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The possible symmetries of the superconducting pair amplitude is a consequence of the fermionic nature of
the Cooper pairs. For spin-1/2 systems this leads to the SPO7T = —1 classification of superconductivity, where
S, P, O, and T refer to the exchange operators for spin, parity, orbital, and time between the paired electrons.
However, this classification no longer holds for higher spin fermions, where each electron also possesses a finite
orbital angular momentum strongly coupled with the spin degree of freedom, giving instead a conserved total
angular moment. For such systems, we here instead introduce the JP7T = —1 classification, where 7 is the
exchange operator for the z component of the total angular momentum quantum numbers. We then specifically
focus on spin-3/2 fermion systems and several superconducting cubic half-Heusler compounds that have recently
been proposed to be spin-3/2 superconductors. By using a generic Hamiltonian suitable for these compounds
we calculate the superconducting pair amplitudes and find finite pair amplitudes for all possible symmetries
obeying the JP7T = —1 classification, including all possible odd-frequency (odd-w) combinations. Moreover,
one of the very interesting properties of spin-3/2 superconductors is the possibility of them hosting a Bogoliubov
Fermi surface (BFS), where the superconducting energy gap is closed across a finite area. We show that a spin-
3/2 superconductor with a pair potential satisfying an odd-gap time-reversal product and being noncommuting
with the normal-state Hamiltonian hosts both a BFS and has finite odd-w pair amplitudes. We then reduce the
full spin-3/2 Hamiltonian to an effective two-band model and show that odd-w pairing is inevitably present in

superconductors with a BFES and vice versa.

DOI: 10.1103/PhysRevResearch.3.033255

I. INTRODUCTION

Properties of ordered matter are to a large extent set by
the symmetry of the ordered state. For superconductivity, this
means the symmetry of superconducting Cooper pairs. The
symmetry of these Cooper pairs are classified following the
antisymmetry of the Cooper pair wave function during ex-
change of all the quantum numbers between two constituent
electrons, as a result of the fermionic nature of the elec-
trons. This classification of superconducting pairs has become
known as the SPOT = —1 classification, with S, P, O, and
T referring to the exchange operators for spin, parity, orbital,
and time, and is now well established in the literature [1,2].

Following this classification, Cooper pairs with spin-
singlet and spin-triplet spin structures are further identified
as odd-frequency (odd-w) or even-frequency (even-w) pairs,
depending on their spatial parity and their symmetry under
orbital index exchange between the electrons. Odd (even)-w
superconductivity refers to when the Cooper pair amplitude
is odd (even) under the exchange of the time coordinates,
or equivalently frequency, of the two constituent electrons,

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2021/3(3)/033255(13) 033255-1

as introduced by Balatsky and Abrahams [3] following the
first prediction of odd-frequency order by Berezinskii in *He
[4]. Finite odd-w pair amplitudes have been predicted to exist
mostly in superconducting hybrid structures [1,5-10], but also
in a variety of other systems, such as multiband superconduc-
tors [11-13], topological materials [14-20], heavy-fermion
compounds [21-23], and driven systems [24,25]. In several
of these systems, experimental consequences of odd-w pairs
have also been explored, including its connection to zero-
energy density of states (DOS) peaks [26-31].

The Cooper pair symmetry follows the SPO7T = —1 clas-
sification in all systems where the constituent electrons have
spin-1/2 character. There exist, however, recent reports on
superconductivity in materials where the low-energy electrons
also carry a finite orbital angular momenta, such that only the
total angular momentum is a good quantum number [32,33].
For example, some cubic half-Heusler compounds, with the
general form RPtBi or RPdBi where R is the rare-earth el-
ement, host “spin”-3/2 low-energy fermions and have been
shown to be superconducting at low temperatures [32]. In
these materials the conserved total angular momentum, or
effective, spin-3/2 character is protected by high crystal sym-
metry and spin-orbit interaction. These findings have drawn
a large amount of attention since the superconducting ground
state has been found to have several unusual properties, such
as a reduced upper critical field [33] and a low-temperature
penetration depth [34] very different from the properties of
conventional spin-singlet superconductors [35]. Notably, the
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spin-3/2 character of the constituent electrons of the Cooper
pairs allows for both exotic spin quintet with j = 2 and spin
septet with j = 3 pairing [32,33,36-38], in addition to the
spin-singlet (j = 0) and spin-triplet (j = 1) pairing found
in traditional spin-1/2 superconductors, where j is the total
angular momentum quantum number of the Cooper pair.

Interestingly, superconductivity in spin-3/2 systems can
be associated with a Bogoliubov Fermi surface (BFS); an
inflated spheroidal or toroidal topologically protected region
in momentum space across which the energy gap is identi-
cally zero [39-42]. The reason behind the appearance of a
BFS has been described in terms of a pseudomagnetic field
arising from exotic pairing states [39]. These exotic pairing
states have been predicted in a range of materials: nematic su-
perconductors [43], iron-based superconductors [44,45], and
also cubic half-Heusler compounds [32,46—49]. The general
prescription for the appearance of BES is the existence of an
internal electronic degree of freedom, in addition to the spin
degree of freedom, such as an additional orbital or sublattice
degree of freedom, subjected to the symmetries of the system
[40,50,51]. Higher spin, such as a spin-3/2 character, of the
low-energy bands is perhaps the most explored possibility for
that internal degree of freedom to produce a BFS [40].

The BFS manifests itself through a large DOS at zero
energy in the superconducting state [41]. At the same time,
zero-energy states have also been shown to be one of the
possible signatures of odd-w pair amplitudes in many systems
[7,26,52]. A natural question then arises: is BFS a manifes-
tation of odd-w pairing? This question is also closely related
to developing a more solid understanding of the exotic pair-
ing present in materials with BFSs. In this work we address
these issues by focusing on spin-3/2 superconductors, and
particularly cubic half-Heusler compounds, as they present
possibilities for both BFS and exotic pairing with higher
angular momentum Cooper pairs whose complete symmetry
classification is not yet fully developed.

In particular, we first introduce a complete classification
for higher-spin superconductors: JP7T = —1, where J is
the exchange operator for the quantum numbers associated
with the z component of the total angular momenta of the
constituent electrons of the Cooper pairs. We then establish
the applicability of this new classification by studying several
generic and realistic models describing superconducting half-
Heusler compounds and calculating the superconducting pair
amplitudes and their symmetries. The JP7T = —1 antisym-
metry condition gives rise to a total of 32 different classes
of Cooper pair symmetry, and we find that essentially all can
exist in the half-Heusler compounds. In particular, we find all
types of possible odd-w pairs: spin-singlet odd-parity, spin-
triplet even-parity, spin-quintet odd-parity, and spin-septet
even-parity, which in several cases are as large as any even-w
components. Following this, we derive a general analytical
expression for the odd-w pair amplitude in spin-3/2 systems,
which we then use to derive a necessary and sufficient condi-
tion for finding both odd-w pairs and a BFS. Finally, by using
a low-energy effective two-band model, we show explicitly
that the pseudomagnetic field responsible for the BFS also
always induces odd-w pairing and vice versa. This establishes
a one-to-one correspondence between BFS and odd-w pairs in
a low-energy model of spin-3/2 superconductors.

The rest of this work is organized as follows. We classify
the superconducting pair symmetries in Sec. II and show the
appearance of those symmetries in Sec. III by considering
a generic Hamiltonian suitable for half-Heusler compounds
(Sec. IIT A), followed by numerical results for the supercon-
ducting pair amplitude (Sec. III B). We then find a general
analytical expression for odd-w pair amplitudes applicable to
any spin-3/2 system in Sec. IV and explore the connection
of the odd-w pair amplitudes to BFSs in Sec. V. Finally, we
summarize and conclude our results in Sec. VI.

II. CLASSIFICATION OF PAIR SYMMETRY IN
SPIN-3/2 SYSTEMS

We begin by developing the classification of the pair sym-
metry for any superconductor with low-energy electrons of
spin-3/2 character. Central in any such discussion is the super-
conducting pair amplitude, or Cooper pair amplitude, given by
the anomalous Green’s function as

Foaroa ki, kosti, 1) = —i{Ticoa,(k1, 11)Copa, k2, 12)), (1)

where 7, is the time-ordering operator and ¢, ,(k,t) is the
annihilation operator for an electron in orbital a with spin o
and momentum k at time ¢ [53]. Now, for regular spin-1/2
systems, there exists an antisymmetry condition:

SPOTfalal,agaz(kl’ k2; 1, t2) = _Falal,azaz(kla k2; 1, t2)’
(2)
imposed by the fermionic nature of the electrons of the Cooper
pair where the S, P, O, and T operators are defined as

SFoiay.00a, k1, kast1, 1) = Foyay.00a (K1, kst 1)
= E£F 60,000 K1, ko3 11, 1),
PFora1.00a, k1, k2311, 1) = Foay.000, (k2 k1511, 12)
= E£F 60,000 K1, k23 1, 1),
OF o1a1.00a, k1, ko5 t1, 1) = Foa,.00a, (K1, k2311, 1)
= EtF 50,000 K1, ko3 11, 1),
T Forar.00a, k1, k2311, 1) = Foay.000, (k1 k2512, 11)
= £ 500,000, k1, k2311, ). (3)

The antisymmetry condition of the pair symmetries can in
short form be written as SPOT = — 1 and applies to any
spin-1/2 superconductor, where each electron of the Cooper
pair possesses zero orbital angular momentum (/; = 0) and
half spin (s; = 1/2) quantum numbers, with i (= 1, 2) being
the electron number index. Thus, the total angular momentum
for each electron is j; = I; + s; = 1/2. There are two possible
spin symmetries for spin-1/2 systems since % ® % =00 1:
spin-singlet with total “spin” j = s = 0 and m = 0 and spin-
triplet states with total spin j =s=1 and m =0, 1. Here
m is the quantum number for the z component of the total
angular momentum, also referred to as secondary total angular
momentum quantum number. The Cooper pairs with these
spin structures can also be identified according to their spa-
tial parities: explicitly, even-parity (s-wave, d-wave, etc.) and
odd-parity (p-wave, f-wave, etc.) pairs. Given the spin struc-
ture and spatial parity, the Cooper pair symmetry can further
be classified according to its evenness or oddness under the
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orbital index (if such exists) and then finally with respect to
the time/frequency dependence. We note that pair amplitudes
that are odd with respect to the change of the time (or equiva-
lently frequency) of the two electrons are identified as odd-w
pair amplitudes. As an example, all spin-triplet even-parity
and all spin-singlet odd-parity states are necessarily odd-w
states when they are even with respect to exchange of the
orbital index [1,11]. Similarly, we can also find other possible
odd-@ pair symmetries when the pair amplitude is odd in
orbital index [11].

With the above outline of the pair symmetry classification
for spin-1/2 fermions, we now move on to the generalization
of the antisymmetry condition for higher spin systems, since
the condition Eq. (2) no longer remains applicable when the
spin and orbital are strongly coupled to each other. In fact,
for such strong spin-orbit coupled systems, both the spin and
orbital angular momentum are not good quantum numbers at
all. Instead, the total angular momentum of each electron is
a good quantum number, and it becomes natural to consider
that instead when identifying the superconducting pair sym-
metry. More precisely, when two electrons of total angular
momenta j; and j, pair, the total angular momentum quantum
number j for the paired state is constrained by the condition
[j1 — j21 £ j < (j1 + j2). The quantum number associated
with the z component of the total angular momentum m fol-
lows —j < m < j. It also satisfies m = m; 4+ m, where m
and my are the quantum numbers for the z component of
the total angular momentum of the two electrons, individu-
ally satisfying —j; < m; < j;. The paired state |j, m) can be
expanded in the basis |j;, j»; m, m;) using the completeness
and normalization conditions as

J1 J2
Z Z lj1, josm1, mo)(j1, jo; my, ma|j, m)

|j,m) =
my=—ji m=-—j
= Y (i s mi,molj,m) i, jasm,ma),  (4)
mip,myp

C.G. coefficient
where the Clebsch-Gordon (C.G.) coefficients are scalar num-
bers [54].

In particular, we are here interested in strongly spin-orbit
coupled systems where the low-energy band structure has a
spin-3/2 character [33,55]. When two such electrons with
j1 =3/2 and j, = 3/2 couple to form a Cooper pair, the
possible states can be found following the product % ® % =
0@ 1d2d3[32,33,36,37,55,56]. Thus, for such higher spin
system, the pair symmetries are enriched by five spin-quintet
(j = 2) and seven spin-septet (j = 3) states, in addition to ex-
tended spin-singlet (j = 0) and extended spin-triplet (j = 1)
states.! Henceforth, we use the short notation |m, m,) instead
of |j1, jo; my, my) for brevity since j; = j, = 3/2.

With the concept of the spin structures of the Cooper pairs
for spin-3/2 fermions clear, the next natural question is about
the overall symmetry of the pairing. We note that, for spin-1,/2

'One can here raise the question about the possibility of one elec-
tron having j; = 1/2 and another having j, = 3/2 character. We
avoid considering this case as it is unlikely a Fermi surface includes
two electrons of such different spin characters.

systems, we have four symmetry operators S, P, O, and T
corresponding to the spin quantum number, spatial parity,
orbital, and time for the Cooper pairs. However, due to the
strong spin-orbit coupling in the spin-3/2 systems, we can
now not separately identify the spin and orbital quantum num-
bers. Instead, the total angular momentum and its z component
are the only good quantum numbers. Thus, we now rewrite
the anomalous Green’s function of the Cooper pair of Eq. (1)
characterized by quantum numbers for angular momentum,
spatial parity, and time as

Fiimi,jums k1, ko311, 12) = —i(TiCym, (K1, 11)C jymy (K2, 1)),

®)
where c;,,(k, t) is now the annihilation operator for an elec-
tron with the total angular momentum quantum numbers j, m
and spatial momentum k at time ¢. Note that each total angular
momentum quantum number j; allows various states identi-
fied by m; following Eq. (4) and thus we must include the
m; index too. We then introduce a symmetry operator for the
exchange of the total angular momentum quantum numbers of
the two electrons, J, which effectively exchanges only the z
components of the total angular momentum quantum number,
since here j; = j, = 3/2. Thus we can now have Cooper pairs
which are even or odd with respect to the exchange of the
quantum numbers m; <> m;, as

T F jimy, jom k1, ko3 11, 0) = F3 3m](k1,k2;l‘1,fz)

2m2

=xF3 3 (ki,kait1,12). (6)
2M.a M

On top of this, the pair amplitudes can again be even or odd
with respect to the spatial parity P, as well as (relative) time
exchange 7 operations, exactly similar to spin-1/2 fermions
[see Eq. (3)]. We note that there is now no separate sym-
metry operation for the orbital index since it is no longer a
good quantum number here, but the orbital index is instead
effectively included into the J operation. Finally, all these
exchange operations should follow an antisymmetry condition
maintaining the fermionic property of the electrons as

jPngml 3, (ki kast1,12)
2 i) 2
=—F3 3 (ki,kat, 1) 7
2m152n12

In short this complies with JP7T = —1, which identify the
evenness or oddness of all the possible pairings for spin-3/2
systems with respect to the angular momentum 7, spatial
parity P, and time 7 or frequency.

Having derived the JP7T = —1 condition, we next illus-
trate how to classify the Cooper pair states following this
explicit antisymmetry condition. For this, we first explicitly
write out the possible states by using Eq. (4), following Ref.
[33], and then show their classification in terms of JPT =
—1 in Table I. Note that, while the pairing state |m;, m;)
may be either a single state or a combination of two states
or more, as seen in the third column in Table I, the opera-
tion of J (m; <> myp) is additive for each state and thus it
always gives either an even or odd Cooper pair state with
respect to this exchange. Overall, in Table I there are one
singlet, three triplet (¢, 15, 13), five quintet (g1, g2, g3, g4, g5),
and seven septet (sy, s, $3, 4, S5, S¢, $7) states, such that a
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TABLE 1. Complete symmetry classification of Cooper pairs for j = 3/2 fermions following the antisymmetry condition JP7T = —1.
Cooper pair configurations in column 3 follow Ref. [33].

Cooper pair Angular momentum Parity Freq./Time

Class Pairing state |j1, mi; jo, ma) = |my, my) () (P) (M

1 Singlet (sing.) Even Even
G=0m=0 (-3 -1 - 4D 0ud

0Odd Odd

2 Triplet (¢;) Even Odd
G=tim==-1) 53 =f =2 =g+ VAl -3 Bren

Odd Even

3 Triplet (z,) Even Odd
G=tim=0  LERE-2)= |-t = = 1 +3 - 1.3) Even

Odd Even

4 Triplet (¢3) Even Odd
G=tim=1 A4 25 3+ VE - 13 Bren

Odd Even

5 Quintet (g;) Even Even
(=2m==2) - 3-4-1-1-3) 0ud

Odd Odd

6 Quintet (g2) Even Even
G=2m=—1) (- 14-14-2) 0ud

0Odd Odd

7 Quintet (g3) Even Even
G=2m=0  HE--H- - b= 1) 0ud

Odd Odd

8 Quintet (g4) Even Even
G=2m=1 H(8=H-1-53) oua

.0dd Odd

9 Quintet (gs) Even Even
G=2m=2) 3159 oua

Odd 0Odd

10 Septet (s1) Even 0Odd
(G=3m=-3) |—32.-3) Even

Odd Even

11 Septet (s2) Even Odd
(= 3m==2) Bl 34+ |- 4.-) Bren

Odd Even

12 Septet (s3) Even Odd
G=3m== (-3 3VA - bl lhd) Eren

Odd Even

13 Septet (s4) Even Odd
G=3m=0  Z(5-3)+3[5-2)+3[-53)+[-33) Even

Odd Even

14 Septet (s5) Even Odd
(G=3m=1 73 =3+ 3530+ - 5.3) Even

Odd Even
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TABLE 1. (Continued.)

Cooper pair Angular momentum Parity Freq./Time

Class Pairing state |j1, my; jo, ma) = |my, my) (p) P) B

15 Septet (s¢) Even Odd
(=%m=2) L0318 Bven

Odd Even

16 Septet (s7) Even Odd
(Gj=3;m=3) %,%> Even

Odd Even

total of 16 possible spin structures exist for spin-3/2 fermions.
Considering also spatial parity and time, each of these 16
states can be further characterized either by being odd or even
under parity and time, resulting in a maximum of 32 possible
states for spin-3/2 fermions, as shown in Table 1.

We next explicitly illustrate some of the symmetries of
Table I. The spin-singlet state for spin-3/2 fermions can be
thought of as a combination of two separate states formed
by the first two and last two parts of the Cooper pair
as 513, —3) — | =3, 3) and 5(=|5. =3) +| = 3. 7)), also
called an extended singlet state [33]. When the 7 operator
operates on each of these combined states, it exchanges the
m; quantum numbers of the two electrons of each individual
parts following Eq. (6), i.e., 3/2 <+ —3/2 for the first state
and 1/2 < —1/2 for the last state and both combined states
are thus odd with respect to this exchange operation. Since
the operation of 7 is additive, the whole singlet state is
also odd. Now, this odd state can further be both even and
odd with respect to the spatial parity P and in time 7 or
frequency. Following JP7T = —1, the singlet state has to be
either even-parity even-w or odd-parity odd-w, as also seen
in Table I.

Next we consider one of the triplet states, triplet #;, in
Table I, which consists of two parts: }/—g(l — %, %) + I%, —%))
and —12—0 — %, —%). When J operates on these combined
states, the corresponding exchange operations are —3/2 <
1/2 and —1/2 <+ —1/2, in the first and last states, respec-
tively, and these exchange operations show that the pair
amplitude for this triplet state #; is even with respect to J.
Note that, in the latter case, the state is self-exchanging under
the operation —1/2 < —1/2, since both the electrons are
characterized by the same z components of the total angular
momentum quantum numbers. The other two spin triplets,
triplets #, and t3, are also even states under the exchange oper-
ation 7 in the same way. Then, according to the 7P7T = —1
antisymmetry condition, all the spin-triplet states can be either
even-parity odd-w or odd-parity even-w states. Similarly, we
classify all the spin-quintet (g;) and spin-septet (s;) states. All
five spin-quintet states are odd in 7. These spin-quintet states
can thus further be categorized as either even-parity even-w or
odd-parity odd-w, similar to the spin-singlet state. Similarly,
all seven spin septets can be either even-parity odd-w or odd-
parity even-w. Note that septet s; and s7 states are states that
change into themselves under the exchange operation by 7,
thus always resulting in 7 = +1. All of these symmetries are
explicitly written out in Table 1.

III. EXAMPLES OF PAIR SYMMETRIES FOR
SPIN-3/2 FERMIONS

With the classification for spin-3/2 fermion systems in
the previous section, we now show the existence of all
those pair symmetries by considering a generic normal-state
Hamiltonian suitable for half-Heusler compounds which are
known to both host low-energy spin-3/2 fermions due to
the strong spin-orbit coupling and be superconducting [32].
We here consider several different superconducting pair po-
tentials following the superconducting behaviors of these
materials [32,40].

A. Model for superconducting spin-3/2 fermion systems

We start with the Bogoliubov—de Gennes (BdG) Hamilto-
nian given by

1 .
H=> Xk: W Hy Wy, (8)

where Uy = (ck,cik)T is the Nambu spinor with
cry being a four-component spinor encoding the

internal degrees of freedom for spin-3/2 fermions,
ck = (Ck3/25 Chi1/25 Ch—1/25 Ck—32)T . and k= {ky, ky, k. }.
Here

v _ (Hok) Ak )

Hi =1 1 A , 9

¢ <N(k) AT () ©

where we label 8 x 8 and 4 x 4 matrices operator by .”. and
.., respectively. We here consider cubic materials where the
low-energy bands of a strongly spin-orbit coupled system can
be described by a generic k - p model Hamiltonian appropriate
for half-Heusler materials, but neglecting higher order terms
as they do not affect our conclusions qualitatively [39,57].
In particular, we write the normal part of the BdG Hamilto-
nian [39] as

Aylk) = akl + B Yk} +v Y kokyJudy
v v#£Y

+8 ) k(rdidinr = Jo2hidii2) — s (10)
v

where [ is the identity operator and J,, with v € {x, y, z}, are
the 4 x 4 matrices for spin-3/2 fermions (see the Appendix).
Here v 41 and v + 2 follow the cyclic shift operations on
{x,y, z}. For each momentum k, Hoy(k) thus has four elec-
tronic degrees of freedom, arising from the four channels
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with m = £3/2 and £+1/2. Here, «, B, y, and § are all real
constants and material dependent. The kinetic energy part
involves «, while 8 and y characterize the symmetric spin-
orbit coupling strength. Moreover, § is proportional to the
asymmetric part of the spin-orbit interaction and it breaks the
inversion symmetry of the normal-state Hamiltonian and (as
we will see) plays a vital role for generating an odd-parity pair
amplitude. We here choose the parameter values a = 1, o =
20.5(a/mw)* eV, B = —18.5(a/w)* eV, y = —12.7(a/m)* eV,
and § = 0.06(a/m) eV as they nicely capture all the essential
features of the band structures for YPtBi, which is one of the
superconducting materials showing spin-3/2 character [32].
We further fix the chemical potential © = 50 meV (intrinsic
doping) as it encodes the spin-orbit split holelike Fermi sur-
face consistent with literature [33]. We note that our results of
the pair symmetry classification are robust to changes in the
parameter values and the behavior of the pair amplitudes also
remain qualitatively similar.

Having the Hamiltonian in Eq. (9) we define the Green’s

function as
G=(w—-H) "= (Jg: j;) (11)

where G (G) and F (F) are the 4 x 4 normal and anomalous
Green’s functions in particle (hole) space, respectively. For
superconductivity we are particularly interested in JF, where
each element is characterized by ji, my; jo, mp as explicitly
written in Eq. (5).

B. Numerical results for pair amplitudes

To establish the existence of the symmetry classes in
Table I, we consider different superconducting pair potentials
of A(k) for the BAG Hamiltonian Eq. (9) and calculate the
anomalous Green’s function using Eq. (11). We start with
the simplest even-parity s-wave pair potential and then also
consider odd-parity p-wave, followed by chiral even-parity
(d-wave) pair potentials since all these have been suggested
to describe spin-3/2 superconductors in the current literature
[32,33,40,58].

1. Even-parity (s-wave) pair potential

We start by considering a momentum independent s-wave
superconducting pair potential as it is the simplest possible
form. For spin-3/2 systems it takes the form [40]

Alk) = AUr (12)

with the s-wave gap A, being a real constant and the unitary
operator Uy defined in the Appendix.

We calculate the real and imaginary parts of the anomalous
Green’s function following Eq. (11) in order to extract the pair
amplitudes and present them in Fig. 1. To avoid any mixing
of spatial parity, we always symmetrize F by breaking it
up into its even- and odd-parity parts: F¥¢ = F(k) + F(—k)
and FP° = F(k) — F(—k). We here take the summation over
positive k from zero to a cut-off value of the momentum &, =
7 /2, but our results do not qualitatively depend on the cut-off.
From both the real and imaginary parts of the pair amplitude in
Figs. 1(a) and 1(b) we see that the spin-singlet even-parity pair

Real Imag
N (@) ! (b)
0
" 0 \VI\"\A A/J\v/ -2 ﬁj:"g-
Ve :z
2 4 —
o @ 3

-0.1
0.05 -0.05 0 0.05
w w

FIG. 1. Real (a),(c),(¢e) and imaginary (b),(d),(f) parts of F*°
(a)—(d) and F*° (e),(f) as a function of frequency w considering the
pair potential of Eq. (12) with A; = 0.01 eV. The rest of the pair
amplitudes are zero.

amplitude has an even frequency dependency (even-w) with
the higher values of the pair amplitude appearing for lower
values of w. On the other hand, all the spin-triplet even-parity
pair amplitudes are zero. For all the remaining figures in this
section, if a pair amplitude is not plotted, it is because it is
identically zero.

Similar to the spin-singlet pair amplitude, all five spin-
quintet pair amplitudes in Figs. 1(c) and 1(d) are also even-w,
since they are even in parity. Note that one of the spin quintets,
quintet g3, is zero, while the ¢g; and gs pair amplitudes are
equal to each other. Similar to the spin-singlet amplitudes,
three of the spin-quintet pair amplitudes also show a large
peak for low w. Finally, moving on to the spin-septet part
in Fig. 1, we find that all the spin-septet even-parity pair
amplitudes are identically zero. Instead, it is the spin-septet
odd-parity pair amplitudes that exist for an s-wave pair po-
tential. Note that three of the spin septets, sq4, S¢, $7, are here
identically zero. However, a basis rotation will interchange
which spin septets are zero, and we can in this way confirm
that all spin-septet amplitudes are odd parity and even-w.
A similar procedure and result are also present for the zero
spin-quintet amplitude discussed above.

Based on the results in Fig. 1 we conclude that the spin-
singlet even-parity pair amplitude is even-w and very similar
to what happens in spin-1/2 systems [1]. Additionally, we
find spin-quintet even-parity even-w pair amplitudes and spin-
septet odd-parity even-w pair amplitudes, which are both
unique for higher spin systems. The nonzero spin-quintet
and spin-septet pair amplitudes are similar in magnitude but
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FIG. 2. Real (a),(c),(e) and imaginary (b),(d),(f) parts of F'° as
a function of frequency w using the pair potential of Eq. (13) with
A, =0.01eV.

smaller than that of spin-singlet pair amplitude. All these pair
symmetries found for the s-wave pair potential match with the
symmetries shown in Table I, explicitly, the even-parity parts
of classes 1, 5-6, 8-9, and odd-parity parts of classes 10—12,
14. Notably, there is no odd-w pair amplitude (irrespective of
parity) present for the s-wave pair potential. We explain this
absence in Sec. IV.

2. Odd-parity (p-wave) pair potential

Next, we move on to the scenario of the odd-parity (p-
wave) spin-septet pair potential for spin-3/2 superconductors
proposed in Refs. [32,33]. Hence, we use

S L L0
B 3% 0 -

A _ 2 "z 4%+ 4 "=

Ak) = A, e o w4 | (13)
0 Yk LDk

where ki = k, & ik, and the p-wave triplet gap A, is a real
constant. We again calculate the pair amplitude using the
anomalous Green’s function, Eq. (11). We show the real and
imaginary parts of the even- and odd-parity pair amplitudes,
i.e., FP¢ and F*°, for the p-wave pair potential in Figs. 2 and
3, respectively.

From Figs. 2(a) and 2(b) we observe that the spin-singlet
even-parity pair amplitude is even-w and has large amplitude
for low values of w, while the spin-triplet even-parity pair
amplitudes are zero. Four of the spin-quintet pair amplitudes
(91, 92, g4, and gs) are also clearly nonzero, with ¢; = ¢s, and
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FIG. 3. Real (a),(c) and imaginary (b),(d) parts of F° as a func-
tion of frequency w. The rest of the odd-parity pair amplitudes are
zero. The parameter values are the same as in Fig. 2.

all being even-w since they are also even parity, as shown in
Figs. 2(c) and 2(d). Although the g3 pair amplitude is zero
in this particular basis, it can be shown to have the same
symmetry as the other g pair amplitudes by rotating the basis
such that it becomes nonzero. This behavior is the same as
what we find for the s-wave pair potential in Fig. 1. We also
find that four (sy, s», 53, and s5) out of the seven spin-septet
even-parity pair amplitudes are finite, but they all have a small
magnitude, as shown in Figs. 2(e) and 2(f). Interestingly, all
these spin-septet pair amplitudes are odd-w, as clearly seen
in Figs. 2(e) and 2(f), which are different from all the pair
amplitudes discussed so far.

Moving on to the odd-parity FT°, we find that all the
spin-singlet and spin-triplet odd-parity pair amplitudes are
zero. However, in Figs. 3(a) and 3(b) we show that the four
spin-quintet odd-parity pair amplitudes (q;, g2, g4, and gs,
with g; = gs) are finite. They are all odd-w, unlike the spin
quintets even parity in Fig. 2. These spin-quintet amplitudes
are also all comparable in magnitude with the heights of
the peaks of the pair amplitudes gradually increasing with w
(including finite outside of the plotting window). Here, the
g3 pair amplitude is zero, but it can be shown that it follows
the same symmetry by rotating the basis. Finally, four of the
spin-septet odd-parity pair amplitudes, (s;, 52, 53, and ss), are
finite and even-w, as presented in Figs. 3(c) and 3(d) and
following the pair amplitude symmetry of Eq. (13). Other
septet amplitudes are zero in our choice of basis, but a rotation
of the basis can give rise to nonzero values for the remaining
septets (s4, S¢, and s7) too, which then all follow the same
symmetry classification. Notably, all the nonzero spin-quintet
and spin-septet odd-parity pair amplitudes are comparable
in magnitude and their symmetries follow the classification
shown in Table I.

On the whole, in addition to the pair amplitudes found for
the s-wave pair potential, we here for p-wave pair potential
find spin-triplet and spin-septet even-parity odd-w pair ampli-
tudes as shown in Figs. 2 and 3. These pair amplitudes are in
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FIG. 4. Real (a),(c),(e) and imaginary (b),(d),(f) parts of F*° as
a function of frequency w using the pair potential of Eq. (14) with
AO = Al = 001

agreement with the classification shown in Table I, even-parity
parts of classes 1, 5, 6, 8—12, 14 and odd-parity parts of classes
5,6, 8-12, 14.

3. Chiral even-parity (d-wave) pair potential

Finally, we consider the chiral even-parity superconducting
pair potential proposed in [39,59],

Alk) = Aryuns + Do(ne: + inye), (14)
where
1 .. ..
Ny; = %(Jy-]z + Jsz)UT’ (15)
1 .. A
Nxz = E(szx + JxJz)UT (16)

with A; and A( being real constants. This pair potential
breaks time-reversal symmetry but retains inversion symme-
try. Here, 1 is a spin-singlet state with a form factor v that
is completely isotropic in the pairing channel, i.e., no mixing
between the m = 1/2 and m = 3/2 channels. The form fac-
tor v breaks time-reversal symmetry but preserves inversion
symmetry and is usually taken as k. (k, + ik,). The gap matrix
(Nxz + iny;) is chiral and transforms under rotation similarly
to the spherical harmonics Y, ; (k) [39]. Instead of point or
line nodes as is found generally for a d-wave pair potential,
this pair potential shows an inflated line node, i.e., a BFS.
In fact, it is the presence of a finite A that is responsible
for the appearance of the BFS, whereas in the absence of
Ay, there is only a line node in the k, = 0 plane and two
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FIG. 5. Real (a),(c),(e) and imaginary (b),(d),(f) parts of F*° as
a function of frequency w. The parameter values are the same as in
Fig. 4.

point nodes on the & axis (ky = k, = 0) [39]. Equation (14)
is the most considered pair potential in the literature to ex-
plain the appearance of BFS in spin-3/2 systems. Thus using
this pair potential allows us not just another opportunity to
find different pair amplitudes in Table I, but also to investi-
gate a possible relation between the appearance of BFS and
odd-frequency pairing. To capture the general behavior of
the chiral even-parity pair potential in Eq. (14), we set both
Ap and A; to nonzero values. We then calculate both the
even- and odd-parity spatial parts of F, FF¢, and F*° to
find the pair amplitudes and show these in Figs. 4 and 5,
respectively. In Figs. 4(a) and 4(b), we see that the spin-singlet
even-parity pair amplitude is finite and even-w. It is similar
to the spin-singlet pair amplitude found for the s-wave pair
potential in Sec. III B 1. However, unlike for the s-wave pair
potential, here all the spin-triplet (71, f,, and t3) even-parity
pair amplitudes are also finite. Interestingly, these spin-triplet
pair amplitudes are odd-w, following the classification of Ta-
ble 1. Moreover, Figs. 4(c) and 4(d) confirm the even-parity
even-w behaviors of all the spin-quintet pair amplitudes, in
agreement with Table I. Some of the spin-quintet pair ampli-
tudes are already found for s-wave pair potentials. We further
find that the spin-septet even-parity odd-w pair amplitudes are
finite and even similar in magnitude to that of the spin-singlet
and spin-triplet even-w pair amplitudes (except s¢ and s7),
despite their odd-w nature. In particular, we here note that the
odd-w pair amplitudes for the p-wave pair potential in Fig. 2
are two orders of magnitude smaller than what we find here.
We next plot the nonzero odd-parity F in Fig. 5. From
both the real and imaginary parts of Figs. 5(a) and 5(b), we
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see that the spin-singlet pair amplitude is now odd-w and
all three spin-triplet pair amplitudes, which are even-w, are
finite. This is essentially different from what we find for s- and
p-wave pair potentials. Moreover, the spin-quintet odd-parity
pair amplitudes are odd-w, while the spin-septet odd-parity
pair amplitudes are even-w. For this chiral pair potential, all
the pair amplitudes are comparable in magnitude and mostly
higher amplitudes are found for the low values of w. Thus,
all the pair symmetries revealed for the chiral pair potential
in Eq. (14) are consistent with Table I, and particularly, we
find finite components in almost all classes 1-14 of Table I,
with only occasional exceptions where some individual m
component is zero.

Having extracted general results for the d-wave chiral pair
potential in Eq. (14), we note that when Ay = 0, the even-
parity spin-triplet and spin-septet pair amplitudes disappear,
as well as the odd-parity spin-singlet and spin-quintet pair
amplitudes. As a direct consequence, the A, pairing term
is responsible for generating all the odd-w pair amplitudes.
As previously established, a finite A is also responsible for
the appearance of the BES for this pair potential [39]. This
establishes numerically a direct relationship between odd-
w pair amplitudes and BFS for the chiral even-parity pair
potential in Eq. (14). Moreover, in the normal-state Hamil-
tonian, Eq. (10), the spin-orbit inversion symmetry breaking
term § is the only odd-parity term. Based on symmetry ar-
guments and also confirmed by our numerics, there are no
odd-parity pair amplitudes in the absence of this § term when-
ever the superconducting pair potential is even parity, such
as for the chiral d-wave or the s-wave potentials discussed
here.

On the whole by studying three different and realistic
pair potentials, we show that all different types of the pair
symmetries, (1) odd-angular momentum even-parity even-w,
(2) odd-angular momentum odd-parity odd-w, (3) even-
angular momentum even-parity odd-w, and (4) even-angular
momentum odd-parity even-w symmetry as classified in
Table I, appear for a generic Hamiltonian describing half-
Heusler materials. While the classification in Table I itself
is universal, independent of the pair potentials and the other
parameter values, our three examples show that all these
four classes can easily appear in half-Heusler materials. This
symmetry classification for spin-3/2 superconductors, and
particularly the identification of odd-w pair amplitudes, is
one of the main results of this work. In fact, through our
examples we find all the possible odd-w pair amplitudes
for spin-3/2 superconductors: (i) spin-singlet odd-parity, (ii)
spin-triplet even-parity, (iii) spin-quintet odd-parity, and (iv)
spin-septet even-parity pair amplitudes. Among them, we
find that the spin-septet even-parity odd-w s4 pair amplitude
for chiral d-wave pair potential is largest in magnitude. All
the other spin-septet even-parity odd-w pair amplitudes and
spin-quintet odd-parity odd-w pair amplitudes found for the
d-wave pair potential are also large and comparable in mag-
nitude to all even-w pair amplitudes in the same system. In
addition to that, also the spin-quintet odd-parity odd-w pair
amplitudes found for the p-wave pair potential are relatively
large, only dominated by the spin-singlet even-parity even-w
pair amplitude.

IV. GENERAL ANALYTICAL EXPRESSION FOR
ODD-FREQUENCY PAIR AMPLITUDE

Having numerically found odd-w pair amplitudes with all
possible spin structures for spin-3/2 systems, we next derive
a general analytical expression for the odd-w pair amplitude
in these systems. For that, we proceed by rewriting Eq. (11)
using Eq. (9) as

(Q f) _ (iwf—ﬂo(k)
FoG) \ A

We can then write the anomalous Green’s function as [12]

F = —[(iowT + Hy(k)Ak)  (iw — Hy(k)) — Atk
(18)

N 1
—Ak)
il + ﬁg(—k)> - (D

The pair amplitude can finally be rewritten as
F = —[(Atk) — Atk)™ (* + Ho(k)*)
—7'Ho(k)) — iwp' 1D, (19)

where D = [(Ak) — Alk) ™! (0® + Hy(k)*) — 9'Ho(k))* +
@?*$'?] and ' = [Hy(k), A(k)]_, where the subscript “—”
denotes the commutation relation. The denominator 25, being
independent of odd powers of w, is an even function of w.
Thus the odd-w pair amplitude can be easily identified as

Fro = jwp'D7". (20)

We note that this general expression for the odd-w pair am-
plitude is valid for any system where the pair potential A (k)
is a matrix and not a scalar quantity. Thus, Eq. (20) holds for
any multiband system, including the spin-3/2 systems studied
here. We note that our expression is more general than that of
Ref. [12], where a particular form of multiband Hamiltonian
was considered. The odd-w pair amplitude includes P’, which
is the commutator of the normal-state Hamiltonian and the
pair potential. A similar commutation relation has also been
used earlier in the context of multiorbital superconductivity
when discussing superconducting fitness [60,61], and also
applied for spin-3/2 systems [62]. To summarize, it is the
incompatibility of the diagonal and off-diagonal elements of
Eq. (9) that generates odd-frequency pair amplitudes. This in-
compatibility further indicates that it is necessarily interorbital
terms that are responsible for finite odd-w pair amplitudes.
This can also be readily confirmed in the results for the s-wave
pair potential in Sec. III B 1. Here, odd-w pair amplitudes
are completely absent, despite the plethora of different spin
channels, as the s-wave pair potential commutes with the
normal part of the Hamiltonian.

V. CONNECTION WITH BOGOLIUBOV FERMI SURFACE

With the above numerical results and general analytical
expression for the odd-w pair amplitude, we next look for
whether there exists any general connection between the odd-
o pair amplitude and the BFS present in spin-3/2 systems.
In particular, the existence of a BFS leads to a finite DOS
around zero energy, thus offering an intriguing connection
to odd-w pair amplitudes, since a finite zero-energy DOS
has previously been used as a characteristic feature of the
odd-w pairing [7,26,52]. Moreover, for the chiral d-wave pair

033255-9



DUTTA, PARHIZGAR, AND BLACK-SCHAFFER

PHYSICAL REVIEW RESEARCH 3, 033255 (2021)

potential in Eq. (14) we have already numerically established
a direct relationship between the existence of a BFS and finite
odd-w pair amplitudes. Taken together, this motivates us to
look for analytical connections between BFS and odd-w pair
amplitudes in spin-3/2 superconductors.

It has recently been shown that the necessary and sufficient
condition for the appearance of BFS in spin-3/2 supercon-
ductors is that the time-reversal gap product has to be nonzero
[40], i.e.,

At)At)" — Ar()Ar k)" # 0. @21

Moreover, as discussed in Sec. IV, for any spin-3/2 supercon-
ductor the existence of a finite odd-w pair amplitude depends
on the noncommuting property of the pair potential A (k)
with the normal-state Hamiltonian Hy of the superconductor,
as expressed by $” in Eq. (20). Thus we can very generally
conclude that odd-frequency pairing and BFS can only both
be present for a time-reversal symmetry breaking supercon-
ductor pair potential that is incompatible with the normal-state
Hamiltonian.

Finally, we perform some further analysis to establish a
more explicit and analytical connection between odd-w pair
amplitude and BFS for spin-3/2 systems, such as the half-
Heusler compounds. For this, we only consider the chiral
even-parity pair potential of Eq. (14) as this particular choice
of pair potential results in a BFS, which is not possible to
find using the s-wave and p-wave pair potentials, and de-
velop an effective low-energy model. To be able to proceed
analytically, we first assume that the asymmetric spin-orbit
interactions y, 8 in Eq. (10) are zero as they do not play
any role in the formation of the BFS. In the absence of these
parameters, the energy eigenvalues of the normal-state Hamil-
tonian of Eq. (10) is doubly degenerate and can be written in
the form [32]

e (k) = eo(k) £ &' (k)| (22)
where eo(k):(ot—f-¥)k2 and |&'(k)] is a compact

form of writing the magnitude of a five-dimensional

5
vector, |&'(k)|= 28,2 where {81,82,83,84,85}:{\/§,kak,,
i=1

J

2 2
VaBkike, N3Pkiko, LU — K2), B2 — “3E)). As  the

chemical potential is usually found in one of the normal-state
bands and assuming that the important physical properties
of the system are then also coming from that band, we can
extract an effective Hamiltonian for this band (here the “e_"
band). The whole BAG Hamiltonian then simplifies into the
form [39,40]

N _ (&k)oy + h (k)o, v_(k)io
Ho- (k) = ( Cyrio,  —#(k)oo — hzy(k)az)’ 23
where
Ek) =e_(k) + ¢ (k), (24)
Vo) = A — Ao lj’fz 25)

with
_ 1P
4le'(k)?

A 2
h. (k) = |L("i|)|2 JE2 + &2 + 2 (26)

and energy dispersion given by

¢ (k) (41€'Uo)|* — 265 — 2¢3),

E = +h.(k) £ VEk)* + [y (k). 27

This is thus a psuedospin description of the low-energy
physics, which is equivalent to the low-energy basis of the
original spin-3/2 system, where we modified the lower energy
band by the effect of the higher energy band. In this effective
low-energy model, the normal band ¢_ (k) is modified by the
¢ (k) term and a momentum dependent pseudomagnetic field
h, (k). Moreover, ¥_ (k) is the effective nodal superconducting
gap potential with a chiral d-wave form. It produces a nodal
ring on the k, = 0 plane, while a finite pseudomagnetic field
h,(k) inflates it into a BFS [40].

As the pseudomagnetic field is in the z direction,
Eq. (23) can be further simplified by rearranging the basis to
(¢ Tk Cl—k El « C1—1), resulting in the BAG Hamiltonian

& + h,(k) v_(k) 0 0
N V(2 N 7 S 0
=1 "9 0 B—ht) -y ) | (28)
0 0 Y k) —F— o)

where E;k is now the creation operator for the pseudospin o,
obtained by rotating the original full spin-3/2 basis of Eq. (9)
into the band basis and then projecting the effect of the higher
energy bands on the low-energy bands. In this new basis the
Green’s function can be decomposed as

(G O
g—(o Qz)’ (29)

1
b1 = [ — h, (k)] — &2 — Y2 (k)

o + & — h (k) Y_(k)
( vk)  w—F— hz<k>) 30)

where

(

with the Green’s function of the other block, G,, obtained sim-
ply by changing [h.(k), (k)] — —[h,(k), ¥—(k)]. Finally,
we can extract the anomalous Green’s function as the first
block G giving

w? + h2(k) — &} — ¥ (k) + 2wh, (k)

Fi=y-(k) ,
[ + 12(k) — 8 — p2(0)]” — 4?2k
€1V}
where we now easily find the odd-w component as
" 2wh, (k)
Fl =y 5 .
[0 + h2(k) — & — Y2 (k)] — 4w?h2(k)
(32)

033255-10



SUPERCONDUCTIVITY IN SPIN-3/2 SYSTEMS: ...

PHYSICAL REVIEW RESEARCH 3, 033255 (2021)

This result clearly illustrates how the odd-w pair amplitude
is directly proportional to the pseudomagnetic field 4, (k). At
the same time, /,(k) is also the term explicitly responsible
for the appearance of BFS. Thus, for this low-energy effective
band model, we find that odd-w pairing and BFS always exist
together. This also confirms analytically our numerical results
in Sec. III B 3.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have introduced the JP7 = —1 sym-
metry classification for superconductivity in spin-3/2 fermion
systems, where the Cooper pairs are composed of two elec-
trons with finite angular momenta j; = 3/2. Here, 7, P, and
T are the symmetry operators for the z component of the total
angular momentum, spatial parity, and time (or equivalently,
frequency), respectively. In addition to spin-singlet and spin-
triplet pairing found in conventional spin-1/2 systems, there
are here two additional spin structures, namely, spin-quintet
and spin-septet Cooper pairs or equivalently pair amplitudes.
All of these Cooper pairs can further be classified into even-
and odd-spatial parity as well as even- and odd-frequency
pairing. Following the antisymmetry condition JPT = —1,
this generates a total of 32 different classes of superconduct-
ing pair symmetries.

To illustrate the existence of the different pair symmetry
classes, we have also studied a model suitable to describe the
superconducting half-Heusler compounds hosting low-energy
spin-3/2 fermions, using several different superconducting
pair potentials suggested in the current literature; even-parity
s-wave, odd-parity p-wave, and chiral even-parity d-wave pair
potentials. By calculating the anomalous Green’s function we
have numerically accessed the superconducting pair ampli-
tudes for all cases and showed how the different classes can be
present, including large odd-w pair amplitudes. In particular,
we have found that the chiral d-wave pair potential generates
large spin-septet even-parity odd-w pair amplitudes.

We have also derived a general analytical expression for
the odd-w pair amplitude, applicable to any spin-3/2 super-
conductor as well as other multiband systems. Using this
expression we have investigated the relation between the odd-
w pair amplitude and the appearance of a BFS. We have
found that both BFS and odd-w pairing are always present
together for superconducting pair potentials with an odd-gap
time-reversal product and noncommuting with the normal-
state Hamiltonian. Using a minimal low-energy model of a
spin-3/2 superconductor with a possible BFS, we have fur-
ther been able to sharpen this criteria of coexistence of BFS
and odd-w pairing and shown that a BFS and a finite odd-w
pair amplitude are always appearing simultaneously in this
effective model. Based on these results, we speculate that any

superconductor with a BFS hosts finite odd-w pair amplitudes,
albeit the reverse is already known to not be true.

Note added. Recently, two other works appeared discussing
various aspects of odd-w pairing in spin-3/2 superconductors.
In Ref. [62] a finite odd-w pair amplitude was found to favor
a 7 state in a Josephson junction consisting of two spin-3/2
superconductors. However, this work neither classified the
different superconducting pair symmetries, including the dif-
ferent possibilities of odd-w pair amplitudes, nor considered
the relation between odd-e pairs and BFSs. In Ref. [63] pair-
ing of the bogolons living on the BFS was shown to be odd-w
in nature. This is, however, very different from our work as it
considers pairing within the BFS, while we consider pairing
of the original spin-3/2 fermions (which then can generate
the BFS). Thus both of these works are very different from
our results.
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APPENDIX: MATRIX OPERATORS

The angular momentum operators for spin j=3/2
fermions are expressed in matrix form as

0 V3 0 0

- 13 0 2 o0
= Al

0 0 V3 0

0 —/3 0 0

. i3 0 -2 0
= , A2
h=3l0 2 0 vz A2

0 0 V3 0

30 0 0

. 1{o 1 o0 o0
=310 o - 0)' (A3)
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0 1 0 0) : (A4)
0 0

[1] J. Linder and A. V. Balatsky, Odd-frequency superconductivity,
Rev. Mod. Phys. 91, 045005 (2019).

[2] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and topology
in superconductors—Odd-frequency pairing and edge states—,
J. Phys. Soc. Jpn. 81, 011013 (2012).

[3] A. Balatsky and E. Abrahams, New class of singlet supercon-
ductors which break the time reversal and parity, Phys. Rev. B
45, 13125 (1992).

[4] V. L. Berezinskii, New model of the anisotropic phase of super-
fluid He?, Pis’ma Zh. Eksp. Teor. Fiz. 20, 628 (1974).

033255-11


https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/PhysRevB.45.13125

DUTTA, PARHIZGAR, AND BLACK-SCHAFFER

PHYSICAL REVIEW RESEARCH 3, 033255 (2021)

[5] A. E. Volkov, F. S. Bergeret, and K. B. Efetov, Odd Triplet Su-
perconductivity in Superconductor-Ferromagnet Multilayered
Structures, Phys. Rev. Lett. 90, 117006 (2003).

[6] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Odd-frequency
pairing in normal-metal/superconductor junctions, Phys. Rev.
B 76, 054522 (2007).

[7] T. Yokoyama, Y. Tanaka, and A. A. Golubov, Manifestation
of the odd-frequency spin-triplet pairing state in diffusive fer-
romagnet/superconductor junctions, Phys. Rev. B 75, 134510
(2007).

[8] M. Eschrig and T. Lofwander, Triplet supercurrents in clean
and disordered half-metallic ferromagnets, Nat. Phys. 4, 138
(2008).

[9] FE. Parhizgar and A. M. Black-Schaffer, Unconventional
proximity-induced superconductivity in bilayer systems, Phys.
Rev. B 90, 184517 (2014).

[10] P. Dutta, K. R. Alves, and A. M. Black-Schaffer, Thermo-
electricity carried by proximity-induced odd-frequency pairing
in ferromagnet/superconductor junctions, Phys. Rev. B 102,
094513 (2020).

[11] A. M. Black-Schaffer and A. V. Balatsky, Odd-frequency super-
conducting pairing in multiband superconductors, Phys. Rev. B
88, 104514 (2013).

[12] C. Triola, J. Cayao, and A. M. Black-Schaffer, The role of odd-
frequency pairing in multiband superconductors, Ann. Phys.
532, 1900298 (2020).

[13] F. Parhizgar and A. M. Black-Schaffer, Diamagnetic and
paramagnetic Meissner effect from odd-frequency pairing
in multiorbital superconductors, Phys. Rev. B 104, 054507
(2021).

[14] A. M. Black-Schaffer and A. V. Balatsky, Odd-frequency su-
perconducting pairing in topological insulators, Phys. Rev. B
86, 144506 (2012).

[15] F. Crépin, P. Burset, and B. Trauzettel, Odd-frequency triplet
superconductivity at the helical edge of a topological insulator,
Phys. Rev. B 92, 100507(R) (2015).

[16] J. Cayao and A. M. Black-Schaffer, Odd-frequency supercon-
ducting pairing and subgap density of states at the edge of
a two-dimensional topological insulator without magnetism,
Phys. Rev. B 96, 155426 (2017).

[17] P. Dutta and A. M. Black-Schafter, Signature of odd-frequency
equal-spin triplet pairing in the Josephson current on the surface
of Weyl nodal loop semimetals, Phys. Rev. B 100, 104511
(2019).

[18] J. Schmidt, F. Parhizgar, and A. M. Black-Schaffer, Odd-
frequency superconductivity and Meissner effect in the doped
topological insulator Bi,Se;, Phys. Rev. B 101, 180512(R)
(2020).

[19] P. Dutta, F. Parhizgar, and A. M. Black-Schaffer, Finite bulk
Josephson currents and chirality blockade removal from interor-
bital pairing in magnetic Weyl semimetals, Phys. Rev. B 101,
064514 (2020).

[20] F. Parhizgar and A. M. Black-Schaffer, Large Josephson current
in Weyl nodal loop semimetals due to odd-frequency supercon-
ductivity, npj Quantum. Mater. §, 42 (2020).

[21] P. Coleman, E. Miranda, and A. Tsvelik, Possible Realization of
Odd-Frequency Pairing in Heavy Fermion Compounds, Phys.
Rev. Lett. 70, 2960 (1993).

[22] P. Coleman, E. Miranda, and A. Tsvelik, Odd-frequency pairing
in the Kondo lattice, Phys. Rev. B 49, 8955 (1994).

[23] C. Triola and A. M. Black-Schaffer, Odd-frequency pairing and
Kerr effect in the heavy-fermion superconductor UPt;, Phys.
Rev. B 97, 064505 (2018).

[24] C. Triola and A. V. Balatsky, Odd-frequency superconductivity
in driven systems, Phys. Rev. B 94, 094518 (2016).

[25] J. Cayao, C. Triola, and A. M. Black-Schaffer, Floquet engi-
neering bulk odd-frequency superconducting pairs, Phys. Rev.
B 103, 104505 (2021).

[26] A. Di Bernardo, S. Diesch, Y. Gu, J. Linder, G. Divitini, C.
Ducati, E. Scheer, M. G. Blamire, and J. W. A. Robinson, Sig-
nature of magnetic-dependent gapless odd frequency states at
superconductor/ferromagnet interfaces, Nat. Commun. 6, 8053
(2015).

[27] A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado, M.
Egilmez, M. G. Flokstra, A. Suter, S. L. Lee, J. H. Zhao,
T. Prokscha, E. Morenzoni, M. G. Blamire, J. Linder, and
J. W. A. Robinson, Intrinsic Paramagnetic Meissner Effect Due
to s-Wave Odd-Frequency Superconductivity, Phys. Rev. X 5,
041021 (2015).

[28] R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao,
G. Xiao, and A. Gupta, A spin triplet supercurrent through
the half-metallic ferromagnet CrO,, Nature (London) 439, 825
(2006).

[29] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O. Birge,
Observation of Spin-Triplet Superconductivity in Co-Based
Josephson Junctions, Phys. Rev. Lett. 104, 137002 (2010).

[30] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Controlled
injection of spin-triplet supercurrents into a strong ferromagnet,
Science 329, 59 (2010).

[31] J. A. Krieger, A. Pertsova, S. R. Giblin, M. Débeli, T. Prokscha,
C. W. Schneider, A. Suter, T. Hesjedal, A. V. Balatsky, and Z.
Salman, Proximity-Induced Odd-Frequency Superconductivity
in a Topological Insulator, Phys. Rev. Lett. 125, 026802 (2020).

[32] P. M. R. Brydon, L. Wang, M. Weinert, and D. F. Agterberg,
Pairing of j = 3/2 Fermions in Half-Heusler Superconductors,
Phys. Rev. Lett. 116, 177001 (2016).

[33] H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers,
L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon,
D. F. Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione,
Beyond triplet: Unconventional superconductivity in a spin-3/2
topological semimetal, Sci. Adv. 4, eaao4513 (2018).

[34] T. V. Bay, T. Naka, Y. K. Huang, and A. de Visser, Super-
conductivity in noncentrosymmetric yptbi under pressure, Phys.
Rev. B 86, 064515 (2012).

[35] J. R. Schrieffer, Theory of Superconductivity (CRC Press, Boca
Raton, FL, 2018).

[36] J. W. F. Venderbos, L. Savary, J. Ruhman, P. A. Lee,
and L. Fu, Pairing States of Spin-% Fermions: Symmetry-
Enforced Topological Gap Functions, Phys. Rev. X 8, 011029
(2018).

[37] J. Yu and C.-X. Liu, Singlet-quintet mixing in spin-orbit cou-
pled superconductors with j = % fermions, Phys. Rev. B 98,
104514 (2018).

[38] B. Roy, S. A. A. Ghorashi, M. S. Foster, and A. H.
Nevidomskyy, Topological superconductivity of spin-3/2 car-
riers in a three-dimensional doped Luttinger semimetal, Phys.
Rev. B 99, 054505 (2019).

[39] D. F. Agterberg, P. M. R. Brydon, and C. Timm, Bogoliubov
Fermi Surfaces in Superconductors with Broken Time-Reversal
Symmetry, Phys. Rev. Lett. 118, 127001 (2017).

033255-12


https://doi.org/10.1103/PhysRevLett.90.117006
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.75.134510
https://doi.org/10.1038/nphys831
https://doi.org/10.1103/PhysRevB.90.184517
https://doi.org/10.1103/PhysRevB.102.094513
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1002/andp.201900298
https://doi.org/10.1103/PhysRevB.104.054507
https://doi.org/10.1103/PhysRevB.86.144506
https://doi.org/10.1103/PhysRevB.92.100507
https://doi.org/10.1103/PhysRevB.96.155426
https://doi.org/10.1103/PhysRevB.100.104511
https://doi.org/10.1103/PhysRevB.101.180512
https://doi.org/10.1103/PhysRevB.101.064514
https://doi.org/10.1038/s41535-020-0244-2
https://doi.org/10.1103/PhysRevLett.70.2960
https://doi.org/10.1103/PhysRevB.49.8955
https://doi.org/10.1103/PhysRevB.97.064505
https://doi.org/10.1103/PhysRevB.94.094518
https://doi.org/10.1103/PhysRevB.103.104505
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1038/nature04499
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1126/science.1189246
https://doi.org/10.1103/PhysRevLett.125.026802
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1126/sciadv.aao4513
https://doi.org/10.1103/PhysRevB.86.064515
https://doi.org/10.1103/PhysRevX.8.011029
https://doi.org/10.1103/PhysRevB.98.104514
https://doi.org/10.1103/PhysRevB.99.054505
https://doi.org/10.1103/PhysRevLett.118.127001

SUPERCONDUCTIVITY IN SPIN-3/2 SYSTEMS: ...

PHYSICAL REVIEW RESEARCH 3, 033255 (2021)

[40] P. M. R. Brydon, D. F. Agterberg, H. Menke, and C. Timm,
Bogoliubov Fermi surfaces: General theory, magnetic order,
and topology, Phys. Rev. B 98, 224509 (2018).

[41] H. Menke, C. Timm, and P. M. R. Brydon, Bogoliubov Fermi
surfaces stabilized by spin-orbit coupling, Phys. Rev. B 100,
224505 (2019).

[42] J. M. Link, I. Boettcher, and 1. F. Herbut, d-wave supercon-
ductivity and Bogoliubov-Fermi surfaces in Rarita-Schwinger-
Weyl semimetals, Phys. Rev. B 101, 184503 (2020).

[43] L. Fu, Odd-parity topological superconductor with nematic or-
der: Application to Cu,Bi,Ses;, Phys. Rev. B 90, 100509(R)
(2014).

[44] Y. Gao, W.-P. Su, and J.-X. Zhu, Interorbital pairing and its
physical consequences for iron pnictide superconductors, Phys.
Rev. B 81, 104504 (2010).

[45] C. Setty, S. Bhattacharyya, Y. Cao, A. Kreisel, and P. J.
Hirschfeld, Topological ultranodal pair states in iron-based su-
perconductors, Nat. Commun. 11, 523 (2020).

[46] F. F. Tafti, T. Fujii, A. Juneau-Fecteau, S. René de Cotret,
N. Doiron-Leyraud, A. Asamitsu, and L. Taillefer, Supercon-
ductivity in the noncentrosymmetric half-Heusler compound
LuPtBi: A candidate for topological superconductivity, Phys.
Rev. B 87, 184504 (2013).

[47] Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers,
X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt et al.,
Topological RPdBi half-Heusler semimetals: A new family of
noncentrosymmetric magnetic superconductors, Sci. Adv. 1,
e1500242 (2015).

[48] H. Xiao, T. Hu, W. Liu, Y. L. Zhu, P. G. Li, G. Mu, J. Su,
K. Li, and Z. Q. Mao, Superconductivity in the half-Heusler
compound TbPdBi, Phys. Rev. B 97, 224511 (2018).

[49] T. Kawakami, T. Okamura, S. Kobayashi, and M. Sato,
Topological Crystalline Materials of j = 3/2 Electrons: An-
tiperovskites, Dirac Points, and High Winding Topological
Superconductivity, Phys. Rev. X 8, 041026 (2018).

[50] J. M. Link and I. F. Herbut, Bogoliubov-Fermi Surfaces in
Noncentrosymmetric Multicomponent Superconductors, Phys.
Rev. Lett. 125, 237004 (2020).

[51] I. F. Herbut and J. M. Link, Bogoliubov-Fermi surface with
inversion symmetry and electron-electron interactions: Rela-
tivistic analogies and lattice theory, Phys. Rev. B 103, 144517
(2021).

[52] J. Linder, A. Sudbg, T. Yokoyama, R. Grein, and M. Eschrig,
Signature of odd-frequency pairing correlations induced by a
magnetic interface, Phys. Rev. B 81, 214504 (2010).

[53] G. D. Mahan, Many-Particle Physics (Springer Science & Busi-
ness Media, New York, 2013).

[54] D. J. Griffiths, Introduction to Quantum Mechanics (Prentice
Hall, Englewood Cliffs, NJ, 2010).

[55] L. Savary, J. Ruhman, J. W. F. Venderbos, L. Fu, and P. A.
Lee, Superconductivity in three-dimensional spin-orbit coupled
semimetals, Phys. Rev. B 96, 214514 (2017).

[56] W. Yang, Y. Li, and C. Wu, Topological Septet Pairing with
Spin—% Fermions: High-Partial-Wave Channel Counterpart of
the *He -B phase, Phys. Rev. Lett. 117, 075301 (2016).

[57] J. M. Luttinger and W. Kohn, Motion of Electrons and Holes in
Perturbed Periodic Fields, Phys. Rev. 97, 869 (1955).

[58] L. Boettcher and I. F. Herbut, Superconducting quantum criti-
cality in three-dimensional Luttinger semimetals, Phys. Rev. B
93, 205138 (2016).

[59] 1. Boettcher and I. F. Herbut, Unconventional Superconductivity
in Luttinger Semimetals: Theory of Complex Tensor Order and
the Emergence of the Uniaxial Nematic State, Phys. Rev. Lett.
120, 057002 (2018).

[60] A. Ramires and M. Sigrist, Identifying detrimental effects for
multiorbital superconductivity: Application to Sr,RuQy, Phys.
Rev. B 94, 104501 (2016).

[61] A. Ramires, D. F. Agterberg, and M. Sigrist, Tailoring 7. by
symmetry principles: The concept of superconducting fitness,
Phys. Rev. B 98, 024501 (2018).

[62] D. Kim, S. Kobayashi, and Y. Asano, Josephson effect of super-
conductors with j = 3/2 electrons, Phys. Rev. B 103, 184516
(2021).

[63] T. Miki, S.-T. Tamura, S. Iimura, and S. Hoshino, Odd-
frequency pairing inherent in Bogoliubov Fermi liquid,
arXiv:2103.02251.

033255-13


https://doi.org/10.1103/PhysRevB.98.224509
https://doi.org/10.1103/PhysRevB.100.224505
https://doi.org/10.1103/PhysRevB.101.184503
https://doi.org/10.1103/PhysRevB.90.100509
https://doi.org/10.1103/PhysRevB.81.104504
https://doi.org/10.1038/s41467-020-14357-2
https://doi.org/10.1103/PhysRevB.87.184504
https://doi.org/10.1126/sciadv.1500242
https://doi.org/10.1103/PhysRevB.97.224511
https://doi.org/10.1103/PhysRevX.8.041026
https://doi.org/10.1103/PhysRevLett.125.237004
https://doi.org/10.1103/PhysRevB.103.144517
https://doi.org/10.1103/PhysRevB.81.214504
https://doi.org/10.1103/PhysRevB.96.214514
https://doi.org/10.1103/PhysRevLett.117.075301
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1103/PhysRevB.93.205138
https://doi.org/10.1103/PhysRevLett.120.057002
https://doi.org/10.1103/PhysRevB.94.104501
https://doi.org/10.1103/PhysRevB.98.024501
https://doi.org/10.1103/PhysRevB.103.184516
http://arxiv.org/abs/arXiv:2103.02251

