
PHYSICAL REVIEW RESEARCH 3, 033280 (2021)

Long-range magnetic dipole-dipole interaction mediated by a superconductor
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Quantum computations and simulations require strong coherent coupling between qubits, which may be
spatially separated. Achieving this coupling for solid-state-based spin qubits is a long-standing challenge. Here
we theoretically investigate a method for achieving such a coupling, based on superconducting nanostructures
designed to channel the magnetic flux created by the qubits. We detail semiclassical analytical calculations and
simulations of the magnetic field created by a magnetic dipole, depicting the spin qubit, positioned directly below
nanofabricated apertures in a superconducting layer. We show that such structures could channel the magnetic
flux, enhancing the dipole-dipole interaction between spin qubits and changing its scaling with distance, thus
potentially paving the way for controllably engineering an interacting spin system.
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I. INTRODUCTION

Solid-state qubits have emerged as a potential quantum
information processing architecture, with leading candidates
such as atomic defects in bulk materials [1] and quantum
dots [2]. High-fidelity quantum control of such individual
spin qubits has been demonstrated in various systems [3,4].
However, scalable coherent coupling of these qubits, required
in order to produce robust two-qubit gates, still poses a signif-
icant challenge. The direct magnetic coupling between spin
qubits via the dipole-dipole interaction is relevant only for
spins that are quite close (at the scale of 10 nm), as this inter-
action usually decays with the distance cubed. This has been
demonstrated, e.g., for both nitrogen-vacancy (NV) centers
in diamond [5,6] and for quantum dots [7,8]. Applications
in quantum computing will require a high number of cou-
pled qubits which can be easily addressed. This would be
much easier to implement if the qubits are spatially sepa-
rated to much longer distances than usually possible with
dipole-dipole interaction. One such method is to use an-
other system, such as photons, as a quantum bus [2,9,10].
Another method is to use an external cavity or a “floating
gate” [11,12].

In this work, we propose a method to increase the dipole-
dipole interaction to much longer distances. We propose to
place dipoles inside fabricated nanostructures in a thin layer
of a superconductor. The superconductor would guide the
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field lines created by the dipoles into the nanostructures, a
phenomena known as flux focusing, and increase the inter-
action between the dipoles. A possible structure would be a
“dog-bone” shaped structure shown in Fig. 1. Figure 1(a) is
a side-way view of “dog-bone” structure fabricated directly
above an NV center or another bulk-semiconductors based
qubit. For quantum dots or other dipoles, this device could be
fabricated on a Si wafers with the quantum dots later placed
inside the apertures. Figure 1(b) shows a top-down view
of a “dog-bone” structure. This structure, with a ferromag-
net instead of a superconductor, has already been proposed
as a possible way to create long-range coherent interaction
between NV centers [13]. It has also been proposed as a
long-distance coupler between phosphorous based qubits in
Si [3]. We also note that this device could be used for sensing
application, with the sensor placed in one aperture and the
sample placed in another aperture. This could be useful when-
ever the sample requires a “clean” area far from the sensor. In
the case of NV centers, such a realistic scenario could arise for
a sample which might be damaged by the laser used to address
the NV center.

We look at three simpler scenarios illustrated in Fig. 2: a
round aperture with a dipole in the center, a round aperture
with a dipole next to the left edge, and an elliptical aperture
with a dipole next to the left edge. In all three cases the second
dipole would be placed next to the right edge of the aperture.
We note that the difference between the “dog-bone” behavior
and the ellipse behavior should be small when the ellipse
eccentricity is close to 1, due to the similar one-dimensional
confinement of the magnetic field. Having a circular aperture
at the edge of the ellipse (a “dog-bone” structure) would ease
the fabrication and the accurate placement of the structure rel-
ative to the qubit, but should not change the power law scaling
of the coupling. We show that by placing the dipoles inside
these fabricated nanostructures the dipole-dipole interaction
is significantly enhanced.
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FIG. 1. (a) A side-way view of an spin qubit in a semiconductor
underneath an aperture in a superconducting layer. Relevant length
scales are noted with R ∼ H . (b) A top-down view of a “dog-bone”
structure composed of two apertures at a distance of L and a thin
channel that connects them. It is assumed that L � R. (c) An artist
view of a possible large-scale implementation of a quantum device
with many spin qubits coupled using such structures.

Calculating the currents and magnetic field in the vicinity
of a superconductor is a challenging task. Analytical solutions
are generally only available for simple symmetric geome-
tries, such as planes, spheres and cylinders. Those cases have
been widely studied, mostly for calculating the interaction
and levitation forces [14–25]. Moreover, numerical solutions
are usually either for bulk samples [26] or simple geome-

FIG. 2. The three cases addressed in this work. The dipole cre-
ating the field is marked as an orange dot (left dot) and the point at
which the field is measured is marked as a green dot (right dot). This
point is at a distance d from the right edge of the aperture in all three
cases. (a) A round aperture with the dipole in the center. (b) A round
aperture with the dipole at a distance d from the left edge. (c) An
elliptical aperture with the dipole at a distance d from the left edge.
Relevant distances are noted.

tries [27–29] and are generally very time and/or resource
intensive.

Here we present a method for calculating the exact analyti-
cal solution for the magnetic field arising from a single dipole
inside a circular aperture in a superconducting thin film, under
the assumption of zero penetration depth. We solve for a
dipole at the center of the aperture and then at a shifted posi-
tion, and show that the flux focusing and field confinement can
be used to dramatically increase the dipole-dipole interaction.
In addition, we numerically solve the problem with a finite
penetration depth and show a very good agreement with the
analytic calculations. Finally, we extend the numerical results
to an elliptical aperture and show an even further increase in
the interaction strength.

Recently, we became aware of a recent similar work used
to find the flux focusing in a parallel SQUID array [30].

II. ANALYTICAL ANALYSIS

A known form of the London equations, which describes
the relation between the vector potential A and the current
density J in a superconductor is [31]

A = −μ0λ
2J, (1)

where μ0 is the vacuum permeability and λ is the supercon-
ductor penetration depth. Thus λ → 0 ⇒ A|σ → 0, where σ

denotes the boundary of the superconductor, implying that the
limit of zero penetration depth of a superconductor results in a
vanishing vector potential on the boundaries of the supercon-
ductor.1

Under these conditions, we can base our calculation off of
the method of the Dirichlet electrostatic Green function [32].
In the Coulomb gauge, we have ∇2A(r) = −μ0J(r), where
each of the Cartesian components of the vector potential be-
haves like an electrostatic potential with ρ(r)

ε0
→ μ0Ji(r) (ε0

is the vacuum permittivity). Using this method, when given a
current density J(r) and a Green function G(r, r′), one is able
to calculate the vector potential and the resulting magnetic
field:

B(r) = ∇ × A(r) = ∇ × μ0ε0

∫
V

d3r′J(r′)G(r, r′). (2)

In our case, we have a superconducting film lying in the xy
plane, with a circular aperture of radius R, i.e., σ = {z = 0 ∩
ρ � R}. The current density of a point magnetic dipole m,
located at r0, is given by [32] J(r) = −m × ∇δ(r − r0).

The problem of finding the Green function of a semi-
infinite film, {z = 0 ∩ x � 0}, is treated in Ref. [33].
Following the process in Ref. [34], one is able to apply the

1One needs to be a bit cautious when writing this form of the
London equations for the geometry of a superconductor that is not
simply connected, since in that case it is correct only if for every
closed path � around an aperture, A still satisfies

∮
�

A · dl = φ� ,
where φ� is the flux enclosed by the path [43]. This requirement
is necessary since far from the aperture, J → 0, so plugging in the
London equation in the integral gives zero, instead of φ� . In our
specific case of a single aperture and an infinite film, the flux is zero
anyway and so this London equation does hold.
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Kelvin inversion transformation that can be used to generate
new solutions for the Poisson equation from known ones [35].
This transformation inverts the space relative to a predefined
sphere. By applying the Kelvin inversion, we are able to
transform the Green function of the semi-infinite film to one
of an infinite film with a circular aperture, i.e., for σ . For more
details, see Appendix.

Attempting to generalize this approach in order to solve an
asymmetric aperture (more specifically an elliptic aperture)
is not a trivial task. Naively stretching one of the x or y
coordinates in the circular Green function generates a new
function which vanishes outside of an elliptical aperture, but
no longer satisfies the Poisson equation. There is a modified
Kelvin inversion transformation, which inverts the space rel-
ative to an ellipsoid rather than a sphere, but unfortunately,
this transformation is nonconformal [36]. Nonconformality
implies that it will not generate a correct Poisson equation
solution in the new elliptical geometry. There are many known
2D conformal transformations that are able to transform a
circular aperture to an asymmetric aperture, but applying them
to the x, y coordinates of a 3D Green function will not be con-
formal. To the best of our knowledge there is no 3D conformal
transformation which can transform a circle into an ellipse.
We therefore proceed with the analysis of a circular aperture,
with a centered and off-center dipole, and then continue with
numerical calculations for the elliptic case.

A. Dipole at the center of an aperture

The simplest case to solve is the case illustrated in
Fig. 2(a): a dipole in the center of a round aperture. Plugging
in the Green function from Ref. [34] and the current density
of a dipole [32] located at the origin into Eq. (2), we get (for
a detailed derivation, see Appendix):

A(r) = μ0ε0m × ∇r′ G(r, r′)|r′=0 = μ0

4π

m × n̂(r)

r2
. (3)

Here,

n(r) ≡ C(r)ρρ̂ + zẑ,

C(r) ≡ 2

π

[
tan−1(α(r)) + α(r)

1 + α(r)2

]
,

α(r) ≡ 1√
2r

√
R2 − r2 +

√
[z2 + (ρ + R)2][z2 + (ρ − R)2].

It is instructive to introduce the vector n̂(r), so one can
easily notice that the vector potential In Eq. (3), has the
same form as a free magnetic dipole vector potential, with
n̂(r) → r̂. The entire effect of the superconductor is reflected
in the coefficient C(r) in the ρ̂ direction, which is a location
dependent scaling factor. We see that on the boundary σ ,
α = 0, so n|σ = 0, and then A|σ = 0, consistent with our
construction of G(r, r′). As a sanity check, the limit for an
infinitely large aperture R → ∞ (or equivalently, r → 0)

⇒ α → ∞ ⇒ C(r) → 1 ⇒ n̂(r) → r̂

reproduces the expression of a free dipole. Now for the mag-
netic field, taking the curl of Eq. (3), we obtain

B(r) = μ0

4πr3
[3(m · r̂)n̂(r) − (m · ∇ )n(r)

+ m(∇ · n(r) − 3(r̂ · n̂(r)))]. (4)

FIG. 3. The analytical solution of the magnetic dipole field in a
circular aperture of a superconducting film, calculated from Eq. (4),
for μ0m = 100 and R = 1. The dipole is pointing towards ẑ. The
stream plot provides the direction of the field, and the contour plot is
scaled relative to the magnitude of the field. We see the comparison
to the free magnetic dipole field in the right-side plot. It is evident
visually that the superconductor confines the magnetic flux.

When considering the limit of an infinitely large aperture,
n̂(r) → r̂ as before, the two right terms cancel each other out
and (m · ∇ )n(r) → m, resulting in the known expression for
the magnetic dipole field. In Fig. 3, we plot the magnetic field
calculated from Eq. (4), comparing the case of a small aper-
ture (normalized size R = 1) to the free dipole case (without
an aperture).

Restricting ourselves to the xy plane, we can derive a
relatively simple analytical expression for the magnetic field
inside the aperture. Due to the superconductor fully blocking
the field in the ẑ direction, the strongest confinement occurs
for a dipole oriented along the ẑ direction (see Appendix for
the full derivation). Starting from Eq. (4) and setting the dipole
to point along the ẑ direction, we derive the magnetic field in
the xy plane as

Bz(ρ, φ, 0) = − μ0m

2π2ρ3

⎡
⎣cos−1

(ρ

R

)
+

ρ

R

(
1 + (

ρ

R

)2)√
1 − (

ρ

R

)2

⎤
⎦. (5)

This equation is plotted in Fig. 4, stressing the flux focus-
ing and thus enhanced magnetic field near the edge of the
aperture.

We can now use Eq. (5) to infer the strength of the field
confinement near the edge, if we maintain a constant distance
from the edge, denoted by d , and increase the aperture’s
radius:

Bz(ρ → R → ∞, 0, 0) = − μ0m√
2π2

1√
dR

5
2

+ O

(
1

R
7
2

)
. (6)

We find that the power-law scaling of the magnetic field with
the radius has increased from the usual dipole power law of
−3 to −2.5. This result is plotted in Fig. 5.

B. Dipole at the side of an aperture

Shifting to a dipole which is off-center, e.g., at the left edge
of a round aperture [Fig. 2(b)] is relatively simple. Starting
with Eq. (2), we use a dipole current density which is shifted
in the x̂ direction by x0. The derivation is similar to that of
the nonshifted case but the solutions for the vector potential
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FIG. 4. The analytical solution of the magnetic dipole field in a
circular aperture of a superconducting film, calculated from Eq. (5).
The dashed vertical line indicates the edge of the superconductor.
The field vanishes on the superconductor, since no field lines can
cross it. Close to the center, for which the limit of ρ → 0 (or
R → ∞) is valid, we find a behavior consistent with a free dipole,
approaching − μ0m

4πρ3 . Closer to the edge, we see that the field is
approaching infinity as can be seen from Eq. (6).

and the field, calculated with MATHEMATICA [37], are given as
complicated expressions which are too long to include fully.
Nevertheless, we verify that by substituting x0 = 0 we again
obtain the results of a centered dipole [Eq. (3)–(5)]. Moreover,
the magnetic field can be plotted and simplified next to the
edge: we derive the expression for a dipole shifted to x0 =
d − R (a distance d from the left edge of the aperture) and we
look at the magnetic field symmetrically near the other edge,
at the point x = R − d , where d is assumed small relative to

FIG. 5. The magnetic field as a function of the distance L be-
tween the dipole and the measured point plotted for three cases: a
free dipole, a dipole at the center of the aperture, and a dipole next
to aperture’s edge. The superconductor aperture’s radius R varies and
the distance of the measured point from the edge of the aperture is
constant d = 1. For the centered dipole, R = L + d . For the shifted
dipole, R = L

2 + d where d is the distance of both the dipole and the
measured point from the aperture’s edges. When the radius is large
enough we observe the improved power-law scaling and the magnetic
field enhancement indicated in Eq. (6) and (7).

the radius R. Using MATHEMATICA [37], we obtain a simplified
series expansion

Bz(x → R → ∞, 0, 0) = −μ0m

4π2

1

dR2
+ O

(
1

R3

)
. (7)

We find a significant enhancement of the magnetic field, with
the power-law scaling improving from the usual dipole power
law of −3 to −2. This change in scaling is depicted in Fig. 5.

In order to gain insight into this behavior, we can start
by examining a dipole which is shifted to x0 = R − d , and
calculate the magnetic field at the origin. We can see that this
problem is symmetric to the problem solved in the previous
section, by switching between the dipole and the point at
which we measure the field. Therefore, in this case, we get
the exact same behavior as in Eq. (6). We can now combine
both effects: shifting the dipole to distance d from one edge,
and calculating the field at a distance d from the second edge,
leading to a

√
R improvement from each effect, resulting in

Eq. (7).

III. NUMERICAL SIMULATIONS

We augment our analytical analysis with numerical simula-
tions, to address an optimized aperture geometry which is not
circular (but rather elliptical) and thus cannot be addressed
analytically. The simulations were performed by solving the
London equations as described in Ref. [38]. This method is
valid for a magnetic field much smaller than the upper critical
field Hc2 of the superconductor, and for a superconductor
much larger than its coherence length ξ .

The physical quantity obtained from the simulation is
the thin film current J(x, y) = ∫

dz j(x, y, z) = (Jx, Jy). If the
thickness is nearly constant with thickness �, and the film is
thin enough such that j(x, y, z) is not dependent on z, we can
approximate J(x, y) = j(x, y, z)�. Since the divergence of the
current is zero ∇ · J = 0, we can express it in terms of a scalar
potential called the stream function g(x, y)

J = −ẑ × ∇g = ∇ × (ẑg) = (∂g/∂y,−∂g/∂x). (8)

The simulations find the current stream function g(x, y)
and the effective magnetic field Hz(x, y) resulting from an
arbitrarily shaped superconducting film with an applied mag-
netic field Ha(x, y). The simulations are carried out on a
nonequidistant grid and use a matrix inversion method with
matrix size (Nx × Ny) × (Nx × Ny), where Nx,y are the num-
bers of grid points in directions (x, y). This process is very
resource intensive and therefore only works for small grids
(usually grid sizes of �100 × 100 points).

The simulation invert a matrix whose nondiagonal terms
are multiplied by the effective penetration depth (also known
as the 2D screening length or Pearl length) � = λ2

�
[39],

where � is again the superconducting film thickness and λ

is the London penetration depth. Therefore, in order for the
matrix inversion to be smooth, we require � � 0. The Lon-
don penetration depth λ can be smaller than the film thickness
� as long as it is of the same order of magnitude.

For our simulations, we choose � = 80 nm and λ =
50 nm, which correspond to the London penetration depth
for a clean Niobium layer of the given thickness. The su-
perconducting film is taken to be 90 times the radius of the
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FIG. 6. [(a) and (b)] The effective magnetic field Hz inside a
round aperture with a radius of 1000 nm created by a dipole (a) in
the center of the aperture and (b) at a distance of d = 100 nm from
the left edge. The field is shown at the line y = 5 nm. The y axis
is the magnetic field, in dB, relative to 1 Gauss. The black vertical
lines indicate the edges of the aperture. The dashed curve shows the
normal dipole decay and the solid curve depicts the results from the
analytical analysis. The points are the results of the simulation. A
blue (red) point indicates that the field is in the negative (positive) ẑ
direction. [(c) and (d)] The simulated magnetic field Hz at a distance
of d from the right edge of the aperture as a function of L is the
distance between the dipole and the measured point. (c) A dipole at
the center of the aperture. The radius varies as R = L + d . The line is
fitted to the log of the data and the slope is −2.3 ± 0.1. (d) A dipole
at a distance of d from the left edge of the aperture. The radius varies
as R = L

2 + d . The line is fitted to the log of the data and the slope is
−1.9 ± 0.1.

aperture and the entire simulation grid size is taken to be
100 times the radius. The applied magnetic field is taken to
be the field created from a magnetic dipole pointing in the ẑ
direction: Ha(x, y) = m

2πr3 ẑ. The magnetization is of a single
spin 1 particle: m = 2gμB, where g is the electron g factor and
μB is the Bohr magneton.

In the symmetric case, for which the dipole is at the center
of a round aperture, there are 100 grid points per axis. The
points are chosen such that there is a higher density of points
next to the edges, where the gradient is higher. For the other
cases, the number of points per axis is not the same. The sim-
ulations were executed with varying numbers of grid points to
ensure stability and convergence (for a detailed explanation of
the simulation and the choice of grid points see Ref. [38]).

A. Comparison between numerical simulations
and analytical calculations

We first simulated the case of a round aperture [Figs. 2(a)
and 2(b)] in order to compare the numerical results with the
results of the analytical analysis. As can be seen in Figs. 6(a)
and 6(b), the simulations and analytical results exhibit the
same trend, with small deviations. The London penetration
depth λ has an effect of smearing the currents: a smaller value
allows the currents to “change” on a shorter length scale.
This results in having the effective magnetic field more local-
ized toward the edge of the aperture. This can partly explain
the small discrepancy between the analytical results (which

FIG. 7. (a) The effective magnetic field Hz inside an elliptical
aperture with a = 1000 nm and b = 50 nm caused by a dipole lo-
cated at a distance of d = 100 nm from the left edge of the aperture.
The field is shown at the line y = 5 nm. The y axis is the magnetic
field, in dB, relative to 1 Gauss. The black vertical lines indicate the
edges of the aperture. The dashed curve shows the normal dipole
decay. The points are the results of the simulation. A blue (red) point
indicates that the field is in the negative (positive) ẑ direction. (b) The
effective magnetic field Hz measured at a distance d from the right
edge of the aperture when the dipole is located at a distance d from
the left edge as function of the distance between the dipole and the
measured point. The line is fitted to the log of the data and the slope
is −1.4 ± 0.3.

require λ = 0) and the numerical method which require a
λ � 0.

Next, the simulations were carried out on circular apertures
with varying radii, with the dipole either located at the center
or at a distance of d = 100 nm from the left edge of the
aperture. The magnetic field at a constant distance of d from
the right edge of the aperture was extracted from the data.
The resulting data can be seen in Figs. 6(c) and 6(d). The
simulation results deviate from the analytics in certain cases,
for which these results indicate a higher magnetic field inside
the aperture. The cause of this discrepancy requires further
study which is beyond the scope of this work. Nevertheless,
we smooth the results by averaging the data using a moving
window method, and the standard error was extracted using a
moving std window.

We then fit the data using a weighted least squares re-
gression and obtain a consistent power-law scaling to the one
predicated by the analytical analysis [Eqs. (6) and (7)] and
shown in Fig. 5.

B. Dipole at the side of an ellipse

We proceed to simulate an elliptical aperture with the x
radius being a = 1000 nm and the y radius b = 100 nm. The
dipole was located at a distance of d = 100 nm from the left
edge. The results are shown in Fig. 7(a). It can be seen that
the behavior is similar to the round aperture, but that the
magnetic field is stronger. We then expanded the simulations
to elliptical apertures with a constant b = 100 nm and varying
a. The magnetic field at a constant distance of d from the
right edge of the aperture was extracted from the data. The
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results [Fig. 7(b)] were fitted to a power-law scaling, obtaining
a power law of −1.4 ± 0.3.

IV. DISCUSSION AND SUMMARY

This work addresses the challenge of achieving strong
magnetic coupling between magnetic dipoles, a major obsta-
cle for scaling spin-based qubits, and an important aspect of
nonlocal magnetic sensing. To this end we derived an analyti-
cal solution for the flux confinement and for the magnetic field
inside an aperture in a superconducting film. We have shown
that for two dipoles next to the edges of a round aperture,
the magnetic field, and thus the interaction, decays as 1

r2 ,
which represents a significant improvement over the 1

r3 scaling
of the normal dipole-dipole interaction. We have extended
these results using numerical methods to show that the scaling
improves even further for an elliptical aperture, reaching 1

r3/2 .
Other structures, such as the proposed “dog-bone” (Fig. 1) is
expected to exhibit similar behavior as the ellipse due to the
strong confinement in one of the axes.

A similar “dog-bone” structure, with a ferromagnet instead
of a superconductor, has already been shown to improve the
coupling by a ratio of L

D [13], with L being the distance be-
tween the qubits and D being the radius of the “dog-bone”
circular aperture. This leads to a power-law dependence of
−2, which we have shown that can be achieved using a
simpler circular aperture inside a superconducting film. By
creating an ellipse or a “dog-bone” structure in a supercon-
ductor as proposed here, we expect to improve the power-law
dependence even further to around −1.5. We also stress that
the ferromagnetic coupler proposed in Ref. [13] introduces
significant spin noise which can reduce the coherence time
of the qubits, while the superconducting structure can avoid
this adverse effect.

Two other works have shown direct NV-NV coupling
between two NVs at close proximity. In one, two NVs at a dis-
tance of 10 nm were shown to have a coupling of ∼40 kHz [5].
In the other, two NVs at a distance of 22 nm were shown to
have a coupling of ∼4.9 kHz. Using the method proposed in
this work, we can achieve a coupling of ∼10 kHz at a distance
of 300 nm. Such a coupling strength is significant compared
to previous results mentioned above, and compared to NV
coherence times achieved at cryogenic temperatures using dy-
namical decoupling schemes, reaching nearly 1 second [40].
Thus, the proposed structure could allow high-fidelity two-
qubit gates (at a rate of over 1000 operations within the
coherence time), while maintaining a spatial separation be-
tween qubits of ∼300 nm, well beyond the optical diffraction
limit, allowing straightforward addressing of individual NV
centers.

These results could significantly impact several fields,
including SQUIDs [38], magnetic levitation [41], quantum
sensing and quantum computation [3,42]. Specifically, our
findings could potentially allow coherent long range dipole-
dipole interactions, which could pave the way toward scalable
quantum computing in solid-state spin qubit architectures.

While the experimental realization of the proposed system
is not trivial, our scheme can be scaled to larger magnetic
dipole and aperture sizes, to facilitate simpler demonstrations.
It is possible to experimentally verify our results by scaling

all of the relevant sizes to μm or even mm scales. This
could be done, for example, by placing a micrometer-sized
ferromagnetic particle near one edge of a larger aperture, and
measuring the local magnetic field near the opposite edge of
the aperture, as a function of aperture size. These experiments,
which are still not trivial and are currently being pursued, are
expected to be presented in future publications.

We note that while our analysis is semiclassical, it is suffi-
cient to prove that such long-range entanglement is possible.
In accordance with the correspondence principle, it is impossi-
ble for the classical field to scale differently than the quantum
interaction strength.

We also note that in the context of quantum processing,
an open question remains regrading the coherence of the
enhanced dipole-dipole interaction mediated by the supercon-
ductor. Due to the phase preserving nature of the supercurrent,
we expect that barring additional noise sources, the interac-
tion will be coherent. Moreover, the superconducting gap for
an 80 nm thick Nb based superconductor is in the 300 GHz
range,2 which is two orders of magnitude higher than the
relevant energy scale for solid-state spin qubits (such as NV
centers). This implies that excitations in the superconductor
should not decohere the quantum spins. Other sources of noise
arising from an imperfect superconducting layer will also
affect the qubits. However, this noise will not be different from
the noise affecting other superconducting circuits and should
not change the scaling of the interaction. We therefore have
strong indications that coherent coupling and entanglement
will be realistically possible using this approach. In addition,
improved fabrication techniques should be able to suppress
these noise sources even further. Nevertheless, proof that co-
herent coupling is possible using this method will require
further study and will be the subject of future work.
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APPENDIX

1. Green function

Applying the Kelvin inversion transformation to the Green
function of a semi-infinite film [33] results in the following
Green function of an infinite film with a circular aperture

2The critical temperature for an 80 nm Nb film is ≈9 K. The
relation between the superconducting gap at zero temperature and the
critical temperature, according to BCS theory, is �0 = 1.75kBTc [44].
The superconducting gap dependence on temperature is �(t ) =
�0tanh(1.75

√
Tc
T − 1) [44]. Plugging all of the above and assuming

a temperature of 5 K, we get � = 300.7 GHz.
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(in cylindrical coordinates (ρ, φ, z):

G(r, r′) = 1

8πε0

{
1

D−

[
1 + 2

π
tan−1

(
F−
D−

)]
− 1

D+

[
1 + ε

2

π
tan−1

(
F+
D+

)]}
,

where

F± = 1√
2R

{(ρ2+ z2− R2)(ρ ′2+ z′2 − R2) ∓ 4R2zz′+
√

[z2 + (ρ + R)2][z2 + (ρ − R)2][z′2 + (ρ ′ + R)2][z′2 + (ρ ′ − R)2]}1/2,

D± =
√

ρ2 + ρ ′2 − 2ρρ ′cos(φ − φ′) + (z ± z′)2, ε = Sign[z(ρ ′2 + z′2 − R2) + z′(ρ2 + z2 − R2)]

with R being the radius of the aperture.

2. Calculating the magnetic field for a circular aperture with a centered dipole

Plugging in the expression for the current density J(r) = −m × ∇δ(r) in Eq. (2):

A(r) = μ0ε0

∫
V

d3r′J(r′)G(r, r′) = −μ0ε0m ×
∫

V
d3r′∇r′δ(r′)G(r, r′)

= −μ0ε0m ×
[∫

σ

da′n̂′δ(r′)G(r, r′) −
∫

V
d3r′δ(r′)∇r′ G(r, r′)

]
.

The left term goes away due to G(r, r′) vanishing on σ , according to the boundary conditions. Now we have to calculate
∇r′ G(r, r′)|r′=0. From symmetry it is clear that we can’t have a φ̂ component. Our approach will be assuming that z, z′ are
positive, and then since the vector potential is continuous we can plug in z′ = 0. As we also know that it would be symmetrical
for negative values, we will get the solution for all z. With these assumptions, ε|r′=0 → −1, and its z′ derivative will include a
delta function that vanishes for z′ > 0. So from now on we can plug in ε = −1. The derivative calculation in respect to variable
x′ yields

8πε0∂x′G = −∂x′D−
D2−

[
1 + 2

π
tan−1

(
F−
D−

)]
+ 1

D−

2

π

1

1 + ( F−
D−

)2

∂x′F−D− − F−∂x′D−
D2−

−
⎛
⎝−∂x′D+

D2+

[
1 − 2

π
tan−1

(
F+
D+

)]
− 1

D+

2

π

1

1 + ( F+
D+

)2

∂x′F+D+ − F+∂x′D+
D2+

⎞
⎠.

Now we will calculate F±|r′=0, D±|r′=0, and their derivatives with respect to ρ ′ and z′:

F±|r′=0 ≡ F = 1√
2
{−(ρ2 + z2 − R2) +

√
[z2 + (ρ + R)2][z2 + (ρ − R)2]}1/2,

D±|r′=0 ≡ D =
√

ρ2 + z2 = r, ∂ρ ′F±|r′=0 = 0, ∂z′Fz|r′=0 = ∓Rz√
2F

, ∂ρ ′D±|r′=0 = − ρ

D
, ∂z′D±|r′=0 = ±z

D
.

We choose φ′ = φ, which will give us later ρ̂ ′ = ρ̂. Plugging in F±|r′=0, D±|r′=0, we get

8πε0x′G|r′=0 = 1

D2

(
−∂x′D−

[
1 + 2

π
tan−1

(F

D

)]
+ ∂x′D+

[
1 − 2

π
tan−1

(
F

D

)])

+ 2((∂x′F+ + ∂x′F−)D − (∂x′D+ + ∂x′D−)F )

πD3
(
1 + (

F
D

)2) .

And now writing the full gradient, and plugging in the derivatives of the terms:

∇r′ G(r, r′)|r′=0 = ∂ρ ′G|r′=0ρ̂ + ∂z′G|r′=0ẑ = 1

4πr3

[
2

π

(
tan−1(α(r)) + α(r)

1 + α(r)2

)
ρρ̂ + zẑ

]
≡ n(r),

where

α(r) ≡ F

D
= 1√

2r

√
R2 − r2 +

√
[z2 + (ρ + R)2][z2 + (ρ − R)2].

Plugging back we now get

A(r) = μ0ε0m × ∇r′ G(r, r′)|r′=0 = μ0

4π

m × n̂(r)

r2
.
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FIG. 8. The analytical solution for the magnetic field of a dipole in a circular aperture of a superconducting film, calculated from Eq. (4),
for μ0m = R = 1. The dipole in (a)–(c) is pointing towards ẑ, and in (d)–(f) is pointing towards x̂. The stream plots provide the direction of
the field, and the contour plots are scaled relative to the magnitude of the field. We see the comparison to the free magnetic dipole field in the
right-side plots. It is evident visually that the superconductor confines the magnetic flux. The flux confinement exhibits different geometric
behaviors in different dipole orientations.

Now for the magnetic field, taking curl we get

B(r) = μ0

4π
∇ ×

(
m × n(r)

r3

)
= μ0

4π

[
1

r3
∇ × (m × n(r)) − 3

r5
r × (m × n(r))

]

= μ0

4π

[
1

r3
((∇ · n(r))m − (m · ∇ )n(r)) − 3

r5
((r · n(r))m − (m · r)n(r))

]

= μ0

4πr3
[3(m · r̂)n̂(r) − (m · ∇ )n(r) + (∇ · n(r) − 3(r̂ · n̂(r)))m].

This equation is plotted for various cases in Fig. 8.

3. Calculating Bm(z = 0)

We will now look at magnetic field at the superconductor’s plane

B(z =0) = μ0

4πρ3
[3(m · ρ̂ )n̂ρ (ρ) − (m · ∇ )n(r)|z=0 + (∇ · n(r)|z=0 − 3n̂ρ (ρ))m].
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FIG. 9. The analytical solution of the magnetic dipole field in a circular aperture of a superconducting film, calculated from Eq. (A1), with
μ0m = R = 1. [(a) and (b)] The magnetic field along the x axis when the dipole is in ẑ or ŷ directions in (a) normal scale and (b) logarithmic
scale. [(c) and (d)] The magnetic field along the x axis when the dipole is in the x̂ direction in (c) normal scale and (d) logarithmic scale. Note
that the dipole field is a factor of 2 higher along its axis. When the dipole is in the ẑ direction, the field vanishes on the superconductor, since
no field lines can cross it. When the dipole is in the x̂ or ŷ directions, the field does not vanish since the superconductor has zero thickness and
can’t block the field lines. For the ŷ case, the field at x > R coincide with the free dipole field and is not visible in the figure. Taking the limit
of R → ∞ (or ρ → 0), we get the behavior of a free dipole, with Eq. (A1) approaching the free dipole case. We see that when the dipole is in
the ẑ or ŷ directions the magnetic field behave quiet similar, approaching infinity as we get closer to the edge, with the dipole in the ẑ resulting
in a bit stronger magnetic field. A dipole in the x̂ direction results in a weaker field compared to the free one.

Assuming m = mxx̂ + mzẑ (without loss of generality since the geometry σ has an azimuthal symmetry):

B(z =0) = μ0

4πρ3

[
3mx cos φ

nρ (ρ)

ρ
ρ̂ − (mx∂xnx(ρ)x̂ + mx∂xny(ρ)ŷ + mz∂znρ (r)|z=0ρ̂ + mzẑ)

+
(

1

ρ
∂ρ (ρnρ (ρ)) + 1 − 3

nρ (ρ)

ρ

)
(mxx̂ + mzẑ)

]
, ∂zα(r)|z=0 = 0 ⇒ ∂znρ (r)|z=0 = 0,

B(z = 0) = μ0

4πρ3

[
3mx cos φ

nρ (ρ)

ρ
ρ̂ −

(
mx∂x

(
nρ (ρ)

ρ
x

)
x̂ + mx∂x

(
nρ (ρ)

ρ
y

)
ŷ + mzẑ

)

+
(

∂ρnρ (ρ) + 1 − 2
nρ (ρ)

ρ

)
(mxx̂ + mzẑ)

]

= μ0

4πρ3

[
mx

(
3 cos φ

nρ (ρ)

ρ
ρ̂ − ∂x

(
nρ (ρ)

ρ

)
ρρ̂ − nρ (ρ)

ρ
x̂

)
+ mxx̂ +

(
∂ρnρ (ρ) − 2

nρ (ρ)

ρ

)
(mxx̂ + mzẑ)

]

∂x = ∂xρ · ∂ρ = cos φ∂ρ

= μ0

4πρ3

[
mxcosφ

(
3

nρ (ρ)

ρ
− ∂ρ

(
nρ (ρ)

ρ

)
ρ

)
ρ̂ + mx

(
1 − nρ (ρ)

ρ

)
x̂ +

(
∂ρnρ (ρ) − 2

nρ (ρ)

ρ

)
(mxx̂ + mzẑ)

]

= μ0

4πρ3

[
mxcosφ

(
4

nρ (ρ)

ρ
− ∂ρnρ (ρ)

)
ρ̂ + mx

(
1 − nρ (ρ)

ρ

)
x̂ +

(
∂ρnρ (ρ) − 2

nρ (ρ)

ρ

)
(mxx̂ + mzẑ)

]
.
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Calculating the different terms:

α(ρ, z = 0) =
{√(

R
ρ

)2 − 1 ρ < R
0 R < ρ

⇒ nρ (ρ) =
{

2
π

(
cos−1

(
ρ

R

) + ρ

R

√
1 − (

ρ

R

)2)
ρ ρ < R

0 R < ρ
,

∂ρnρ (ρ < R) = 2

π

⎛
⎝cos−1

(ρ

R

)
− ρ

R
√

1 − (
ρ

R

)2
+ 2ρ

R

√
1 −

(ρ

R

)2
+ ρ2

R

− 2ρ

R2

2
√

1 − (
ρ

R

)2

⎞
⎠

= 2

π

⎛
⎝cos−1

(ρ

R

)
−

ρ

R

(
1 + (

ρ

R

)2)√
1 − (

ρ

R

)2
+ 2

ρ

R

√
1 −

(ρ

R

)2

⎞
⎠,

4
nρ (ρ)

ρ
− ∂ρnρ (ρ) = 2

π

⎛
⎝3 cos−1

(ρ

R

)
+ 2

ρ

R

√
1 −

(ρ

R

)2
+

ρ

R

(
1 + (

ρ

R

)2)√
1 − (

ρ

R

)2

⎞
⎠,

∂ρnρ (ρ) − 2
nρ (ρ)

ρ
= − 2

π

⎛
⎝cos−1

(ρ

R

)
+

ρ

R

(
1 + (

ρ

R

)2)√
1 − (

ρ

R

)2

⎞
⎠,

B(z = 0) = μ0

4πρ3

{
mx cos φ

(
4 nρ (ρ)

ρ
− ∂ρnρ (ρ)

)
ρ̂ + mx

(
1 − nρ (ρ)

ρ

)
x̂ + (

∂ρnρ (ρ) − 2 nρ (ρ)
ρ

)
(mxx̂ + mzẑ) ρ < R

mxx̂ R < ρ
.

Plugging in back the terms calculated in this expression and choosing orientation for m and angle φ, this reduces to

Bmẑ(ρ, φ, 0) = μ0m

4πρ3
ẑ

{
− 2

π

(
cos−1

(
ρ

R

)
+

ρ
R

(
1+( ρ

R )2)
√

1−( ρ
R )2

)
ρ < R

0 ρ > R
,

Bmŷ(x, 0, 0) = μ0m

4πx3
ŷ

{
− 2

π

(
2cos−1

(
x
R

) + 2 x
R√

1−( x
R )2

− π
2

)
x < R

1 x > R
,

Bmx̂(x, 0, 0) = μ0m

4πx3
x̂
{

2
π

(
cos−1

(
x
R

) + x
R

√
1 − (

x
R

)2 + π
2

)
x < R

1 x > R
. (A1)

These equations are plotted in Fig. 9.

4. Numerical simulations

Ampere’s law for the field around a superconducting film
can be written as

Hz(r) = Ha(r) +
∫

S
d2r′Q(r, r′)g(r′)) (A2)

with Hz(r) being the resulting perpendicular magnetic field,
Ha(r) being the applied perpendicular magnetic field, g(r′)
is the current stream function, and Q(r, r′) is a kernel that
represents the perpendicular magnetic field created at point
r by a magnetic dipole of unit strength and ẑ direction at
position r′. The second London equation in 2D:

Hz(x, y) = −�[∇ × J(x, y)]ẑ = �∇2g(x, y). (A3)

Eliminating Hz from Eq. (A3) using Eq. (A2), we can get (in
discretized form)

Ha(ri) = −
∑

j

(
Qi jw j − �∇2

i j

)
g(r j ). (A4)

Here, w j is the weight of point (r j ) which represent its 2d
volume. The matrix ∇2

i j computes the 2D Laplacian at point ri

from the stream function g(r j ) and its four nearest neighbors.

By inverting this equation, we can directly extract the stream
function from the applied magnetic field:

G(ri) = −
∑

j

Ki jHa(r j ) (A5)

with the inverse matrix Ki j :

Ki j = (
Qi jw j − �∇2

i j

)−1
. (A6)

This matrix inversion is the most resource intensive process
of the simulation and is the limiting factor of the grid size.
The simulation works by first calculating the stream function
g using Eq. (A5) and then extracting the resulting magnetic
field using Eq. (A2).

The stream function g(x, y) has several useful properties.
(1) The current in the superconductor flows on the contour
lines of g(x, y). (2) g(x, y) is constant outside the film and
inside apertures. (3) As g(x, y) is a scalar potential, it is
defined up to a constant. We choose g(x, y) = 0 outside the
superconducting film. (4) With the previous choice of the con-
stant, we find inside an isolated aperture g(x, y) = I0, where I0
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FIG. 10. The current stream function G(x, y), in log scale, as calculated by the simulation for the cases in the main text: (a) a dipole in
the middle of a round aperture [Figs. 6(a)] and 6(b)] a dipole in the side of a round aperture [Figs. 6(b)] and 6(c)] a dipole in the side of an
elliptical aperture [Fig. 7(a)]. The red (bold) line shows the edges of the aperture.

is the current that circulates the aperture. For a more detailed
explanation, see Ref. [38].

The simulated stream function g(x, y) for the different sce-
narios discussed in this article can be seen in Fig. 10.
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