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Effective epidemic containment strategy in hypergraphs
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Recently, hypergraphs have attracted considerable interest from the research community as a generalization of
networks capable of encoding higher-order interactions, which commonly appear in both natural and social
systems. Epidemic dynamics in hypergraphs has been studied by using the simplicial susceptible-infected-
susceptible (s-SIS) model; however, the efficient immunization strategy for epidemics in hypergraphs is not
studied despite the importance of the topic in mathematical epidemiology. Here, we propose an immunization
strategy that immunizes hyperedges with high simultaneous infection probability (SIP). This strategy can be
implemented in general hypergraphs. We also generalize the edge epidemic importance (EI)-based immunization
strategy, which is the state of the art in complex networks. However, it does not perform as well as the SIP-based
method in hypergraphs despite its high computational cost. We also show that immunizing hyperedges with high
H-eigenscore effectively contains the epidemics in uniform hypergraphs. A high SIP of a hyperedge suggests
that the hyperedge is a “hotspot” of the epidemic process. Therefore, SIP can be used as a centrality measure
to quantify a hyperedge’s influence on higher-order dynamics in general hypergraphs. The effectiveness of the
immunization strategies suggests the necessity of scientific, data-driven, systematic policy-making for epidemic
containment.
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I. INTRODUCTION

In the past two decades, extensive research has been de-
voted to spreading processes in complex networks [1–5] to
model the spread of epidemic diseases [6] and innovations
[7,8], opinion formation [9–12], and many other physical and
social phenomena [13–16]. Researchers now have access to
large-scale datasets of interactions, such as mobility, collabo-
rations, and temporal contacts that were unavailable in the past
[17–19], and complex network representations of interactions
enable the researchers to effectively study various dynamical
processes. The large body of research devoted to spreading
processes on complex networks provided quantitative analysis
for policy-making, especially in the public-health domain.
Furthermore, the epidemic processes provide deeper under-
standing of critical phenomena and phase transition behaviors,
such as the effect of structural heterogeneity on the transition
point [20,21] and discontinuous phase transitions induced by
cascade dynamics [22–24].

A hypergraph is a generalization of network that can
describe higher-order interactions between more than two
agents, which widely appear in both natural and social sys-
tems, that networks cannot [25–28]. A hypergraph consists of
nodes and hyperedges, and a hyperedge of size d connects
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d nodes simultaneously. The hyperedges of a hypergraph
can have various sizes, but if all the hyperedges in a hy-
pergraph have the same size d , it is called a d-uniform
hypergraph. In a collaboration hypergraph [29,30], for in-
stance, a hyperedge of size d encodes a d-author paper,
and the nodes of the hyperedge encodes the authors of the
paper. Hypergraphs have been used to describe neural and bi-
ological interactions [31,32], evolutionary dynamics [33,34],
and other dynamical processes [35–38]. Recently, the simpli-
cial susceptible-infected-susceptible (s-SIS) model [39] was
introduced to describe higher-order epidemic process in hy-
pergraphs. The model has attracted extensive interest from
the research community due to its simplicity and novel phase
transition behavior [40–44].

An important topic in epidemiology is immunization, and
it has been studied for various epidemic models in complex
networks [45–53]. If a node in the network is immunized,
the node cannot turn into the infected state, and if an edge is
immunized, the infection does not spread through the immu-
nized edge. Edge immunization models epidemic containment
measures such as travel regulation and social distancing. If a
node or edge is immunized, it does not only prevent nodes
directly connected to them from being infected. If a portion
of nodes or edges greater than a threshold pc is immunized,
the epidemic state in the network vanishes. This effect is
called herd immunity, and the threshold is called the herd
immunity threshold (HIT). The objective of an efficient immu-
nization strategy is to achieve herd immunity by immunizing
a minimal portion of nodes or edges, i.e., minimizing HIT pc.
Such strategies can be used to vaccinate people with limited
resources or prevent a pandemic by minimally regulating air
traffic or social gatherings. The same theory can be used to
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promote spreading processes. If the spreading process mod-
els information flow, for instance, the objective is usually to
optimize the spreading of information in a system. In such
cases, we buttress the nodes or edges targeted by the efficient
immunization strategies instead of immunizing them. Alter-
natively, in a reverse point of view, an adversarial attack can
be made on such nodes/edges to hamper the information flow
in the system. However, the efficient immunization strategy
for epidemic processes in hypergraph has not been studied,
despite the topic’s importance in mathematical epidemiology.

Here, we propose an immunization strategy that targets hy-
peredges with high simultaneous infection probability (SIP),
which is the probability that all the nodes in a hyperedge
are in the infected state. This probability is calculated by
the individual-based mean-field (IBMF) theory [54,55]. This
strategy can be implemented to contain epidemics of s-SIS
model in general hypergraphs. We also show that immunizing
hyperedges with the highest H-eigenscores, which is defined
as the product of the elements of the H-eigenvector of the
adjacency tensor with the largest H-eigenvalue of all the
nodes in the hyperedge, effectively achieves herd immunity
in uniform hypergraphs. This method generalizes the edge
eigenscore in a complex network and can be implemented
to contain epidemics in uniform hypergraphs. However, this
method cannot be implemented in arbitrary hypergraphs with
various hyperedge sizes. We also generalize the EI-based
method [51], which is the state-of-the-art immunization strat-
egy for complex networks. However, we find that this method
does not perform as efficiently as H-eigenscore and SIP-based
strategies for hypergraphs despite its higher computational
cost. If a hyperedge has a high SIP, it suggests that the hyper-
edge is a “hotspot” of the epidemic process. Therefore, SIP
can be used as a centrality measure to quantify a hyperedge’s
influence on higher-order dynamics in general hypergraphs.
The effectiveness of the immunization strategies suggests the
necessity of quantitative and systematic policies for epidemic
containment measures.

This paper is organized as follows: First, we introduce
the epidemic model in a hypergraph in Sec. II A. Next, we
introduce the hypergraph static model in Sec. II B and the
hypergraph popularity-similarity optimization (h-PSO) model
in Sec. II C. We show that the h-PSO model generates a
hypergraph with a power-law degree distribution and a tunable
clustering coefficient. In Sec. III, we extend the individual-
based mean-field (IBMF) and pair-based mean-field (PBMF)
theories to general hypergraphs, which is required for the
immunization strategies. The immunization strategies are il-
lustrated in Sec. IV. The strategies’ performance in complex
networks and hypergraphs are tested in Sec. V. A summary
and the final remarks are presented in Sec. VI.

II. MODEL

A. Epidemic dynamics in networks and hypergraphs

A contagion process through dyadic interaction (repre-
sented by a network or a metapopulation model) is called
a simple contagion process. The SIS model is one of the
most extensively studied simple contagion models in complex
networks along with the susceptible-infected-recovered (SIR)
model [6]. In the SIS model, each node in the network is

FIG. 1. Schematic representation of simplicial susceptible-
infected-susceptible (s-SIS) model. Black dots represent susceptible
nodes, red dots represent infected nodes, and the grey area represents
hyperedges. The contagion along a hyperedge occurs if and only if
exactly one node is susceptible and all the other nodes are infected.
If the condition is met, the susceptible node is turned to the infected
state with rate βd , where d is the size of the hyperedge. If the hy-
peredge is immunized, the contagion through the hyperedge does not
occur. Additionally, the recovery process S → I is defined identically
to the traditional susceptible-infected-susceptible (SIS) model.

in the either susceptible (S) or infected (I) state. If a node
is infected, it turns into the susceptible state with a constant
recovery rate μ. If a node is susceptible, it is infected with
infection rate β from each of its infected neighbors. The
rates of contagion and infection only depend on the current
configuration {X1, X2, . . . , XN }, where Xi is the state of node
i (Xi ∈ {S, I}), of the epidemic states and not on the past
configurations; i.e., they are treated as Poisson processes. If
the infection rate is higher than a certain value (i.e., epidemic
threshold), the system can reach a stationary state, allowing
several theoretical approaches [51,56,57].

Many contagion phenomena that cannot be reduced to
a simple contagion process have been observed, especially
in social systems [58–61]. More complicated models of
contagion, namely complex contagion processes including
the threshold model and generalized epidemic model have
been proposed. Among them, the recently introduced s-SIS
model was introduced as a complex contagion model and
has attracted extensive interest due to its simplicity, analytic
tractability, and novel critical phenomena [39–42]. In the
model, the contagion occurs through hyperedges in hyper-
graphs, which have attracted considerable interest from the
research community as a generalization of networks due to
their capability of encoding higher-order interactions between
more than two agents [25–28]. The model is illustrated in
Fig. 1. In the s-SIS model, a node in the hypergraph is in a
susceptible or an infected state, as in the traditional SIS model.
If a susceptible node has a hyperedge of size d where all the
other d − 1 nodes in the hyperedge is in the infected state,
the node is changed to the infected state with rate βd . Here,
we study the discrete-time version of the model where time t
is integer. If a susceptible node at time t has n hyperedges
that satisfy the contagion condition, each hyperedge has a
probability βd to turn the susceptible node to the infected state
at time t + 1. Also, an infected node at time t turns into a
susceptible node at time t + 1 with probability μ.

B. Hypergraph static model

Many real-world interactions, whether dyadic or high or-
der, exhibit high heterogeneity characterized by power-law
behavior. To model such highly heterogeneous hypergraphs,
the hypergraph static model [40] was introduced as a hyper-
graph model with a degree (number of hyperedges connected
to the node) distribution with a power-law tail, namely a
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scale-free hypergraph. It is a generalization of the static model
of complex networks [62,63], and has been used as a canonical
method to generate scale-free networks due to its simplicity
and analytical tractability [64–67]. In the hypergraph static
model,

(i) Parameter pi is assigned to each node in the hyper-
graph. This parameter controls the nodes’ fitness to have a
high degree.

(ii) Pick d nodes with probability pi1 · · · pid . If a hyper-
edge {i1, . . . , id} is not already present in the hypergraph, add
it to the hypergraph.

(iii) Repeat step (ii) until the number of hyperedges
reaches NK .

If we set pi = Ni−α/ζN (α) � (1 − α)i−α/N−α , where
ζN (α) = ∑N

j=1 j−α and 0 < α < 1 (hence,
∑

pi = 1 and 0 <

pi < 1), we obtain a hypergraph with power-law degree dis-
tribution. Because the probability of each node being chosen
in step (ii) is independent and identically distributed (i.i.d),
node i is chosen with probability pi in each iteration, hence
each node i has expected degree 〈ki〉, and the distribution
of the expected degree Pd (〈ki〉) ∼ 〈ki〉−γ with γ = 1 + 1/α.
The minimum degree km = N1−α〈k〉/∑N

j=1 j−α converges

to a finite value γ−2
γ−1 〈k〉, and the maximum degree kmax =

N〈k〉/∑N
j=1 j−α diverges in the thermodynamic limit N →

∞. Thus, we obtain a scale-free network with mean degree
〈k〉 = dK and degree exponent γ . We obtain an Erdős-Rényi-
type random hypergraph in the γ → ∞ limit.

C. Hypergraph popularity-similarity
optimization (h-PSO) model

In addition to a highly heterogeneous degree distribution,
agents in many real-world systems have a higher chance of
being connected if they are similar. The similarity of two
nodes is characterized by their closeness in their latent co-
ordinates. The objective of graph node embedding algorithms
[68–70] is to discover the latent coordinates of a network. For
instance, hub airports are connected to a disproportionately
large number of airports around the world (heterogeneous
degree distribution), but two small airports can be connected
by an airline if they are geographically close. Also, two re-
searchers who are not particularly prolific can coauthor a
paper if they are close. This effect is called homophily and re-
sults in nonvanishing clustering coefficients in both networks
and hypergraphs. To account for such phenomena, a hyper-
graph model with a scale-free degree distribution and tunable
nonvanishing clustering coefficient needs to be introduced.
Furthermore, the immunization strategies need to be tested
in clustered hypergraphs because it is known that epidemic
dynamics and the performance of immunization strategies
differ in clustered and unclustered networks [51].

The clustering coefficient C(H ) of a hypergraph H is de-
fined as follows [71]:

C(H ) = 3 × number of hypertriangles

number of undirected 2-paths
, (1)

where a hypertriangle is a set of three distinct nodes v1,
v2, v3 and three distinct hyperedges E12, E23, E31 that satis-
fies v1, v2 ∈ E12, v2, v3 ∈ E23, and v3, v1 ∈ E31. A undirected

2-path is a set of three distinct nodes v1, v2, v3 and two
distinct hyperedges E12, E23 that satisfies v1, v2 ∈ E12 and
v2, v3 ∈ E23. The clustering coefficient can be greater than 1
in hypergraphs because a undirected 2-path can have multiple
closures. If there are only size-2 hyperedges in the hypergraph
(i.e., if the hypergraph is a network), C2 becomes the transi-
tivity coefficient [72], which is widely used in social network
analysis. Note that there is another definition of the clustering
coefficient C(i)

d that generalizes the local clustering coefficient
of graphs [33].

To generate a scale-free hypergraph with a nonvan-
ishing clustering coefficient, we introduce the hypergraph
popularity-similarity optimization model (h-PSO), which is a
hypergraph version of the popularity-similarity optimization
(PSO) model in complex networks [68,73]. The d-uniform
h-PSO model is generated as follows:

(i) Popularity parameter pi is assigned to each node in the
hypergraph. If a node has a high pi, the node tends to have a
high degree.

(ii) Latent coordinate xi is assigned to each node in the hy-
pergraph. If two nodes i and j are close in the latent coordinate
(i.e., |x j − xi| is small) two nodes will likely be connected by
hyperedges.

(iii) Pick a node i with probability pi.
(iv) Pick d − 1 nodes j1, . . . , jd−1, each with probability

[1 + (|x j� − xi|/Rpi p j� )1/T ]−1. If a hyperedge {i, j1 . . . , jd−1}
is not already present in the hypergraph, add it to the hyper-
graph.

(v) Repeat steps (iii)–(iv) until the number of hyperedges
reaches NK .
Here, we choose the latent coordinates on a ring; the latent
coordinates are randomly chosen without replacement from
θ ∈ {1, 2, . . . , N}, and the distance between two nodes i and
j is defined as min(|θ j − θi|, N − |θ j − θi|). If we set pi =
Ni−α/ζN (α) � (1 − α)i−α/N−α , the resulting hypergraph is
a scale-free hypergraph with degree exponent γ = 1 + 1/α.
The clustering coefficient can be controlled by the scale pa-
rameter R and the temperature T ; if R and T are large, the
clustering coefficient is small. The degree distribution and
the clustering coefficient of the h-PSO model with hyperedge
size 3 are illustrated in Fig. 2. The degree distribution has a

FIG. 2. (a) The degree distribution of the 3-uniform hypergraph
popularity-similarity optimization (h-PSO) model. The mean degree
〈k〉 = 6, temperature T = 0.5, and the parameter γ = 3. The tail of
the distribution follows a power law with an exponent of 3. (b) The
clustering coefficient of 3-uniform h-PSO as a function of the scale
parameter R. The number of nodes N = 2000, mean degree 〈k〉 = 6,
and the temperature T = 0.5.
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power-law tail with exponent γ , and the clustering coefficient
can be controlled by adjusting R.

III. INDIVIDUAL- AND PAIR-BASED
MEAN-FIELD THEORIES

In this section, we explain the individual-based mean-field
(IBMF) theory and pair-based mean-field [51] (PBMF) theory
for hypergraphs, which are used in immunization strategies.
IBMF tracks the probability of infection pi of each node in the
network. By ignoring the statistical correlation of the prob-
ability between two nodes [P(Xi, Xj ) = P(Xi )P(Xj ), where
Xi, Xj ∈ {S, I}], the IBMF equation for the SIS model can be
expressed as

pi(t + 1) = [1 − pi(t )]

⎡
⎣1 −

∏
j∈N (i)

(1 − βp j (t ))

⎤
⎦

+ (1 − μ)pi(t ), (2)

where N (i) is the set of nodes connected to node i (nearest
neighbors of i). For continuous phase transitions, where pi

vanishes in the vicinity of the phase transition, the equation
can be linearized as pi(t + 1) = ∑

j (βai j + (1 − μ)δi j )p j

and the epidemic threshold β

μ
is the inverse of the largest

eigenvalue of the adjacency matrix ai j . Because IBMF ignores
the positive correlations of the state (neighbors of infected
node have greater chance of being in the infected state) in the
actual system, it tends to overestimate the density of infection.
The theory can be straightforwardly extended to the s-SIS
model:

pi(t + 1)= [1 − pi(t )]
∏

{ j1,..., jd−1}∈N̄ (i)

(1 − βd p j1 (t ) · · · p jd−1 (t ))

+ (1 − μ)pi(t ), (3)

where N̄ (i) is the set of “hyperneighbors” of i; if a hyperedge
{i, j1, . . . , jd−1} is in the hypergraph, { j1, . . . , jd−1} ∈ N̄ (i).
IBMF is often employed to describe the dynamics and phase
transitions in classical stochastic processes [54,55], as well
as driven-dissipative quantum dynamics [74]. The method
predicts the properties of the epidemic states more accurately
than homogeneous mean-field theory or degree-based mean-
field theory [20], which is often referred to as heterogeneous
mean-field theory.

PBMF, often referred to as an epidemic-link equation, is
known to predict the properties of the epidemic states more
precisely than IBMF. In PBMF, we track the probability of
the infection pi(t ) of each node the same as for IBMF, and
for pairs of nodes (i, j) that are connected in the network we
set the differential equations for the probability that both of
the nodes are infected as ψi j (t ) = P(Xi = I, Xj = I ). Prob-
abilities for other cases for a node pair, P(Xi = S, Xj = S),

P(Xi = S, Xj = I ), and P(Xi = I, Xj = S), can be expressed
in terms of the pi and ψi j :

P(Xi = S, Xj = S) = 1 − pi(t ) − p j (t ) + ψi j (t ), (4)

P(Xi = S, Xj = I ) = p j (t ) − ψi j (t ), (5)

P(Xi = I, Xj = S) = pi(t ) − ψi j (t ). (6)

This method exploits the sparsity of the network (the number
of variables and the equations in this method is proportional
to the number of the nodes in the system); hence, it is scalable
to large networks.

Then, the equations for the nodes are expressed as

pi(t + 1) = [1 − qi(t )][1 − pi(t )] + (1 − μ)pi(t ), (7)

and the equations for the pairs are expressed as

ψi j (t + 1) = (1 − qi j (t ))(1 − q ji(t ))(1 − pi(t ) − p j (t )

+ψi j (t )) + (1 − (1 − β )qi j (t ))(1 − μ)(p j (t )

−ψi j (t )) (8)

+ (1 − (1 − β )q ji(t ))(1 − μ)(pi(t ) − ψi j (t ))

+ (1 − μ)2ψi j (t ), (9)

where

qi(t ) =
∏

j∈N (i)

(
1 − β

p j (t ) − ψi j (t )

1 − pi(t )

)
, (10)

qi j (t ) =
∏

r ∈ N (i)
r 	= j

(
1 − β

p j (t ) − ψi j (t )

1 − pi(t )

)
. (11)

qi(t ) is the probability that node i is not infected during time
step t → t + 1 given that the node i is not infected at time
t ; qi j (t ) is the probability that the node i is not infected by
a neighbor other than j during the time step t → t + 1 given
that the node i is not infected at time t .

Stationary states of the s-SIS model have been studied
using both IBMF and PBMF in hypergraphs with hyperedges
with sizes less than or equal to 3 [41]. Implementing the
PBMF on general hypergraphs with arbitrary hyperedge sizes,
the equations for the nodes are, again,

pi(t + 1) = [1 − qi(t )][1 − pi(t )] + (1 − μ)pi(t ), (12)

and the equations for the pairs that are connected by hyper-
edges are

ψi j (t ) = (1 − qi j (t ))(1 − q ji(t ))(1 − pi(t ) − p j (t ) + ψi j (t ))

+ (1 − qi j (t )ui j (t ))(1 − μ)(p j (t ) − ψi j (t )) (13)

+ (1 − q ji(t )u ji(t ))(1 − μ)(pi(t ) − ψi j (t ))

+ (1 − μ)2ψi j (t ), (14)

where

qi(t ) =
∏

{r1,...,rd−1}∈N̄ (i)

(
1 − βd

PSI···I
ir1···rd−1

(t )

PS
i (t )

)
=

∏
{r1,...,rd−1}∈N̄ (i)

(
1 − βd

∏d−1
�=1 [pr�

(t ) − ψir�
(t )]

∏
� 	=m ψr�rm (t )

[1 − pi(t )]d−1
(∏d−1

�=1 pr�
(t )

)d−2

)
, (15)
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qi j (t ) =
∏

{r1,...,rd−1}∈N̄ (i)
r1,...,rd−1 	= j

(
1 − βd

PSI···I
ir1···rd−1

PS
i

)
=

∏
{r1,...,rd−1}∈N̄ (i)

r1,...,rd−1 	= j

(
1 − βd

∏d−1
�=1 [pr�

(t ) − ψir�
(t )]

∏
� 	=m ψr�rm (t )

[1 − pi(t )]d−1
(∏d−2

�=1 pr�
(t )

)d−2

)
,

(16)

ui j (t ) =
∏

{ j,r1,...,rd−2}∈N̄ (i)

(
1 − βd

PSI···I
i jr1···rd−2

(t )

PSI
i j (t )

)
=

∏
{ j,r1,...,rd−2}∈N̄ (i)

(
1 − βd

∏d−2
�=1 [pr�

(t ) − ψir�
(t )]

∏d−2
�=1 ψ jr�

(t )
∏

� 	=m ψr�rm (t )

[1 − p j (t )]d−1 p j (t )d−2
(∏d−2

�=1 pr�
(t )

)d−2

)
,

(17)

where PX1···Xd
r1···rd

is the probability that nodes r1 · · · rd are each
in state X1 · · · Xd . qi(t ) represents the same probability in the
network PBMF, qi j (t ) is the probability that the node i is
not infected by hyperedges that do not contain node j during
time step t → t + 1 given that node i is not infected at time
t , and ui j (t ) is the probability that node i is not infected by
hyperedges that contain node j during time step t → t + 1
given that node i is not infected at time t . We have used the
following equation for closure:

PX1···Xd
r1···rd

=
∏

� 	=m P(Xr�
, Xrm )(∏d

�=1 P(Xr�
)
)d−2 . (18)

For d � 3, we recover the identity in Ref. [41].

IV. IMMUNIZATION STRATEGIES

An immunization strategy is defined as a specific rule that
determines a set of nodes or edges that will be immunized to
eliminate the epidemic from the network. Immunized nodes
cannot be infected and the infection cannot spread along the
immunized edges. The immunization of nodes/edges does
not only protect the nodes directly connected to them. When
a sufficiently large fraction p > pc of the nodes/edges are
immune, the system cannot maintain the epidemic state with
a nonvanishing density of infection. This effect is called herd
immunity. The objective of an immunization strategy is to
find an algorithm that minimizes pc. Efficient immuniza-
tion strategy that can be implemented in complex network
has been extensively studied for both SIS [48–51] and SIR
[45–47] models. However, efficient immunization strategy for
epidemics in hypergraphs has not been studied, despite the
importance of the subject. Here, we develop a simultaneous
infection probability (SIP)-based immunization strategy that
can be used to efficiently eliminate epidemic states by im-
munizing edges in networks or hyperedges in hypergraphs.
The strategy immunizes the edges or hyperedges in the de-
scending order of the SIP, which is the probability that all
the nodes in the edge/hyperedge are infected at the same
time. The probability is calculated by IBMF in both networks
and hypergraphs. In networks, the strategy is as efficient as
the EI-based strategy [51], which is the state-of-the-art im-
munization strategy, while incurring a lower computational
cost. This method can be implemented in general nonuni-
form hypergraphs. We compare the efficiency of the strategy
with several other methods in networks, uniform hypergraphs,

and nonuniform hypergraphs. However, only the proposed
SIP-based strategy can be efficiently implemented in general
nonuniform hypergraphs.

The EI of an edge is defined as Ii j = gi j + g ji, where

gi j = βP(Xi = S, Xj = I )
∑

r∈N (i)

βP(Xr = S|Xi = I ). (19)

The probabilities are calculated by means of PBMF; βP(Xi =
S, Xj = I ) is the probability that the infection spreads from
j to i along the edge (i, j), and

∑
r∈N (i) βP(Xr = S|Xi = I )

quantifies the impact of such an event. For the s-SIS model in
hypergraphs, the epidemic importance is expressed as

I{i1,...,id } =
∑

σ∈S({i1,...,id })

gσ , (20)

where S({i1, . . . , id}) is the set of all the permutations of the
set {i1, . . . , id}, and

gi1···id = βd P(Xi1 = S, Xi2 · · · Xid = I )
∑

{ j1··· jd ′−1}∈N (i1 )

βd ′

×
d ′−1∑
�=1

P(Xj1 = I, . . . , Xj�−1 = I, Xj� = S, Xj�+1

= I, . . . , Xjd ′−1
= I|Xi = I ). (21)

It was shown that immunizing edges with high EI efficiently
eliminates epidemic states in various synthetic and empirical
networks. Because we use PBMF, as the size of hyperedge
d increases, the number of pairs whose probability should be
tracked by ψi j rapidly increases, and the computational cost
of the method diverges.

The eigenscore [50], which is widely used as a centrality
measure, of a node i is the element of the largest eigenvector
ei of the adjacency matrix, and the eigenscore of an edge
(i, j) is the product of the eigenscores of the two nodes of the
edge eie j . By immunizing the edges with the highest eigen-
score, the spectral radius of the network is effectively reduced,
and the epidemics in the network can efficiently be contained.
The eigenscore-based strategy can be generalized for imple-
mentation in hypergraphs; however, there are multiple types
of eigenvectors and eigenvalues in a uniform hypergraph.
We find that the H-eigenvector is more suitable than the Z-
eigenvector [75,76] for s-SIS dynamics. The H-eigenvector ei
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of a d-uniform hypergraph is defined as a vector that satisfies

(aed−1)i1 :=
n∑

i2,...,i2=1

ai1i2···id ei2 · · · eid = λed−1
i1

, (22)

where a is the hypergraph adjacency tensor. We define the H-
eigenscore of the hyperedge {i1, . . . , id} as the product of the
elements of the H-eigenvector with the largest H-eigenvalue:
ei1 · · · eid . For networks where d = 2, the H-eigenscore be-
comes the traditional eigenscore. Because the adjacency
tensor is symmetric and hence diagonalizable [77], the H-
eigenvector with the largest H-eigenvalue can be computed
by an iterative power method:

ẽ(m+1)
i1

=
(

n∑
i2,...,i2=1

ai1i2···id e(m)
i2

· · · e(m)
id

) 1
d−1

, (23)

e(m+1)
i = ẽ(m+1)

i√∑n
j=1

∣∣ẽ(m+1)
j

∣∣2
. (24)

Then, e(m) converges to the H-eigenvector with the largest
H-eigenvalue as m → ∞. We show that removing high
H-eigenscore hyperedges leads to effective epidemic con-
tainment in uniform hypergraphs. However, for nonuniform
hypergraphs, the adjacency tensor is not defined, and the
method cannot be implemented in general nonuniform hyper-
graphs.

We introduce SIP as a measure of a hyperedge’s contribu-
tion to the continuation of epidemics in the hypergraph. The
SIP of a size-d hyperedge {r1, . . . , rd} is the probability that
all nodes in the hyperedge are infected, which is calculated by
the IBMF

PI···I
r1···rd

� PI
r1

· · · PI
rd
. (25)

Each infection probability PI
r�

can be numerically calculated
by solving Eq. (2) for its fixed point. Because this method
uses IBMF, it incurs less computational cost than the EI-based
strategy. This measure can be calculated in arbitrary nonuni-
form hypergraphs whose hyperedges have various sizes. We
test the strategies in Sec. V.

Other centrality measures have been tested for immuniza-
tion strategies; however, they were found to be inefficient.
Immunizing high edge-betweenness edges is ineffective,
sometimes less efficient than randomly immunizing edges
[51]. The node-infectivity-based method has been tested as
well, but it is not as efficient as the eigenscore or EI-based
methods.

V. NUMERICAL RESULTS

To test the immunization strategies, we implement the qua-
sistationary method [78,79], which is a standard simulation
method used to study stationary states of stochastic processes
with absorbing states. An absorbing state has zero probability
of transitioning to other states. In this case, because both the
contagion and recovery process involves an infected node, if
all the nodes are in the susceptible state, it cannot turn into
any other state: it is the absorbing state of the s-SIS model.
The quasistationary method constrains the system in the active
states. We keep track of a set of configurations of the system,

which is referred to as the history. With a certain probability,
we replace one of the configurations in the history, randomly
selected at each time step with the current state of the system.
When the absorbing state is reached, the state of the system
is replaced by a configuration randomly selected from the
history. Here, we track 50 configurations and update with
probability 0.2 at each time step.

We first test the strategies in synthetic and empirical net-
works. These networks are selected as examples, and the
relative effectiveness of the immunization strategies gener-
ally does not strongly vary from network to network. For
the unclustered scale-free network, we use the static model
[62,63] with 5000 nodes, 15 000 edges, and degree exponent
3. For the clustered scale-free network, we implement the
model proposed in Ref. [80] with 5000 nodes, 15 000 edges,
degree exponent 3, and the parameter p = 0.8, which makes
the clustering coefficient 0.6. For empirical networks, we use
the largest connected component of the airline network [17]
which has 3354 nodes and 19 162 edges. Each node represents
an airport, and, if there exists an airline between two airports,
they are connected by an edge in the network. Another em-
pirical network we use is the largest connected component of
the general relativity and quantum cosmology collaboration
network [18]. There are 4158 nodes and 13 428 edges in the
network. Each node represents an author of a paper submitted
to the General Relativity and Cosmology category in arXiv,
and if two authors coauthored a paper in the arXiv category
from January 1993 to April 2003, they are connected by an
edge in the network.

The results of the strategies in the networks are illustrated
in Fig. 3. We plot the density of infection versus the immu-
nization rate p for β = μ = 0.2 [Figs. 3(a)–3(d)]. The density
of infection of efficient strategies is often higher than that of
random edge immunization for small immunization rate p, but
for sufficiently large p the density of infection drops quickly
and achieves herd immunity at a lower pc. The HIT pc is il-
lustrated in Figs. 3(e)–3(h). One way to calculate the effective
HIT of is to calculate the minimally required immunization
rate to lower the density of infection below 1/N . However,
when simulating the stationary states of epidemic processes,
if the system reaches its absorbing state, we arbitrarily adjust
the system by reverting it back to one of its histories (quasista-
tionary method) or activating a single site [81]. Therefore, the
state whose number of infected nodes is close to zero is highly
influenced by the choice of the simulation method, which is
not part of the epidemic model. To solve this problem, one can
choose the herd immunity condition as the density of infection
of 1%, which is sometimes used as a threshold to be consid-
ered as subextensive in networks [82]. However, in real-world
situations, an epidemic prevalence of 1% is still an alerting
scenario, and the epidemics cannot be considered under con-
trol. By choosing the density of infection of min(0.01, 1/

√
N )

as the herd immunity condition, this dilemma can be resolved.
In the thermodynamics limit N → ∞, the epidemic density
of the herd immunity condition converges to zero while the
number of the infected nodes approaches infinity.

The recovery rate is fixed to μ = 0.2. The HITs of the three
efficient strategies are almost identical. To compare the HITs
of efficient strategies more thoroughly, we plot the differences
between the eigenscore strategy and two other strategies in
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FIG. 3. Random edge immunization (Random), H-eigenscore (H-ES), EI, and SIP-based strategies tested in various synthetic and empirical
networks: (a, e, i) the static model, (b, f, j) clustered power-law network, (c, g, k) an airline network, and (d, h, l) the general relativity
collaboration network. Because this is a network (i.e. hypergraph with only size-two hyperedges) the H-eigenscore is identical to the usual
eigenscore. (a, b, c, d) The density of infection ρ versus the removed portion of the edges p. The recovery rate μ = 0.2 and the contagion
rate β = 0.2. Efficient immunization strategies usually result in a higher density of infection compared to random immunization for small p
but eliminate epidemics with smaller pc. (e, f, g, h) HIT pc, which is the minimally required portion of edges to eliminate the epidemics. The
efficient strategies (i.e. H-eigenscore, EI, and SIP-based strategies) exhibit marginal differences in their HITs. To compare the HITs of efficient
strategies more thoroughly, we plot the differences between the pc’s of EI and SIP-based strategies from the pc of the H-eigenscore-based
strategy in (i, j, k, l). The SIP-based strategy is often more efficient than EI-based strategy, despite its lower computational cost.

Figs. 3(i)–3(l). The EI-based strategy is generally slightly
more efficient than the eigenscore strategy, but it does not
have an advantage over the SIP-based strategy, despite its
higher computational cost. Rather, the SIP-based strategy has
a small advantage in the networks studied here, although the
differences are marginal.

Then, we test the strategies in 3-uniform hypergraphs. We
use two synthetic models of 3-uniform hypergraphs: a static
model with 2000 nodes, 4000 hyperedges, and degree expo-
nent 3, and the h-PSO model introduced in Sec. II C with
the same number of nodes, hyperedges, and degree exponent.
The temperature T = 0.5 and R = 1 result in the clustering
coefficient C(H ) = 1.0430. We illustrated the results in Fig. 4.
The density of infection ρ of the strategies versus the immu-
nization ratio p for β = β3 = μ = 0.2 is depicted in Figs. 4(a)
and 4(b). The H-eigenscore and SIP-based method result in
a higher density of infection for small immunization ratios,
but eventually yield a smaller HIT pc for herd immunity
[Figs. 4(c) and 4(d)]. The recovery rate is fixed to μ = 0.2.

We test the SIP-based strategy in two empirical hyper-
graphs with various hyperedge sizes. One is the congressional
bill cosponsorship hypergraph [19,30], which has 536 nodes
and 2773 hyperedges whose mean size is 16.57 and maximum

size is 323. Each node represents a US congressperson, and
if a set of d congresspeople cosponsored a bill in the year
2000, they are connected by a hyperedge of size d . The other
is the protein interaction hypergraph [32], which has 8243
nodes and 6688 hyperedges whose mean size is 10.12 and
maximum size is 421. Each node in the hypergraph represents
a protein, and each hyperedge represents a type of multi-
protein complex. Due to the large and heterogeneous size
of hyperedges, only the SIP-based strategy can efficiently be
implemented in these systems. We compare the density of in-
fection of the strategy with random immunization in Figs. 5(a)
and 5(b). The recovery rate μ = 0.2 and the contagion rate
for hyperedges are set βd = β = 0.2 independently of their
sizes. While random immunization requires the majority of
hyperedges to be immune to eliminate the epidemics, the
SIP-based strategy achieves it with small pc. The HITs are
plotted for various contagion rates β = βd in Figs. 5(c) and
5(d). The immunization rates of hyperedges of each size are
illustrated in Figs. 3(e) and 3(f). Although removing large
hyperedges affects a large number of nodes, small hyperedges
are primarily immunized especially when the contagion rate β

is low. This is because the nodes that are connected by a small
hyperedge interact more strongly. It is interesting to point out
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FIG. 4. Random hyperedge immunization (Random),
H-eigenscore (H-ES), EI, and SIP-based strategies tested in
3-uniform hypergraphs: (a, c) the hypergraph static model and
(b, d) the hypergraph popularity-similarity optimization (h-PSO)
model. (a, b) The density of infection ρ versus the removed portion
of the edges p. The recovery rate μ = 0.2 and the contagion rate
β = β3 = 0.2. The efficient strategies generally exhibit a higher
density of infection for small p, but herd immunity is achieved at
lower pc, which is the minimally required portion of hyperedges
that needs to be immunized to eliminate epidemics. (c, d) HIT pc

as a function of contagion rate β = β3. The H-ES and SIP-based
strategies outperform the EI-based strategy, despite their lower
computational cost.

that an epidemic containment strategy that immunizes groups
in descending order of their size was effective in the localized
regime [36] of higher-order epidemics [83].

VI. CONCLUSION

In summary, we proposed an effective immunization strat-
egy that immunizes hyperedges with high SIP that can be used
in general hypergraphs, including networks. Hyperedges with
high SIP are “hotspots” of the epidemics, and they can be
identified and immunized. In case of information spreading
processes, such hyperedges can be fostered to boost the infor-
mation flow in the system. We also show that H-eigenscore
is a natural generalization of the eigenscore for hypergraphs.
If all the hyperedges in a hypergraph have a size of 2, the
H-eigenscore becomes identical to the eigenscore used in
networks. Immunizing hyperedges with a high H-eigenscore
effectively contains the epidemics, but the method can only be
implemented in uniform hypergraphs.

We tested the performance of the method and compared it
with the state-of-the-art immunization strategy of the EI-based
method in networks and hypergraphs. In networks, the HIT pc

of the SIP-based strategy is marginally smaller than that of
the EI-based strategy, despite its lower computational cost.
In hypergraphs, the SIP-based strategy yields significantly
smaller HIT pc with lower computational cost. This suggests
that SIP can serve as a centrality measure for hyperedges in

FIG. 5. Random hyperedge immunization (Random) and SIP-
based strategy tested in empirical hypergraphs: (a, c, e) the
congressional bill cosponsorship (in 2000) hypergraph and (b, d, f)
the protein interaction hypergraph. For nonuniform empirical hyper-
graphs, H-ES cannot be implemented due to the variety of hyperedge
sizes, and EI is computationally inefficient due to the large hyper-
edges. (a, b) The density of infection ρ versus the removed portion
of the edges p. The recovery rate μ = 0.2 and the contagion rate β =
βd = 0.2 for all hyperedge sizes d . The efficient strategies generally
exhibit a higher density of infection for small p, but herd immunity
is achieved at lower HIT pc, which is the minimally required portion
of hyperedges that need to be immunized to eliminate the epidemics.
(c, d) HIT pc as a function of the contagion rate β = βd . Efficient
epidemic containment is achieved by the SIP-based method with
low computational cost. (e, f) The immunization rate of hyperedges
with size d plotted for various contagion rates. Small hyperedges are
primarily targeted by the immunization strategy especially when β is
low.

general hypergraphs. The large disparity between the pc of
an efficient immunization strategy and random immunization
calls for scientific, data-driven, systematic policy-making for
containment measures to eliminate epidemics with the mini-
mum use of resources for vaccination and minimal regulation
of air traffic and social gatherings.

The IBMF used to calculate the SIP tends to overestimate
the infection probability of the nodes (and, as a consequence,
overestimate the global prevalence) because it ignores the cor-
relations between the neighboring nodes. Recently introduced
microscopic epidemic clique equations (MECLE) [84], which
generalizes the epidemic-link equation to higher-order group
interactions, predicted the density of infection and epidemic
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thresholds by taking the dynamic correlations between the
neighboring nodes into account. An interesting work for the
future might be to see how the performance of the SIP-based
immunization strategy would be affected if the dynamical
correlations are considered. Accounting for such correlations
rapidly becomes unfeasible as the sizes of the hyperedges

grow, therefore it should be studied in hypergraphs whose
hyperedges are not too large.
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