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Many-body localization in the interpolating Aubry-André-Fibonacci model
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We investigate the localization properties of a spin chain with an antiferromagnetic nearest-neighbor coupling,
subject to an external quasiperiodic on-site magnetic field. The quasiperiodic modulation interpolates between
two paradigmatic models, namely the Aubry-André and the Fibonacci models. We find that stronger many-
body interactions extend the ergodic phase in the former, whereas they shrink it in the latter. Furthermore,
the many-body localization transition points at the two limits of the interpolation appear to be continuously
connected along the deformation of the quasiperiodic modulation. As a result, the position of the many-body
localization transition depends on the interaction strength for an intermediate degree of deformation. Moreover,
in the region of parameter space where the single-particle spectrum contains both localized and extended states,
many-body interactions induce an anomalous effect: weak interactions localize the system, whereas stronger
interactions enhance ergodicity. We map the model’s localization phase diagram using the decay of the quenched
spin imbalance in relatively long chains. This is accomplished employing a time-dependent variational approach
applied to a matrix product state decomposition of the many-body state. Our model serves as a rich playground
for testing many-body localization under tunable potentials.
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I. INTRODUCTION

The study of material properties most commonly begins
by assuming a periodic crystalline structure within which ex-
tended Bloch waves manifest and form dispersive bands [1].
Breaking the periodicity by disorder [2] or by incommensu-
rate potentials [3] can localize the single-particle states of the
system, leading to insulating behavior. Keeping the periodic-
ity instead but introducing many-body interactions also breaks
the Bloch picture and can lead to localization, e.g., through the
formation of a charge density wave or a Mott insulator [4].
The fate of the system’s conduction properties in the presence
of both many-body effects and (quasi)disorder is very rich
and depends on numerous details. Specifically, the physics
of quantum many-body interacting systems can be strongly
altered by the presence of disorder, which can drive them from
an ergodic to a many-body localized (MBL) phase [5–12].
The latter is interesting due to the fact that a closed MBL
system does not thermalize at any time scale and remains
robust to small perturbations, such as changing the interaction
strength, the strength of disorder, and/or the temperature.
Correspondingly, the dynamics of the system is frozen deep
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within the MBL phase, while, close to the transition point
between the ergodic and the MBL phase, power laws appear
in transport properties. Systems exhibiting MBL are therefore
interesting both from (i) the perspective of fundamental sci-
ence, since they provide a test bed for general mechanisms
by which ergodicity is broken in quantum systems, and (ii)
their technological applications, since they can host types of
order that cannot be present in equilibrium, which can be used
for information storage and isolation of quantum information
processing devices.

Due to its complexity, the majority of works in the field
of many-body localization consider one-dimensional systems,
which are numerically more tractable. In one-dimensional
systems, the single-particle spectrum is localized by ran-
domly distributed disorder [2] and the many-body interactions
can delocalize the system through hybridization between the
localized orbits or fail to do so such that an MBL phase
forms [6,7,9,10]. Noninteracting quasiperiodic systems in-
stead show richer localization phenomena in one dimension
compared to randomly disordered systems. Depending on the
specific model, they are known to host (i) a pure point lo-
calization transition at a finite threshold for the Aubry-André
(AA) model [13,14] and (ii) critical states for the Fibonacci
chain [15,16], as well as (iii) mobility edges [17–19]. Inter-
estingly, also for such quasiperiodic systems it was shown
theoretically [20–26] and experimentally [18,27,28] MBL
phases appear, but the mechanism that leads to its formation
depends on the fine details of the model.

For example, the quasiperiodicity in the AA model arises
from an on-site cosine modulation that is incommensurate
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with the underlying periodic lattice spacing. The Fibonacci
model instead involves two discrete on-site values that in-
terchange throughout the system according to the Fibonacci
sequence. The noninteracting Aubry-André model is known
to have a metal-to-insulator transition at finite strength
of quasiperiodic modulation simultaneously for all eigen-
states [13,14], while the Fibonacci model always has critical
eigenstates that are fractal [15,16]. Adding many-body inter-
actions to the AA model results in the shift of the localization
transition in favor of an ergodic phase [23], where trans-
port is diffusive [29,30]. In the Fibonacci model, instead,
interactions destroy the fractal critical states and introduce
an MBL phase transition [24,26]. Crucially, the full details
behind the MBL transition in interacting quasiperiodic models
remain unknown. Hence investigation of different interact-
ing quasiperiodic models can provide us with more insight
into the interplay between interaction and the models’ exotic
single-particle localization phenomena.

Interestingly, the AA and Fibonacci models can be viewed
as two limits of the interpolating Aubry-André-Fibonacci
model [31] (IAAF). The experimental realization of this
model was reported recently in Ref. [19], wherein some of
us have explored the localization phase diagram of the nonin-
teracting IAAF model, and revealed how the critical states of
the Fibonacci model form alongside a cascade of localization-
delocalization transitions as the model is tuned from the AA to
the Fibonacci limit. This cascade of transitions occurs nonuni-
formly throughout the spectrum developing many nontrivial
mobility edges in the Hermitian [19] and non-Hermitian [32]
version of the model. Although the physics of the noninteract-
ing model is now well understood, the model’s many-body
localization properties have thus far not been explored.
Specifically, how does the rich localization physics of the
single-particle IAAF model with its uniform and nonuniform
metal-to-insulator transitions, critical states, and mobility
edges interplay with many-body interactions? More precisely,
a single-particle spectrum that is not uniformly localized (mo-
bility edges) is predicted to exhibit a peculiar interplay with
many-body interactions tending to delocalization through the
ergodic parts of the single-particle spectrum [33,34].

In this work, we set out to investigate the localization phase
diagram of the interacting IAAF (i-IAAF) model and answer
two main questions: (i) How are the MBL transition points of
the AA and Fibonacci models connected? (ii) What happens
to the cascade of localization-delocalization transitions of the
noninteracting model in the presence of interactions?. In the
latter, we have regions in parameter space where a nontrivial
mobility edge manifests in the noninteracting limit, with co-
existence of extended and localized states in the system. In
this regime, we observe anomalous behavior with increasing
interaction strength, where weak interactions localize the sys-
tem, while stronger interactions again drive it to the ergodic
phase. Our results provide a first glimpse into the complex
many-body physics found in the i-IAAF model, opening the
path for additional studies in this tunable setting.

The paper is outlined as follows. In Sec. II, we introduce
the Hamiltonian of the IAAF model and discuss the main
localization properties of the single-particle model. In the
same section, we also review the known results related to the
interacting AA and Fibonacci models. In Sec. III, the main

FIG. 1. i-IAAF model and its many-body localization properties.
(a) Quasiperiodic IAAF potential as a function of space [cf. Eq. (2)]
for different values of β. The continuous function is plotted and its
discrete sampling is marked by dots. (b) Sketch of the many-body
localization phase diagrams for the i-IAAF [cf. Eq. (3)], established
in this work for � = 1 and � = 0.3. The nonergodic MBL phase
and the delocalized ergodic phase are marked in red and blue,
respectively.

results of this paper are presented; namely, we (i) describe
our results for the Fibonacci model at two different interac-
tions strengths, (ii) obtain the many-body phase diagram of
the i-IAAF model, and (iii) discover the anomalous impact
of many-body interactions on the regime where the model
exhibits mobility edges. In Sec. IV, we discuss in detail our
results from Sec. III, in particular, the physical mechanisms
behind the many-body phase diagram of the i-IAAF model.
Our findings are summarized in Sec. V. Technical details are
relegated to the Appendixes.

II. MODEL

We consider a finite spin-1/2 chain with open boundary
conditions containing L sites in a quasiperiodic magnetic field.
The Hamiltonian of the system is given by

H =
L∑

j=1

[
J
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + �Sz
jS

z
j+1 + h jS

z
j

]
, (1)

where Sx,y,z
j denote standard Pauli matrices, the in-plane cou-

pling amplitude J = 1 sets the energy scale of the problem,
and we work in units with h̄ = 1. In this parametrization,
� = 1 corresponds to the isotropic Heisenberg chain. The
chain is subjected to a spatially modulated magnetic field
h j = λVj (β ) of strength λ � 0, where the modulation func-
tion Vj (β ) is defined as

Vj (β ) = − tanh [β cos (2πb j + φ) − β cos (πb)]

tanh β
. (2)

The function Vj (β ) is quasiperiodic [see Fig. 1(a)] with an
irrational spatial modulation frequency taken as the inverse of
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the golden mean, b = 2/(1 + √
5). The parameter φ ∈ [0, 2π ]

acts as a global translation of the spatially modulated po-
tential. The tunable parameter β provides a knob by which
we can interpolate between the two known limiting cases: (i)
β → 0 yields the Aubry-André cosine modulation [13,14], up
to a constant shift in energy, and (ii) β → ∞ corresponds
to a step function switching between ±1 values according
to the Fibonacci sequence [15,16]. The interpolating func-
tion (2) was introduced in Ref. [31] for proving the topological
equivalence of the AA and Fibonacci models. The advantage
of such an interpolation is its simplicity; more precisely, it
contains a single tuning parameter which then transforms a
cosine function into a steplike function, as shown in Fig. 1(a).
One could think, in principle, of other interpolating functions,
but the main thing to keep in mind is reaching the correct
limits of the AA and Fibonacci model. For other smooth and
continuous interpolations, we do not expect the main features
of the model to change dramatically.

Applying the Jordan-Wigner transformation, our model (1)
is mapped to an interacting one-dimensional model of spinless
fermions

H =
L∑

j=1

[
−t (c†

j c j+1 + c†
j+1c j ) + λVj (β )

(
n j − 1

2

)

+ �

(
n j − 1

2

)(
n j+1 − 1

2

)]
, (3)

where c†
j and c j are fermionic creation and annihilation op-

erators, n j = c†
j c j is the local density operator, and t = −J/2

is the hopping amplitude. The spatially modulated magnetic
field is transformed to a modulated on-site potential and
the term proportional to � � 0 acts as a nearest-neighbor
repulsive interaction. We dub this model the interacting in-
terpolating Aubry-André-Fibonacci (i-IAAF) if � �= 0 and
IAAF in the noninteracting case.

The IAAF, � = 0 in Eq. (3), was originally employed
for the study of topological properties of quasiperiodic
chains [31,35–43]. On the one hand, a topological charge
pump arises in the space spanned by the chain’s real dimen-
sion j and the synthetic dimension spanned by the so-called
pump parameter [35,40,44–46] φ. Correspondingly, topolog-
ical boundary modes cross the bulk gaps as a function of
φ [35,40]. Similarly, for modulated interacting chains, bound-
ary modes cross the many-body excitation gaps with φ [47].
On the other hand, the quasiperiodic modulation frequency b
allows for “spatial sampling” of the pump parameter φ and the
1D chain inherits topological properties from the pump space
directly, with related bulk phase transitions and corresponding
boundary phenomena [31,35,37,38,41,42].

Recently, the IAAF model was shown to exhibit interest-
ing localization properties [19], which we briefly outline in
Sec. II A. In this work, we concentrate on the many-body
localization (MBL) properties of the i-IAAF (3) as it interpo-
lates, with β, between the Aubry-André and Fibonacci limits;
see Fig. 1(b).

FIG. 2. Localization properties of the noninteracting IAAF
model; cf. Eq. (3) with � = 0. (a) The inverse participation ratio
(IPR) for every single-particle eigenstate in the spectrum as a func-
tion of β at constant λ/t = 8. The dashed oval marks the region
where the lowest band bundle of eigenstates becomes extended.
(b) Localization phase diagram of the ground state obtained by
the IPR described in the main text. (c) Localization phase diagram
obtained by averaging the IPR over the lowest band bundle. For all
plots, we used a system with L = 144 sites.

A. Noninteracting IAAF model

Before considering the full interacting model (3), we sum-
marize the salient localization properties of its noninteracting
version (� = 0) [19]; see Fig. 2. At the β = 0 limit, the
noninteracting AA model is known to exhibit a pure spectrum
localization transition at [13] λC/t = 2, where all eigenstates
of the model change from extended to localized. In the op-
posite limit, β → ∞, the noninteracting Fibonacci model
exhibits critical behavior [15,48,49], namely the eigenstates
decay in space as an inverse power law (critically localized
eigenstates) for any value of λ.

Along the deformation (2) as a function of β, the IAAF
potential becomes steeper, thus producing a stronger forc-
ing on particles moving in such a potential. As a result, the
region, where the eigenstates are purely extended, shrinks.
Furthermore, starting from a localized AA phase, where every
state is localized on a single site, and upon increasing β, the
potential (2) pushes the states of the lowest-energy band to
resonance. For a chosen λ/t = 8, the first resonance occurs
at β ∼ 2, where the states hybridize and become extended,
leading to a mobility edge scenario, which is peculiar for MBL
physics [33,50,51]. Increasing β further to β > 2, the states in
the lowest band localize once again. This resonance cascade
repeats for higher β until all states hybridize to form the
critical states of the Fibonacci chain. In Fig. 2(b), we show the
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cascade for the ground state. Note that the delocalization due
to hybridization followed by localization involves a doubling
of the localization length, and it does not occur simultaneously
for all states in the spectrum.

To visualize the aforementioned localization properties
of the IAAF model, we numerically diagonalize a finite
chain and evaluate the inverse participation ratio (IPR) for
each eigenstate of the model (3). The IPR of an eigen-
state ψ (En) with eigenenergy En is given by IPR(En) =∑L

j=1 |ψ j (En)|4/∑L
j=1 |ψ j (En)|2. In the regime where the nth

eigenstate ψ (En) is extended, the IPR is proportional to the
inverse of the system length, i.e., IPR(En) = 1/L, which ap-
proaches zero in the thermodynamic limit. On the other hand,
if the nth eigenstate is exponentially localized on N sites, its
IPR is equal to 1/N and remains finite even for an infinite
system size L → ∞.

In Fig. 2(a), we plot the IPR of every eigenstate as a
function of β for a constant λ/t , and mark the appearance
of delocalized states in the lowest band bundle of the spec-
trum. In Fig. 2(c), we show the model’s localization phase
diagram for the lowest band bundle of the energy spectrum,
marked in Fig. 2(a). We use the averaged inverse partici-
pation ratio, 〈IPR〉 = (1/m)

∑m
n=1 IPR(En), whose value is

equal to 0 when all eigenstates are extended, and 1, when all
of them are localized on one site. The cascade of localization-
delocalization transitions is visible, although not as clearly as
for each eigenstate separately [19]. The strongest delocaliza-
tion transition happens around β ∼ 2 for constant λ/t = 8.
Furthermore, the localized region for 2 � β � 8 has a large
fraction of the states localized on two neighboring sites, which
follows from the fact that 〈IPR〉 ≈ 1/2.

B. State of the art of MBL in the Aubry-André and Fibonacci
models

Before presenting the main results of this work, we discuss
relevant MBL results related to the many-body Aubry-André
and Fibonacci models. We also use this opportunity to sum-
marize the computational methods that are often employed to
study MBL in disordered or in quasiperiodic models. We first
discuss numerical methods and emphasize their advantages
and disadvantages.

We start with exact diagonalization (ED) [20]: its main
advantage is that it is exact, providing solutions for eigenen-
ergies and eigenstates of interacting Hamiltonians. The exact
nature of ED comes at a price: only very small systems (∼24
spin-1/2 sites) are accessible and the outcome is riddled with
finite-size effects, rendering the estimation of the system’s
behavior in the thermodynamic limit difficult to extract. Using
ED, previous works investigated signatures of MBL in the
behavior of the one-body density matrix [21], statistics of the
many-body spectrum [8], and entanglement entropy [12,52–
54], as well as the dynamics of entropy and imbalance after
quenching the system [12,55].

Another class of numerical methods involves a description
using matrix product states (MPS), which are variational An-
sätze for the many-body wave function. MPS approximate
many-body states by truncating the entanglement spectrum,
which works especially well in one dimension due to the zero-
dimensional boundary for entanglement’s area law scaling.

There are several MPS-based algorithms for the dynamics
of quantum systems [56], such as the time-dependent den-
sity matrix renormalization group (tDMRG) [57,58]. Here,
we will use the time-dependent variational principle (TDVP),
as recently generalized to matrix product states [59,60]. Us-
ing this method, one can study large systems with O(100)
sites [61], which is crucial for exploring MBL phases. An
alternative MPS-based approach [62] employs a boundary-
driven Lindblad equation. This approach is especially efficient
for studying dynamical states close to pure thermal (and
hence highly entangled in the Sz basis) states. Unfortunately,
it is therefore less suited for strongly localized and weakly
entangled systems. Hence it was used to study the inter-
acting Fibonacci model only in the limit of relatively weak
fields [25].

We now outline relevant MBL results for the many-body
AA and Fibonacci models, starting with the AA model. In
Refs. [20–22], ED was used to analyze relatively small chains
with ∼20 sites. Initially, an MBL transition was identified for
� = 1 at an estimated critical AA potential strength [20] of
2 � λC/t � 5. In later works, by studying the spectrum of
eigenvalues of the one-body density matrix, an MBL transi-
tion at λC/t ≈ 4 was obtained [21] for � = 1, while from the
statistics of the spectrum of eigenfunctions of the Hamiltonian
the transition at λC/t � 3 was inferred [22]. In Ref. [23], one
of us obtained a critical AA potential strength of λC/t ≈ 4.8
from the dynamics of a quenched imbalance using TDVP. The
analysis was performed on long chains with L = 50 sites.

The interacting Fibonacci model was first explored
in Refs. [63,64]. Combining analytical methods, such as
bosonization and renormalization group, the low-temperature
properties of the model were studied. It was found that the
model shows anomalous transport properties with a scal-
ing exponent depending on the interaction strength and the
position of the Fermi level. The high-temperature regime,
which we consider in this paper, was recently studied in
Refs. [24–26]. It was shown [24] that the interacting Fi-
bonacci model with � = 1 undergoes an MBL transition at
4 � λC/t � 7. Specifically, ED with an exact Krylov-space
approach was applied to chains of length up to 24 sites and
both static probes, e.g., spectral statistics and scaling of the
entanglement entropy, as well as dynamic ones, e.g., entangle-
ment growth and evolution of local observables after a quench,
were investigated. Further results [25] using tDMRG involved
boundary-driven Lindblad dynamics, as well as unitary dy-
namics, suggesting that, for � � 0.5, the model is diffusive
for all potential strengths, while for � � 0.5 there exists an
interaction-induced subdiffusive regime that persists at least
up to λ/t = 3. Recently, by studying the Rényi participation
entropy and the occupation number at half chain using ED, it
was proposed [26] that even at a weak interaction (� ≈ 0.5)
an MBL phase should occur within the interval 4 < λC/t < 8.

Many-body interactions bear a somewhat opposite impact
on the AA and Fibonacci models. On one hand, in the AA
model, the interactions tend to delocalize the system and
shift the localization transition towards higher values of λ/t
compared with the noninteracting case [22]. This trend can be
qualitatively understood as follows: (i) recall that the local-
ization transition in the noninteracting limit is homogeneous
throughout the whole spectrum and occurs at λ/t = 2, where
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the model is self-dual, (ii) the self-duality condition is frag-
ile and is broken by the interactions, even at the mean-field
level [50], (iii) a mobility edge thus appears, i.e., around
λ/t = 2, the spectrum of the weakly interacting AA model
contains both extended and localized states, and (iv) the ex-
tended states can act as an effective bath to the localized states
and delocalize them [33,34].

On the other hand, in the Fibonacci model, the interactions
destroy critical states and localize the system at large enough
λ/t . One possible explanation for such an effect [24] involves
the Fourier components of the Fibonacci potential β → ∞
limit of Eq. (2)], namely, V (k) = ∑L

j=1 Vje−ik jb ∼ 1/k. The
slow decay of the potential is responsible for the model’s
noninteracting critical eigenstates, which decay as a power
law in real space. The interactions on the mean-field level
introduce new terms in the potential and therefore change
the Fourier components to [24] V (k) ∼ 1/kα with α > 1.
Quasiperiodic models with such a Fourier space behavior
exhibit localization-delocalization transitions [65].

III. RESULTS

To explore the localization properties of the i-IAAF
model (3), we examine quench dynamics. As an initial state,
we take a Néel state: |ψ (t = 0)〉 = |↑,↓, . . . ,↑,↓〉, which is
in the

∑
j〈Sz

j〉 ≡ ∑
j〈ψ |Sz

j |ψ〉 = 0 spin sector [Eq. (1)], and
corresponds to half filling in the particle picture [Eq. (3)].
The Néel state resembles a midband Bloch state that ther-
malizes quickly in the absence of disorder [66]. Given the
initial state, we employ the time-dependent variational princi-
ple (TDVP) [59,60] to simulate the time evolution of relatively
long chains (L = 50 throughout this section). Our approach is
similar to that of recent works [23,55,61,67,68].

The observable that we concentrate on is the spin imbal-
ance defined as

I (τ ) = 1

L

L∑
j=1

(−1) j
〈
Sz

j (τ )
〉
, (4)

where τ is the simulation time in units of J−1. It quantifies
the local memory of the Néel initial state; the value of the
imbalance at the initial time is I (τ = 0) = 1. For a system
in a localized phase, the imbalance saturates to a constant
value at long times. If the system is in the ergodic phase,
the imbalance vanishes in the long-time and thermodynamic
limit. In the case of random on-site disorder (corresponding to
Anderson localization in the noninteracting limit), the imbal-
ance averaged over many disorder realizations decays as an
inverse power law close to the MBL transition point [69]

I (τ ) ∝ τ−γ , (5)

where the bar denotes disorder averaging and the exponent
γ depends on the strength of the disorder. Deep inside the
MBL phase, memory of the initial state persists at all times
and therefore γ → 0.

In the quasiperiodic case, due to the absence of Griffiths
effects, which depend on the appearance of rare regions, the
decay does not exactly obey a power-law form with subd-
iffusive exponents at late times. Nonetheless, dynamics in
the localized regime will still saturate to a finite imbalance,

resulting in a vanishing γ . Note that the counterpart of disor-
der averaging in the quasiperiodic case is averaging over the
phases φ.

This section is organized as follows. In Sec. III A, we report
our results for the interacting Fibonacci model [the β → ∞
limit of Eq. (3)] and compare them with contemporary lit-
erature on this limit [24–26]. In Sec. III B, we obtain the
phase diagram of the i-IAAF model with � = 1 and � = 0.3
and, in Sec. III C, we concentrate on a specific region in the
phase diagram, where anomalous localization-delocalization
behavior occurs by tuning the interaction strength from � = 0
to � = 1.

A. Fibonacci model

We start by revisiting the interacting Fibonacci model, i.e.,
the β → ∞ limit of Eq. (3). We calculate the time evolution
of the imbalance (4) for several values of the potential strength
λ/t , and show the result in Fig. 3.

Strong interactions. The � = 1 case is shown in Figs. 3(a)
and 3(c). In Fig. 3(a), we observe that the imbalance exhibits
strong oscillations as it evolves in time, showing revivals
associated with short-scale oscillations of the particles within
their close environment. At the same time, a clear distinction
manifests in the long-time behavior, where, for λ/t ≈ 2.2, the
imbalance decays roughly as an inverse power law, while for
λ/t � 3 it saturates to a constant value. We fit the long-time
trend with an inverse power law behavior [cf. Eq. (5)] and
obtain the exponent γ ; see dashed lines in Fig. 3(a). Repeating
this procedure for several values of λ/t , we plot the fitted γ

in Fig. 3(c). Initially, the exponent decreases with increasing
λ/t . This decrease saturates at λ/t ≈ 3, while at λ/t ≈ 4 the
imbalance does not appear to decay on the computationally
available evolution timescales. Hence we estimate that an
MBL transition occurs within the interval 3 � λC/t < 4. As a
further confirmation of our finding, in Appendix A, we show
similar results for a numerically exact quench of a shorter
chain with L = 16 sites and bond dimension χ = 256.

Weak interactions. We now turn to weaker interactions,
in order to compare with the results presented in Ref. [25].
It was suggested that the Fibonacci model is diffusive for
λ/t � 3 and, at low-interaction strengths, � < 0.5, while at
� = 0.5 a subdiffusive phase appears, but no MBL phase was
predicted. In Figs. 3(b) and 3(c), we report the outcome of
our numerical quench for a low-interaction strength � = 0.3.
Here, the imbalance decays faster and exhibits slower os-
cillations relative to the former � = 1 case. Moreover, the
appearance of an MBL phase occurs only for much higher λ/t
values, where, even for λ/t = 4.6, we observe a slow decay. In
Fig. 3(c), we show the fitted power-law exponent as a function
of the potential strength. A clear memory of the initial state
remains for λC/t � 4.75. Comparison with exact numerics for
a chain of L = 16 sites and χ = 256 (see Appendix A) yields
a similar value of λC/t � 4.5. For even weaker interactions,
i.e., � = 0.1, we do not observe signatures of an MBL phase
transition for potential strengths λ/t � 10.

Source of oscillations. We now comment on the oscillations
present in Figs. 3(a) and 3(b). Note that, unlike true disorder or
the AA case, the amplitude of the oscillations does not reduce
with averaging over a large number of different quasiperiodic
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FIG. 3. Numerical simulation of the MBL transition in the
Fibonacci model. We show the time evolution of the averaged imbal-
ance (5) using TDVP for three amplitudes, λ/t , of the quasiperiodic
potential and two interaction strengths (a) � = 1 and (b) � = 0.3. In
both cases, for λ/t = 2.2 the averaged imbalance decays (red line),
indicating that this point lies in the ergodic phase. For the other two
presented plots (blue and green lines), I saturates over time to a
constant. (c) The inverse power law coefficient (5) fitted to I(τ ) over
a finite fitting time window τ ∈ [50, 200] [dashed lines in (a) and (b)]
as a function of λ/t . For all plots we use L = 50 sites and averaged
the imbalance over 36 realizations with different φ taken from the
interval φ ∈ [0, 2π ]. The bond dimension used for all plots is χ = 64
and the time step is δτ = 0.1. Error bars are 1σ intervals based on a
bootstrapping procedure [70].

potential realizations. The reason is that the Fibonacci poten-
tial has only L/2 possible configurations [24], where L is the
number of sites in the system. A possible way to reduce the
amplitude of the oscillations is to use random product states
as the initial state instead of the Néel state used in this work,
which goes beyond the scope of this work. Instead, we explore
here the behavior of these oscillations stemming from the
initial Néel state. Note that the persistent oscillations and the
memory of the initial state can lead to negative values of γ ,
similar to what is observed in the AA model [23].

The oscillations are irregular for a weak potential, i.e., in
the ergodic phase, while for strong quasiperiodic potentials
they become more regular with an approximately constant
period. Such pronounced oscillations are due to the shape of

the potential, which contains many occurrences of nearest-
neighbor pairs with degenerate on-site energies. In the initial
Neél state, there is only one particle populating any such
pair of states. That particle will dominantly hop between the
nearest neighbor degenerate states and produce oscillations
in the imbalance. This simplified picture is valid for strong
potentials and weak interaction, and breaks in the opposite
limit of weak potentials and strong interaction.

The periods of oscillations extracted from the averaged
imbalance in the localized phase [see Figs. 3(a) and 3(b)]
are T�=1 ≈ 2π/

√
2J−1 and T�=0.3 ≈ 2πJ−1 for � = 1 and

� = 0.3 interaction strengths, respectively. From the periods
it is possible to extract an effective hopping t̃ ∝ 1/T ; see
Ref. [71] for a full derivation of the imbalance in the nonin-
teracting and clean case. The ratio of effective hopping from
Figs. 3(a) and 3(b) is then t̃�=1/t̃�=0.3 ≈ √

2. To explain the
difference between two effective hoppings, in Appendix C we
present a simple model that describes how interactions change
the particles’ dynamics within the aforementioned degenerate
nearest-neighbor pairs. This simple analytical model yields
t̃ = t

√
1 + (�/J )2, which agrees well with the numerical

results from Figs. 3(a) and 3(b). For the case of weak inter-
actions [Fig. 3(b)], the effective hopping is given by t̃ = t ,
i.e., the oscillations appear to stem from the single-particle
dynamics, while, in the case of strong interactions [Fig. 3(a)],
the effective hopping is renormalized to t̃ ≈ √

2t , suggesting
that interactions increase the effective kinetic energy of the
particles. To conclude this discussion, the oscillations in the
MBL phase indeed stem from an ensemble of effective parti-
cle hoppings between two degenerate neighboring sites.

B. Interacting IAAF model

We now address the i-IAAF model with strong and weak
interaction, � = 1 and � = 0.3, respectively. For the strong
interaction, the MBL transition in AA and Fibonacci models
occurs at different potential strengths λC/t ≈ 5 and λC/t ≈ 4,
respectively. Note that, in this case, the Fibonacci MBL transi-
tion occurs for a lower λC/t than that of the AA. Interestingly,
for the weak interaction case, the order inverts and we find in
the AA case λC/t ≈ 4, while for the Fibonacci λC/t ≈ 4.75.
It is, therefore, our goal to explore how the two transition
points are connected once β is tuned from AA (β = 0) to
the Fibonacci model (β → ∞), for both weak and strong
interactions; cf. Fig. 1(b). To answer these questions, we again
analyze the dynamics of the averaged imbalance; see Eq. (5)
and Fig. 4(a) for the fitted exponent γ as a function of λ/t and
β.

For � = 1, starting from the MBL phase of the AA model
λ/t � 5 and increasing β, γ always remains around 0 and
no transition to an ergodic phase is observed. On the other
hand, starting from the ergodic phase of the AA, an MBL
transition takes place for higher values of β. The value of
λC/t , where the transition occurs, decreases as a function
of β. Such a behavior is reminiscent of the noninteracting
case, where the impact of the potential becomes more pro-
nounced with β, and the region of extended states shrinks;
see Figs. 2(b) and 2(c). Note, however, a crucial differ-
ence between the noninteracting and interacting cases is the
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FIG. 4. Numerical simulation of the MBL transition in the i-
IAAF model. (a) Many-body localization phase diagram obtained
from the exponent γ [cf. Eq. (5)], for (left) strong interaction, � = 1,
and (right) weak interaction, � = 0.3. The bottom panels show γ

as a function of β for selected values of λ/t for (b) � = 1 and
(c) � = 0.3. The numerical specifications used are the same as in
Fig. 3, with the distinction that the fitting time window now depends
on λ/t as described in Appendix B.

absence of localization-delocalization transitions with chang-
ing β above the critical localization point of the AA model.

For � = 0.3, at β = 0 and λ/t � 5, the situation is similar
to the strong-interaction case: the exponent always remains
around zero and no transition to an ergodic phase is observed;
see Fig. 4(a). On the other hand, starting from the localized
phase of the AA model at 4 � λ/t < 5, a transition to the
ergodic phase is observed at the value of λ/t that depends
on β; the transition point moves to higher values of λ/t with
increasing β. Note that we explore only up to β = 6 in the
phase diagram for weak interaction. For β � 6, the decay of
the imbalance with time does not change, but the long-period
oscillations make it difficult to properly determine the expo-
nent; cf. Fig. 3(b), where similar fitting challenges appear in
this limit. For example, the imbalance for both λ/t = 4.6 and
λ/t = 7.8 in Fig. 3(b) saturates with additional long-period
oscillations, but the value of the fitted exponent is not the
same; see Fig. 3(c).

Despite these technical challenges, we clearly observe that
the interaction shifts the critical point toward higher values
of λ/t in the AA limit and to lower values in the Fibonacci
limit. Furthermore, interpolating between the two models (i.e.,
for finite β), the critical points at the two limits (AA and
Fibonacci) are connected with a continuous line separating
the ergodic from the localized phase. As a result, we conclude

FIG. 5. Interaction-dependent localization-delocalization transi-
tion. (a) Sketch of the overlapped interacting (� = 1) and nonin-
teracting (� = 0) localization phase diagrams; cf. Figs. 2 and 4.
Solid lines denote the transition from extended to localized phase
in the noninteracting limit, � = 0; see also Fig. 2(c). Dashed line
denotes the MBL transition for � = 1. (b) Time evolution of the
averaged imbalance (5) at a constant λ/t = 4 and β = 1.4 [red point
in (a)]. (c) The exponent of the averaged imbalance decay (5), as
a function of interaction strength � for several points in the phase
diagram [also marked in (a)]. We pick points that lie within the
delocalized-phase sliver of the noninteracting model, i.e., situated
at finite β ∼ 2 and at λ/t > 2. System size in all plots is L = 50,
the number of different realizations of the quasiperiodic potential is
36, and the inverse power law is fitted in a time window [10, 200].
The bond dimension used for all plots is χ = 64 and the time step
is δτ = 0.1. Error bars are 1σ intervals based on a bootstrapping
procedure.

that MBL transitions will occur also with changing � in the
intermediate regions of the interpolation.

Similar to the Fibonacci case in the previous section, we
comment briefly on the oscillatory behavior of the imbalance.
While the oscillations are pronounced even at large times in
the Fibonacci limit [see Figs. 3(a) and 3(b)], for finite β, their
amplitude decays with time; see Fig. 5(b). The reason lies
in the shape of the potential. As previously discussed, in the
Fibonacci limit, the potential (2) allows for the appearance
of pairs of neighboring sites that have the same on-site value
[cf. Fig. 1(a)]. Specifically, the Rabi oscillations of particle
hopping between two such sites, which appear many times
throughout the chain, give rise to coherent oscillations in the
imbalance that persist even at long times. In comparison, for
finite β, the degeneracies of the potential characteristic of the
Fibonacci limit are lifted and, hence, particles hopping be-
tween the pairs of sites will exhibit different Rabi oscillations,
which results in a reduced amplitude of oscillations in the
overall imbalance. Nonetheless, there are still oscillations that
are longer lived than in the case of purely random disorder,
since certain values of the potential differences between
neighboring sites are more likely than others [23].
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C. Anomalous localization by interaction

After analyzing the overall phase diagrams of the weakly
and strongly interacting IAAF model, we now concentrate
on the noninteracting delocalized-phase sliver at λ/t > 2 and
β ∼ 2, and investigate its evolution when the interaction
strength is increased from � = 0 to � = 1. We pick a point
from the aforementioned region with (λ/t, β ) = (4, 1.4); see
the red dot in Fig. 5(a). This point lies in the ergodic phase
of the strongly interacting (� = 1) model; cf. Fig. 4(a).
Fixing the parameters λ/t and β, we calculate the time evolu-
tion of the averaged imbalance for three different interaction
strengths, � = 0, � = 0.3, and � = 1; see Fig. 5(b).

In the noninteracting and strongly interacting regimes, the
imbalance decays quickly. Interestingly, for weak interactions,
the decay is noticeably slower. In Fig. 5(c), we plot the expo-
nent (5) as a function of interaction strength and find that it
indeed does not change monotonously with �. Specifically,
by increasing the interaction strength, the system first local-
izes for a weak interaction and then delocalizes at a stronger
interaction, which is indicated by a noticeably larger γ for
� = 0 and � = 1, compared to intermediate values of �.

We repeat this procedure for two additional points from
the noninteracting delocalized sliver; see the blue and green
points in Fig. 5(a) and the result in Fig. 5(c). As expected,
for � = 0, the exponent γ is large, reflecting the delocal-
ized nature of the noninteracting system; see Fig. 2(a). At
finite interaction strengths, the exponent reduces in value
and after a critical interaction strength �C remains constant.
This indicates that the system’s dynamics slows down with
increasing interaction strengths, until the system becomes
localized.

IV. DISCUSSION

Let us now collect all the observations from Sec. III and
discuss them from a broader perspective, focusing on qual-
itative mechanisms that are responsible for the localization
properties of the i-IAAF model.

In the two limiting cases of AA and Fibonacci models, the
localization properties have been discussed in the literature in
great detail for both single-particle and many-body cases. The
crucial difference between the AA and Fibonacci models is
the shape of the potential modulations: in the former, the on-
site energies are distributed in the interval [−λ,+λ], whereas,
in the latter, they are highly degenerate with only two values
±λ. This leads to a localization transition in the noninteracting
AA model and a critical spectrum in the Fibonacci model.
Since the single-particle properties of the two models are very
dissimilar, many-body interactions introduce distinct effects
in them.

As already mentioned in Sec. II B, in the AA model, inter-
actions shift the localization phase transition towards higher
values of λ/t due to dephasing, similar to the interacting
Anderson model with random disorder. On the other hand,
in the Fibonacci limit, the interactions destroy the fragile
criticality caused by the numerous degenerate on-site terms,
and introduce a localization transition. This can be understood
qualitatively on a mean-field level, where interactions intro-
duce new on-site terms, i.e., shift the on-site energies, and

break the degeneracy of the potential. Once the degeneracy
is lifted, the hopping of particles is suppressed and the sys-
tem becomes localized for large enough λ/t . It is, therefore,
expected that, by increasing the interaction strength �, the
system will localize more easily, i.e., for lower values of λ/t .
Such behavior is observed in Fig. 3.

Now, we turn to the i-IAAF model. In its noninteracting
limit, the model shows rich localization properties with a
cascade of localization-delocalization transitions, as shown in
Fig. 2. Let us concentrate on the first delocalization transition
at finite β. Starting from a localized phase in the AA limit,
the deformation of the potential from a cosine to a step-
like function with increasing β brings the low-energy states
into resonance. Once in resonance, the states hybridize for
any finite hopping and delocalize. As shown in Fig. 2(a),
all states in the lowest band bundle are delocalized and the
singe-particle spectrum has a nontrivial mobility edge. The
nontrivial mobility edges repeat at different positions in the
spectrum for higher β. It is important to note that the width
of the delocalized band bundle shown in Fig. 2(a) reduces
with increasing λ/t , since the hopping between the sites is
effectively reduced. As a consequence, the delocalized regions
(slivers) in the phase diagram shrink at higher λ/t .

Adding interactions alters the localization properties of the
model as shown in Figs. 4 and 5. There are two main features
of the presented many-body phase diagrams: (i) the slope of
the MBL phase boundary changes sign with the strength of
many-body interactions and (ii) the delocalized slivers of the
noninteracting model disappear once interactions are intro-
duced. Point (i) is expected, since interactions have opposite
effects in AA and Fibonacci limits, as discussed above. On the
other hand, point (ii) is surprising, since one would naively
expect that the existence of delocalized states in the spectrum
of the noninteracting limit will act as a bath to localized states
once interactions are turned on, and will eventually delocalize
the whole system [33,34]. However, as already mentioned,
such delocalized states at finite β are the consequence of
carefully tuned degeneracy between on-site energies imposed
by the deformation of the potential (2); see Figs. 1(a) and 2(a).
Similar to the Fibonacci case, interactions can easily lift the
degeneracy and localize these slivers.

Indeed, we recall that the width of the delocalized band
bundle reduces with increasing λ/t and, therefore, at higher
λ/t , it should feel stronger effects of interactions, i.e., the
delocalized states should localize for a smaller interaction
strength �. Such an effect is observed in Figs. 5(b) and 5(c);
namely, at the points with higher λ/t the decaying coefficient
is smaller for all values of interaction strength, indicating
stronger localizing effect of interactions for higher λ/t . Fur-
thermore, at some points of the phase diagram that lie inside
the delocalized sliver, we find an anomalous behavior with
tuning of the interaction strength, where weak interactions
tend to localize the system, while stronger interactions delo-
calize it again; see (λ/t, β ) = (4, 1.4) point in Fig. 5. The
localization at weak interactions can be explained with the
degeneracy-lifting argument above, while the delocalization
could follow from the same dephasing mechanism that is
present in the AA limit. Further studies are needed to better
explain and describe this peculiar phenomenon.

033257-8



MANY-BODY LOCALIZATION IN THE INTERPOLATING … PHYSICAL REVIEW RESEARCH 3, 033257 (2021)

V. CONCLUSION

To conclude, we have investigated the many-body version
of the IAAF model, focusing on the half filling sector of the
model and numerically studying the time evolution of the
spin imbalance using the TDVP method [59,60]. Our main
criterion for localization is the saturation of the averaged
imbalance at long times. In the ergodic phase, the imbalance
decays over time. We have observed that, for quasiperiodic
models with weak interaction, the high degeneracy of the
on-site potentials leads to strong oscillations with time in the
averaged imbalance. It is, therefore, more difficult to locate
a precise MBL transition point in such models. Nevertheless,
we have constrained the transition regime and thus explored
the localization-delocalization phase diagram of the interact-
ing IAAF model.

Our work contains three main results. First, we have shown
that for strong interaction, � = 1, the MBL phase transition in
the Fibonacci model (β → ∞ limit of the IAAF model) is lo-
cated at 3 � λ/t < 4, which is lower than previously reported
values [24]. Furthermore, we have demonstrated that the MBL
transition can survive even for small interactions of � = 0.3
and thus complemented the results of Ref. [25]. Secondly, we
have presented the many-body phase diagram for the IAAF
model, which exhibits a monotonous evolution of the MBL
phase when going from the AA (β = 0) to the Fibonacci
(β = ∞) limit. In other words, the cascade of delocalization
transitions in a single-particle case [19] is destroyed for both
weak and strong interactions. Lastly, we have observed an
anomalous behavior when increasing the interaction strength
from � = 0 to � = 1 in the parameter sliver where part of the
spectrum is delocalized in the noninteracting limit. In other
words, in the sliver both extended and localized states exist
in the system, leading to a situation where weak interaction
tends to localize the system, while stronger interaction drives
it to the ergodic phase.

Future work will focus on energy densities away from
half filling. By studying the model only at the half filling,
we were not able to conclude if the localization properties
are homogeneous throughout the spectrum or whether an in-
teresting cascade structure appears, as in the single-particle
case. Moreover, the present study was performed at an infinite
temperature and the behavior with finite temperatures remains
unknown. Therefore, one promising direction would be to an-
alytically investigate the i-IAAF model at finite temperatures
and for different chemical potential using, e.g., bosonization
and renormalization-group approaches [63,64].

ACKNOWLEDGMENTS

We thank M. S. Ferguson, I. Kičić, J. L. Lado, A. D.
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FIG. 6. (a) Time evolution of the imbalance (5) for two different
values of interaction at the constant λ/t = 3.8 in the Fibonacci limit;
cf. Fig. 3. (b) Fitted power-law exponent as a function of the poten-
tial strength for the strong and weak interaction cases. We use the
following parameters: L = 16, χ = 256, and δτ = 0.1. Error bars
are obtained from 1σ intervals based on a bootstrapping procedure.

APPENDIX A: EXACT NUMERICS FOR A SHORT CHAIN
IN THE FIBONACCI LIMIT

To further confirm the results from Fig. 3 from the main
text, in Fig. 6 we show the averaged imbalance and the fitted
exponent γ for a short chain of L = 16 sites and large bond di-
mension χ = 256. In this case, the calculation is exact, since,
for a system of L sites, nontruncated MPS have a maximum
bond dimension of χ = 2L/2 = 256. The behavior of the ex-
ponent in Fig. 6(b) is essentially identical to the one presented
in Fig. 3, where we used larger chains with truncation of the
bond dimension.

APPENDIX B: CONVERGENCE OF THE
NUMERICAL RESULTS

In this Appendix, we verify the convergence of our numeri-
cal results, namely the convergence of the obtained imbalance
decay exponent, which we use to map out the phase diagrams
in Fig. 4. The dynamics of the imbalance is calculated using
the TDVP method, whose long-time precision depends on the
chosen bond dimension χ . Since the truncation error grows
with time, the bond dimension determines the maximal time
below which the calculated imbalance does not differ much
from its true value. Larger bond dimensions are required in the
ergodic phase compared to the MBL phase to reach the same
maximum time; see Refs. [59,60,55,23,67] for more details.

In our case, we use the same bond dimension for the
whole phase diagram [see Fig. 4(a)], implying that we need
to change the upper boundary of the fitting time interval as
a function of the parameters in the phase diagram to avoid
large numerical errors. To do so, we choose a few different
λ/t cuts in phase diagrams shown in Fig. 4(a), and calculate
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FIG. 7. Power-law exponent γ as a function of β for two values
of a bond dimension χ and at several values of λ/t . Panels (a) and
(b) show the results for strong interaction, � = 1, at λ/t = 3 and
λ/t = 4, respectively. Dependencies in panels (c) and (d) are calcu-
lated for a weak interaction, � = 0.3, and at λ/t = 3.5 and λ/t = 5,
respectively. The length of the system is L = 50 sites and the time
step used for all plots is δτ = 0.1.

the exponent for larger bond dimension of χ = 128. We assert
that the result has converged when, for a given fitting time
window, the exponents γ in the χ = 64 and χ = 128 cases
do not differ more than the error bars from one another.

The comparison of our results for the two different bond
dimensions is presented in Fig. 7. For the strong interaction,
results with different χ converge for a fitting time window
[50, 120] used in Fig. 7(a) and [50,200] used in Fig. 7(b). In
the case of weak interaction, the convergence is reached for
a fitting time window [50, 210] in Fig. 7(c) and [50, 230] in
Fig. 7(d). We assume that, if the results converge at λ′/t for a
certain fitting time window, then for all λ/t > λ′/t the same
fitting time window will lead to a similar convergence. Fur-
thermore, we assume that the convergence does not strongly
depend on β, as seen in Fig. 7.

APPENDIX C: IMBALANCE OSCILLATIONS IN THE
FIBONACCI LIMIT

Here, we describe the mechanism behind the strong os-
cillations of the imbalance mentioned in Sec. III A. In the
Fibonacci limit, the potential modulation will contain only
two values, namely ±λ; cf. Fig. 1(a). We refer to a site
with on-site potential −λ (+λ) as A site (B site). Note that
the Fibonacci sequence allows for two neighboring sites of
type A, but not for two B sites. Therefore, the combination
BAAB is possible [see Fig. 8(a)], and it will occur many times
throughout the chain. This configuration we dub as a well. In
the initial Néel state, there will always be two particles inside
the BAAB subsystem, one at a B site and the other inside the
well; see Fig. 8(a).

FIG. 8. Imbalance oscillations in the Fibonacci model. (a) Sketch
of the mechanism responsible for strong oscillations in the Fi-
bonacci limit. A particle, initially placed in a well formed by
two “A” sites (with the lower potential −λ) and bounded by “B”
sites (with the higher potential +λ), hops inside the well, giving
rise to the oscillations of the imbalance; see Figs. 3(a) and 3(b).
(b) Comparison between the numerical result for λ/t = 20 and
Eq. (C7). For the numerical calculation, we used L = 50, χ = 64,
and δτ = 0.1.

Let us now consider a system that is deeply within the
MBL phase, namely when λ/t � 1. The particles at iso-
lated A sites and at all B sites remain localized for long
times, while particles residing in their respective wells can
hop from one A site of the well to the other. To see this
effect, it is sufficient to concentrate on the three sites marked
with the dashed box in Fig. 8(a). Such hopping changes the
value of the imbalance and is not influenced by the value
of λ. Furthermore, because the particle at site B remains
localized, we can write the Hamiltonian for a single particle
inside the well and incorporate the interaction with the par-
ticle at the B site through a renormalized on-site energy; see
Eq. (C1) below. The basis we choose is {|10〉, |01〉}, where
the first (second) state represents the particle sitting on the left
(right) A site of the well. The Hamiltonian in such a basis
reads

HAA =
(

0 − J
2

− J
2 �

)
, (C1)

with the eigenenergies

E± = �

2
±

√
�2 + J2

2
. (C2)

Initially, the particle is placed in the left A site of the well
and the initial state is ψ0 = |10〉. We can now evolve the
system state with time τ according to

|ψ (τ )〉 = exp(−iHAAτ ) |10〉
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and obtain

|ψ (τ )〉 = e−i �
2 τ

[
cos

(√
1 + ξ 2

J

2
τ
)

+ i
ξ√

1 + ξ 2
sin

(√
1 + ξ 2

J

2
τ
)]

|10〉

+ i e−i �
2 τ 1√

1 + ξ 2
sin

(√
1 + ξ 2

J

2
τ
)

|01〉 , (C3)

with ξ ≡ �/J . The expectation values for the densities on the
left and right A site of the well are readily obtained as

〈ψ (τ )| nleft |ψ (τ )〉 = cos2

(√
1 + ξ 2

J

2
τ

)

+ ξ 2

1 + ξ 2
sin2

(√
1 + ξ 2

J

2
τ

)
, (C4)

〈ψ (τ )| nright |ψ (τ )〉 = 1

1 + ξ 2
sin2

(√
1 + ξ 2

J

2
τ

)
. (C5)

The particle imbalance is then calculated as

I (t ) = (〈nleft〉 − 〈nright〉)

= 1

(1 + ξ 2)
[ξ 2 + cos(

√
1 + ξ 2 Jτ )]. (C6)

This simple exercise leads to two important conclusions.
First, it follows that the period of oscillations is given by

T = 2π

J
√

1 + ξ 2
, (C7)

namely, it reduces with increasing interaction strength. In
Fig. 8(b), we show the comparison of Eq. (C7) with the period
of oscillations from numerically calculated imbalance. The
period obtained from numerics agrees well with the analyt-
ical prediction (C7). Second, the amplitude of oscillations
decreases with increasing ξ until they completely vanish for
infinite interaction strength, i.e., limξ→∞ I (t ) = 1. Such an
effect can be seen in Figs. 3(a) and 3(b) and Fig. 6(a).

FIG. 9. Mean gap ratio r as a function of λ/t for several different
values of β. We used a system with strong interaction � = 1 and
L = 14.

APPENDIX D: MEAN GAP RATIO

To complement our conclusions in Sec. III B regarding
the shrinking of the ergodic phase with increasing β in the
strongly interacting case, we use ED on shorter chains and
study the spectral gap statistics of the system. Specifically, the
gap ratios measure the energy level repulsion [8] and provide
us with a measure for the localization in the system. The gap
ratio rn between two consecutive gaps is defined as

0 � rn ≡ min[δn, δn−1]/ max[δn, δn−1] � 1,

where δn = En+1 − En � 0 and n labels the eigenenergies
from low to high.

Taking the average over all gap ratios in the spectrum and
over 36 different realizations of the quasiperiodic potential,
we obtain the mean gap ratio r; see Fig. 9. Inside the ergodic
phase, energy levels follow the Wigner-Dyson statistics in
the thermodynamic limit and the mean gap ratio approaches
the value [73] rWD ≈ 0.53. In the MBL phase, they follow
Poisson statistics and saturate at the lower value of rP ≈ 0.39.
Although it is difficult to precisely locate the value of the
critical disorder λC/t from r in such short chains, the overall
behavior clearly shows that, for higher β, all points are shifted
towards smaller values of λ/t values. This is in agreement
with the TDVP results in Figs. 4(a), namely, that the ergodic
phase shrinks with the increase of β.
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