these
different treatments should lead to equivalent results in the
infinite system-size limit, which is the relevant regime for all
thermodynamic phase transitions.
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An entry of the transfer matrix reads

Kyy′ = exp[−βFσ (y, y′)]
√

δyδy′, (9)

where σ (y, y′) =
√

d2 − (y − y′)2 is the contact distance be-
tween two neighboring disks and F is the force associated
with the longitudinal pressure. Note that we have here re-
placed δa in Eq. (3) with

√
δyδy′. The associated change of

variable does not affect the eigenvalues of the transfer matrix,
but keeps K symmetric even for uneven discretization of y,
and hence ui = u−1

i for all eigenvectors.
At high pressures, i.e., near close packing, disks are mostly

confined near the walls. To improve the numerical accuracy
of the discretization scheme, a change of variable y → t is
suggested [10], such that

y(t ) = at + b tanh(c t ),

where b = h/2, a = h/2 − b tanh(c), and c is adjustable. In
particular, increasing c refines the grid around the walls. The
discretization of the new variable t ∈ [−1, 1] is then uni-
formly spaced by δt and the transfer matrix becomes

Ktt ′ = exp

[
−βFσ (y(t ), y(t ′))

√
dy

dt

∣∣∣∣
t

dy

dt

∣∣∣∣
t ′
δt

]
, (10)

where dy/dt = a + b c sech2(ct ). Results for this regime are
fairly insensitive to different choices of c ∼ O(1) and n �
100. Without loss of generality, we thus set c = 3 and n =
1000. Note that the eigenvalue evaluation is then nearly in-
stantaneous on a standard desktop computer.

The leading and subleading correlation lengths given by
the transfer matrix for this system correspond to the correla-
tion length of the zigzag order, ξy = ξ1, and of the longitudinal
spacing, ξδx = ξ2 [10]. These lengths hence describe the decay
at large distances, |i − j| → ∞, of

gy(|i − j|) = 〈yiy j〉 − 〈yi〉2

∼ (−1)|i− j| exp(−|i − j|/ξy), (11)

gδx(|i − j|) = 〈δxiδx j〉 − 〈δxi〉2

∼ exp(−|i − j|/ξδx ), (12)

respectively. Note that the oscillatory nature of Eq. (11) for
zigzag order is associated with λ2 being negative [10].

From the leading eigenvalues and eigenvectors of K we
can also generate y coordinates of disks according to the
scheme described in Sec. II B. Longitudinal spacings between
neighboring obstacles, δxi, are then generated according to the
distribution rule for the constant NPT ensemble

P(δx) ∼ exp(−βFδxi ), δxi � σ (yi, yi+1). (13)

For each pressure considered, we generate configurations of
longitudinal size L � 500, and compute the pair distribution
function by averaging over 400 independent realizations.

III. RESULTS

Because the transfer matrix is evaluated for the con-
stant NPT ensemble, we first determine the longitudi-
nal force F under the longitudinal number density ρ =

0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

FIG. 1. Correspondence between the longitudinal force and den-
sity for D/d = 3/2. Systems investigated in Ref. [1] and in this
Comment are marked by asterisks and are listed in the embedded
table. The black dashed line denotes the close packing density ρ =
2/

√
3 = 1.1547 . . ..

limN,L→∞ N/(L/d ) (Fig. 1), and then compute g(x) from
planted configurations (Fig. 2). At short distances, the trans-
fer matrix and the simulation results are fully consistent,
including the apparition of a small subpeak at high densi-
ties [see Fig. 2(a) in Ref. [1]]. At long distances, however,
while Ref. [1] reports that g(x) − 1 decays with a charac-
teristic power law beyond a certain density, we find that for
sufficiently large x, g(x) − 1 decays exponentially for all den-
sities considered. For ρ = 1.1111, in particular, we observe
that the power-law-like decay terminates at x ∼ 100, even
though it persists at least up to x ∼ 200 in simulations. Be-
cause the leading correlation length from the transfer matrix,
ξy = 364 (Fig. 3), is then very close to the simulated system
size, N = 400, this discrepancy is most likely a finite-size
correction. The resulting self-interactions in x through the
periodic boundary condition obfuscate the exponential decay
of g(x) − 1. As additional evidence, we note that g(x) com-
puted from the inverse discrete Fourier transform (DFT) of the
structure factor S(q) (obtained as in Ref. [12]) can be made to
look like the simulation results by choosing a discretization
spacing δq that corresponds to a finite system size L = 2π/δq
[Fig. 2(c)].

Is the intermediate-range algebraic decay then an echo of
a two-dimensional transition? The consideration of a purely
1D model suggests not. Recall that for 1D rigid rods of
length d [19,20],

g(x̂) = (1 + p̂)
�x̂
∑
k=1

e−p̂(x̂−k)[ p̂(x̂ − k)]k−1

(k − 1)!
, (14)

where x̂ = x/d and p̂ = βFd are the reduced distance and
pressure, respectively. Note that at high p̂ and small x̂, the
height of the kth peak is approximately the maximal value of
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FIG. 2. Pair distribution function for D/d = 3/2 and different densities at (a) short and (b) long distances obtained from planting, and
(c) from the inverse DFT of the structure factor S(q). In (a), the subpeaks identified in Ref. [1] are clearly visible at short distances. In (b),
the algebraic (power-law-like) decay, however, is clearly truncated at finite distances for all densities considered. Peak heights are fitted to the
decay form of Eq. (17) (dashed-dotted) and to an exponential (dashed) decay form at intermediate and long distances, respectively. In (c), an
estimate of the finite-size correction in simulations is obtained by setting the effective system size L in the spacing δq = 2π/L of the DFT,
which gives g(x) = g(L − x) as in periodic boundary condition. The excess of g(x) at large x for L/d = 400/ρ (arrow) qualitatively matches
simulation results.

the kth summand,

x̂k
max = k + (k − 1)/p̂, (15)

g
(
x̂k

max

) = (1 + p̂)
[(k − 1)/e]k−1

(k − 1)!

= 1 + p̂√
2π (k − 1)

+ O
[(

1

k − 1

) 3
2

]
. (16)

Note also that at high pressures, disks in the q1D sys-
tem studied can be viewed as 1D hard rods of effective
length d ′ = d

√
1 − h2 = d

√
3/2. Because the variance of y is

nonzero, however, the peak height of g(x) is also reduced by a

FIG. 3. Correlation length corresponding to zigzag order, ξy,
for D/d = 3/2 (blue line). The transformation point ρost = 1.0526
(asterisk) identified by Ref. [1] coincides with the onset of the expo-
nential divergence (red dashed fitting line) of ξy with pressure. Inset
(a): Same quantity over a wider range of βF . Inset (b): Correlation
length corresponding to the longitudinal spacing, ξδx , under the same
conditions. The transformation point there coincides with the maxi-
mum of ξδx .

constant multiplicative factor, c < 1. By replacing p̂ = βFd ′

and k = xmax/d ′+1/p̂
1+1/p̂ , we thus obtain an approximate form for

the algebraic x−1/2
max decay of the peak height,

g(xmax) − 1 = c
1 + p̂√

2π (k − 1)
− 1. (17)

Setting c = 0.7 nicely fits both ρ = 1.1111 and 1.1400 for
g(xmax) > O(1) and xmax > O(1) [Fig. 2(b)]. For g(xmax) −
1 � O(1), however, the single summand approximation to
g(x) breaks down. The algebraic decay thus only persists up
to

√
k ∼ p̂, i.e., x/d ∼ (βFd )2. Interestingly, the exponential

decay of g(x) − 1 as x → ∞, which truncates the algebraic
decay, is also a 1D feature [21]. This decay is controlled by
the characteristic length ξg(x) of a Tonk gas [11, Eq. (24)]. As
h → 0, the rows of the transfer matrix converge, and hence
the associated correlation lengths vanish, but ξg(x) persists. In
other words, as long as h is small, the algebraic decay reported
in Ref. [1] is essentially a 1D feature, and thus not an echo of
a KT-type transition. Beyond the nearest-neighbor interaction
regime, h >

√
3/2, however, the decay of g(x) does genuinely

become quite rich [22].
Finally, Ref. [1] investigates the distribution of longitudinal

spacing δx, over which windowlike defects become substan-
tial, and identified the onset of caging-uncaging transforma-
tion around ρost = 1.0526. Interestingly, this signature can
also be found in ξy and ξδx. These correlation lengths, which
have been previously studied for q1D systems [10,11,14]—
including for D/d = 3/2—are shown in Fig. 3 for reference.
The reported ρost coincides with the onset of exponential
growth of ξy with pressure (longitudinal force), as analyzed
in Ref. [14]. It further coincides with the maximum of ξδx

reported in Ref. [11]. We thus conclude that the phenomenon
reported in Ref. [1] is also associated with that crossover.

IV. SUMMARY

Based on direct evidence gleaned from an exact plant-
ing scheme derived from transfer matrices, we have

038001-4



COMMENTS PHYSICAL REVIEW RESEARCH 3, 038001 (2021)

demonstrated that the power-law-like decay of positional
order reported Ref. [1] only persists over finite distances.
The preasymptotic power-law decay of the pair correlation
is rooted in 1D physics, and not in a KT-type transition or
its echo. The suggested uncaging transformation in Ref. [1]
instead coincides with anomalies identified in earlier stud-
ies, and may thus be considered as a part of that same
crossover.

Data relevant to this work have been archived and can be
accessed at the Duke Digital Repository [23].
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