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Simulating long-range hopping with periodically driven superconducting qubits
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Quantum computers are a leading platform for the simulation of many-body physics. This task has been
recently facilitated by the possibility to program directly the time-dependent pulses sent to the computer. Here,
we use this feature to simulate quantum lattice models with long-range hopping. Our approach is based on
an exact mapping between periodically driven quantum systems and one-dimensional lattices in the synthetic
Floquet direction. By engineering a periodic drive with a power-law spectrum, we simulate a lattice with long-
range hopping, whose decay exponent is freely tunable. We propose and realize experimentally two protocols
to probe the long tails of the Floquet eigenfunctions and identify a scaling transition between long-range and
short-range couplings. Our paper offers a useful benchmark of pulse engineering and opens the route towards
quantum simulations of rich nonequilibrium effects.
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I. INTRODUCTION

A common assumption of many-body physics is that par-
ticles can interact only with their neighbors. Similarly, in
canonical lattice models, particles are often assumed to hop
only between neighboring sites. While generically correct in
condensed matter physics, this assumption is not applicable
to gravitational models, unscreened Coulomb interactions,
and synthetic materials, where the couplings can decay as a
power law. Long-range couplings can lead to interesting phys-
ical effects, such as violations of thermodynamic identities
[1–5] and anomalous mechanisms of information spreading
[6–8]. For noninteracting systems with power-law decaying
couplings, the transition between long-range and short-range
correlations occurs at α = d , where α is the decay power of
the potential and d is the dimension [9–11]. This transition
is further affected by disorder [12,13], thermal [14,15] and
quantum [16] fluctuations, and competing orders [17,18], giv-
ing rise to a wide range of classical and quantum phases with
peculiar scaling laws.

The experimental study of this transition requires a simu-
lator where α is not set by the physical decay of elementary
forces and can be tuned continuously. This requirement is
partially fulfilled by trapped ions, where phonon-mediated
interactions can be used to simulate long-range quantum
spin models, and α can be tuned within a limited range
[19,20]. Here, we propose and realize an alternative approach,
based on periodically driven (Floquet) quantum models. In
these systems, the frequency components of the wave func-
tions give rise to an effective one-dimensional lattice and the
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harmonics of the drive correspond to arbitrary hopping terms
[21]. Intuitively, this synthetic Floquet dimension describes
the number of photons absorbed or emitted from the drive.
In the theoretical limit of a classical drive, such dimension is
infinite in both directions.

To realize our protocol, we use a feature of noisy
intermediate-scale quantum (NISQ) computers that has been
recently made available via the cloud, namely pulse engineer-
ing. This term refers to the possibility of feeding arbitrary
time-dependent pulses to the device [22–24]. Pulse engi-
neering is commonly used to characterize the qubits and to
optimize the fidelity of a target gate, or of a set of gates
[25–37]. Periodic drives have been recently used to create
long-range couplings in the physical space [38] and to sim-
ulate a two dimensional topological insulator [39]. In this
paper, we use pulse engineering to simulate long-range cou-
plings in the Floquet space.

II. FLOQUET FORMALISM

Floquet theorem [40] guarantees that the time evolution
of a system governed by a time-periodic Hamiltonian, Ĥ (t +
τ ) = Ĥ (t ), can be written as |ψ (t )〉 = ∑

n cne−iμnt |φn(t )〉.
Here, μn are the quasienergies, and |φn(t )〉 are the Flo-
quet functions. These functions are periodic in time, |φn(t +
τ )〉 = |φn(t )〉, and can be expanded in a discrete Fourier
series,

|φn(t )〉 =
∑

m

e−imωpt |φn(m)〉, (1)

where ωp = 2π/τ is the pump frequency. By integrat-
ing the Schrödinger equation over one period, one obtains
a time independent linear system of equations ĤF |φn〉 =
h̄μn|φn〉, where ĤF is the Hamiltonian in an enlarged infi-
nite dimensional Floquet space and |φn〉 is a vector in this
space, with 〈m|φn〉 = |φn(m)〉. The central block of ĤF is
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given by ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĥ0 + 2h̄ωp Ĥ (1) Ĥ (2) Ĥ (3) Ĥ (4)

Ĥ (−1) Ĥ0 + h̄ωp Ĥ (1) Ĥ (2) Ĥ (3)

Ĥ (−2) Ĥ (−1) Ĥ0 Ĥ (1) Ĥ (2)

Ĥ (−3) Ĥ (−2) Ĥ (−1) Ĥ0 − h̄ωp Ĥ (1)

Ĥ (−4) Ĥ (−3) Ĥ (−2) H (−1) Ĥ0 − 2h̄ωp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where Ĥ (m) = τ−1
∫ τ

0 Ĥ (t )eimωpt dt is the mth discrete Fourier
component of Ĥ (t ) [41]. In the limit of large ωp, the
off-diagonal terms of ĤF can be treated perturbatively, giv-
ing rise to the well-known Magnus expansion. Note that
Eq. (1) is invariant under the gauge transformation |φn(m)〉 →
eiωpt |φn(m + 1)〉, and hence ĤF is invariant to discrete trans-
lations, m → m + 1, ĤF → ĤF + h̄ωp.

Textbook examples of Floquet systems often involve si-
nusoidal drives, where Ĥ (m) is non zero only for m = ±1,
and ĤF corresponds to a tilted lattice with nearest-neighbor
couplings. In this case, all the eigenstates of ĤF are localized
in Floquet space. In analogy to Bloch oscillations of elec-
trons in an electric field, quantum particles oscillate in the
Floquet dimension, leading to a periodic alternation of en-
ergy emission and absorption (Rabi oscillations) [42,43]. The
situation does not change qualitatively when a finite number
of harmonics is added. Hence, in most physical situations it
is sufficient to focus only on a small segment of the Floquet
space [44]. The opposite situation is encountered if the system
is periodically driven by delta functions in time, giving rise to
celebrated kicked models [45], where Ĥ (m) is independent on
m. The Hamiltonian ĤF corresponds to a model with all-to-all
couplings and its eigenfunctions are completely delocalized
in the Floquet space. In this case, a truncation of the Floquet
space can lead to unphysical predictions [46].

III. MODEL FOR LONG-RANGE INTERACTIONS

Aiming at quantum simulations with superconducting
qubits, we specifically consider the spin model

Ĥ (t ) = − h̄ωz

2
σ̂z + h̄hx(t )

2
σ̂x, (3)

where ωz and hx(t ) are tunable fields, and σ̂α are Pauli
matrices [47]. For hx(t ) = hx(t + τ ) one obtains a Flo-
quet Hamiltonian of the form of Eq. (2), with Ĥ0 =
−h̄ωzσ̂z/2 + h̄h(0)

x σ̂x/2 and Ĥ (m) = h̄h(m)
x σ̂x/2, where h(m)

x =
τ−1

∫ τ

0 hx(t )eimωpt dt . This Hamiltonian is equivalent to a two-
band Wannier-Stark ladder and is schematically shown in
Fig. 1, where, for convenience, we have depicted Ĥ (m) for
|m| � 2 only.

To study long-range hopping models, we introduce a time-
dependent drive with a power-law frequency spectrum,

h(m)
x = h0

(1 + |m|)α . (4)

This driving field interpolates between a kicked model at
α = 0 and a weak sinusoidal drive for α � 1. At intermediate
α’s, the Fourier transform of Eq. (4) corresponds to periodic
kicks with a finite width. The resulting time evolution can
be easily computed in two limiting cases: (i) For ωz = 0,
the Hamiltonian corresponds to a time-dependent magnetic
field in the x direction, whose time evolution is U (t ) =
exp(−i

∫
dthx(t )σ̂x/2). (ii) For α = 0, the time evolution over

one period is U (τ ) = UzUx, where Uz = exp(−iωzτ σ̂z/2)
corresponds to the evolution between the kicks and Ux =
exp(−ih0τ σ̂x/2) describes the kicks. Note that the same
stroboscopic time evolution can be obtained by applying alter-
native magnetic fields in the x and z direction for finite times.
Such bang-bang [48,49] protocol and the kicked model are
characterized by the same stroboscopic evolution (which is
the evolution over an integer number of periods), but lead to a
different micromotion (i.e., the intermediate evolution during
the time periods). Due to this difference, these two protocols
are mapped to different lattice models: The bang-bang pro-
tocol corresponds to a short-range hopping model, while the
kicked protocol is mapped to a long-range model.

The driving field of Eq. (4) undergoes a scaling transition
between short range and long range as a function of α. In
general, a system is said to be short ranged (or long ranged)
if the integral over space of the coupling is finite (or infinite).

FIG. 1. Schematic plot of the Floquet Hamiltonian for a single
qubit described by Eq. (3) with hx (t ) = hx (t + τ ). Each state is char-
acterized by two quantum numbers: spin (↑ or ↓) and Floquet index
(m). The vertical lines show the energy scales: the driving frequency
ωp = 2π/τ and the two-level splitting, ωz. The first and second
harmonics of the drive h(±1)

x and h(±2)
x correspond, respectively, to

nearest neighbor and next-nearest neighbor couplings.
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FIG. 2. (a) Time-dependent drive with power-law spectrum,
Eq. (4), with a cutoff at M = 5, for different values of α. (b) Time
evolution of the qubit for M = 5 and α = 0, theory (lines) and
experiment (dots).

In systems with short-range couplings the total energy is ex-
tensive (i.e., proportional to the size of the system), while for
long-ranged couplings, the total energy grows faster than the
system size. See, for example, Refs. [16,17] for the critical
properties of this transition, in the context of particles with
power-law interactions. In our mapping to a one-dimensional
lattice, the Fourier component h(m)

x plays the role of the cou-
pling between two sites at distance m, see Fig. 1. The system
is short/long ranged depending on the finiteness of the sum
of h(m)

x over m, hsum = ∑
m h(m)

x . In the case of the power-
law spectrum introduced in Eq. (4), this quantity diverges
for α � 1 and converges for α > 1. Hence, the system under
consideration undergoes a transition between short range and
long range at α = 1.

In our physical system, the parameter hsum corresponds to
the drive strength at integer multiples of τ , hsum = hx(nτ ) with
integer n. This quantity is always finite, irrespective of the
value of α. To address this problem, we introduce a physical
cutoff M, by assuming that h(m)

x is given by Eq. (4) for all m �
M, and equals 0 for m > M. The resulting time-dependent
drive in shown in Fig. 2(a). As we will see, the cutoff param-
eter M offers a powerful knob to probe the power-law tails of
the Floquet functions.

FIG. 3. (a) Eigenstate of the Floquet Hamiltonian: numerical
diagonalization of ĤF (continuous lines) and power-law asymptotics
(dashed lines), Eq. (5). The normalization of the wave function is
guaranteed by the value of |φn(m = 0)|2 (not shown). (b) Numerical
diagonalization in the presence of a cutoff at M = 20, giving rise to
distinctive peak at m = M.

IV. EXPERIMENTAL OBSERVATIONS OF
LONG-RANGE HOPPING

Our experimental setup is a single-qubit quantum com-
puter, available on the cloud, the IBM Quantum processor
[50] ibmq_armonk v2.4.0, which is one of the IBM Quan-
tum Canary processors. The typical physical parameters that
we use are ωz = 2π × 250 kHz, hsum = 2π × 1.2 MHz, and
ωp = 2π × 300 kHz, or τ = 3.3μs. This choice enables us
to have δt � τ � min[T1, T2], where δt = 0.00022μs is the
smallest programmable time step and T1 = 160μs and T2 =
280μs are the decay and coherence times. In our experiment,
we prepare the qubit in the | ↓〉 state, set ωz to a fixed value,
apply the drive hx(t ) for time t , measure the expectation value
sz(t ) = 〈σ̂z〉 over 8192 shots, and repeat the procedure for 740
time steps between t = 0 and T = 5τ , see Fig. 2(b).

In the following, we propose and realize two complemen-
tary methods to experimentally probe the long-range nature
of the model. The first method is based on the power-law
scalings of the eigenstates of the enlarged Floquet Hamilto-
nian ĤF . In the absence of a cutoff, the Floquet functions
are composed of a central peak at m = 0 and long power-law
tails, |φn(m)|2 ∼ |m|−x, see Fig. 3(a). The value of x can be
analytically derived by the following scaling argument: If we
consider the product of the mth row of the matrix ĤF with an
eigenstate, the central peak gets multiplied by h(m)

x ∼ |m|−α ,
while the long tail multiplies the mth diagonal element of ĤF ,
giving rise to a contribution of the order m1−x/2. Because the
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FIG. 4. Amplitude of the discrete Fourier components sz(m):
theory (lines) and experiment (dots). (a) For different values of M
at α = 0. (b) For different values of α at M = 10. The pronounced
peak at m = M is an indicator of the long-range nature of the Floquet
wave function (see text). For clarity, the curves with α > 0 in (b) are
shifted vertically by 102α .

eigenvalue does not depend on m, the two contributions needs
to scale in the same way and, hence, x = 2 + 2α, or

|φn(m)|2 ∼ 1

|m|2+2α
. (5)

Note that for all α � 0, one has
∑

m |φn(m)|2 < ∞, ensuring
that the Floquet functions |φn(t )〉 are normalizable. In the
presence of a cutoff M, the Floquet functions decay exponen-
tially for m > M, see Fig. 3(b). To preserve the normalization
condition, the weight lost at m � M appears as a pronounced
peak at m ≈ M. This peak indicates that the Floquet functions
are affected by the cutoff only at distances m ∼ M and appears
sharp on a logarithmic scale. Its integrated weight is pro-
portional to

∑
m>M m−2−2α ≈ 1/M1+2α and rapidly decreases

with α. This peak can be experimentally probed by studying
the Fourier components sz(m) = T −1

∫ T
0 dtsz(t )e−imωpt , see

Fig. 4. The key feature that we observe is a pronounced peak at
m = M. This peak is washed out as α increases and becomes
invisible at α > 1, probing the scaling transition at α = 1.

Our second method to probe the scaling of the Floquet
functions relies on the relation between the time derivatives of
physical observables and the moments of |φn(m)〉. According
to Eq. (1), the qth time derivative of the expectation value of
an operator Ô in the state |φn(t )〉, (d/dt )q〈Ô(t )〉n, equals to

(iωp)q
∑
m,m′

(m − m′)q〈φn(m′)|Ô|φn(m)〉ei(m−m′ )ωpt .

FIG. 5. Time evolution of dsz/dt in the vicinity of t = τ : theory
(lines) and experiment (dots). The cutoff parameter M allows us to
identify the transition between long-range and short-range hopping
at α = 1.

A rigorous bound to this quantity can be obtained by as-
suming that Ô satisfies |〈φn|Ô|φm〉| � ‖Ô‖, where ‖Ô‖ is the
operator norm [51]. This requirement is generically satisfied
by operators that act on a finite Hilbert space, such as spin op-
erators, and it does not apply to some operators of an infinite
Hilbert space, such as the position or momentum operators of
an oscillator, whose matrix elements can be arbitrary large. In
this case,∣∣∣∣ dq

dtq 〈Ô(t )〉
∣∣∣∣ �ωq

p‖Ô‖
∑
m,m′

|m − m′|q〈φn(m)|φn(m′)〉. (6)

Using the scaling relation of Eq. (5), one can show that the
right hand side of Eq. (6) scales as Mq−α for large M, see
Appendix B. This expression is finite for q < α and diverges
for q � α. In particular, for the kicked Hamiltonian (α = 0)
the q = 0 series diverges, highlighting the above-mentioned
truncation problem. For all α � 1, the q = 1 series diverges,
leading to a divergence of the time derivative d/dt〈Ô(t )〉.
For larger values of α, the q = 1 series is convergent, but
higher-order series (and, hence, higher-order derivatives) are
infinite. Hence, the time derivatives of physical observables
can serve as order parameters of the scaling transition, in
analogy to the role of two-point correlation functions for
symmetry breaking phase transitions. Figure 5 compares
the experimental measurement and numerical calculation of
the time derivative of sz(t ). The scaling behavior changes
drastically at the transition between long-range and short-
range couplings (α = 1). For α � 1, dsz/dt (t = τ ) diverges
with increasing M, while for α > 1 it saturates to a finite
value, in agreement with our scaling argument (see also
Appendix B).

V. CONCLUSION AND DISCUSSION

In conclusion, we used Floquet engineering to simulate a
one dimensional lattice with power-law hopping. We stud-
ied the scaling properties of the Floquet eigenstates and
determined the effects of the long tails on the expectation
values of physical observables and their time derivatives. By
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realizing this model on a quantum computer, we demonstrated
the experimental capability of controlling and measuring a
large number (M = 30) of harmonics. We were able to probe
the long tails of the Floquet functions, both in real time and in
Fourier space, and to study their dependence on the exponent
α. Our experimental observations probe the scaling transition
between long-range and short-range couplings.

In recent years, superconducting circuits were used to
simulate interesting nonequilibrium effects [52,53], including
many-body localization of photons [54] and quench dynamics
in one [55] and two [56] dimensions. Our paper adds an
important tool to these simulators, namely pulse engineering
for the realization of synthetic Floquet dimensions. Pulse
engineering allows us to both realize Floquet Hamiltonians
with arbitrary couplings, and to measure the dynamics within
each time period, the so called micromotion. By measuring
the time harmonic decomposition of the Floquet function, and
confirm their scaling properties. Our approach goes beyond
previous studies based on stroboscopic measurements, which
probe the Floquet quasienergies, but are insensitive to the
associated eigenfunctions. By implementing our protocol on
a multiqubit quantum computer, it will be possible to explore
equilibrium and nonequilibrium phase transitions with long-
range couplings.

All MATLAB, Julia, Python, and QISKIT codes used to
generate the experimental and theoretical data presented in
this paper are made freely available online [57].
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APPENDIX A: QUASIENERGIES CROSSINGS

In this section we study the first Floquet-Brillouin zone of
periodically driven system with long-range interactions with
the Floquet Hamiltonian [see Eqs. (2) and (4) in the main text],
ĤF , and look for spectral signatures related to the scaling tran-
sition. Because we are dealing with a two-level system, the
folded spectrum has just two quasienergies. In the extended
representation, this pair of quasienergies is repeated every
integer multiple of the pump frequency, ωp. Hence, we cannot
observe a clustering of states, which is associated with a phase
transition, but at most, a level crossing. We numerically calcu-
lated the quasienergies in the first Floquet-Brillouin zone. The
quasienergies in the folded zone are shown in Figs. 6(a)–6(c),
for different values of h0. For the present values of the physical
parameters, we do not find any quasienergy crossings. This

FIG. 6. The quasienergies of Eqs. (2) and (5) for various values
of the driving strength in the first Floquet-Brillouin zone. Each color
represents a different quasienergy.

graph shows that there are no spectral signatures related to the
scaling transition. This result highlights that the transition is
encoded in the micromotion of the Floquet functions, rather
than their stroboscopic evolution set by the quasienergies.

APPENDIX B: SCALING STUDY OF THE FIRST
DERIVATIVE OF sz(t )

This section provides a deeper analysis of theoretical pre-
dictions related to Fig. 5 in the main text. In Eq. (6), we
have obtained an upper bound for any derivative of generic
observables [58], Ô(t ). We will now show how to use the
scaling law obtained in Eq. (5) and Eq. (6). We, first, recall
that the eigenfunctions scale as

||φn(m �= 0)〉| ∼|m|−1−α, (B1)

||φn(m = 0)〉| ∼O(1). (B2)

We now separate the sum over m and m′ in Eq. (6) to two
sums, one in which m or m′ equals zero and another where
m �= 0 and m′ �= 0,∑

m,m′
→

∑
m, m′

m �= 0, m′ �= 0

+
∑

m
m′ = 0

, (B3)

We, first, consider the double sum with no zeros. For a large
cutoff, M, we can approximate the double sum to a double
integral

∑
m, m′

m �= 0, m′ �= 0

→
∫∫

m �= 0
m′ �= 0

dmdm′, (B4)
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using the scaling law of Eq. (B1) we can rewrite Eq. (6) as∣∣∣∣ dq

dtq
〈Ô(t )〉

∣∣∣∣ � ωq
p‖Ô‖

×
∫∫

m �= 0
m′ �= 0

dmdm′|m − m′|q|m|−1−α|m′|−1−α
. (B5)

Next, we examine the scaling of the integral and ignore any
numerical constants∫∫

m �= 0
m′ �= 0

dmdm′|m − m′|q|m|−1−α|m′|−1−α

∼
M∫

1

dm

m∫

1

dm′(m − m′)qm−1−α (m′)−1−α

∼
∫ M

1
dm

∫ m

1
dm′

q∑
k=0

mq−k (m′)km−1−α (m′)−1−α

∼
∫ M

1
dm

∫ m

1
dm′

q∑
k=0

mq−k−1−α (m′)k−1−α

∼
∫ M

1
dm

q∑
k=0

mq−k−1−αmk−α

∼
∫ M

1
dmmq−1−2α. (B6)

At this point we need to preform the integral carefully. If q =
2α the integral has a logarithmic behavior. Otherwise, if q >

2α, the integral scales as Mq−2α , or saturates to a finite values
of order 1 if q < 2α. Hence, we find∫∫

m �= 0
m′ �= 0

dmdm′|m − m′|q|m|−1−α|m′|−1−α

∼
⎧⎨
⎩

ln(M ), q = 2α,

Mq−2α, q > 2α,

1, q � 2α.

. (B7)

Now we will focus on the sum in which either m or m′
equals zero. As before, we convert the sum into an integral

∑
m

m′ = 0

→
∫ M

1
dm. (B8)

Plugging this result in the scaling law of Eq. (B2), we rewrite
Eq. (6) as ∫ M

1
dm|m|−1−α|m|q ∼

∫ M

1
dm(m)q−1−α. (B9)

FIG. 7. Time derivative |dsz/dt | at t = τ as a function of the
cut-off parameter, M. This plot allows us to identify a transition
between long-range and short-range hopping at α = 1. The dots are
simulated data and the solid lines show the expected scaling behavior,
Eq. (B11).

Just like before, we need to preform the integral carefully. If
q = α the integral has a logarithmic behavior. Otherwise, if
q > α the integral scales as Mq−α , or scales as 1 if q < α.

∫ M

1
dm|m|−1−α|m|q ∼

⎧⎨
⎩

ln(M ), q = α,

Mq−α, q > α,

1, q � α.

(B10)

Using Eqs. (B3), (B7), and (B11) we can deduce the lead-
ing behavior of Eq. (6) presented in the text

∣∣∣∣ d

dt
〈Ô(t )〉

∣∣∣∣ �

⎧⎨
⎩

M1−α, α < 1,

ln(M ), α = 1,

O(1), α > 1.

(B11)

Note that this bound can be alternatively derived using the
Heisenberg equation of motion, d/dt〈Ô(t )〉 = i〈[Ĥ, Ô]〉/h̄,
showing that the time derivative of physical operators is lin-
early proportional to the Hamiltonian and, hence, to |hx(t )| �∑

m |h(m)
x |. This quantity converges for all α > 1, and it can

diverge only for α � 1.
Due to physical limitations, in the experiment we were only

able to realize our model only up to M = 30 (with accurate
results). To accurately describe the scaling transition, we plot
the theoretical value of |dsz/dt |, as a function of M in Fig. 7.
As expected, we observe that this quantity diverges as M1−α

for α < 1 and remains finite for α > 1. At the scaling transi-
tion, for α = 1, the time derivative diverges logarithmically.
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