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Electro-osmotic diode based on colloidal nano-valves between double membranes
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The rectification of electro-osmotic flows is important in micro- and nano-fluidics applications such as
micropumps and energy conversion devices. Here, we propose a simple electro-osmotic diode in which colloidal
particles are contained between two parallel membranes with different pore densities. While the flow in the
forward direction just pushes the colloidal particles toward the high-pore-density membrane, the backward flow
is blocked by the particles near the low-pore-density membrane, which clog the pores. Nonequilibrium molecular
dynamics simulations show a strong nonlinear dependence on the electric field for both the electric current and
electro-osmotic flow, indicating diode characteristics. A mathematical model to reproduce the electro-osmotic
diode behavior is constructed, introducing an effective pore diameter as a model for pores clogged by the
colloidal particles. Good agreement is obtained between the proposed model with estimated parameter values
and the results of direct molecular dynamics simulations. The proposed electro-osmotic diode has potential
application in downsized microfluidic pumps, e.g., the pump induced under AC electric fields.
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I. INTRODUCTION

Micro- and nano-scale transport systems have attracted
interest for application in fields ranging from bio- and medical
technologies to new energy conversion and storage [1–9].
Various devices exploiting the phenomena particular to the
small-scale flows have been proposed [10–12]. In typical
micro- and nano-fluidic devices, an external field, such as an
electrical or chemical potential field, applied to an electric
double layer formed in the vicinity of a solid-liquid interface,
induces electrokinetic phenomena, which are typically ac-
companied by interfacial liquid flow. The high surface area to
volume ratio of micro- and nano-scale systems enhances these
phenomena, which have thus been studied for application as
the driving force in small-scale transport systems [13,14].

A representative electrokinetic phenomenon is the electro-
osmotic flow, which is induced by an external electrical field
[15–19]. Since the flow is directly induced by the electric
field, i.e., there are no moving parts, it is recognized as
a key technique for downsizing of pumps. Applications of
porous materials, e.g., a glass porous material, as a source of
many pores were extensively studied as a promising setup for
downsized pumps [20–22]. The use of small-size fabrication
techniques such as microlithography and chemical etching
techniques on a substrate was alternatively studied [23,24].
Recently, all-plastic nano-fabrication of electro-osmotic flow
membranes was reported [25]. Along with these experiments,
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theoretical analyses for predicting the flow rate [26–29] and
molecular dynamics (MD) simulations [30–33] have also been
conducted for nanosized systems.

One of the challenges for the practical application of
electro-osmotic flow is that the long-term application of a
DC voltage as an external field electrolyzes water. To pre-
vent the electrolysis of solvent water, many attempts have
been made by using, e.g., traveling-wave potentials [34],
three-dimensional stepped electrode arrays [35], ratcheted
electrodes [36], and an AC voltage whose period is shorter
than a characteristic timescale of electrolysis [37,38]. In these
methods, rectifying the forward and backward electro-osmotic
flows is commonly a key ingredient, to induce a net one-way
flow.

The rectification and control of flows have been exten-
sively studied [15,39–51] for various types of small-scale
systems. Particularly, interest in rectification at the nanoscale
has rapidly grown. Examples of nanoscale rectification
devices include those with membranes that have asymmet-
ric pores, such as conical pores [38,52–58], nanopipettes
[59–63], and nanotubes [64,65]. Other asymmetries have also
been considered, including those caused by the asymmet-
ric distribution of surface charges at a solid-liquid interface
[66–71], directed applied voltage [72–74], and combinations
of nanoporous media and ion-exchange membranes [75]. In
addition, the classical valve structure has been adapted for
nanoscale systems [76]. This approach is promising because
a large difference between the forward and backward flows is
mechanically produced. However, complex nano-fabrication
methods and mechanical malfunction of sensitive structures
hinder adoption. A system with a simpler structure that spon-
taneously and mechanically prevents backward flow, such as
that for microscale rectification based on active filter clogging
[77,78], would efficiently rectify nanoscale electro-osmotic
flow, expanding possible applications.
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FIG. 1. Electro-osmotic diode system. (a) An illustration, and
(b) the model system considered in the simulations. In the model
system, membrane M1 has a physical pore, and membrane M2 is
modeled as an energy barrier that affects only the colloid particle.

In the present study, we propose an electro-osmotic diode
made of two electro-osmotic flow membranes, that quasime-
chanically suppress backward flow when an electric field is
applied in the backward direction. More specifically, the sys-
tem consists of two membranes with different pore densities
and colloidal particles in between [see Fig. 1(a)]. When an
electric field is applied in the forward direction, the colloidal
particles approach the high-pore-density membrane, which
has little impact on the generated electro-osmotic flow. The
other membrane has many fewer pores, so when an electric
field is applied in the opposite direction, the colloidal particles
plug the pores, blocking the backward electro-osmotic flow.
This simple diode system highlights potential application in
creating a one-way flow using the electro-osmotic flow under
an AC electric field as mentioned above, if the typical period
is sufficiently longer than the relaxation time of the colloid
motion.

We conduct MD simulations of the proposed system to
demonstrate that both the electric current and electro-osmotic
flow rate exhibit strong nonlinearity with respect to the elec-
tric field, to show a performance as an electro-osmotic diode.
In order to confirm the observation, next we construct a
mathematical model of the electro-osmotic diode. Here we
introduce a new parameter, what we call an effective pore
diameter, which changes depending on the existence proba-
bility of colloidal particles near pores. The theoretical model
for electro-osmotic flow through a cylindrical pore of a finite
length is extended using the effective pore diameter. The exis-
tence probability density functions of colloidal particles near
pores are expressed in terms of the solutions of the Fokker-
Planck equations for the motion of colloidal particles. The
parameters in the model equation are estimated using inde-
pendent MD simulations, which are dedicated to measuring

the properties of colloids. The proposed model with these
estimated parameters is shown to reproduce the simulation
results for the entire system.

II. SETUP AND SIMULATION

A. Electro-osmotic diode

Let us consider a system of two membranes M1 and
M2, placed in parallel in the direction perpendicular to the
z axis, and colloidal particles between the membranes. The
particle size is slightly larger than the pore diameter, D, in
the membranes. As illustrated schematically in Fig. 1(a), the
number of pores for membrane M1 is comparable to that
of the colloidal particles, whereas that for membrane M2 is
higher. The colloidal particles are positively charged, with a
charge q per particle, and the walls of the pores are negatively
charged. If an electric field Ez in the z direction is applied
from M1 to M2, the colloidal particles are induced to flow
by electrophoresis toward membrane M2. An electric field
applied in the opposite direction would drive the colloidal
particles toward M1. In the latter case, we expect that the
current and electro-osmotic flow induced by Ez (< 0) will be
blocked by particles near pores.

The systems considered here for the simulations and the-
ories are on the scale of nm ∼ tens of nm. Corresponding
experimental setups could be constructed using materials
such as polycarbonate [25], polyethylene terephthalate (PET)
[37,79], and carbon [80,81] for the membranes. The track-
etching technique [82,83] is able to control the size and the
number of pores, as done for creating nanofiltration mem-
branes for molecular sieving. The electro-osmotic flow is then
created using an aqueous electrolyte solution such as NaCl
solution. Nanoparticles such as gold nanoparticles [84], silica
particles [85], and hydrous zirconia particles [86] are possible
candidates for the colloidal particles.

In the present study, to focus on the interaction between the
pore in membrane M1 and the colloidal particles, the model
system shown in Fig. 1(b) is considered as an abstracted
system for analysis, where membrane M1 with thickness L
has a single pore with a diameter D, and a single colloidal
particle exists in the solution. Membrane M2 is modeled as
a completely semipermeable membrane with a virtual energy
barrier that affects only colloidal particles; i.e., the colloidal
particles are completely rejected by M2 whereas the solvent
freely passes through. Assuming periodic boundary condi-
tions in the x and y directions, we investigate the behavior
of the current density and electro-osmotic flow of this system
using MD simulations.

B. Molecular dynamics simulations

In this study, MD simulations are performed with the mem-
branes, colloidal particle, and solvent modeled using particles.
The Lennard-Jones (LJ) potential is used for interparticle in-
teractions. The potential energy for the pairwise interaction is
E = 4ε[(σ/r∗)12 − (σ/r∗)6] for r∗ < rc, and zero otherwise.
Here, r∗ is the distance between the center of the interacting
particles, and ε and σ are parameters corresponding to the
potential depth and diameter of the particles, respectively; rc

is the cutoff parameter. In the present study, common values

033289-2



ELECTRO-OSMOTIC DIODE BASED ON COLLOIDAL … PHYSICAL REVIEW RESEARCH 3, 033289 (2021)

of LJ parameters, namely ε0 and σ0, are assigned to all the LJ
particles, and the cutoff distance is rc = 2.5σ0.

Throughout the paper, the physical quantities are scaled
using the following characteristic quantities: length σ0,
mass m0, time τ0 = σ0

√
m0/ε0, energy ε0, temperature T0 =

ε0/kB, charge q0 = √
4πε0σ0ε0, and electric field E0 =

ε0/

√
4πε0σ

3
0 ε0, where kB is the Boltzmann constant and ε0

is the permittivity of vacuum.
A snapshot of the MD simulation, illustrating the compu-

tational system, is shown in Fig. 1(b). We use a seven-layer
hexagonal close-packed structure stacked in the z direction as
membrane M1, the middle layer of which is placed at z =
Lz/4, with Lz being the system size in the z direction. A pore
at the center of the membrane is created by removing particles
less than 1.2σ0 away from the center line. The uniformly dis-
tributed 12 particles on the pore wall are monovalent anions,
where the charge of each anion is −q0. Membrane M2, which
is a semipermeable membrane, is modeled by a virtual energy
barrier that affects only the colloidal particle. Specifically, we
assume the following Gaussian potential barrier:

U = U0 exp[−a0(z − z0)2], z < σ0, (1)

where the height of barrier U0 is set to 30ε0, which is suf-
ficiently large to prevent the colloidal particle from passing
through M1. The center of the barrier is at z0 = 3Lz/4 and the
parameter a0, which determines the potential width, is 10σ−2

0 .
The colloidal particle is composed of 12 cations located at

the vertices of an icosahedron with a diagonal length of 2σ0.
The net charge of the colloidal particle is q; i.e., the charge
of each ion is q/12. The electrolyte solution consists of 2410
particles, including 20 monovalent anions, and 32 − q mono-
valent cations, where the number of cations is determined
such that the total charge in the system (including the surface
charge on the pore wall) is zero.

We use the open-source package LAMMPS [87] for the
MD simulations. The velocity Verlet method is employed for
the time integration of the Newton equation for each particle.
To deal with the long-range Coulomb interaction, we employ
the particle-particle-particle-mesh (PPPM) method [88]. A
periodic boundary condition is applied in all directions and
the NVT ensemble is used to maintain the temperature of the
system at T0. The time step is dt = 0.002τ0. The typical size
of the system is Lx = Ly = 10σ0 in the x and y directions and
Lz is Lz ∼ 40σ0. The precise value of Lz is determined such
that the pressure in the z direction is (1.0 ± 0.1)ε0/σ

3
0 .

The simulation results for various values of colloidal par-
ticle charge q are shown in Fig. 2. The current Iz and the
electro-osmotic flow rate Qz are plotted as functions of the
electrical field Ez in the range −0.7E0 � Ez � 0.7E0. To ob-
tain these results, the system is first equilibrated with no
electric field for 105 time steps before the production run,
with the pressure kept at ε0/σ

3
0 and the temperature kept at

T0. Then the electric field is turned on and the production run
is carried out for more than 107 steps. The current and flow
rate at a time instance are calculated as Iz = (S/V )

∑
ions qivzi

and Qz = (1/N )
∑

solution vzi, where qi and vzi are the charge
and velocity in the z direction of a particle, S and V are respec-
tively the area in the x-y plane and the volume of the measured
region, and N is the number of the measured particles. These

FIG. 2. Nonlinear response of electro-osmotic diode obtained
using MD simulations. (a) Current Iz and (b) electro-osmotic flow
rate Qz as functions of electric field Ez for various values of colloidal
particle charge q. The lines are the corresponding results obtained
from the model described in Secs. III and IV. The error bars indi-
cate the standard deviation for the data obtained for different initial
configurations.

instant values are averaged over the last 8 × 106 time steps of
the production run. We perform three production runs for each
case using different initial configurations. Each point in Fig. 2
is the mean of three values and the lines are the results of the
model (see Sec. III for details).

Both the current Iz and flow rate Qz for q > 0 clearly
exhibit a nonlinear dependence on the electric field Ez. Gen-
erally, the flow for Ez < 0, the backward flow, is suppressed,
and completely blocked for q = 6q0. For Ez < 0, the colloidal
particle is dragged close to the pore of M1 and serves as
a valve that blocks the current and flow through the pore.
A large colloidal particle charge enhances this effect. To
demonstrate the behavior of the colloidal particle, Fig. 3
shows the probability distribution function for the colloidal
particle along the z axis for q = 6q0 and Ez = ±0.7E0. It is
confirmed that the colloidal particle is mostly near membrane
M1 under the backward electric field (Ez = −0.7E0), whereas
it is sufficiently far from M1 under the forward electric field
(Ez = 0.7E0).

The MD results suggest that the nonlinear behavior in
the current and flow stems from the effective pore size
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FIG. 3. Behavior of colloidal particle under electric field applied
in (a) forward (Ez = 0.7E0) and (b) backward (Ez = −0.7E0) direc-
tions. The horizontal axis represents the position along the z axis and
the vertical axis is the existence probability of the colloidal particle
in the z direction pz(z) (blue solid line; see Sec. IV for details).

being decreased by the colloidal particle. We thus construct
a theoretical model that captures the nonlinear responses,
introducing an effective pore diameter that depends on the
existence probability of the colloidal particle in the vicinity
of the pore. Using the effective pore diameter, we extend the
theoretical model proposed by Sherwood et al. [27], which
gives the current and electro-osmotic flow induced in a cylin-
drical pore of finite length. The model equations are given in
the next section, followed by a comparison between the model
and the results of the MD simulations in Sec. IV.

III. MODELING OF ELECTRO-OSMOTIC DIODE

In this section, we develop a mathematical model for the
electro-osmotic diode described in the previous section to
reproduce the MD results of Fig. 2. First, we outline the
model equations for the current and electro-osmotic flow in
a cylindrical pore of finite length proposed by Sherwood et al.
[27], which we employ to express flows without colloidal
particles. We then develop a model equation for the effective
pore diameter, which depends on the existence probabilities of
colloidal particles near the pore. The Fokker-Planck equations
governing the existence probabilities are summarized and the
analytical solutions are derived.

A. Electro-osmotic flow through nanopore

We begin the model construction by considering the cur-
rent and electro-osmotic flow through a cylindrical pore of
finite length L and diameter D as shown in Fig. 4. Here, we

FIG. 4. Schematic diagram of cylindrical pore of length L and
diameter D considered in derivation of Eqs. (4) and (8).

give a brief derivation of the model equations, the details of
which are found in Refs. [27,28].

In the linear response regime, the current Iz and electro-
osmotic flow rate Qz are written as follows:

Iz = −G��, (2)

Qz = −H��, (3)

where G is the conductance, H is the electro-osmotic flow co-
efficient, and �� is the electrical potential difference between
the two sides of the membrane. Before giving the explicit ex-
pressions for G and H for a finite-length cylindrical pore, we
consider the extreme cases of a very thin membrane (L � D)
and a thick membrane (L � D).

For L � D, the membrane is regarded as a zero thickness
sheet with a pore, where the entrance effect is dominant.
The conductance is proportional to the diameter, namely
Gm = κD, where κ is the bulk electrical conductivity of the
solution. If we restrict ourselves to the small Debye length
regime (λd � D, as is true in the present MD simulations), the
electro-osmotic flow coefficient is written as Hm ∼ Dσmλd/μ,
where μ is the solution viscosity and σm is the charge den-
sity along the rim of the pore. For a long cylindrical pore
(L � D), the conductance is Gc = πD2κ/(4L). For a small
Debye length λd � D, the electro-osmotic flow coefficient
is written as Hc ∼ πD2σcλd/(4μL), where σc is the surface
charge density on the cylinder wall. Note that here and in what
follows we use subscript m to represent quantities for the thin
membrane with a pore (L � D), and subscript c for the long
cylindrical pore (L � D).

We now give the expressions of G and H for a cylindrical
pore of finite length L using the coefficients for the limiting
cases mentioned above. The conductance G is simply obtained
by combining the effects of the entrance and the cylinder in
series:

G = (
G−1

m + G−1
c

)−1 = κ

(
4L

πD2
+ 1

D

)−1

. (4)

In the expression of the electro-osmotic flow coefficient H ,
we need to take into account the effect of internal pressure
difference �P̃ , which is generated between the ends of the
finite-length cylinder (see, e.g., Ref. [89]). For convenience
in the following discussion, we denote the electrical po-
tential difference between the two ends of the cylinder by
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�φ̃. The internal values �P̃ and �φ̃ are obtained using the
two continuity equations for the current and flow rate. More
specifically, the continuity of the current through the mem-
brane is written as

Iz = Gm(�� − �φ̃) = Gc�φ̃, (5)

where the left-hand side of the second equality is the current
outside the membrane and the right-hand side is that inside
the membrane. The continuity of the flow rate Qz is written
in terms of the flow rates generated by both the potential
difference and the pressure difference [89]:

Qz = Hm(�� − �φ̃) − Lm�P̃ = Hc�φ + Lc�P̃, (6)

where Lm = −D3/(24μ) is Sampson’s formula [90] for the
permeance of a pore on an infinitely thin sheet and Lc =
−πD4/(128Lμ) is Poiseuille’s law for the permeance of a
cylindrical pipe. The left-hand side of the second equality
is the sum of the flow rates outside the membrane induced
by the electrical potential and pressure differences, and the
right-hand side is that inside the cylinder. Now the explicit
expressions of �φ̃ and �P̃ are given by solving Eqs. (5) and
(6), and the flow rate is then calculated using the first equality
of Eq. (6) as follows:

H = Qz

��
= LmHcG−1

c + LcHmG−1
m

(Lm + Lc)
(
G−1

m + G−1
c

) (7)

= (λd/μ)(Dσm + 16Lσc/3π )

(1 + 4L/πD)(1 + 16L/3πD)
. (8)

B. Effective pore diameter

In our model of the electro-osmotic diode, the change in
the current and flow is captured by introducing the effective
pore diameter Deff , which replaces D in Eqs. (4) and (8) to
capture the effect of the presence of a colloidal particle near
the pore entrance. We propose the following form for Deff :

Deff = D exp
{−α

[
Pz(q, Ez ) − P0

z

][
Pxy(q) − P0

xy

]}
, (9)

where α > 0 is a model parameter (constant), Pz(q, Ez ) is
a quantity proportional to the probability that the colloidal
particle is close to membrane M1, and Pxy(q) is related to
the probability that the colloidal particle is around the pore;
P0

z and P0
xy are the values at q = 0. Because Pxy represents the

colloidal particle motion in the x-y plane, it is assumed to be
independent of Ez.

In deriving this simple model expression, we assume the
small variation in Deff is related to the probability p∗ [which
represents the variables in the exponential in Eq. (9)] such that
d p∗ ∼ −(DeffdDeff )/(πD2

eff ); i.e., p∗ is in proportion to the
ratio of the variation in pore area. Equation (9) is then obtained
by integrating it under the requirement of Deff = D at p∗ → 0.
Accordingly the essential feature of the diode is captured by
this equation. If the colloidal particle is sufficiently far from
M1 and thus Pz ∼ 0, then the effective diameter is equal to the
pore diameter (Deff ∼ D). In contrast, if the colloidal particle
is near M1 (Pz � 0) and around the pore (Pxy � 0), then the
pore is completely clogged (Deff ∼ 0).

In the following subsection, we discuss the analytical
expressions for Pz and Pxy using the solutions of the Fokker-
Planck equation.

C. Fokker-Planck equation for colloidal particle motion

Here, we discuss the motion of the colloidal particle em-
ploying the Fokker-Planck equations to obtain the expressions
for the parameters Pz and Pxy, which are included in the ef-
fective diameter. The colloidal particle in the solution under
an electrical field is subjected to the electrophoretic force
and random forces from the solvent particles, which leads to
advection and diffusion. In the following, the Fokker-Planck
equations governing the probability density under this situa-
tion are separately formulated for motion along the z axis and
in the x-y plane.

The Fokker-Planck equation for the probability density
function pz is

∂ pz

∂t
= ∂

∂z

[
(Apz ) + ∂

∂z
(Dpz )

]
, (10)

where the coefficient A(q, Ez ) corresponds to advection and D
is the diffusion coefficient for the particle, which we assume to
be independent of q and Ez. In the steady state, the analytical
solution is written as

pz(z) = p0 exp

(
−Az

D

)
, (11)

p0 = AD−1

[
exp

(
− A

D z1

)
− exp

(
− A

D z2

)]−1

, (12)

where z1 and z2 are the positions of boundaries at the surface
of M1 and M2, respectively (see dashed lines in Fig. 3).

Next, we focus on the motion of the colloidal particle
in the x-y direction. We consider the existence probabil-
ity distribution pr in the cylindrical coordinate system. The
Fokker-Planck equation is written as follows:

∂ pr

∂t
= 1

r

∂

∂r
(Arr pr ) + D

[
1

r

∂

∂r

(
r

∂

∂r

)]
pr . (13)

Here, we assume that coefficient Ar is inversely proportional
to r2, i.e., Ar (q, r) = CA(q)/r2, to take into account radial
advection due to electrical interaction between the charged
particle and the pore. Then, the following analytical solution
is obtained:

pr (r) = pr0 exp
( CA

Dr

)
, (14)

pr0 =
[∫ rmax

0
r exp

( CA

Dr

)
dr

]−1

. (15)

The parameters in the effective diameter in Eq. (9) are
defined as Pz = pz(z1) and Pxy = ∫ δr

0 r′ pr (r′)dr′ where δr is
the radius of the vicinity region around the pore. We discuss
the actual values of these parameters corresponding to the MD
setup in Sec. II with the aid of independent MD simulations
conducted to estimate parameters.

IV. COMPARISON OF MODEL WITH MD SIMULATIONS

A. Model parameters

Here, we determine the actual values of the model param-
eters for the system used for our MD simulations. We first
estimate the diffusion coefficient D for the colloidal particle
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in the solution. To this end, we perform independent MD sim-
ulations for Brownian motion of the colloidal particle in the
bulk electrolyte solution (see Appendix A for details). From
the mean square displacement of the particle, the diffusion
coefficient is obtained as D = 1.7 × 10−2σ 2

0 /τ0. Because the
colloidal particle charge has little effect on diffusive motion,
we use this value throughout the following discussion.

We next consider the effect of advection in the z direction,
which is incorporated in the model via the parameter A(q, Ez )
in Eqs. (11) and (12). The motion of the colloidal particle with
various values of charge q is tracked using an MD simulation
setup where the colloidal particle is placed between two vir-
tual membranes (same as M2 used in Sec. II) with an electric
field Ez applied (see Appendix B for details). We obtain the
probability density function for the colloidal particle along
the z axis, and determine the values of the coefficient A at each
(q, Ez ) by fitting the analytical solution given by Eqs. (11) and
(12) using the value of D obtained above. We found the form
A = βqEz with a constant β = −1.3 × 10−2σ 2

0 /ε0τ0.
Finally, we examine the effect of advection in the x-y direc-

tion to determine the value of CA in Eqs. (14) and (15). Here,
we consider the situation where the motion of the colloidal
particle is constrained near membrane M1 (see Appendix C
for details). This constraint is realized by placing the virtual
membrane (same as M2) at a distance of one diameter of the
colloidal particle away from M1. To focus on the motion in
the x-y plane, the pore charges are distributed as in Sec. II,
but the physical pore is not taken into account. Using the
same value for D, we determine the value of CA by fitting the
analytical solution given by Eqs. (14) and (15) to the existence
probability density functions obtained with these constrained
MD simulations. Accordingly, the value of CA was obtained
in the form CA = γ q, with γ = 6.2 × 10−4σ 3

0 /τ0q0.

B. Comparison with full MD simulation

With the obtained values of the model parameters D, A,
and CA from independent MD simulations, we are able to
estimate the effective diameter of the pore in the presence
of the colloidal particle. The current and electro-osmotic flow
estimated by the model given in Eqs. (2), (3), (4), and (8) using
the effective pore diameter Deff defined in Eq. (9) are shown in
Fig. 2. Here, the free parameter α is set to α = 6.7. Both the
current and electro-osmotic flow rate are in good agreement
with the full MD simulation results, showing correct nonlinear
behavior of an electro-osmotic diode. The results indicate that
with appropriate values of model parameters, the performance
of the electro-osmotic diode can be approximately estimated
from the model equation as a function of the charge of the
colloidal particle q and electric field Ez.

A direct comparison of the value of the effective diameter
Deff is shown in Fig. 5. Here, the values of Deff for the full
MD simulations are inversely computed from the MD results
in Fig. 2 using Eqs. (2), (3), (4), and (8) with the diameter D
as an unknown parameter. Good agreement between the MD
simulations and the model equation is obtained.

The other physical parameters in the model are set as fol-
lows. Parameters such as the surface charge densities σc and
σm were determined from the geometrical setup. The electri-
cal conductivity κ and viscosity μ, which are related to the

FIG. 5. Effective diameter of nanopore Deff as a function of elec-
tric field Ez for various values of colloidal particle charge q. The
symbols indicate the values estimated from the full MD simulation
and the lines indicate the model given in Eq. (9).

properties of the electrolyte solution, could also be measured
independently. In the comparison above, however, to bypass
the independent measurements of these parameter values, we
obtained them from a linear approximation of the current and
flow rate in the region Ez � 0, where the pure current and pure
electro-osmotic flow are approximately obtained because the
colloidal particle is absent near the pore.

V. CONCLUDING REMARKS

In this study, we proposed an electro-osmotic diode that
consists of colloidal particles between two membranes. The
difference in pore density between two membranes makes
the colloidal particles serve as nano-valves. The rectification
of the current and electro-osmotic flow is observed in MD
simulations of the entire system. We established an analytical
model that captures the key feature of the electro-osmotic
diode, i.e., the colloidal nano-valve, where a colloid particle
clogs the pore to prevent the backward current and flow.

The behavior of the colloidal nano-valve is modeled em-
ploying the introduced effective pore diameter, which depends
on the existence probability density functions around the pore,
as defined in Eq. (9). With the estimated model parameters, we
obtained the forms of the probability density functions using
the analytical expressions for the Fokker-Planck equations for
the advection and diffusion of a particle. In our comparison
with the full MD simulations, we estimated the parameter
values using several independent MD simulations of colloidal
motion, namely a bulk simulation to determine the diffusion
coefficient, and two simulations for a colloidal particle in
closed domains to determine the advection parameters in the
z and x-y directions. Using the obtained parameter values, the
full MD simulation results are successfully reproduced by the
model equation, as shown in Figs. 2 and 5. This confirms that
the proposed model reproduces the essential mechanism of the
colloidal nano-valve. The quantification of the free parameter
α is obtained via a top-down estimation in the comparison.
Though one-time calibration of α is required for direct com-
parison, investigation of the diode performance for various
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situations becomes possible once the value of α is identified.
Further investigation into the microscopic colloidal particle
motion near the pore would allow us to determine the value of
α using a bottom-up approach. This topic will be considered in
future work. We also note here that this idea of effective pore
diameter has other potential applications, such as molecular
sieving, nanofiltration, and transports in porous media such as
in liquid electrolyte secondary batteries.

Throughout the paper, the membrane with a high number
density of pores (membrane M2) is regarded as a complete
semipermeable membrane, in which only the colloidal parti-
cle is affected by the potential barrier. This assumption was
made to focus on the geometrical constraint of the colloidal
particle. In a real membrane, however, the electro-osmotic
flow is also driven in the pores in M2. This effect might not
be negligible, and it would greatly enhance the magnitude of
the current and the electro-osmotic flow while maintaining the
basic mechanism of the nano-valves. Studies with the explicit
configuration of M2 would thus reveal this flow enhancement.
Furthermore, the assumption of abstract materials for the col-
loidal particles, membranes, and electrolyte solution can be
replaced by the adoption of practical materials. Taking into
account real materials, along with the design of appropriate
experimental setups, is also a future research topic.

The proposed electro-osmotic diode is constructed with
combining different physics, namely the electro-osmotic flow
occurring in nano- and micro-pores, electrophoretic motion of
colloidal particles, and the mechanical valve effect. We hope
this crosscutting idea, including the mathematical modeling,
will promote interactions among scientists in different fields.
On the practical side, the present diode has potential applica-
tion in rectifying flows under an AC electric field if the period
is sufficiently longer than the characteristic relaxation time
of the rectification. The nano-valves allow asymmetric flow
and block backward flow almost completely if the physical
parameters are appropriately chosen. Therefore, more effi-
cient rectification compared to that achieved by existing AC
electro-osmotic systems is expected. We hope that the present
simple configuration of the diode system will accelerate the
development of practical electro-osmotic pumps in micro- and
nano-fluidic devices.
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APPENDIX A: DIFFUSIVE MOTION
OF A COLLOIDAL PARTICLE

The bulk MD simulations are performed to investigate the
diffusive motion of a colloidal particle. The colloidal particle
is put in a cube simulation box as shown in Fig. 6. The system
contains 6290 solution particles including 50 − q monovalent

ions

colloidal particle

FIG. 6. The system of the bulk MD simulation. The system
consists of a colloidal particle and solution. The periodic boundary
conditions are assumed in all directions.

cations and 50 monovalent anions. The initial configuration
is equilibrated such that the pressures for all directions are
at (1 ± 0.1)ε0/σ

3
0 . The colloidal particle with charge q has

the same structure as that of Fig. 1 in the main text. No
electric field is applied. The colloidal particle charge is set at
q (= 6, 3, 2, 0 q0), which is used in the full MD simulations
in Fig. 2.

After a long time has passed, the mean square displace-
ment (MSD) 〈r̃2〉 = (1/3)〈x2〉 becomes proportional to time
t , which is a typical feature of diffusive motion. The MSD is
then written in the form 〈r̃2〉 = 2Dt with D being the diffusion
coefficient. The plot of the MSD for the cases of q = 6q0

is shown in Fig. 7. The diffusion coefficient D is obtained
from linear fitting in the long-time regime. Practically, we
used the data for t � 20τ0, which is sufficiently larger than
the mean free time. The colloid charge had little impact,
and the mean value of the diffusion coefficient was obtained
as D = (1.72 × 10−2 ± 0.09)σ 2

0 /τ0. The simulations were

FIG. 7. The mean square displacement (MSD) versus time ob-
tained from the bulk simulations, for the case of q = 6q0. The
diffusion coefficient is calculated from slope between t = 20τ0 and
100τ0.
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ions

colloidal particle

electric field

FIG. 8. The system of MD simulations. A colloidal particle is put
between two potential barriers M1 and M2.

performed for 107 steps with the time step dt = 0.002τ0.
Three runs with different initial configurations were used for
each q. In obtaining the MSD for each run, samples for the
time window of 100τ0 (5 × 104 steps) were averaged with
shifting the window by 1000 steps.

APPENDIX B: ADVECTION OF A COLLOIDAL PARTICLE
ALONG THE ELECTRIC FIELD

The coefficient for the advection in the Fokker-Planck
equation (A in the main text) is evaluated using the sys-
tem in which both membranes M1 and M2 are the virtual
membrane of potential barriers as shown in Fig. 8. The
colloidal particle with the charge q has the same structure
as in Fig. 1. The system contains 2410 solution particles
including 20 − q monovalent cations and 20 monovalent
anions, and the system size is Lx = Ly = 10σ0 and Lz ∼
30σ0. Here, as in the full MD simulation (Fig. 1), the sys-
tem is equilibrated such that the pressure in the z direction
Pz is (1.0 ± 0.1)ε0/σ

3
0 . The periodic boundary condition is

assumed in all directions. The simulation system is illus-
trated in Fig. 8. Three production runs with different initial
configurations are performed for q = 6, 3, 2 q0. At each pro-
duction run, a 107 time-step simulation is carried out with the
time step dt = 0.002τ0.

From the trajectories of the MD simulations, the existence
probability pz(z) of the colloidal particles is computed for the
steady state. The applied electric field is varied in −0.7E0 �
Ez � 0.7E0 as in the main text. The distribution functions
pz(z) are normalized such that

∫ z2

z1
pz(z′)dz′ = 1, where z1 and

z2 are the effective membrane surface, such that the positions
of peaks of pz(z) coincide with the effective membrane sur-
faces.

The advection coefficient A is obtained using the numer-
ically measured pz(z), by fitting the analytical solution of
the Fokker-Planck equations Eqs. (11) and (12) with the
least-squares method. The results are shown in Fig. 9. Here,
the diffusion coefficient D is fixed at 1.72 × 10−2σ 2

0 /τ0,
which was obtained in Appendix A. The obtained values
of the advection coefficient A are plotted as a function of
the electric field Ez in Fig. 10(a). As shown by the fitted
linear lines, the dependence on Ez is linear at each value
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FIG. 9. The existence probability density function of the col-
loidal particle along the z axis for various values of the colloidal
particle charge (a) q = 6q0, (b) q = 3q0, and (c) q = 2q0. The
symbols and lines represent MD simulation data and fitted curve,
respectively. The electric field is varied from −0.7E0 to 0.7E0.

of q. Next, the slopes of the fitted linear lines are plot-
ted as a function of q in Fig. 10(b), which is also linear.
Altogether, we infer the form of function A(q, Ez ) = βqEz.
The coefficient is evaluated as β = −1.3 × 10−2σ 2

0 /ε0τ0 from
the slope of (b). Using this analytical form of A(q, Ez )
together with the value of D, we can now obtain the an-
alytical value of the existence probability at the surface of
M1, pz(z1), which is used in the definition of the effective
pore diameter. In Fig. 11, we compare the analytically ob-
tained pz(z1) and the simulation results (symbols), showing a
good agreement.
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FIG. 10. Advection coefficient obtained from the MD simulation
(symbols) with linear fit (lines). (a) A vs Ez and (b) A/Ez vs q.

APPENDIX C: MOTION OF A COLLOIDAL PARTICLE
IN PARALLEL TO THE MEMBRANE

Here, we discuss the existence probability of a colloidal
particle close to the membrane. To this end, we consider a sys-
tem with plane membrane as M1, and a virtual energy barrier

FIG. 11. The comparison between simulation data (symbols) and
analytic values (lines). The values of pz(z1) are plotted for three
values of colloid charge q.

ions

colloidal particle

FIG. 12. The system of MD simulations dedicated to evaluating
parameters related to the colloidal motion in x-y plane. System
consists of a colloidal particle between physical membrane M1 and
potential barrier M2 and solution. The interval between M1 and M2

is set to the extent of the colloidal particle diameter, such that particle
motion is restrained in x-y plane.

M2 that is placed near M1 to restrict the motion of colloidal
particles to the region close to the membrane. Specifically, the
position of M2 is at z = Lz/4 + eM1/2 + 4σ0, where eM1 is
the width of M1. In order to prevent the colloidal particle
from being trapped in the pore, M1 has no pore, while the
pore charges are distributed in the same manner as in the
main text. The numbers of solvent and ion particles are the
same as in the simulation of Fig. 1. The system used here
is shown in Fig. 12. From the MD simulations we compute
the distribution of colloidal particles in the r direction pr (r),
where r is the radial coordinate in the cylindrical coordinate
system in the plane parallel to the membrane. The tail of the
probability distribution is appropriately corrected using the
nature of the periodic boundary conditions. We plot the mea-
sured pr (r) in Fig. 13. Three production runs with different
initial configurations are performed for q = 0 ∼ 6 q0. At each
production run, a 107 time-step simulation is carried out with
the time step dt = 0.002τ0.

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

FIG. 13. The comparison between simulation data (symbols) and
analytic values (lines) for pr . Analytic values are obtained using
optimization with Eq. (C1).

033289-9



KOYAMA, INOUE, OKADA, AND YOSHIDA PHYSICAL REVIEW RESEARCH 3, 033289 (2021)

We compare the results of MD simulation data with the
analytical solution in Fig. 13. Note that the analytical solution
is based on the negative point charge at the center of the
membrane, while in the MD simulation the negative charges
on the membrane are distributed in a finite region. Therefore,
to put weight on the tail (large r) in fitting the analytical
functions, we consider the following objective function f :

f (r) =
∣∣∣∣
∫ δr

0
r prdr −

∫ δr

0
rh(r)dr

∣∣∣∣
+ w

rmax∑
ri>δr

|ri pr (ri) − rih(ri )|2, (C1)

where h(r) is the values of the histogram obtained from the
simulations, while pr is the analytical solution; δr ∼ 4σ0 is
a threshold, which is about the radius of the region where
the direct effects of actual negative charges are significant in
the simulation. The first term on the right-hand side is the
difference in integrals of the distributions for r < δr, and the
second term is the difference at each point of r � δr. Putting
emphasis on the tail (r � δr) of the distribution, we set a
weight of w = 10. We used the downhill simplex method
for the optimization. From the result of fitting, we found the
dependence of CA on q to be linear, i.e., CA = γ q. The value
of the parameter γ was found to be γ = 6.2 × 10−4σ 3

0 /τ0q0.
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