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Quantum Hall superconductivity from moiré Landau levels
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It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical
upper critical field due to Landau quantization; yet this reentrant property has never been observed. Here, we
argue that twisted bilayer graphene at a magic angle (MATBG) is an ideal system in which to search for this
phenomenon because its Landau levels are doubly degenerate and its superconductivity appears already at carrier
densities small enough to allow the quantum limit to be reached at relatively modest magnetic fields. We study
this problem theoretically by combining a simplified continuum model for the electronic structure of MATBG
with a phenomenological attractive pairing interaction and discuss obstacles to the observation of quantum Hall
superconductivity presented by disorder, thermal fluctuations, and competing phases.
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I. INTRODUCTION

Magnetic fields suppress superconductivity owing to either
Pauli or orbital pair breaking, or a combination of the two.
Under most circumstances, superconductivity is not possi-
ble above an upper critical field Hc2⊥ that is small enough
to justify a weak-field semiclassical approximation. How-
ever, as first proposed over fifty years ago, mean-field theory
predicts that under the favorable circumstances specified
below, Landau level (LL) degeneracy can cause supercon-
ductivity to reemerge in quantizing perpendicular magnetic
fields [1–6]. The predicted effect becomes particularly dra-
matic in two-dimensional systems with resolved low-index
doubly degenerate LLs. Although the theory of superconduc-
tivity in quantizing magnetic fields has been developed in
great detail [7–12], reemergence has never been observed.
We refer to this proposed state of matter as a quantum Hall
superconductor.

Quantum Hall superconductivity requires near degeneracy
between LLs that are distinguished by an internal label. Be-
cause of Zeeman coupling, degeneracy between LLs with
opposite spins can occur only when the orbital LL splitting
fortuitously matches the Zeeman splitting. Graphene bilayers
are attractive candidates for quantum Hall superconductivity
in the first place because their LLs are labeled not only by
spin, but also by ± valley indices, and are nearly valley degen-
erate unless aligned with the encapsulating hexagonal boron
nitride (hBN) layers. Given the valley degree of freedom, it is
possible to draw pairs from degenerate low-index LLs with
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ωcτ � 1, where h̄ωc is the LL separation and h̄/τ is the
LL width. Because these prerequisites for quantum Hall su-
perconductivity are rarely satisfied, twisted bilayer graphene
provides a rare opportunity to pursue exotic quantum Hall
pair states. A number of proposals to engineer topological
superconducting states rely on pairing of Landau quantized
electrons [13–15]. The widespread interest in topological su-
perconductivity and Majorana modes [16–20] therefore adds
motivation to quantum Hall superconductivity searches, be-
yond intrinsic interest in their novelty and their exotic vortex
lattices [21].

The theory that predicts reentrant quantum Hall super-
conductivity has not been fully tested because the favorable
circumstances specified above have never been fully realized.
Specifically, the following limitations exist: (i) Almost all
known superconductors have a high enough carrier density
that the magnetic field required to place a low LL index
at the Fermi level is inaccessible with current magnets. (ii)
The vast majority of superconductors are spin singlet, and
Pauli pair breaking is then strongly detrimental to the reen-
trance phenomenon. In principle, the latter limitation can be
overcome by tilting the magnetic field so that the Zeeman
splitting matches the Landau level separation. However, tilt-
ing requires even higher magnetic fields, and theory predicts
that the Tc achieved is much smaller because the resulting
degeneracy is between LLs with different orbital indices [22].
In addition, disorder generally suppresses Tc via LL broad-
ening [1,22], which lowers the enhanced density of states in
partially filled LLs. In this paper, we show that the above limi-
tations are minimized in magic angle twisted bilayer graphene
(MATBG) [23] at appropriate carrier densities.

The discovery of superconductivity and correlated in-
sulating phases in MATBG [23,24] has sparked interest
in moiré materials as highly tunable platforms for novel
topological and correlated phases [25–35]. The origin of su-
perconductivity, whether due to electron-phonon [36–38] or
electron-electron interactions [39–45], is still unsettled. Our
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focus here is narrower and largely independent of the pairing
mechanism. We explore the possibility of exploiting these
unusual two-dimensional superconductors, which have a rel-
atively large Tc at extremely low carrier densities, to finally
achieve quantum Hall reentrant superconductivity. We focus
on the carrier density that corresponds to the most robust
superconducting dome observed in MATBG [23,28], employ
a simplified continuum band structure model that is consistent
with Shubnikov–de Haas data, and combine it with a phe-
nomenological BCS interaction model that is consistent with
the observed Tc and Hc2. We then perform LL representation
particle-particle ladder sums, associating divergences with
transitions to the superconducting state. In this way we obtain
the full magnetic-field-versus-temperature phase diagram.
The present calculations generalize previous single-band re-
sults to the qualitatively new multiband problem presented
by MATBG. Our findings show that at the mean-field level,
reentrant quantum Hall superconductivity is achievable at
moderate magnetic fields when disorder is weak. Hence
MATBG is a potential platform for the realization of a long-
sought phase of matter, the quantum Hall superconductor.

II. MODEL

The superconducting dome on which we focus lies just
below the moiré band filling factor νs = −2 [23,28] (νs ≡
nAM , where n is the carrier density and AM is the moiré
unit cell area). Both experiment and theory suggest that the
many-electron ground state is either valley polarized or spin
polarized [46–51] over the entire range of the filling factor
underlying the superconducting dome below νs = −2. The
normal-state Shubnikov–de Haas (SdH) data show a Landau
fan emerging from νs = −2 with gaps at LL filling factors
νLL = 2, 4, 6, . . ., consistent with the approximate degener-
acy between LLs distinguished by an internal index, most
likely graphene valley (see Ref. [52] for a discussion of the
small single-particle valley g-factors in graphene systems).

We therefore assume that the MATBG superconductors
have valley-singlet pairing in a spin-polarized state. This as-
sumption is supported not only by the twofold normal-state
LL degeneracy that survives to the highest in-plane magnetic
fields, but also by the fact that the in-plane critical field
in MATBG exceeds the perpendicular field Hc2⊥ [23], with
strong signals of spin-triplet superconductivity recently ob-
served in the closely related twisted trilayer graphene [53,54]
(see Appendix B for a discussion of the spin-singlet case).

Hartree-Fock band calculations [50,55,56] suggest that
when C2T symmetry is broken, the valence band maximum
and conduction band minimum near νs = ±2 filling occur
at the moiré Brillouin zone centers, γ , γ ′. This is further
supported by an exact diagonalization study [57], the ob-
served Landau level filling factors mentioned above, and the
absence of a Berry phase associated with quantum oscilla-
tion data [48]. Because the quasiparticle Hamiltonian that
underlies the superconducting state is not yet reliably known,
we employ a flexible two-band two-valley band structure
model that captures key qualitative features. The model band
Hamiltonian near γ , γ ′ projected onto valley τ is

hτ (k) = [b(k) − λτ ]σz + dτ (k) · σ‖, (1)

FIG. 1. (a) Schematic of the band model centered around the two
moiré Brillouin zone centers in opposite valleys. The dashed red and
blue bands qualitatively represent the actual moiré bands, while the
solid red and blue bands represent the k · p expansion employed in
our model. (b) Schematic quantum limit LL spectra for the three
cases considered in the main text. For ε1 = 0, the conduction and
valence band Landau levels are simply those of doubly degenerate
parabolic bands. The nonstandard labeling scheme employed here
accounts for the anomalous N = 0, 1 Landau levels that emerge
when ε1 �= 0. The blue and red levels represent “+” and “−” valley
LLs, respectively. For the massive Dirac cases (ε0 = 0), the anoma-
lous N = 0, 1 Landau levels group with opposite bands in opposite
valleys when λ+ = λ−, but with the same band in both valleys when
λ+ = −λ−. In all cases the LLs appear in degenerate pairs, empha-
sized by gray ovals. The arrows emphasize our assumption of full
spin polarization.

where b(k) = −h̄2(k2
x + k2

y )/2m, dτ (k) = h̄2v2(k2
x −

k2
y , 2τkxky)T , λτ is a constant that controls the band gap,

and σ is a Pauli matrix that acts on the two-level flat-band
orbital degree of freedom. The bands of our model are
schematically shown in Fig. 1(a). Superficially, the model
Hamiltonian resembles AB-stacked bilayer graphene [58];
however, our model should be viewed as simply an expansion
around the band minimum or maximum at the appropriate
filling of the interaction dressed bands. As we will discuss
later, the relevant band parameters such as the effective
mass and the Fermi velocity will be determined from the
experimental data.

For m → ∞, hτ (k) reduces to a massive quadratic
Dirac model, whereas for v → 0 it reduces to a parabolic
band model. Assuming full spin polarization, this
Hamiltonian describes the νs = −2 correlated insulator,
which shares competing topologically trivial and nontrivial
insulator phases [47] when its bands are half filled. At
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half filling, in the m → ∞ limit, the λ+ = ±λ− cases
describe a valley Chern insulator (σxy = 0) and a Chern
insulator (σxy = 2e2/h), respectively. The v → 0 limit of the
model captures the possibility, also apparently realized in
experiment, that the valley-projected Hamiltonian is trivial on
its own. Our conclusions depend mainly on the carrier density
and zero-field topology; their sensitivity to band dispersion
details that are not accurately rendered is discussed later. In
particular, our model is isotropic and particle-hole symmetric
as a matter of convenience. We include only the two partially
filled bands in evaluating the ladder sums, with filled and
empty bands considered as inert. Neither approximation
should cause any qualitative changes in our results.

Reentrant superconductivity emerges in mean-field theory
when an enhanced Fermi level density of states, produced by
Landau quantization, trumps broken time-reversal symmetry.
It is therefore captured only by a fully quantum treatment of
the perpendicular magnetic field Bẑ. Using a Landau gauge for
the vector potential A = (−By, 0, 0), the band Hamiltonian
becomes

h+(â, â†) =
(

−ε0
(
â†â + 1

2

) − λ+ ε1(â)2

ε1(â†)2 ε0
(
â†â + 1

2

) + λ+

)
,

(2)

where ε0 = h̄2/(m	2), ε1 = 2h̄2v2/	2, and 	 = √
h̄/eB is the

magnetic length. Here, â = (K̂x − iK̂y)	/
√

2 is the LL low-
ering operator, K̂ = k + eA, and e is the magnitude of the
electronic charge (h− for the − valley is obtained by the
replacement a → −a† in the off-diagonal terms). After diag-
onalization of the single-particle Hamiltonian, we obtain the
LL spectrum

E τ
N,s =

⎧⎪⎪⎨
⎪⎪⎩

τε0 + s
(
ε2

1 N (N − 1)

+[ε0(N − 1
2 ) + λτ ]2

)1/2
, N � 2

τε0(N + 1
2 ) + τλτ , s = τ and N = 0, 1,

(3)

where s = ± distinguishes conduction (higher energy) and va-
lence (lower energy) bands. A schematic of the LL spectrum is
presented in Fig. 1(b). Note that the anomalous N = 0, 1 LLs
can be energetically close to the conduction or valence band
levels, depending on the model. For example, in the ε0 → 0
limit, when λ+ = λ−, these LLs group with the upper (lower)
band in valley + (−), and when λ+ = −λ−, these LLs group
with the upper band in both valleys. For the sake of brevity,
we define N = (N, s). The band LL eigenfunctions are [59]

ψ+
N,Y (r) = (α+

N φN−2,Y (r), β+
N φN,Y (r))T , (4a)

ψ−
N,Y (r) = (β−

N φN,Y (r), α−
N φN−2,Y (r))T , (4b)

where

ατ
N =

⎧⎨
⎩

0, N = 0, 1
s[E τ

N−τε0(N+1/2)−τλτ ]√
[E τ

N−τε0(N+1/2)−τλτ ]2+ε2
1 N (N−1)

, N � 2,
(5)

βτ
N = √

1 − |ατ
N|2, and φn,Y (r) = eixY/	2

ϕn(y/	 − Y/	)/
√

Lx

is a parabolic band nth LL wave function with ϕn being a

one-dimensional (1D) harmonic oscillator wave function and
Y being the LL guiding center.

III. COOPER INSTABILITY

We are interested in Cooper instabilities when Landau
quantization of the pairing electrons is fully taken into ac-
count. For simplicity, we choose a model with an attractive
interaction V̂ between electrons in different valleys. We set
V̂ = −V δ(r), implying an interaction range that is short com-
pared with the Fermi wavelength but long compared with the
microscopic graphene lattice constant and the valley-singlet
superconducting coherence length. We focus on the limits
in which electrons interact only when they are in the same
flat-band orbital, or only in opposite flat-band orbitals. The
linearized Tc equations derived from the particle-particle lad-
der sum (see Appendix A for details) are

Xj = 1 (intraorbital interactions),

Zj = 1 (interorbital interactions), (6)

where Xj and Zj are given by

Xj = − λ0

4π	2ρ

∑
τ,N,M

Kτ
N,M(iω → 0)ατ

Nβ−τ
M BN−2,M

j

× [
ατ

Nβ−τ
M BN−2,M

j + βτ
Nα−τ

M BN,M−2
j

]
, (7a)

Zj = − λ0

8π	2ρ

∑
τ,N,M

Kτ
N,M(iω → 0)

[(
βτ

Nβ−τ
M BN,M

j

)2

+ (
ατ

Nα−τ
M BN−2,M−2

j

)2]
. (7b)

Here, λ0 > 0 is the BCS coupling constant, ρ is the zero-
field density of states at the Fermi level, and the coefficients

BN,M
j =

j∑
m=0

(−)M−m

√
jCm

MCm
NCj−m

N+M− jCM−m

2N+M
, (8)

where nCk = n!/[k!(n − k)!], arise from the unitary transfor-
mation [5] between the two-particle product state and the
center of mass (c.m.) and relative LL wave functions. In the
equations for Xj and Zj ,

Kτ
N,M(iω) =

∫∫
dε1dε2

tanh(βε1/2) + tanh(βε2/2)

2(iω − ε1 − ε2)

× A
[
ε1 − (

E τ
N − μ

)]
A
[
ε2 − (

E−τ
M − μ

)]
(9)

is the pair propagation kernel, μ is the chemical potential,
β = 1/(kBT ), and A(ε) is the disorder-broadened LL spectral
function.

Our derivation is an extension of Ref. [5] to the more
general two-band case. The most important observation is that
the ladder sum separates into channels labeled by the c.m.
LL index j. Typically, the j = 0 channel yields the highest
Tc [21].

In Eq. (9), we have replaced the δ-function spectrum of
each unbroadened Landau level by a Lorentzian A. Broad-
ening smears the 1/T divergence that appears in the pairing
kernel at fractional LL filling factors when opposite valley
LLs are degenerate. In principle, broadening can arise either
from disorder or from the periodic moiré potential. The total
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effective Lorentzian broadening factor η is fixed by exper-
imental Shubnikov–de Haas data using η = πkBTD, where
TD is the Dingle temperature (we ignore other pair-breaking
effects related to disorder, since they are absorbed when we
set model parameters to match the zero-field Tc). In evaluat-
ing Eq. (9), we assume a pairing window ±ωD around the
chemical potential and choose the value of ωD to match the
low-field experimental data. To avoid spurious effects due to
a hard cutoff, we introduce Gaussian weighting factors for
each LL: WN = √

1.55e−[(EN−μ)/ωD]2
, with WNWM entering as

a prefactor in Eq. (9).

IV. REENTRANT SUPERCONDUCTIVITY IN MATBG

In MATBG there are in total eight flat bands, counting spin,
valley, and flat-band orbital degrees of freedom: four conduc-
tion bands and four valence bands. It is generally agreed that
the MATBG insulators which appear at integer filling factors
can be viewed as Slater insulators in which bands are either
fully occupied or empty [50] and occupancies are spin-valley
flavor dependent. Hence at νs = −2 two of the eight flat bands
are occupied. Most experiments suggest that the occupied
bands are doubly degenerate [23,48,60] (although exceptions
exist [47]) and therefore that the ground state is likely to be
ferromagnetic. For the MATBG superconducting state at the
moiré filling fraction νs = −2 − δ, we study the three cases
illustrated in Fig. 1(b).

(i) v = 0. In this case the insulating state is topologically
trivial. We can replace m in b(k) by the effective electron
cyclotron mass m∗. We estimate m∗ by relating it to Tc and
the semiclassical Hc2⊥ using [61]

m∗ = h̄

kBTc

√
πen2DHc2⊥

5.54
, (10)

where n2D ∼ 2.8 × 1011 cm−2 is the carrier density measured
from the νs = −2 correlated insulator. Using Hc2⊥ ∼ 0.3 T
and Tc ∼ 3 K [28] yields m∗ ∼ 0.27me, which is in good
agreement with the effective mass extracted from Shubnikov–
de Haas oscillations by Cao et al. [23]. To match the zero-field
Tc ∼ 3 K and the semiclassical Hc2⊥ ∼ 0.3 T, we choose
ωD ∼ 30 K and a BCS coupling constant λ0 ∼ 0.4. In this
limit the LLs with the same energy have the same orbital index
in opposite valleys. Hence only intraorbital interactions are
relevant.

(ii) m → ∞, λ+ = λ−. In this case the insulating state is
a valley Chern insulator with Hall conductivity σxy = 0. We
obtain the same B = 0 dispersion in the gapless limit as in
case (i) by setting v = 1/

√
2m∗. We then add a mass gap λ± ∼

25 K and let the other model parameters retain the same values
as in case (i). As before, we consider intraorbital interactions.

(iii) m → ∞, λ+ = −λ−. In this case the insulating state
in our band model [Eq. (1)] is a Chern insulator with Hall
conductivity σxy = ±2e2/h. We keep all the parameters in the
model the same as in case (ii), except that λ takes opposite
signs in the two valleys. In this case we get results close
to those of the valley Chern insulator case by considering
only interorbital interactions (with an appropriately defined
BCS coupling constant, twice that of the intraorbital one). For

0.1 0.2 0.3 0.4 0.5
−1.0

−0.5

0.0

0.5

1.0

(a)

Δ
/
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Type
equation
here.
, = (0, 2)

, = (1, 3)

FIG. 2. (a) Dingle temperature estimate for MATBG. The red
dots are extracted from Shubnikov–de Haas data presented in
Fig. 5(b) of Ref. [23] and the black curve is a Lifshitz-Kosevich
fit. Based on the fit, a Dingle temperature TD ∼ 2.6 K is estimated.
(b) Dependence of Tc on LL broadening (characterized by the Dingle
temperature) in the reentrant regime for the parabolic band (i.e.,
ε1 = 0) limit of our model.

intraorbital interactions, we get a result similar to the valley
Chern case.

Before discussing our results, we comment on the cru-
cial Dingle temperature estimates. In Fig. 2(a), we plot
the Shubnikov–de Haas data at T = 0.7 K, obtained from
Ref. [23] and fit to a Lifshitz-Kosevich expression supple-
mented by a Dingle factor

�R

R
∝ sin

(
2πF

B
+ θ0

)
cT/B

sinh(cT/B)
e−cTD/B, (11)

where c = 2π2m∗kB/(eh̄). For the data shown in Fig. 2(a), we
estimate TD ∼ 2.6 K. The resultant LL broadening in Eq. (9)
is η = πkBTD. We mention that the samples in Ref. [31]
are likely cleaner and thus should exhibit a smaller Din-
gle temperature. Unfortunately, Ref. [31] does not report
Shubnikov–de Haas data.

In Fig. 3 we show magnetic-field-versus-temperature phase
diagrams calculated by solving Eqs. (7a) or (7b) [depending
on intraorbital or interorbital interactions] and Eq. (9) at fixed
electron density using the model parameters discussed above.
The chemical potential μ(T = Tc) oscillates as a function of
field to fix the carrier density at n2D and at low temperature
tends to get pinned at one of the Landau level energies. In
all cases, we see clear reentrant superconductivity once the
magnetic field becomes high enough that the single pair of
LLs closest to the chemical potential dominates the pairing.
For case (i) (with intraorbital interactions) and the “Chern”
case [case (iii)] (with interorbital interactions), the reentrant
phase appears at relatively moderate magnetic fields when the
LL broadening is set by the experimental Dingle temperature.
However, for case (ii) (with intraorbital interactions), in which
the zero-field model is a valley Chern insulator at νs = −2,
the reentrant phase is more fragile to disorder. We explain this
difference below.

Quantum Hall reentrant superconductivity is strongest
when a degenerate pair of LLs distinguished by a valley is
each half filled. The LL index at the Fermi level decreases
and the LL degeneracy increases with increasing magnetic
field. Both cause the reentrant phase to become more robust
as the field increases. These trends are easiest to understand
in the extreme high-field limit in which a single pair of LLs
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FIG. 3. Magnetic-field-vs-temperature phase diagram at fixed density for the three cases illustrated in Fig. 1(b): (a) v = 0, (b) m →
∞, λ+ = λ−, and (c) m → ∞, λ+ = −λ−. The blue lines represent the disorder-free limit, and the red lines take disorder broadening into
account using a Dingle temperature TD = 2.6 K. The inset in (a) expands the low-field region near the semiclassical Hc2. The plots show robust
reentrant superconductivity when the quantum limit is reached at moderate magnetic fields for case (i) (trivial) and case (iii) (Chern). The most
robust domes at �10 T fields correspond to pairing in the lowest LLs. The qualitative difference between (b) and (c) is due to the absence in
the former case [case (ii)] of degenerate intervalley N = 0, 1 pairs.

dominates the pairing kernel. In the half-filled topologically
trivial case [Fig. 1(b), left], LL N in the upper band of the “+”
valley is degenerate with LL N + 2 in the upper band of the
“−” valley, and they pair when the interactions are attractive.
In the half-filled topologically nontrivial normal-state case,
LLs N � 2 in the two valleys are degenerate (N = 0, 1 will
be discussed below). Hence the pair is formed between LL
N in both valleys. Assuming that the LLs are close enough
to the chemical potential that we can replace tanh(x) by x
in the kernel, we can further simplify Eqs. (7a) and (9). For
intraorbital interactions, we obtain

kBTc = λ0

16π	2ρ
cN, j

(
BN−δ,N

j

)2
, (12)

where δ = 0 for the ε1 = 0 (trivial) case and δ = 2 for the
ε0 = 0 (nontrivial) case. The proportionality constant cN, j de-
pends on the band model and LL diagonalization coefficients
ατ

N, βτ
N. For example, in the trivial case, cN, j = 1, and in the

nontrivial case with intraorbital interactions, cN, j = [α+
N β−

N +
(−1) jα−

N β+
N ]2. Since (BN−δ,N

0 )2 = (BN−δ,N
2N−δ )2, we get two c.m.

channels j = 0, 2N − δ with equal Tc. The solution to the
nonlinear gap equations is a vortex lattice [21]. For nonzero
j, the vortex lattice differs qualitatively from the j = 0
Abrikosov solution [21]. As shown in Fig. 3 and discussed
below, we obtain robust quantum Hall superconductivity in
the lowest two LLs. It follows that the j = 0 solution is the
relevant one, as we will assume from this point forward.

We see from Eq. (12) that Tc has an explicit linear depen-
dence on magnetic field and an additional implicit dependence
via the transformation coefficient BN,M

0 , which takes larger
values at smaller LL index since (BN,M

0 )2 = N+MCN/2N+M .
The dependence of Tc on the zero-field BCS coupling constant
is linear because of the 1/T divergence of the pairing kernel.
The reentrant Tc can therefore even exceed the zero-field Tc,
at least in the absence of LL broadening.

In the half-filled valley Chern insulator case [Fig. 1(b),
middle], the N = 0, 1 LLs are degenerate in each valley but
separated by an energy of 2λ. Hence, in this case, carriers
become valley polarized at strong fields and cannot form
intervalley pairs. In contrast, for the half-filled Chern insulator
case [Fig. 1(b), right], the N = 0, 1 LLs in opposite valleys are
degenerate again. However, the N = 0, 1 LLs of the opposite

valley have opposite orbital polarization. Hence attractive in-
terorbital interactions are needed to support robust reentrant
superconductivity [Fig. 3(c)].

In Fig. 2(b), we illustrate Tc suppression by LL broadening
for the trivial case in the approximation that a single pair of
LLs saturates the pairing kernel. Although Tc is suppressed
quite rapidly for the second-lowest LL (requiring very clean
samples for its observation), the lowest LL Tc is much more
robust. Since in case (ii) (Chern) the lowest two LLs can-
not host pairing, and the reentrant Tc for the other levels is
small, reentrant quantum Hall superconductivity for this case
becomes fragile to disorder.

V. DISCUSSION

We have employed a simplified model band structure that
is motivated by the observation in experiment of a simple
pattern of Shubnikov–de Haas oscillations indicative of two
degenerate closed hole-like Fermi pockets. Our model is flex-
ible enough to allow for underlying bands with different types
of topological character, and we analyzed the three different
possibilities: bands with trivial topology, valley Hall bands,
and Chern bands. The model certainly fails at very strong
magnetic fields where 1/	 becomes comparable to the moiré
Brillouin zone dimensions. Strong field modifications in the
LL structure are visible in the Shubnikov–de Haas data, where
quantum oscillations disappear once the Fermi surface ap-
proaches the van Hove (M) points of the zone [23]. Although
Fig. 3 gives the impression that Tc indefinitely increases with
B (due to increasing level degeneracy), in reality Tc has an
ultraviolet cutoff from the flat-band width.

Although we have shown that MATBG could be an ideal
platform for observing reentrant quantum Hall superconduc-
tivity, magnetotransport data reported in these materials have
not to date given any evidence of reentrant superconductiv-
ity [23,31]. The reported data are typically below 7–8 T, and
so the quantum limit has not been reached. Optimistically, it is
possible that simply going to a larger field, B ∼ 10–15 T, will
allow the reentrant state to emerge. This conclusion is far from
certain, however, for a number of reasons. For example, as
discussed above, superconductivity in the quantum Hall limit
is suppressed by LL broadening, which can originate from dis-
order and/or a moiré potential. We have estimated the Dingle
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temperature based on available data [23] (which in principle
subsumes both effects) and find only a moderate suppression
of Tc when pairing occurs in the lowest LL. We expect that
even smaller Dingle temperatures have been achieved in more
recent work [28], implying an even smaller suppression of Tc.
On this basis we judge that disorder does not stand in the way
of this long-sought phenomenon. However, more fundamental
obstacles could prove important.

Our calculations predict reentrant quantum Hall supercon-
ductivity in MATBG provided that the factors that justify the
BCS mean-field theory at B = 0 are not undone by the mag-
netic field. Analyzing the influence of quantum and thermal
fluctuations on quantum Hall superconductivity is challeng-
ing [4]. It is thought that LL quantization reduces the effective
dimensionality of the system, which in turn suppresses su-
perconductivity due to fluctuations (long-range order does
not exist in dimensions below two). Thermal fluctuations pri-
marily act to melt the vortex lattice. A deleterious influence
of thermal fluctuations might be ameliorated by the moiré
periodic potential, which will pin the vortex lattice and act
to restore the dimensionality—although it also suppresses
Tc because of LL broadening. Moreover, the topological na-
ture of the LLs might also give an additional contribution
to the superfluid density [62–64]. Hence the role of fluctu-
ations in suppressing the long-range order might be smaller
than expected. Regardless, transport signatures of fluctuat-
ing superconductivity and vortex liquids are well understood,
including their nonlinear I-V characteristics, and thus poten-
tially observable even if long-range order does not occur. A
notable example is recent work on cuprates that finds fragile
superconductivity persisting to very high fields as long as low
measurement currents are employed [65]. Moreover, spectro-
scopic signatures of a gap would likely be present as well,
as seen above Tc in cuprates, as well as in materials near a
superconductor-insulator transition [66]. Another concern is
that the reentrant phase could be unstable to other correlated
phases that might be stabilized by higher fields. Moreover, the
pairing problem in this quantum limit is in reality nonadia-
batic in nature, in that the only relevant energy scale is the
separation of the chemical potential from the LL energy, so
one naturally expects deviations from mean-field theory that
are challenging to describe theoretically and beyond the scope
of this paper.

In our analysis, the effect of the moiré potential is taken
into account via a simple LL broadening. On the other hand,
when our predicted quantum Hall superconductivity regime
sets in, the magnetic length 	 and the moiré period aM start
to become comparable, so the low-lying LLs experience the
moiré potential, forming a Hofstadter butterfly spectrum at
sufficiently high magnetic fields. These modified LLs should
not only affect the equation for Tc, but also affect the non-
linear equations and thus potentially the form of the vortex
lattice, whose length scale is controlled by 	. This makes
moiré quantum Hall superconductivity even richer [67], with
no precedent in previous studies. In particular, we expect that
if quantum Hall superconductivity is achieved, tuning of aM/	

could lead to further topological phase transitions. A detailed
study of these nonlinear effects is beyond the scope of this
work and is left for future investigations.

In this paper, we focused on MATBG because the phe-
nomenology of its superconductivity has been thoroughly
studied. However, many essential features are expected to be
replicated in other moiré systems, for example, in supercon-
ducting twisted trilayer graphene [53]. We expect that as this
field progresses, there may appear other moiré materials that
offer even better conditions for observing the reentrant phase.

In conclusion, we have shown that moiré superconductors
may be an ideal platform to achieve reentrant superconductiv-
ity in the quantum limit. In the future, a rigorous treatment of
fluctuations in the high-field limit would be desirable, along
with a related estimate of transport signatures. Understand-
ing the competition between the repulsive Coulomb and the
attractive pairing interactions in the lowest-LL limit is also
an interesting direction to pursue, the former leading to the
fractional quantum Hall effect and the latter leading to su-
perconductivity. An interplay between the two may pave the
way for exotic parafermion modes [68,69] and topological
quantum computation. More generally, we have presented a
two-band formulation for pairing in LLs, which can be an
important tool to study high-magnetic-field effects for other
two-dimensional superconductors.
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APPENDIX A: EVALUATION OF THE LADDER SUM

In this Appendix, we evaluate the particle-particle ladder
sum for a two-band model. In the main text, our single-particle
Hamiltonian is quadratic in momentum. At a different filling
fraction, such as near νs = 1, the LL spectrum suggests a
massive linear-Dirac spectrum instead. In principle, the su-
perconducting states appearing near different fillings can also
lead to reentrant quantum Hall superconductivity. Motivated
by this, we start with a more general form of an effective
Hamiltonian projected in valley τ ,

hτ (k) =
(

s̃h̄2

2m

(
k2

x + k2
y

) − λτ [h̄v(kx − iky)]γ

[h̄v(kx + iky)]γ h̄2

2m

(
k2

x + k2
y

) + λτ

)
. (A1)

Here, s̃ = ±. In the main text, we considered the case of
γ = 2 and s̃ = −. Here, for generality, we allow γ = 1, 2 and
do not fix the value of s̃. As shown schematically in Fig. 4,
the various parameters of the Hamiltonian can be tuned to
mimic different band structures. Hence our derivation below
can be used for a full quantum treatment of magnetic field
in two-band superconductors with the appropriate choice of
band parameters. After including the magnetic field using the
Landau gauge, we obtain the valley-+ Hamiltonian

h+(a, a†) =
(

s̃ε0(a†a + 1
2 ) − λτ ε1(a)γ

ε1(a†)γ ε0(a†a + 1
2 ) + λτ

)
.

(A2)
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(f)(d)

(c)

(e)

(b)(a)

FIG. 4. Schematic band dispersions for various cases from the k · p Hamiltonian in Eq. (1): (a) v = 0; λ, 1/m �= 0; and s̃ = −. (b) 1/m = 0;
λ, v �= 0; and γ = 2. (c) v = 0; λ, 1/m �= 0; and s̃ = +. (d) λ, v, 1/m �= 0 and s̃ = +. (e) 1/m, λ = 0; v �= 0; and γ = 2. (f) 1/m, λ = 0;
v �= 0; and γ = 1. The black dashed line represents a given position of the chemical potential. The cases discussed explicitly in the main text
correspond to (a) and (b), while (c) resembles the Zeeman-split case discussed below corresponding to valley-triplet, spin-singlet pairs and
(d) represents a more general case where both bands are present at the Fermi level.

The LL eigenstates in valley “+” are

ψ+
N,Y (r) =

{
(α+

N φN−γ ,Y (r), β+
N φN,Y (r))T , N � γ

(0, φN,Y (r))T , γ > N � 0.

(A3)

The diagonalization coefficients ατ
N and βτ

N for the specific
case of γ = 2 and s̃ = − are stated in Eq. (5) of the main
text. Our derivation of the particle-particle ladder sum below
shows that for the Cooper instability, all the band-dependent
properties are absorbed in some simple combination of these
LL diagonalization coefficients.

To construct the two-particle states, we consider the nonin-
teracting two-particle Hamiltonian

H =
∑

τ

hτ (â1, â†
1) + h−τ (â2, â†

2), (A4)

which can equivalently be represented in the center of mass
(c.m.) and relative coordinate basis after the transformation

âR = â1 + â2√
2

, âr = â1 − â2√
2

. (A5)

This transformation is made because the underlying vortex
lattice solution involves only the c.m. degrees of freedom,
whereas the pairing interaction depends only on the relative
coordinates. The transformation relation stated in terms of
harmonic LL wave functions is

φN,Yc+Yr/2(r1)φM,Yc−Yr/2(r2)=
N+M∑
j=0

BN,M
j φR

j,Yc
(R)φr

N+M− j,Yr
(r),

(A6)

where R = (r1 + r2)/2, r = r1 − r2, and j denotes the c.m.
LL index. φR and φr are identical to the individual electron
LL wave functions, once the change in the respective effective
magnetic length 	R = 	/

√
2, 	r = √

2	 is taken into account.
The transformation coefficients BN,M

j are stated in Eq. (8) of
the main text.

We are interested in evaluating the ladder diagrams shown
in Fig. 5 for a δ(r) function interaction. Since the c.m. guiding
center Yc of the pair is conserved during the scattering event,
the ladder sum in the Landau gauge basis takes the form

�(r1, r2, r′
1, r′

2 : iω) =
∑

Yc

∑
τ

∑
N,M,Yr

∑
N′,M′,Yr′

�(N, M,Yr, τ ; N′, M′,Y ′
r , τ : iω)

× ψτ

N,Yc+ Yr
2

(r1)ψ−τ

M,Yc− Yr
2

(r2)ψ†,τ

N′,Yc+ Yr′
2

(r′
1)ψ†,−τ

M′,Yc− Yr′
2

(r′
2). (A7)

We make the assumption that the effective interaction is independent of frequency, and the ladder sum reduces to

�(N, M,Yr, τ ; N′, M′,Y ′
r , τ : iω) =

〈
N,

Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣ V̂ (r)

∣∣∣∣N′,
Y ′

r

2
, τ ; M′,−Y ′

r

2
,−τ

〉

+
∑

N′′, M′′,
Y ′′

r

[
Kτ

N′′,M′′ (iω)

〈
N,

Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣ V̂ (r)

∣∣∣∣N′′,
Y ′′

r

2
, τ ; M′′,−Y ′′

r

2
,−τ

〉

× �(N′′, M′′,Y ′′
r , τ ; N′, M′,Y ′

r , τ : iω)

]
. (A8)
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FIG. 5. The ladder diagram for the particle-particle scattering function in the LL representation, with the wavy line representing the pairing
interaction.

Physically, Eq. (A8) represents two incoming electrons with LL indices N′, M′ in opposite valleys scattering via interaction
V̂ (r) to LL indices N, M. Since the interaction only depends on the relative coordinate, the interaction vertex leaves the c.m.
guiding center (Yc) invariant. The first term on the right-hand side of Eq. (A8) is the matrix element of the effective electron-
electron interaction, and

Kτ
N,M(iω) = tanh[β(E τ

N − μ)/2] + tanh[β(E−τ
M − μ)/2]

2(iω − E τ
N − E−τ

M + 2μ)
(A9)

is the two-particle Green’s function of free electrons with μ being the chemical potential.
Next, we perform the series sum to rewrite the equation in a more convenient form,

�(N, M,Yr, τ ; N′, M′,Y ′
r , τ ; iω) =

〈
N,

Yr

2
, τ ; M − Yr

2
,−τ

∣∣∣∣ V̂ (r)(1 − Â)−1

∣∣∣∣N′,
Y ′

r

2
, τ ; M′,−Y ′

r

2
,−τ

〉
, (A10)

where

Â =
∑

N,M,Yr ,τ

Kτ
N,M(iω)

∣∣∣∣N,
Yr

2
, τ ; M,−Yr

2
,−τ

〉〈
N,

Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣V̂ (r). (A11)

Now, we evaluate the matrix elements in Eq. (A10). To do so, we first write down an important integral identity which will
be used in the rest of the analysis:∫

dr1dr2 φ∗
N ′,Yc+ Y ′

r
2

(r1)φ∗
M ′,Yc− Y ′

r
2

(r2)δ(r1 − r2)φN,Yc+ Yr
2

(r1)φM,Yc− Yr
2

(r2) = 1

Lx

∑
j

BN ′,M ′
j BN,M

j ϕr
N ′+M ′− j (−Y ′

r )ϕr
N+M− j (−Yr ),

(A12)

which can be obtained by using c.m. and relative transformation identities in Eq. (A6).
For simplicity, we consider the two separate cases of purely intraorbital or purely interorbital interactions. Under this

simplification, the pair wave function in the LL basis is effectively a two-component wave function. In what follows we take an
effective short-range interaction of the form

V̂ (r) ≡ V̂ δ(r) =
(

V0 V1

V1 V0

)
δ(r), (A13)

where the matrix refers to the orbital space.
(i) Intraorbital interaction. When the short-range interaction is purely intraorbital, the interaction matrix elements after

transforming to c.m. and relative coordinates lead to〈
N,

Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣ V̂ (r)

∣∣∣∣N′,
Y ′

r

2
, τ ; M′,−Y ′

r

2
,−τ

〉
= − 1

Lx

∑
j

(
V0PN,M

j,τ PN′,M′
j,τ + V0QN,M

j,τ QN′,M′
j,τ + V1PN,M

j,τ QN′,M′
j,τ

+ V1QN,M
j,τ PN′,M′

j,τ

)
ϕr

N+M−γ− j (−Yr )ϕr
N ′+M ′−γ− j (−Y ′

r ). (A14)
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Above, the coefficients PN,M
j,τ and QN,M

j,τ are particular com-
binations of the LL diagonalization coefficients and the
c.m.-relative transformation coefficients, explicitly given by

PN,M
j,τ = ατ

Nβ−τ
M BN−γ ,M

j , QN,M
j,τ = βτ

Nα−τ
M BN,M−γ

j , (A15)

and V0 and V1 are the amplitudes of an intraorbital pair to
scatter to the same or to the opposite orbital, respectively, after
an interaction event.

The separation of the interaction matrix elements in differ-
ent c.m. channels j after some algebra leads us to the final
evaluation of the ladder sum

�(N, M,Yr, τ ; N′, M′,Y ′
r , τ : iω)

= − 1

Lx

∑
j

A−1
τ, jϕ

r
N+M−γ− j (−Yr )ϕr

N ′+M ′−γ− j (−Y ′
r ),

(A16)

where

A−1
τ, j = 1

(1 − X τ
j )(1 − X −τ

j ) − W τ
j W −τ

j

([
V0

(
1 − X −τ

j

)
+ V1W

τ
j

]
PN,M

j,τ PN′,M′
j,τ + [

V1
(
1 − X τ

j

)
+ V0W

−τ
j

]
QN,M

j,τ PN′,M′
j,τ

+ [
V0

(
1 − X τ

j

) + V1W
−τ
j

]
QN,M

j,τ QN′,M′
j,τ

+ [
V1

(
1 − X −τ

j

) + V0W
τ
j

]
PN,M

j,τ QN′,M′
j,τ

)
(A17)

and

X τ
j = − 1

4π	2

∑
N,M

Kτ
N,M(iω)PN,M

j,τ

(
V0PN,M

j,τ + V1QN,M
j,τ

)
,

(A18a)

W τ
j = − 1

4π	2

∑
N,M

Kτ
N,M(iω)PN,M

j,τ

(
V1PN,M

j,τ + V0QN,M
j,τ

)
.

(A18b)

Here, we have suppressed the LL indices in Aτ, j and used the
relations Kτ

N,M = K−τ
M,N and |PN,M

j,τ | = |QM,N
j,−τ | in obtaining

the final expression in Eq. (A17).

From Eq. (A17), the ladder sum diverges when(
1 − X τ

j

)(
1 − X −τ

j

) − W τ
j W −τ

j = 1. (A19)

In the limit V0 = V1, using Eq. (A18a), we also get X τ
j = W τ

j .
Finally, taking γ = 2 in the ω → 0 limit, we obtain Eq. (7a)
of the main text from Eq. (A19).

(ii) Interorbital interaction. When the short-range interac-
tion is purely interorbital, the interaction matrix elements after
transforming to c.m. and relative coordinates lead to a sum
over c.m. channels〈

N,
Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣ V̂ (r)

∣∣∣∣N′,
Y ′

r

2
, τ ; M′,−Y ′

r

2
,−τ

〉

= − 1

Lx

∑
j

(
�N,M,τ

j

)T
V̂ �N′,M′,τ

j , (A20)

where

�N,M,τ
j = (

RN,M
j,τ ϕr

N+M−2γ− j (−Yr ), SN,M
j,τ ϕr

N+M− j (−Yr )
)T

(A21)

and

RN,M
j,τ = ατ

Nα−τ
M BN−γ ,M−γ

j , SN,M
j,τ = βτ

Nβ−τ
M BN,M

j (A22)

are the transformation coefficients. Similar to the intraorbital
case, V0 and V1 are the amplitudes of an interorbital pair to
preserve or flip, respectively, the orbital index of the individ-
ual electron during the scattering event.

The ladder sum in this case mixes different c.m. channels;
hence we are unable to obtain a compact expression for the
full ladder sum. However, we can identify relevant pairing
channels that still diverge for different c.m. channels. To see
that, we represent the nth-order scattering contribution as〈

N,
Yr

2
, τ ; M,−Yr

2
,−τ

∣∣∣∣ V̂ (r) Ân

∣∣∣∣N′,
Y ′

r

2
, τ ; M′,−Y ′

r

2
,−τ

〉

∼ − 1

Lx

∑
j

(
�N,M,τ

j

)T
V̂

(
Û n−1

τ, j + Ôn
)
�N′,M′,τ

j , (A23)

where

Ûτ, j = − 1

4π	2

(∑
N,M Kτ

N,M

(
RN,M

j,τ

)2
0

0
∑

N,M Kτ
N,M

(
SN,M

j,τ

)2

)
V̂ (A24)

and Ôn is an additional term. Here, in Eq. (A23), we have ignored extra channel mixing terms that do not lead to an infinite series.
The lowest nonzero contribution from the additional term Ôn considered in Eq. (A23) appears at third order in the scattering.
Similarly, after lengthy algebra, one can write down higher-order terms; however, their general form is very complicated to write
down here. For our arguments below, their exact expressions are not relevant.

Next, we can represent the ladder sum as

�(N, M,Yr, τ ; N′, M′,Y ′
r , τ : iω) ∼ − 1

Lx

∑
j

(�N,M,τ
j )T V̂

[
(1 − Ûτ, j )

−1 +
∑

n

Ôn

]
�N′,M′,τ

j . (A25)

Since we are only interested in the pairing instability, we need to look at the divergences in the above equa-
tion. One clear source of divergence is when the 2 × 2 matrix (1 − Ûj,τ )−1 becomes singular, which leads to the
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condition

V0

4π	2

∑
N,M

Kτ
N,M

[(
RN,M

j,τ

)2 + (
SN,M

j,τ

)2] + V 2
1 − V 2

0

(4π	2)2

[∑
N,M

Kτ
N,M

(
RN,M

j,τ

)2

][∑
N,M

Kτ
N,M

(
SN,M

j,τ

)2

]
= 1. (A26)

When the above equation is satisfied for any pairing channel
j, the only way to cancel the divergence is if the sum

∑
n Ôn

contributes a negative divergence. However, the contribution
of the pair mixing term is non-negative definite; hence it can-
not cancel the divergence. Thus we conclude that Eq. (A26)
indeed leads to a pairing instability. Finally, taking the V0 = V1

limit, we arrive at Eq. (7b) of the main text.

APPENDIX B: LADDER SUM FOR VALLEY-TRIPLET
AND SPIN-SINGLET PAIRS

So far, we have assumed spin-triplet pairs. However, since
there is still debate on the actual nature of the pairs, we
also discuss spin-singlet pairs here. In this context, Ref. [47]
indicates broken LL degeneracy for MATBG. This is possible
if the active bands are Zeeman split. In this case, the possible
pairs might be valley triplet and spin singlet. We can similarly
calculate the ladder sum for the spin-singlet pairs. Since in
this case the pairs are intravalley, we drop the valley τ index.
Furthermore, the Hamiltonian in Eq. (A2) should be consid-
ered in the spin basis, and then λ is a Zeeman energy term.
The ladder sum takes the form

�(N, M,Yr ; N′, M′,Y ′
r : iω)

=
〈
N,

Yr

2
; M,−Yr

2

∣∣∣∣ V̂ (r)

∣∣∣∣N′,
Y ′

r

2
; M′,−Y ′

r

2

〉

+
∑

N′′, M′′,
Y ′′

r

KN′′,M′′ (iω)

〈
N,

Yr

2
; M,−Yr

2

∣∣∣∣ V̂ (r)

×
∣∣∣∣N′′,

Y ′′
r

2
; M′′,−Y ′′

r

2

〉
�(N′′, M′′,Y ′′

r ; N′, M′,Y ′
r : iω),

(B1)

where KN,M has the same form as in Eq. (A9) after dropping
the τ index. After the series sum, this reduces to

�(N, M,Yr ; N′, M′,Y ′
r ; iω)

=
〈
N,

Yr

2
; M − Yr

2

∣∣∣∣ V̂ (r)(1 − Â)−1

∣∣∣∣N′,
Y ′

r

2
; M′,−Y ′

r

2

〉
,

(B2)

where Â also has the same form as in Eq. (A11) after dropping
the τ index. The final evaluation of the ladder sum is

�(N, M,Yr ; N′, M′,Y ′
r : iω)

= − 1

Lx

∑
j

A−1
j ϕr

N+M−γ− j (−Yr )ϕr
N ′+M ′−γ− j (−Y ′

r ), (B3)

where A j is the same as Eq. (A17). So, we again obtain the
instability relation (A19).

To demonstrate pairing in the spin-singlet and valley-triplet
case, we take s̃ = + and the v → 0 limit. The two bands in
the single valley then resemble Fig. 4(c). We can associate the
upper band of the Hamiltonian in Eq. (A1) with the minority
spin and the lower band with the majority spin. Even though
we have taken the v → 0 limit, to be consistent with the
discussion in the main text, we take γ = 2, which leads to
a LL counting similar to that in the main text. The band gap
parameter λ resembles a Zeeman energy; hence we replace
λ = gμBB, where g is an effective g factor. We introduce this
Zeeman energy shift in the two energy arguments of KN,M,
these being opposite for the spin-up and spin-down levels.
Any finite g factor will lead to a rapid suppression of Tc in
the quantum regime [22].

This can be ameliorated by tilting the magnetic field in
order to bring a pair of LLs into degeneracy, though Tc will
be suppressed because of the difference in LL index between
the up and down spin levels. For a parabolic dispersion, this
can be achieved if the tilt angle satisfies cos θ = gm∗/(2me),
in which case the LL indices differ by 3 (a difference of
2 because of the LL counting difference of 2 between the
upper and lower bands in our notation, and an additional
difference of 1 introduced by the Zeeman shift). In Fig. 6,
we show that reentrant superconductivity can still exist for
spin-singlet pairs, though with a suppressed Tc. It is likely that
the actual pair of active bands are some emergent spin-valley
flavor [70]. We expect our qualitative result of robust reentrant
superconductivity to still be true in that case.

FIG. 6. Magnetic-field-vs-temperature phase diagram assuming
spin-singlet pairing and a g factor of 2. The field is tilted such that the
majority spin LL N and the minority spin LL N + 3 are degenerate,
which corresponds to a tilt angle that satisfies cos(θ ) = m∗/me.
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