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Random phase approximation with exchange for an accurate description
of crystalline polymorphism
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We determine the correlation energy of BN, SiO2, and ice polymorphs employing a recently developed
random phase approximation with exchange (RPAx) approach. The RPAx provides larger and more accurate
polarizabilities as compared to the random phase approximation (RPA), and captures the effects of anisotropy.
In turn, the correlation energy, defined as an integral over the density-density response function, gives improved
binding energies without the need for error cancellation. Here, we demonstrate that these features are crucial for
predicting the relative energies between low- and high-pressure polymorphs of different coordination number
as, e.g., between α-quartz and stishovite in SiO2, and layered and cubic BN. Furthermore, a reliable (H2O)2

potential energy surface is obtained, necessary for describing the various phases of ice. The RPAx gives results
comparable to other high-level methods such as coupled cluster and quantum Monte Carlo, also in cases where
the RPA breaks down. Although a higher computational cost than RPA, we observe a faster convergence with
respect to the number of eigenvalues in the response function.
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I. INTRODUCTION

The development of an accurate, yet computationally ef-
ficient, electronic structure approach able to treat electron
correlation in solids remains an important task in condensed
matter physics. Density functional theory (DFT) provides a
rigorous and computationally appealing framework [1,2] that
has been widely successful, but available approximations still
suffer a number of drawbacks. The van der Waals (vdW) inter-
actions, ubiquitous in systems ranging from layered materials
to superconducting hydrides, are challenging to include [3],
and most exchange-correlation (xc) functionals do not achieve
the accuracy needed to satisfactorily describe the energetics
of phase transformations and polymorphism, even in common
systems like water [4] and silica [5].

The random phase approximation (RPA) represents the
highest level of sophistication currently applied in materials
science [6–8]. Being based on the exact adiabatic-connection
fluctuation-dissipation (ACFD) formula [9,10], the first-order
Hartree-Fock exchange is exactly incorporated and vdW
forces are seamlessly built in, providing an overall improved
accuracy. However, the performance of the RPA strongly re-
lies on error cancellation, leading to unpredictable errors when
dealing with crystals of low symmetry [11,12]. Futhermore,
vdW forces are underestimated by an average of 20% [13–15].
The origin of these errors can, however, easily be traced to the
approximate Hartree response function used for constructing
the correlation energy.
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The combination of the ACFD formula and time-dependent
(TD) DFT has opened a path for systematic improvements of
the RPA [16,17]. Within TDDFT, xc effects are incorporated
via the xc kernel that can be defined as the second density
variation of the xc action functional [18–20]. Starting from
the RPA, i.e., the Hartree kernel, further refinements then
naturally proceed via the local density approximation (LDA)
and generalized gradient approximations (GGAs). However,
first results found that these approximations can worsen the
performance with respect to the RPA [21]. A renormalized
LDA kernel that introduces spacial nonlocality was, therefore,
formulated in Ref. [22]. This kernel, as well as a renormal-
ized Perdew-Burke-Ernzerhof (PBE) kernel, have shown to
improve the RPA correlation energy, leading to a better per-
formance in several cases [12,23,24].

Within an approach that combines many-body perturbation
theory (MBPT) and TDDFT the first step beyond RPA is to
include the full Fock exchange term in the density response
function via the nonlocal and frequency-dependent exact-
exchange (EXX) kernel. This generates the random phase
approximation with exchange (RPAx) that exactly includes
the second-order exchange diagram as well as higher-order
exchange effects, in addition to the RPA ring series of di-
agrams [25–29]. Various partial resummations of the RPAx
correlation terms are thus equal to other advanced expressions
for the correlation energy defined within MBPT such as, e.g.,
second-order screened exchange (SOSEX) [15,30–34]. First
tests on atoms and molecules showed that, not only are ac-
curate correlation energies obtained with RPAx [15,35], but
also xc potentials, i.e., electronic densities, and polarizabilities
[28,36]. Furthermore, studies on the homogeneous electron
gas, the simplest model of a metal, have shown promising
results [34].

In this work, we extend the scope of applications to solids
and show that it is possible to reach results of similar quality
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FIG. 1. Diagrammatic representation of the two terms in Eq. (4).
Full lines correspond to KS Green’s functions.

as for molecules. We calculate the relative energies between
various crystalline phases within the BN, SiO2, and ice poly-
morphs. In particular, we investigate cases where the RPA
has shown insufficient, as, e.g., for the α-quartz-stishovite en-
ergy difference in SiO2, for which the change in coordination
number necessitate accurate correlation energies [5,11,12]. A
similar problem occurs in cubic and layered BN, inverting
their stability order [37,38]. In both SiO2 and BN the vdW
forces play an important role [3,5,39]. Here we investigate the
effect of the EXX kernel on the binding energy of layered
BN as well as the energy difference between α-quartz and
cristobalite. A study of purely vdW bonded solids, such as
Ar and Kr, confirms that the vdW bond is well described with
RPAx, yielding an accuracy similar to that found for molec-
ular dimers. Finally, we perform a detailed analysis of the
water dimer potential energy surface and ice polymorphism.
The delicate balance between Pauli repulsion, static, and dy-
namic correlation has made water a long-standing problem for
electronic structure methods.

Our results on this broad and challenging set of systems
show promise for future applications. The RPAx stays within
the simple computational framework of the RPA, but has an
accuracy comparable with more sophisticated methods such
as quantum Monte Carlo (QMC) and coupled cluster (CC).

II. RPA WITH EXCHANGE

In this section we summarize the equations of the RPAx
approximation for periodic solids. These were introduced
previously [27,28], but are here adapted to the specific im-
plementation employed in this work [15,34,35].

The RPAx approximation for the correlation energy is
based on the adiabatic connection fluctuation-dissipation

(ACFD) formula, in which the exact correlation energy is
expressed in terms of the linear density response function, χλ,
multiplied by the Coulomb interaction, v, and integrated over
the frequency and the interaction strength λ

Ec = −
∫ 1

0
dλ

∫ ∞

0

dω

2π
Tr{v[χλ(iω) − χs(iω)]}. (1)

The underlying Hamiltonian is given by

H = T + V λ + λW, (2)

where T is the kinetic energy operator, W is the electron-
electron interaction operator, and V λ is a one-body potential
operator composed of the external potential and a fictitious
potential that fix the density at full interaction strength for
every λ. With this definition, the system at λ = 0 already
produces the exact density n via the exact Kohn-Sham (KS) xc
potential, vxc. The KS independent-particle response function,
subtracted in Eq. (1), is denoted χs.

Within TDDFT, χλ becomes a functional of the ground-
state density n0 via the xc kernel f λ

xc = δvλ
xc/δn|n0 . This can

be expressed in a Dyson-like equation

χλ(ω) = χs(ω) + χs(ω)
[
λv + f λ

xc(ω)
]
χλ(ω), (3)

similar to the RPA (or Hartree) equation ( fxc = 0).
A systematic approach for generating xc kernels based on

many-body perturbation theory was introduced in Ref. [20].
Within this approach the simplest approximation corresponds
to including the full Fock exchange term via a time-dependent
optimized effective potential scheme. This results in the EXX
kernel fx, defined by the following equation:

χs(ω) fx(ω)χs(ω) = RV (ω) + R� (ω). (4)

The right-hand side can be interpreted diagrammatically in
terms of KS Green’s functions, being the sum of the first order
vertex diagram RV (ω) and the first-order self-energy correc-
tion diagrams R� (ω) (see Fig. 1). Although fx is first order in
the Coulomb interaction, the correlation energy, via Eq. (1),
contains all orders in v. This approximation to the correlation
energy is what we call RPAx and is the same as the one used
in Ref. [29]. Other variants based on a dielectric formulation
[40], or Hartree-Fock orbitals and range-separation have also
been proposed [41]. We emphasize that the RPAx, as defined
here, is based on TDDFT and KS orbitals, thus falling in
the category of orbital functionals in DFT [i.e., functionals
depending on the (un)occupied KS orbitals and eigenvalues].
The total energy functional can then be minimized via a local
KS potential in the usual way [28].

The equation for the EXX kernel, Eq. (4), is usually ex-
pressed in terms of KS orbitals (occupied and unoccupied),
ϕn, and KS eigenvalues, εn. In Ref. [34] it was shown that
the same expression can be reformulated in terms of occupied
KS orbitals and their responses. For periodic systems this
expression reads

Rαβ
V (q, iω) = −

occ∑
knk′n′

〈�αϕ+
nk+qϕn′k′ |v|�βϕ−

n′k′+qϕnk〉 −
occ∑

knk′n′
〈�αϕ−

nk+qϕn′k′ |v|�βϕ+
n′k′+qϕnk〉

−
occ∑

knk′n′
〈�αϕ−

nk+qϕn(−k)|v|ϕn′(−k′ )�
βϕ−

n′k′+q〉 −
occ∑

knk′n′
〈�αϕ+

nk+qϕn(−k)|v|ϕn′(−k′ )�
βϕ+

n′k′+q〉, (5)
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Rαβ

� (q, iω) = −
occ∑
knn′

〈��ϕnk+q|�βϕ+
n′k+q + �βϕ−

n′k+q〉〈ϕn′k|V α
−q|ϕnk+q〉 +

occ∑
kn

〈��ϕnk|V α
−q|�βϕ+

nk+q + �βϕ−
nk+q〉

−
occ∑
knn′

〈�αϕ+
nk+q + �αϕ−

nk+q|��ϕn′k+q〉〈ϕn′k+q|V β
q |ϕnk〉 +

occ∑
kn

〈�αϕ+
nk+q + �αϕ−

nk+q|V β
q |��ϕnk〉

−
occ∑
knn′

[〈�αϕ−
nk+q|�βϕ+

n′k+q〉 + 〈�αϕ+
nk+q|�βϕ−

n′k+q〉
]〈ϕn′k|�k − vx|ϕnk〉

+
occ∑
kn

〈�αϕ−
nk+q|�k+q − vx|�βϕ+

nk+q〉 +
occ∑
kn

〈�αϕ+
nk+q|�k+q − vx|�βϕ−

nk+q〉, (6)

where

|�αϕ±
k+q,n〉 =

unocc∑
m

|ϕk+q,m〉 〈ϕk+q,m|V α
q |ϕk,n〉

±iw + εk,n − εk+q,m
, (7)

|��ϕk,n〉 =
unocc∑

m

|ϕk,m〉 〈ϕk,m|�k − vx|ϕk,n〉
εk,n − εk,m

, (8)

with �k(vx) the nonlocal(local) Fock exchange potential and
V α

q a local potential. In this form one can apply the linear
response techniques of density functional perturbation theory
to determine Eq. (4) and, hence, avoid the generation of unoc-
cupied KS states.

By solving the generalized eigenvalue problem

R|uβ〉 = νβχs|uβ〉, (9)

where R = RV + R� + χsvχs, the correlation energy can be
computed from

Ec = − 1

Nq

∑
q

Nν∑
β

∫ ∞

0

dω

2π

〈uβ |χsvχs|uβ〉
νβ (q, iω)

×{νβ (q, iω) + ln[1 − νβ (q, iω)]}, (10)

where Nν is the total number of eigenvalues and Nq is the
total number of q-points in the Brillouin zone. This last can
be reduced exploiting crystal symmetries. The λ-integration
is done analytically, while the frequency integral has to be
carried out numerically. We immediately see that this expres-
sion is reduced to RPA by setting RV = 0 and R� = 0 in
Eq. (9). Equations (5) to (10) were implemented within the
plane-wave and pseudopotential framework, but have so far
only been applied to molecular systems [15,34,35]. Binding
energies have been shown to converge quickly with respect to
the number of eigenvalues [≈10 times the number of electrons
(Ne)]. Due to the additional k-point sum in RV , RPAx scales
as N3

k with respect to the number of k-points, which can be
compared to N2

k with RPA. On the other hand, as we will
see later, the RPAx converges, in many cases, faster than RPA
with respect to Nν .

The underlying many-body formulation of the fx-kernel
allows also a variant of SOSEX [30–33] to be generated
within the present formalism, making use of an alternative
resummation of Dyson’s equation [Eq. (3)], that only includes
a subset of terms [15]. In the following we will present both
RPAx and SOSEX results.

Since a fully self-consistent implementation is still not de-
veloped, all calculations are done on top of a PBE ground state
[43], unless otherwise stated. The electron-ion interaction
is treated with standard norm-conserving pseudopotentials
[44–46].

III. NOBLE GAS SOLIDS

The ACFD formula for the correlation energy provides a
natural starting-point for including the long-range vdW force,
i.e., the attractive force between two charge neutral, closed-
shell atoms A and B due to fluctuating dipoles present in a
correlated wave function. At large separation R, the interac-
tion energy can, to leading order, be written as [47]

EAB = − 1

R6

3

π

∫ ∞

0
dω αA

iso(iω)αB
iso(iω) ≡ −C6

R6
, (11)

where

αA
iso(iω) = −1

3

∑
i

∫
d3rd3r′xi χ

A(r, r′, iω)x′
i (12)

is the isotropic dynamical polarizability of atom A, and C6

is the vdW coefficient. In Ref. [48], Dobson showed that
the RPA correlation energy exactly reproduces Eq. (11), but
with the exact polarizability replaced by the RPA polarizabil-
ity. However, as shown in several previous works, the RPA
C6-coefficients are underestimated (up to 40% in highly po-
larizable atoms) [28,33,49–52]. For noble gas atoms the error
lies at about 17%, which induces an error of approximately
30% in the binding energy of dimers [35,49]. Thus, while the
RPA captures the vdW forces in a qualitatively correct way,
the quantitative errors are large.

Including the xc kernel, it is not straightforward to derive
an expression similar to Eq. (11). In fact, in Ref. [53] it was
shown that semilocal kernels produce an additional 1/R6-
term. It remains to be proven analytically whether the nonlocal
RPAx reduces to Eq. (11).

In Fig. 2 we plotted the cohesive energy of solid Ar and
Kr as a function of nearest-neighbor (NN) distance. In RPA
and RPAx a reduced 3×3×3 shifted k-point grid is used for
the correlation energy giving results within 4 meV of the fully
converged values (see Appendix C).

In the RPA, the cohesive energy is underestimated by
25%. Our results thus differ somewhat from those obtained
in Ref. [54], but are more consistent with the results found
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FIG. 2. Cohesive energy (eV) as a function of nearest-neighbor distance (Å) in solid (a) Ar and (b) Kr. The correlation energy (Ec-RPAx)
is also shown, together with a fitted y = k/x6 curve. Green and blue squares correspond to CCSD(T) results [42].

for dimers (see Refs. [35,49]). As expected, based on the
accurate C6-coefficients and dimer binding energies, we find
RPAx to be in good agreement with both CCSD(T) [42] and
experimental results [55]. SOSEX gives only slightly larger
binding energies.

In Fig. 2 we also display the correlation energy (Ec-RPAx)
as a function of NN distance, exhibiting a perfect 1/R6 behav-
ior. Given that Ar and Kr have 12 NN the fitted coefficients
67*12 and 135*12 (atomic units) compare well with the dimer
C6-coefficients of 64 and 130, respectively. Similar accuracy
for the C6-coefficients are found with other variants of RPAx
[33,52,56,57] and the renormalized LDA kernel [51]. We note
that the SOSEX defined in Ref. [33] is different from the one
defined here since it does not contain self-energy corrections
(here included via R� in Eq. (4) [15]). The self-energy correc-
tions are similar to the “single excitations” in Ref. [33].

IV. BORON NITRIDE AND SILICA

Having established that vdW bonded solids are accurately
reproduced with RPAx we now turn to systems were both
vdW forces and covalent/ionic bonding are important. The
polymorphs of BN consist of the high-pressure cubic (c) and
wurtzite (w) structures with fourfold coordinated B/N atoms,
and several low-pressure layered structures, such as hexagonal
(h) and rhombohedral (r) BN, which are threefold coordinated
(see Fig. 3). The density, symmetry, and ionic character of
the B-N bond change from one phase to the other, with the
largest difference between fourfold and threefold coordinated
crystals. In these cases, functionals that largely rely on error
cancellation become unreliable, producing substantial errors
in energy differences that can invert the stability order. Al-
though it is well known that the layered polymorphs need a
good description of the vdW forces [39], this is not the only
missing component. Inaccuracies in describing the covalent
bond will show up if errors fail to cancel.

In Fig. 4 we plot the interlayer binding energy of r-BN
as a function of interlayer distance, keeping the intralayer
B-N distance fixed to the experimental value. In general, the
interlayer bonding is difficult to model with vdW corrected
DFT. Binding energies are typically largely overestimated,

often twice as large as RPA values [3,58]. On the other hand,
RPA underestimates the vdW forces, but it is not clear to what
extent in layered materials. We verified that we obtain the
same RPA result as in Ref. [3], taking into account that h-BN
is 5-meV lower in energy than r-BN [37]. The RPAx increases
the binding energy by 7 meV (or 9%). This correction is
smaller than the correction in purely vdW bonded solids such
as Ar and Kr analyzed above. The RPA thus performs better
than expected, at least for the BN layered system. We note
that, except for some differences in the dissociation tail, the
SOSEX and RPAx give essentially the same result.

In the lower panel of Fig. 5 we present results for the
energy difference between c-BN and w-BN, and between
c-BN and r-BN. c-BN is the reference level at zero in the
figure. Calculations are done on experimental structures [59].
We compare our RPA and RPAx results to recent CCSD
and CCSD(T) results [38], to LDA and PBE0 (i.e., a hybrid
functional with 25% of Fock exchange). We see a striking dif-
ference in the performance on the different polymorphs. Both
the wurtzite and cubic structures are high-pressure phases
with the same B-N coordination and similar volume. This
is thus the ideal situation for approximations to benefit from
error cancellation. Indeed, almost all approximations give the
same value within a couple of meV. The situation is very dif-
ferent when looking at the r-BN and c-BN energy difference.
Here, the volume differ by 35% and the B-N bond change
character. LDA is seen to hugely overestimate the energy
difference (105 meV) and to predict c-BN to be lowest in
energy. Experimental results are mixed but CC results revert
the energy order (see Ref. [38] and the experimental refer-
ences therein [60,61]). Additionally, PBE0 favors this energy
order, predicting r-BN to be lowest in energy, although with
a too large energy difference (−67 meV). The RPA, which is
known to rely on error cancellation, predicts the same energy
order as LDA, but with a smaller energy difference (25 meV).
We note that our result is in good agreement with the RPA
calculation in Ref. [37]. The RPAx, known to give accurate
absolute energies, and not only energy differences, gives a
result very close to the CCSD result with an energy difference
of −15 meV, and thus reverts the stability order. SOSEX gives
a slightly larger energy difference (−23 meV). In Ref. [12] it
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FIG. 3. Upper row: Wurtzite (w-BN), cubic (c-BN), and layered
rhombohedral (r-BN) boron nitride. Lower row: Cristobalite and α-
quartz with fourfold coordinated silicon, and stishovite with sixfold
coordinated silicon. Silicon in gold and oxygen in red.

was shown that the renormalized PBE kernel also provides
an improvement upon RPA (−48 − (−38) meV). We note
that the SOSEX defined here is different from the ACSOSEX
defined in Refs. [12,62]. Their definition is based on the
renormalized PBE kernel, whereas the one here is based on
many-body perturbation theory [15].

The difference between RPA and RPAx cannot solely be
explained by the difference in how they describe the vdW
forces. This suggests that the RPAx captures the covalent
B-N bond better than RPA. Our result provides further con-
firmation that the correct order places the layered low-density
structures at a slightly lower energy than the cubic form, even
at zero temperature. The difference in zero-point (vibrational)
energy (ZPE) has been estimated to −10 meV [37]. We also
mention that we tried various DFT functionals employing a
vdW correction, again with very mixed results.

In the upper panel of Fig. 5 we show the convergence of
the correlation energy difference between c-BN and r-BN

FIG. 4. Interlayer binding energy (eV) of r-BN as a function of
interlayer separation (Å).

(�E r−c
c ) with respect to Nν/Ne. We note that when comparing

the correlation energy of two systems the same number of
eigenvalues per electron has to be used [15]. Since r-BN and
c-BN have the same number of electrons in the unit cell this
implies the same number of eigenvalues. w-BN has twice the
number of electrons and, therefore, needs twice the number of
eigenvalues. However, while the correlation energy difference
between w-BN and c-BN converges quickly with respect to
the number of eigenvalues (<10×Ne) the RPA exhibits a
slow convergence for the r-BN-c-BN energy difference. We
used up to 512 eigenvalues to produce results within 2 meV
(marked by the dashed horizontal lines in Fig. 5), which is
more than 60 times the number of electrons and hence six
times more than usual. The problem of not canceling errors
is thus visible also in this technical aspect of our approach.
The absence of this problem is remarkably evident in the
convergence of the RPAx correlation energy difference. In
RPAx we needed <64 eigenvalues, which is similar to the
number used for other systems. Further convergence studies
can be found in Appendix B.

A similar effect, as studied above in BN, has previously
been observed in silica (SiO2) polymorphs [5,11,12]. Silica,
similar to BN, has polar covalent bonds and polymorphs
of different coordination number. In α-quartz (space group
P3121), the most stable crystal at ambient pressure, silicon,
is fourfold coordinated by oxygen, forming a tetrahedral unit.
These units are connected via a flexible Si-O-Si bond, sen-
sitive to vdW forces (see Fig. 3). Cristobalite (space group
P41212) has a similar local structure and only 5% larger
volume. The energy difference between α-quartz and cristo-
balite is found to be approximately 20 meV in the experiment
[64,65]. When the ZPE contribution is subtracted the energy
difference doubles [5]. While LDA predicts the correct en-
ergy order, PBE erroneously predicts cristobalite to be lower
in energy due to missing vdW forces [5]. A similar effect
was recently observed in the borate (B2O3) polymorphs [66].
Stishovite (space group P42/mnm) is a high-pressure phase
with 37% higher density, having sixfold coordinated Si atoms.
The energy difference between stishovite and α-quartz is ex-
perimentally determined to 0.51–0.54 eV (see Ref. [67] and
experimental references therein [68,69]). LDA underestimates
this value by more than 0.4 eV, whereas PBE here predicts the
correct energy difference [67].

In the lower panels of Fig. 6 we illustrate the results for
the α-quartz-cristobalite (red) and α-quartz-stishovite (yel-
low) energy differences. We optimized all structures with PBE
plus a vdW correction at the Tkatchenko-Scheffler (TS) level
[70]. In the case of α-quartz-cristobalite, LDA gives a value of
33 meV and PBE0 a value of 12 meV. As discussed in Ref. [5]
a vdW correction improves this result. RPA gives a value
of 31 meV, which is underestimated by 15 meV according
to QMC calculations. As the Si-O bond remains similar in
α-quartz and cristobalite, we interpret this relatively small
error coming from the underestimated vdW forces with RPA.
RPAx, and SOSEX bring the result in good agreement with
the QMC value of 43 meV.

The situation is different in the case of stishovite which
has sixfold coordinated Si atoms. Here the variations be-
tween the different methods are an order of magnitude larger.
Subtracting the ZPE, calculated in Ref. [5], QMC predicts
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FIG. 5. (a) Correlation energy difference of r-BN and c-BN as a
function of eigenvalues per electron within RPA and RPAx. (b) Rel-
ative energies (meV) of w-BN and r-BN with respect to c-BN within
LDA, PBE0, RPA, SOSEX, and RPAx. CC results are from Ref. [38].
c-BN is the reference value at zero.

FIG. 6. (a) Correlation energy difference of stishovite and α-
quartz as a function of eigenvalues per electron within RPA and
RPAx. (b) Relative energies (meV) between cristobalite and α-quartz
(red) and between stishovite and α-quartz (yellow) within LDA,
PBE0, RPA, SOSEX, and RPAx. QMC results are from Refs. [5,63].

an energy difference of 0.51 eV [63], similar to the PBE0
result (0.52 eV) and the experiment. With RPAx we find
a value of 0.49 eV which is 80 meV larger than the RPA
result (0.41 eV). Although still somewhat underestimated we
see that the exchange kernel is responsible for the improved
accuracy. Self-consistency could further improve this result.
That an xc kernel can improve the α-quartz-stishovite energy
difference was also found in Ref. [12] using the renormalized
PBE kernel (0.51–0.54 eV).

Our RPA result differs from the result presented in
Ref. [11] by 20 meV. The origin of this difference, occurring
already at the PBE level, can be traced to the use of projected
augmented wave (PAW) potentials [71] in Ref. [11]. A larger
difference can be found with respect to the RPA result pre-
sented in Ref. [12], a difference that can be traced mainly to
the EXX part of the energy (see Appendix C).

From the technical point of view the situation is similar
to the BN polymorphs. In the upper panel of Fig. 6 we show
the convergence of the α-quartz-stishovite correlation energy
difference (�Eq−s

c ) with respect to Nν . Again, we find a slower
convergence in RPA as compared to RPAx. The RPA and
RPAx values were converged within 10 meV using 30×Ne and
10×Ne eigenvalues, respectively.

V. ICE POLYMORPHISM

The problem in predicting the relative energies between
high- and low-pressure phases is relevant also for molecular
solids such as the ice polymorphs. At ambient pressure the
oxygen atoms in water form an hexagonal lattice held together
by hydrogen bonds. By applying pressure the average O-O
distance reduces such that the oxygen atoms are approached
in non-hydrogen bonded configurations, which increases the
coordination number from four up to eight in some dense
high-pressure structures [4]. Calculating the energy difference
between these phases with standard functionals in DFT, again
produces large errors. One of the failures has been attributed
to the lack of vdW forces, which are expected to play an
important role in high-pressure phases as well as liquid water
[75–78]. In addition, a fraction of HF exchange has shown to
be important for the description of the hydrogen bond [77,78].
However, combining a hybrid functional with a vdW correc-
tion still does not give a complete description. The strongly
constrained and appropriately normed (SCAN) meta-GGA
functional [79] has shown that it is possible to obtain good
energy differences between low- and high-density phases us-
ing a semilocal functional. On the other hand, lattice energies,
i.e., the energy gain per monomer in the solid, remain overesti-
mated with SCAN [80]. The more advanced RPA also provides
improved energy differences, but in this case with underes-
timated lattice energies [81], due to the poor description of
the hydrogen bond within RPA [13–15]. Calculations using
second-order Møller-Plesset perturbation theory have, indeed,
shown that higher-order exchange terms are important [82].

We will now investigate the performance of the RPAx, and
start by exposing a fundamental problem of the RPA when
calculating the polarizability of the water molecule. Since
the static polarizability α(0) [Eq. (12)] is not a variational
quantity like the total energy, it has a stronger dependency
on the input orbitals (and eigenvalues) [83]. It can be argued
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TABLE I. Anisotropic polarizability (a.u.) of the water molecule.
In the first two columns results are obtained with PBE orbitals and in
the second two columns with the optimized hybrid orbitals (20% of
exchange for RPA and 35% for RPAx). Geometry and CC results are
from Refs. [73,74].

RPA RPAx RPA RPAx
PBE orbitals HYBopt orbitals CCSD CCSD(T)

αxx 9.14 9.66 8.49 8.76 8.976 9.250
αyy 9.19 10.35 8.78 9.69 9.712 9.874
αzz 9.19 9.87 8.66 9.18 9.310 9.529
αiso 9.17 9.96 8.64 9.21 9.33 9.55

MAE −0.38 +0.41 −0.91 −0.35 −0.22

that the correct orbitals should be those coming from a self-
consistent RPA/RPAx calculation [28]. However, instead of
these orbitals, we will use both PBE orbitals and orbitals from
an optimal hybrid functional based on a local KS potential
[84]. The optimization of the hybrid functional is carried out
by minimizing the total RPA/RPAx energy with respect to
the fraction of exact-exchange in hybrid functional used to
generate the input orbitals (see further details in Appendix A
and Ref. [85]). To study the effects of anisotropy, we calcu-
late all diagonal elements of the polarizability. The results,
obtained using the geometry of Refs. [73,74], are presented
in Table I. We see that RPA clearly underestimates the po-
larizability and the magnitude of anisotropy when evaluated
with optimal hybrid orbitals (20% of exchange in RPA). The
isotropic RPA polarizability improves with PBE orbitals, but
the anisotropy is then completely lost. The origin of any
anisotropy within RPA is, thus, solely due to an effect of ex-
change in the description of the orbitals. In contrast, the RPAx
exhibits anisotropy already with PBE orbitals stemming from
the exchange kernel. This effect is enhanced using optimal
hybrid orbitals (35% of exchange in RPAx). The RPAx agrees
very well with CCSD results [73], and are not so far from
CCSD(T) results [74]. These results highlight the important
role of the exchange kernel for describing not only the water
molecule, but also the long-range interaction between water
molecules.

To study the water intermolecular interaction in more detail
we determine the binding energy of the ten Smith stationary
points (SPs) [86]. In addition to the global minimum, the SPs
correspond to transition states or higher-order saddle points
on the water dimer potential energy surface [72]. The ge-
ometries of the SPs, depicted Appendix C, are relevant for
liquid water [87,88], and some are found in high-pressure
ice polymorphs. The lowest-energy configuration (SP1) cor-
responds to the optimal hydrogen bond geometry, included
in many molecular test-sets. Previous work has shown that
RPAx and related methods capture the binding energy of this
configuration rather well, while RPA fails by around 15%
[13–15]. In Fig. 7 we summarize the results for all ten SPs
using structures optimized at the CCSD(T) level [72]. The
HYBopt corresponds to the hybrid functional optimized with
RPAx (35% of exchange). The HYBopt orbitals were used
for evaluating the energy in both RPA and RPAx. For the

FIG. 7. Error in the binding energy (meV) with respect to
CCSD(T) for the ten Smith stationary points.

total energy the choice of orbitals has a small effect. The
largest difference is found for the SP1 configuration where
the RPAx binding energy change from 212 meV to 216 meV
when going from PBE to HYBopt orbitals. We also included a
vdW correction at the TS level in combination with the same
hybrid (HYBopt + vdW). Errors are determined with respect
CCSD(T) reference values [72]. It is clear that RPA fails not
only for SP1 but for all configurations. The error is, however,
rather constant suggesting that the energy differences are still
quite well described. The hybrid functional performs very
well for the first three hydrogen bonded configurations, but
fails, similarly to RPA, for the others. Energy differences will,
in this case, not benefit from error cancellation. Adding the
TS-vdW correction shifts all values with a similar constant
(except for SP8). The vdW correction thus improves results
for some configurations and worsens the results for others,
but the quality of the energy difference will be similar to
that of the hybrid functional without a vdW correction. These
results show how complex and challenging it is to capture
the full (H2O)2 potential energy surface. RPAx is the only
approximation that performs well for all SPs and produces
results comparable to reference values at the CCSD(T) level.

In Fig. 8 we plot the dissociation energy curves of the
SP1 and SP6 configurations. The dimers are stretched with
fixed intramolecular geometries. Given the accuracy of the
RPAx we can now use this approximation as a reference to
compare the other methods as well. It is interesting to note
that the hybrid functional which gives a good value at the SP1
bond midpoint also captures the dissociation tail. RPAx and
HYBopt perfectly coincides up to 5 Å. Adding a vdW correc-
tion improves the binding energy of the SP6 configuration.
However, from the full dissociation curve, we see that this
is at the expense of producing the wrong tail. Even in this
non-hydrogen bonded configuration, RPAx and HYBopt are
closer at stretched geometries.

We are now ready to study solid forms of water. In Fig. 9
we illustrate four different phases of ice in the order of de-
creasing volume per molecular unit: XI, II, IX, and VIII. All
structures are relaxed with the PBE + TS functional. Due to
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FIG. 8. Binding energy (meV) as a function of O-O distance (Å) of water dimers in the (a) SP1 and (b) SP6 configuration. Red square
corresponds to the CCSD(T) result [72].

the smaller unit cell, we chose the ferroelectrically proton-
ordered ice XI (Cmc21) instead of the ordinary disordered Ih

[89,90]. The energy of XI is 3-meV lower than Ih in RPA [81].
Both are purely hydrogen bonded solids with water molecules
arranged in SP(1-3)-like configurations. In clusters and solids
the strength of the hydrogen bond is enhanced as compared
to the isolated dimer bond strength. This effect is captured
by most functionals. In Table II we present lattice energies
using HYBopt, HYBopt + vdW, RPA, RPAx, and SOSEX. The
results are compared to CCSD(T) [82] and recent QMC results
[91]. We see that both HYBopt and RPAx produce a result for
XI of similar quality as for the SP1 dimer. In the same way,
RPA underestimates the lattice energy. We note that for the
solids we evaluated both RPA and RPAx with PBE orbitals to
compare with previous RPA results [81]. The use of HYBopt

orbitals (always via a local potential) increases the XI result
by 10 meV (<2%).

Ice IX and II have similar volumes, approximately 20%
smaller than XI. The smaller volume makes non-hydrogen
bonded configurations more relevant. In Fig. 9 we iden-
tify pairs of H2O monomers for which the magnitude of
the O-O distance is approaching that of hydrogen-bonded
configurations. The ability of a functional to capture the
energies of different dimer orientations thus increases in im-
portance for the IX and II phases. In Table II we see that
the good performance of HYBopt is now lost, producing
underestimated lattice energies. Adding the vdW correction
overcorrects the lattice energies, but recovers the near degen-

eracies between XI, II, and IX. This result was highlighted
in Ref. [77], suggesting that the vdW forces play an important
role in the II and IX phases. We note that the most recent QMC
calculation predicts ice II and Ih to be nearly degenerate at
613 and 615 meV, respectively (with a 5-meV error bar) [91],
while an earlier QMC calculation from 2011 predicts ice II
to be lower in energy than Ih by 4 meV (609 and 605 meV,
respectively) [77]. The corresponding experimental results
were extracted in Ref. [92], yielding 609 and 610 meV, respec-
tively. Our RPA calculation gives an II-XI energy difference
of 9 meV, in good agreement with previous calculations [81].
RPAx clearly reduces this energy difference making them
degenerate. SOSEX lowers the energy of ice II with respect XI
even further, reverting the energy order. Given that ice XI is
expected to be a couple of meV lower in energy than Ih, even
by experiment [93], our results indicate that the II-Ih energy
difference should be � 0 meV. We also note that HYBopt and
HYBopt + vdW predict ice IX to be lower in energy than ice
II, in contrast to the present (beyond-)RPA methods and the
previously mentioned SCAN functional [80].

Ice VIII has a volume 40% smaller than ice IX and is stable
above 2 GPa. It corresponds to a proton-ordered phase of VII
[94,95]. In this structure the O atoms are eightfold coordi-
nated and it is easy to identify both SP6-like and SP8-like
dimers, in addition to the hydrogen bonded configurations. As
pointed out in Ref. [4], the smallest O-O distance is actually
between monomers in non-hydrogen bonded configurations.
The experimental result for the lattice energy was initially de-

FIG. 9. Structures of the four ice polymorphs studied in this work (XI, IX, II, VIII). Blue-dashed boxes indicate water dimers in non-
hydrogen bonded configurations, but with comparable O-O distance.
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TABLE II. Lattice energies (meV) of ice XI, II, IX, and VIII with the optimized hybrid functional HYBopt (35% exchange), the same
hybrid functional with a TS-vdW correction, RPA, RPAx, SOSEX, CCSD(T) [82], QMC [91] and experiment [92]. The relative energies with
respect to XI are also presented. For CCSD(T) and QMC XI should be replaced by Ih.

Ice HYBopt HYBopt + vdW RPA RPAx SOSEX CCSD(T) QMC Exp.

XI (Cmc21) 614 676 551 609 634 601 615 610
II 559 671 542 609 639 601 613 609
IX 570 673 538 598 625 – – 606
VIII 471 606 516 584 613 574 594 595

II—XI 55 5 9 0 −5 0 2 1
IX—XI 44 3 13 11 9 – – 4
VIII—XI 143 70 35 25 21 27 21 15

termined to 577 meV [92]. Later, this was revised to 595 meV
[91]. Again HYBopt fails, while HYBopt + vdW only slightly
overcorrects in this case. The energy difference with respect to
ice XI remains, however, largely overestimated. The error of
the RPA is slightly larger than for the other polymorphs. RPAx
is again very accurate lying between CCSD(T) and QMC.

Overall the RPA results for the ice polymorphs are consis-
tent with the analysis of the SPs above. Lattice energies are
underestimated by approximately 13%, which is very similar
to the error found for the SPs. Relative energies are much
better described, benefiting from error cancellation. RPAx,
which captures the essential correlation effects, gets both lat-
tice energies and relative energies in good agreement with the
experiment and more sophisticated methods. SOSEX slightly
overestimates the hydrogen bond and thereby overestimates
the lattice energies for all polymorphs.

VI. CONCLUSION

The RPA is becoming an important tool in materials sci-
ence for calculating ground-state properties of solids. There
are, however, some inherent limitations of the RPA which can
cause significant errors in certain systems or situations. In this
work we analyzed some of these cases and demonstrated how
exact-exchange in the response function provides a theoreti-
cally well-defined, accurate, and reliable improvement.

In general, the exchange term increases atomic polariz-
abilities leading to, e.g., improved vdW coefficients. Here we
showed that for the cohesive energy of purely vdW bonded
solids, such as Ar and Kr, RPAx produces very accurate re-
sults, improving the RPA by more than 20%. vdW forces also
play an important role in the SiO2 and BN polymorphs. We
showed that the interlayer binding energy of r-BN is enhanced
with RPAx. However, with a smaller correction than for purely
vdW bonded systems. The α-quartz-cristobalite energy dif-
ference is also enhanced with RPAx, and now agrees with
reference QMC calculations.

Earlier work showed that the RPAx corrects the overesti-
mated RPA correlation energy. As often pointed out, this error
cancels to a large extent when looking at energy differences
of similar systems. Which systems are similar enough is,
however, not well defined. In this work we highlighted that
when the coordination number changes, as between high- and
low-pressure phases, errors do not cancel to a satisfactory

degree. This was demonstrated for the r-BN-c-BN and the
α-quartz-stishovite energy differences. In the first case, RPA
and RPAx predict different energy ordering, and in the sec-
ond case, RPAx strongly enhances the energy difference. In
both cases RPAx produces results in line with highly accurate
methods such as CC or QMC.

We also studied the (H2O)2 potential energy surface and
ice polymorphism. The errors of RPA (and hybrid function-
als) in describing the lattice energies of ice IX, II, XI, and
VIII were analyzed in terms of the polarizability of the water
molecule and the ten SPs. The RPA clearly underestimates
both magnitude and anisotropy of the polarizability, but cap-
tures rather well the energy differences between different H2O
dimer configurations thanks to a good error cancellation. This
implies underestimated lattice energies of ice but good relative
energies. The RPAx, which includes higher-order exchange
effects, captures the correct strength of the hydrogen bond
and is able to describe the full anisotropic interaction between
H2O monomers. Not only relative energies, but also lattice
energies are, thereby, in very good agreement with the exper-
iment and more sophisticated methods.

Regarding the computational cost and feasibility of the
RPAx the main constraint is the N3

k scaling, which can make
k-point demanding systems several times more expensive
than RPA. On the other hand, the convergence with respect
to eigenvalues in the response function is in many cases
faster with RPAx. Other parameters such as the total number
of k-points or frequency points have a similar behavior in
RPA and RPAx. For the systems studied here, the cost of
the RPAx calculation is three to ten times that of the RPA
calculation.

All calculations were done non-self-consistently, on top of
a PBE ground state. For the water dimers and ice we showed
that the use of hybrid orbitals, which can be considered as a
step towards self-consistency, increases the energy differences
by a few meV only. Further developments in this direction
are, however, interesting for eventually calculating forces and
lattice vibrations within the same framework.

To conclude, we showed that the RPAx opens up for highly
accurate density functional calculations on solids that can ad-
dress structural phase transitions involving distinct but nearly
degenerate phases, and provide more reliable reference results
than RPA when experimental data are missing or difficult to
access.
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FIG. 10. The α-parameter of the hybrid functional was chosen so
as to minimize the total energy of the water molecule. The minimum
occurs at 20% in RPA and at 35% in RPAx.
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APPENDIX A: EXCHANGE PARAMETER FOR WATER

The polarizability is more sensitive to the choice of input
orbitals than the total energy. In Ref. [28] the atomic po-
larizabilites were evaluated with self-consistent RPA/RPAx
orbitals. Since self-consistent RPA/RPAx is not yet available
for molecules we have, in this work, evaluated the polariz-
ability with PBE orbitals and orbitals coming from PBE0
hybrid functional, in which the α-parameter was optimized
by minimizing the total RPA/RPAx energy (see Fig. 10).

The local xc potential of the hybrid functional is defined as
the functional derivative of the hybrid xc energy with respect
to the density. It can thus be decomposed into

vhyb,α
xc = vα

x + (1 − α)vPBE
x + vPBE

c . (A1)

FIG. 11. Convergence of the correlation energy difference with respect to the number of eigenvalues per electron in the response function.
(a) Correlation energy difference between solid Ar and the isolated Ar atom, (b) between layered r-BN and an isolated BN layer, (c) between
α-quartz and cristobalite, and (d) between the water dimer and an isolated water molecule.
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FIG. 12. Convergence of the correlation energy of (a) Ar, (b) c-BN, (c) stishovite, and (d) Ice-XI with respect to the number of k-points.
Curves have been shifted vertically by subtracting the value at the last point.

For the exchange part, an integral equation known as the
linearized Sham-Schlüter equation has to be solved∫

d2 χs(1, 2)vα
x (2) = α

∫
d2d3 �s(3, 2; 1)�HF

s (2, 3),

(A2)
where �HF

s (2, 3) is the Fock self-energy, �s(3, 2; 1) =
−iGs(3, 1)Gs(1, 2) is the product of two Kohn-Sham Green’s
functions, Gs and χs = �s(2, 2; 1). Details of the implemen-
tation can be found in Refs. [84,85].

APPENDIX B: CONVERGENCE OF Nν and Nk

We include here additional results for the convergence of
crucial parameters such as the number of eigenvalues in the
response function (Nν), and the number of k-points (Nk). We
used an energy cutoff of 80 Ry in all calculations except
for the SiO2 polymorphs where we converged the correlation
energy with 60 Ry.

The convergence with respect to Nν for the α-quartz-
stishovite and c-BN-r-BN energy difference is presented in
the main text. Here, in Fig. 11, we present the Nν-convergence
for the cohesive energy of Ar, the interlayer binding energy
of r-BN, the α-quartz-cristobalite energy difference, and the
binding energy of the water dimer. For these systems a value

Nν < 10 ∗ Ne is sufficient to converge within 2 meV for both
RPA and RPAx.

In Fig. 12 we present the convergence of the correlation
energy with respect to k-points for Ar, c-BN, stishovite and
Ice-XI. We used shifted grids for faster convergence. Ar and
Kr were converged within 2 meV using a 5×5×5 grid. For c-
BN the last point corresponds to a 6×6×6 grid. For stishovite
the last point corresponds to a 4×4×4 grid. To save com-
puting hours, the last RPAx point for stishovite is obtained
by extrapolation, using the fact that the ratio between the
RPA and RPAx correlation energy differences is essentially
a constant. The last point for Ice-XI corresponds to a 3×3×2
grid.

APPENDIX C: TABLES

We included six tables. Table III contains the cohesive en-
ergy of Ar and Kr, and Table IV the interlayer binding energy
of r-BN. Table V contains the energy of r-BN and w-BN
with respect to c-BN, and Table VI the energy of cristobalite
and stishovite with respect to α-quartz. Tables VII and VIII
contain the binding and relative energies of the ten Smith
points (SPs), respectively. An illustration of the ten SPs can
be found in Fig. 13.
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TABLE III. Cohesive energies of Ar and Kr (meV) in LDA,
EXX, RPA, RPAx, SOSEX, CCSD(T) [42], and experiment [55].

Solid LDA EXX RPA RPAx SOSEX CCSD(T) Exp.

Ar 141 −104 69 86 91 83 89
Kr 169 −102 94 117 120 114 123

TABLE IV. Interlayer binding energy of r-BN (meV) in LDA,
EXX, RPA, RPAx, and SOSEX. No accurate reference value is
available.

Solid LDA EXX RPA RPAx SOSEX

r-BN 56 −58 74 80 80

TABLE V. Energy difference with respect to c-BN (meV) in LDA, PBE0, EXX, RPA, RPAx, SOSEX, CCSD [38], and CCSD(T) [38].

Solid LDA PBE0 EXX RPA RPAx SOSEX CCSD CCSD(T)

r-BN 105 −67 −442 25 −15 −23 −28 −4
w-BN 36 37 48 38 37 37 48 44

TABLE VI. Energy difference with respect to α-quartz in LDA, PBE0, EXX, RPA, RPAx, SOSEX, QMC [5,63], and experiment
[64,65,68,69].

Solid LDA PBE0 EXX RPA RPAx SOSEX QMC Exp.

Cristobalite (meV) 32 11 6 31 43 46 43 ± 8 46–51
Stishovite (eV) 0.11 0.52 1.33 0.41 0.49 0.49 0.51 ± 0.02 0.51–0.54

TABLE VII. Binding energy of the ten Smith stationary points with a hybrid functional HYBopt (35% of exchange); the same hybrid
functional with a TS vdW correction; RPA, RPAx, SOSEX, and CCSD(T) [72] (meV). Mean absolute (percentual) error is calculated with the
CCSD(T) results as reference.

SP HYBopt HYBopt + vdW RPA RPAx SOSEX CCSD(T)

1 216.8 230.0 190.4 215.9 224.0 217.6
2 193.7 205.5 169.7 194.5 202.2 195.6
3 189.9 201.3 166.3 191.7 199.5 192.6
4 169.8 184.1 157.9 182.1 190.4 187.6
5 157.6 169.3 149.0 171.7 178.5 176.6
6 149.9 162.0 145.3 167.8 173.6 174.6
7 124.6 138.9 122.4 139.5 144.0 138.6
8 50.7 77.2 49.8 60.0 62.8 63.6
9 131.5 141.1 127.3 143.6 147.4 140.6
10 93.2 103.2 91.0 103.6 106.3 100.6

MAE 11.0 6.9 21.9 3.1 4.2 –
MA%E 8.1 5.2 14.0 2.3 2.8 –

TABLE VIII. Relative energies of ten Smith stationary points with respect to SP1 using the hybrid functional HYBopt (35% of exchange);
the same hybrid functional with a TS vdW correction; RPA, RPAx, SOSEX, and CCSD(T) [72] (meV). Mean absolute error is calculated with
the CCSD(T) results as reference.

SP HYBopt HYBopt + vdW RPA RPAx SOSEX CCSD(T)

1 0 0 0 0 0 0
2 23.1 24.5 20.7 21.4 21.8 22
3 26.9 28.7 24.1 24.2 24.4 25
4 47.0 45.9 32.4 33.9 33.6 30
5 59.2 60.7 41.4 44.2 45.4 41
6 66.9 68.0 45.1 48.2 50.4 43
7 92.2 91.1 68.0 76.4 80.0 78
8 166.1 152.8 140.6 155.9 161.2 154
9 85.3 88.9 63.1 72.4 76.6 77
10 123.6 126.8 99.4 112.4 117.7 117

MAE 11.4 11.3 6.8 2.9 2.8 –
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FIG. 13. Illustration of the ten Smith stationary points of the (H2O)2 potential energy surface.
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