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Chirped-pulsed Kerr solitons in the Lugiato-Lefever equation with spectral filtering
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Optical Kerr resonators support a variety of stable nonlinear phenomena in a simple and compact design.
The generation of ultrashort pulses and frequency combs has been shown to benefit several applications,
including spectroscopy and telecommunications. The most common anomalous dispersion Kerr resonators can
be accurately described by a well-studied mean-field Lugiato-Lefever equation (LLE). Recently observed highly
chirped pulses in normal dispersion resonators with a spectral filter, however, cannot. Here, we examine the
LLE in the normal dispersion regime modified with a Gaussian spectral filter (LLE-F). In addition to solutions
associated with the LLE, we find stable highly chirped pulses. Solutions are strongly dependent on the filter
bandwidth. Because of the large changes per round trip, the validity of the LLE-F fails over a large range of
experimentally relevant parameters. While the mean-field approach leads to accurate predictions with respect to
the nonlinearity coefficient and the dispersion, the dependence of drive power on loss deviates significantly from
an experimentally accurate model, which leads to opportunities for Kerr resonators including frequency comb
generation from low-Q-factor cavities.
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I. INTRODUCTION

The generation of optical frequency combs in nonlinear
Kerr resonators is attractive for a wide range of applications
including spectroscopy, frequency synthesis, imaging, dis-
tance measurements, and telecommunications [1–8]. Solitons
play a key role in the generation of coherent frequency combs
in Kerr resonators. To date, such Kerr cavity solitons have
been demonstrated in fiber [9], chip-scale [10], and bulk res-
onator [11] platforms. In contrast to traditional mode-locked
lasers, Kerr resonators can support frequency combs over a
wider range of frequencies with megahertz to terahertz line
spacing [12,13]. Pulsed Kerr resonators are largely based on
anomalous dispersion soliton formation, which is related to
the anomalous dispersion solitons underlying common mode-
locked lasers. Sources based on anomalous dispersion solitons
can be limited in key pulse parameters, including the duration
and energy [9,10,14,15]. To address these limits, mode-locked
laser researchers developed cavities with alternative disper-
sion profiles supporting different types of solitons, and recent
efforts in fiber cavities and microresonators suggest that gen-
erating related soliton types can be valuable in Kerr resonators
in a similar way. For example, stretched-pulse solitons in
dispersion-managed cavities exhibit significantly improved
pulse durations [16,17].
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The expansion of frequency comb generation to normal
dispersion resonators has enabled a wider variety of pulse
shaping mechanisms and a wider range of cavity configura-
tions. Researchers have demonstrated modulation instability,
dark solitons, and switching waves [18–22] as well as bright-
pulse solutions enabled by interactions between different
transverse mode families [23,24] and higher-order dispersive
and Raman interactions [25–30]. In mode-locked lasers, it is
well known that a strong spectral filter is required to generate
bright chirped pulses which can support ultrashort pulses with
large energies [31–33]. In Kerr resonators, this concept was
initially explored in normal dispersion microresonators with
an intrinsically wavelength-dependent quality factor [34].
More recently, in normal dispersion fiber resonators with
strong spectral filtering, highly chirped pulses were observed,
clearly demonstrating the importance of spectral filtering as
well as the potential for energy enhancement [35].

Traditional anomalous dispersion Kerr resonators are ac-
curately modeled using a nonlinear Schrödinger-type equation
for the waveguide, in addition to periodic boundary conditions
accounting for the loss and drive [36–38]. This Ikeda-type
model can be approximated by an averaged-cavity Lugiato-
Lefever equation (LLE), in the limit of negligible changes in
the field over one roundtrip in the cavity [39–41]. Solutions
of the LLE agree well with experiments [42–44] and have
been used for the study of stability, threshold powers, and pa-
rameter scaling laws [43,45–47]. In addition, spectral filtering
added to the LLE with anomalous dispersion has been found
to play a role in soliton oscillations and interactions [48,49].
Averaged-cavity models have also been applied toward nor-
mal dispersion cavities, accounting for third order dispersion
(TOD) and Raman as appropriate [25–30]. While modulation
instability has been observed with notch filtering in Ikeda-
[50] and LLE-based [51] models and bright pulses with time
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oscillating structure have been observed with spectral filter-
ing in an LLE-based model [34], highly chirped pulses have
not been observed. Experimentally observed highly chirped
pulses are accurately predicted by an Ikeda-type model with
Gaussian spectral filtering (Ikeda-F) applied with the bound-
ary condition [35]. However, because of the large changes per
round trip of the pulses, it is not clear that this system can
be approximated by an averaged-cavity model and that the re-
sulting scaling laws or conventional wisdom would still apply.
In a quadradic nonlinear two-dimensional planar cavity, for
example, the experimentally accurate model and the approxi-
mate model were found to deviate at larger powers [52]. More
generally, in contrast to the general Ginzburg-Landau master
equation models for mode-locked lasers with a filter in normal
dispersion [53], the general LLE model for Kerr resonators in
normal dispersion with a spectral filter (the LLE-F) has rarely
been investigated.

Here, we numerically examine the LLE-F in the normal
dispersion regime. In addition to known solutions found with-
out a filter, we observe stable highly chirped pulses across
a wide range of parameters with the appropriate choice of
spectral filter. The drive power and other system parameters
in which stable chirped pulses are found are strongly depen-
dent on the filter bandwidth. We find that the averaged-cavity
approach fails quantitatively for chirped pulses owing to the
large changes per round trip inherent in the pulse dynamics.
Scaling laws derived from the LLE-F are also evaluated in
comparison with the experimentally accurate Ikeda-F model.
We show that useful scaling dependencies on nonlinearity and
dispersion remain accurate despite large changes per round
trip. In contrast, we find that the dependence of drive power on
loss is much weaker than the cubic dependence predicted by
the averaged cavity model. This deviation leads to exciting im-
plications for Kerr resonator designs based on chirped-pulse
operation including the potential for useful comb generation
in low-Q-factor resonators.

II. MODEL AND METHOD

Chirped-pulse solitons are found in driven normal dis-
persion Kerr resonators with a Gaussian spectral filter. This
experiment can be accurately modeled with an Ikeda-type
system of equations including an equation describing the
propagation of the slowly varying envelope of the field inside
the resonator waveguide and a periodic boundary condition
accounting for the discrete application of the drive, losses,
and the spectral filter [35]. The relative detuning of the laser
from the peak of the cavity resonance leads to a relative phase
between the drive and the propagating electric field. This
detuning can be modeled equivalently by either the waveg-
uide propagation equation or the boundary condition (see
Appendix A). Pulse propagation in the resonator waveguide,
including the relative phase detuning, is modeled by a detuned
nonlinear Schrödinger equation:

∂A

∂z
= −i

β2

2

∂2A

∂t2
+ iγ |A|2A − iδA, (1)

where A is the slowly varying electric field envelope, z is the
propagation coordinate, t is time in the moving frame, β2 is

the average group-velocity dispersion, γ is the Kerr nonlinear
coefficient, and δ is the cavity detuning per unit length.

The periodic boundary condition incorporating the drive,
spectral filter, and loss is described as
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where An(ω) represents the electric field after propagation
through the waveguide of the nth roundtrip, An+1(ω) rep-
resents the electric field before propagation through the
waveguide of the (n + 1)th roundtrip, αtot is the total loss in
the cavity (note that fiber loss is negligible in comparison with
component losses in fiber Kerr resonators), Dtot is the total
input coupled drive power, ω0 is the drive frequency, and ftot

represents the spectral filter bandwidth applied each roundtrip.
The Ikeda-type system of equations can be approximated

by a single continuous partial differential equation if the elec-
tric field envelope exhibits negligible evolution in the cavity
[34,39–41].The resultant equation derived following the ap-
proach used to develop the LLE model for Kerr resonators,
with the addition of a spectral filter, is expressed as

∂A

∂z
= −α

2
A +

(
−i

β2

2
+ 1

f 2

)
∂2A

∂t2
+ iγ |A|2A − iδA +

√
D,

(3)
where α is the loss per unit length, f represents the filter band-
width per unit length, and D is the input coupled drive power
per unit length. The LLE-F is the simplest continuous field
model incorporating all the physical effects of chirped-pulse
supporting Kerr resonators.

While the Kerr-resonator-specific Ikeda-type model is
known to accurately model experiments [35], the approximate
single-field LLE-F model is simple and potentially relevant to
other physical systems modeled by the nonlinear Schrödinger
equation. In contrast to the general Ginzburg-Landau master
equation models for mode-locked lasers with a filter [53], this
LLE-F master equation for Kerr resonators with a spectral
filter remains relatively unexplored. In what follows, the LLE-
F is examined and compared with the Ikeda-F model, with
emphasis on practically important chirped-pulse solitons.

III. RESULTS

A. Chirped-pulse solitons in the LLE-F

In this section, we numerically examine stable solutions
of the LLE and LLE-F. The dispersion, nonlinearity, spectral
filter, and loss per unit length are chosen to be consistent
with relevant experimental conditions [35] (see Appendix A).
After fixing these parameters, the simulations are examined
as a function of the remaining, experimentally tunable pa-
rameters: the drive power and frequency detuning (Fig. 1).
Stable solutions are found with and without a filter. The trivial
continuous wave (CW) solutions are indicated with white, and
stable nontrivial solutions are indicated by color in Fig. 1.

The nontrivial solutions found in the LLE are classified as
dark solitons (gray region in Fig. 1), consistent with previous
studies [45,54,55]. Around the threshold power, the spectrum
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FIG. 1. Location of stable nontrivial solutions in drive-detuning parameter space of normal dispersion cavity with (LLE-F) and without
(LLE) spectral filtering. The gray region represents dark solitons of the LLE, the orange region represents dark solitons of the LLE-F with a
14.5 nm per unit length spectral filter, and the red region represents chirped-pulse solitons in the LLE-F with the same filter. Pulse and spectral
profiles of four representative stable solutions are inset.

of the dark soliton is smooth (see the inset temporal and
spectral profiles). As the drive frequency detuning increases,
the dark soliton spectrum develops structure. In previous re-
ports, solutions featuring such a structure have been referred
to as complex dark solitons [45].

With the addition of a spectral filter, in the LLE-F, stable
dark solitons are also observed (orange in Fig. 1). For the
same detuning parameter as in the LLE, the dark solitons in
the LLE-F are stable for a higher drive power. The relative
deviation of the drive power increases with larger values of
detuning. In addition, the dark solitons observed in the LLE-F
are less complex than those in the LLE, with smoother spectra.
In the LLE-F, in addition to dark solitons, bright solitons are
also found to be stable on the low drive boundary of the stable
dark soliton solutions (red in Fig. 1). In contrast, for the LLE,
only the trivial CW solutions are observed at drive powers
lower than the dark soliton region. The bright pulses have a
unique threshold drive power that is larger than the threshold
power for dark solitons.

The stable bright solitons feature a quadratic spectral phase
that can be removed through the application of anomalous
group-velocity dispersion. In other words, the bright pulses
are chirped and can be dechirped by removing the excess
linear phase to have a shorter pulse duration and a higher peak
power (e.g., see Fig. 1 red inset). Like the dark solitons in the
LLE-F, chirped pulses exhibit a smooth temporal and spectral
profile, without the prominent time oscillating structure ob-
served with bright-pulse solutions of the LLE with alternative
modifications (e.g., with higher-order dispersion or Raman
scattering) [25–30]. In analogy with those in mode-locked
lasers [53], chirped-pulse solitons in Kerr resonators can be
understood as two interlocking front solutions (also known as
domain walls or switching waves), stabilized by spectral filter-
ing (see Appendix B for further analysis). As detailed further
in Sec. III C, the key performance parameters for chirped-
pulse solitons, such as the spectral bandwidth and the drive

threshold power are strongly dependent on the bandwidth of
the spectral filter.

B. LLE-F vs Ikeda-F

Chirped-pulse Kerr resonator solitons were numerically
observed in the experimentally accurate Ikeda-type model
for normal dispersion Kerr resonators with a filter (Ikeda-F)
[35]. Here, we compare chirped-pulse soliton solutions of
the Ikeda-F with those of the LLE-F. For the LLE-F, all the
physical effects are evenly distributed in the propagation di-
rection, whereas for the Ikeda-F, the nonlinear and dispersive
fiber is separated from the drive, loss, and spectral filter, as
illustrated in Fig. 2. The chirped-pulse solitons of the LLE-F
and Ikeda-F are examined for the same effective dispersion,
nonlinearity, filter bandwidth, and drive power per unit length.
The detuning for each model is chosen such that chirped
pulses are stable in each model, resulting in a larger detuning
in the Ikeda-F model in comparison with that in the LLE-F.

While in the continuous LLE-F model, the root-mean-
square (RMS) bandwidth of the spectrum remains constant
[Fig. 2(a)], the chirped-pulse soliton exhibits rich intracavity
dynamics in the Ikeda-F system [Fig. 2(b)]. In the Ikeda-F
system, the bandwidth increases monotonically in the nonlin-
ear waveguide and is decreased to its original bandwidth each
round trip by the discrete spectral filter. When the spectrum is
broadest, it features side peak structure which is absent in the
smooth solution of the LLE-F [Figs. 2(c) and 2(d)]. The pulse
duration of the chirped-pulse soliton in the Ikeda-F (LLE-F)
system can be reduced by a factor of 3.8 (2.4) by dechirping
[Figs. 2(f) and 2(e)]. Temporal oscillations are apparent on the
wings of the chirped pulses in the Ikeda-F system but are not
present in the LLE-F. The temporal oscillations are removed
after the dechirping process, indicating that they are not a
consequence of the spectrum. The soliton pulse energy and
dechirped-pulse duration are comparable with a pulse energy
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FIG. 2. Comparison of chirped-pulse solutions in the LLE-F and
Ikeda-F models. (a) Intracavity evolution of the spectral bandwidth,
(c) the output spectrum, and (e) the output chirped (solid) and
dechirped (dashed) pulse for chirped solitons of the LLE-F with
drive = 0.25W/m, detuning = 0.07 rad/m, and with a 14.5- nm per
unit length Gaussian spectral filter and (b) intracavity evolution of
the spectral bandwidth, (d) the output spectrum, and (f) the output
chirped (solid) and dechirped (dashed) pulse for chirped solitons of
the Ikeda-F with drive = 0.25 W/m, detuning = 0.1 rad/m, and with
a 14.5- nm per unit length Gaussian spectral filter .

(pulse duration) of 221 pJ (0.9 ps) for the Ikeda-F model and
126 pJ (1.4 ps) for the LLE-F model.

The chirped-pulse solutions of the Ikeda-F model have
inherent practical benefits stemming from the intracavity evo-
lution of the pulse parameters. If the pulse parameters evolve
in the cavity, the output coupling location can be chosen
such that the pulse parameters are desirable. For example,
in this case, the soliton has its broadest bandwidth after the
fiber waveguide section [Fig. 2(d)], which is broader than the
averaged-cavity equivalent spectrum [Fig. 2(c)]. This explains
why the dechirped-pulse duration is short for the Ikeda-F
model case. The chirped solitons of the Ikeda-F model have
been shown to support high energy [35], which also suggests
that the breathing evolution may be beneficial to energy stor-
age.

The Ikeda-F model, given parameters which accurately
model experimental results (as in Ref. [35]), supports chirped
solitons featuring significant intracavity evolution (as in

Fig. 2). However, the LLE-F is valid in the limit of negligible
intracavity evolution. To determine the degree and range of
validity of the LLE-F model, we examine the regions of pa-
rameter space in which chirped-pulse solutions exist in both
the LLE-F and the Ikeda-F models (Fig. 3). As in Fig. 1,
the dispersion, nonlinearity, and loss are chosen based on
experimental parameters and fixed. The locations of stable
solutions are plotted for each model in Fig. 3 as a function
of drive power and frequency detuning, for two different filter
bandwidths. To focus and simplify our analysis, only chirped-
pulse solutions are shown in color in Fig. 3, with all other
solutions indicated with white. The system parameters where
stable chirped pulses exist are close for the LLE-F and Ikeda-F
models for lower drive and detuning values, near the threshold
drive power. In contrast, for larger drive and detuning values,
the system parameters for stable chirped pulses deviates, and
the LLE-F model predicts chirped pulses at higher drive pow-
ers for the same detuning as the Ikeda-F model. These results
suggest that the LLE-F approximation works well for small
drive and detuning values (near threshold) but begins to break
down at higher powers.

To gain some insight into the variation of validity of the
LLE-F vs detuning, we examine the pulse evolution as a func-
tion of detuning (see Appendix C). For larger detuning values,
the total change of the electric field is larger, demonstrating a
clear correlation between the strength of the pulse evolution
and the validity of the master equation (averaged-cavity) LLE-
F model (Fig. 4). Because the LLE-F becomes strictly invalid
for a wide range of parameter space, it is important to examine
in more detail what implications this has for basic scaling
law predictions and conventional wisdom for chirped-pulse
cavity solitons, which can be found in Sec. III D. Notice that,
including the range of validity of the LLE-F, all the pulse and
system parameters have a clear dependence on the spectral
filter bandwidth.

C. Dependence on the filter bandwidth

The spectral filter is important for the generation of
chirped-pulse solitons. For example, as illustrated by Fig. 1,
chirped pulses are not observed without spectral filtering.
Moreover, the specific bandwidth of the filter determines key
pulse and system parameters. To evaluate the dependence on
the spectral filter bandwidth in the LLE-F and Ikeda-F models,
numerical simulations are performed with the identical system
parameters for two distinct filter bandwidths (Fig. 3). For
the same drive power, the spectral bandwidths of chirped-
pulse solitons in both models are broader with a broader
spectral filter (see Fig. 3 insets for example). In addition,
the corresponding dechirped pulses have shorter pulse dura-
tions. Finally, the corresponding pulse energy is higher with a
broader filter in both models. With a broader filter bandwidth,
the drive threshold power is significantly higher for generating
chirped-pulse solitons in both models. Greater than 25 times
more drive power is required for generating stable chirped
pulses in the LLE-F for a filter bandwidth that is 1.4 times
broader. For the Ikeda-F model, ∼10 times higher threshold
power is required. If the filter bandwidth is too broad, chirped
pulses are not stable in the Ikeda-F model [35]. In addition,
for broader filter bandwidths (including the 20.3 nm result
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FIG. 3. Location of stable chirped pulses in drive-detuning parameter space for the LLE-F and Ikeda-F models. Stable chirped pulses are
found in the LLE-F with 14.5 nm (20.3 nm) per unit length filter in the red (magenta) regions. Stable chirped pulses are found in the Ikeda-F
with 14.5 nm (20.3 nm) per unit length filter in the blue (green) regions. Pulse and spectral profiles of four representative chirped pulses at a
fixed drive power are inset.

shown), the minimum change of the field per roundtrip, found
at threshold, is large (e.g., ∼1.6 for 20.3 nm). Consequently,
for a range of filter bandwidths, the LLE-F is strictly invalid
for any drive and detuning values for which the stable chirped
pulses exist. Therefore, it is important to investigate the theo-
retical implications of this deviation.

D. System parameter scaling dependence

A continuous model yields simple analytical relationships
between the required system and pulse parameters which are
valuable for the design and understanding of chirped-pulse
solitons. Here, we examine the validity of these simple scaling
laws in the limit in which the LLE-F becomes strictly invalid,
for parameters where chirped-pulse solitons are stable with

FIG. 4. The deviation of the required drive power of stable
chirped pulses in the LLE-F and Ikeda-F models vs the total change
of the field during one roundtrip in the cavity. Change per round
trip is calculated as the ratio between the highest and the lowest
intracavity root-mean-square (RMS) bandwidth.

large intracavity evolution. Following the approach outlined
in Ref. [35], scaling laws for the system parameters can be
developed from the LLE-F model and are

Dn0 = Dtot
γ L

α3
tot

, fn0 = ftot

√
L|β2|, and δn0 = δtot

αtot
,

(4)
where δtot, Dn0, fn0, and δn0 are the total detuning, normalized
drive, normalized spectral filter bandwidth, and normalized
total detuning, respectively. If the three normalized parame-
ters are known for any stable chirped-pulse soliton solution
(e.g., using Fig. 3), then another stable chirped-pulse soliton
can be obtained if the parameters (e.g., drive, nonlinearity,
loss) are scaled according to Eq. (4). The pulse parameters
also scale with the system parameters as

Pn0 = P
γ L

αtot
and �Tn0 = �T

√
αtot

L|β2|
, (5)

where �T , P, Pn0, and �Tn0 are the pulse duration, peak
power, normalized peak power, and normalized pulse dura-
tion, respectively.

To test the validity of the simple LLE-F-derived scaling
laws in the limit of large intracavity evolution, we numerically
examine the relationships between the system and pulse pa-
rameters in the Ikeda-F model in comparison with the scaling
laws. First, we examine the dependence of the system and
pulse parameters on the nonlinear coefficient. From Eq. (4),
among the system parameters, only the drive scaling law is
predicted to depend on the nonlinear coefficient. To test this
dependence, the other parameters are fixed, and the drive
power is swept until stable chirped-pulse solitons are found.
The drive power obtained, the corresponding peak power,
and pulse duration are plotted in Fig. 5 along with the scal-
ing laws [Eqs. (4) and (5)] obtained from the LLE-F. The
drive [Fig. 5(a)] and peak power [Fig. 5(c)] scale inversely
with the nonlinearity, and the pulse duration remains con-
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FIG. 5. Comparison of the chirped-pulse system and pulse pa-
rameters from the Ikeda-F model (points) with the scaling laws
derived from the LLE-F (red lines). From Eq. (4), (a) the drive power
varies with nonlinearity, and (b) the full- width at half maximum
filter bandwidth varies with dispersion. From Eq. (5), (c) the peak
power decreases, and (e) the pulse duration is constant with increas-
ing nonlinearity, and (d) the peak power is constant, and (f) the
pulse duration increases with increasing dispersion. For variations
in nonlinearity and dispersion, the scaling laws agree well with the
Ikeda-F model.

stant [Fig. 5(e)], as predicted by the LLE-F scaling laws.
Remarkably, this global dependence on nonlinearity predicted
by the LLE-F is accurate for the Ikeda-F system despite large
changes of the field in the cavity of ∼2.

The dependence of the system and pulse parameters on the
dispersion is examined in Fig. 5. From Eq. (4), among the
system parameters, only the filter scaling law is predicted to
depend on the dispersion. To test this dependence, the other
parameters are fixed, and the filter bandwidth is swept until
stable chirped-pulse solitons are found. The filter bandwidth
obtained, the corresponding peak power, and pulse duration
are plotted in Fig. 5 along with the scaling laws [Eq. (4) and
(5)] obtained from the LLE-F. The spectral filter bandwidth
has an inverse square root dependence on the total dispersion
of the cavity [Fig. 5(b)], the pulse duration has a square root
dependence on the total dispersion of the cavity [Fig. 5(f)],
and the peak power of the pulse remains constant with dis-
persion [Fig. 5(d)]. Again, remarkably, the dispersive trends
also agree with the theoretical predictions from the LLE-F
model despite large changes of the field in the cavity of ∼2.
This is beneficial practically because these relationships can
be used to determine the appropriate choice of spectral filter
bandwidth and drive power for generating chirped pulses.

Finally, we examine the system and pulse parameter de-
pendence on the resonator loss. From Eq. (4), the drive and

FIG. 6. Location of stable chirped pulses in drive-detuning pa-
rameter space for the (a) LLE-F and (b) Ikeda-F models for different
losses per unit length α. The change in the required drive is much
lower (1.3) for the Ikeda-F model than that predicted by the LLE-F
model [8 from Eq. (4)].

detuning scaling laws both have a dependence on loss. There-
fore, to examine how the system varies with loss, we fix the
nonlinearity, dispersion, and spectral filter and examine the
location of stable chirped-pulse solitons in parameter space
as a function of both drive and detuning for two different
loss values for both the Ikeda-F and LLE-F models (Fig. 6).
In the LLE-F system [Fig. 6(a)], when the loss is doubled,
the drive power is eight times larger, and the detuning is
two times larger, which agrees with the corresponding scaling
laws [Eq. (4)]. However, in stark contrast, for the experi-
mentally accurate Ikeda-F model, when the loss doubles, the
drive increases by a small fraction, and the detuning remains
nearly unchanged [Fig. 6(b)]. This large deviation from the
scaling laws derived from the LLE-F stems from the large
evolution of the field in the cavity in the Ikeda-F system.
From a practical perspective, this deviation implies that the
drive power does not have a strong dependence on loss for
chirped-pulse solitons. This leads to the intriguing implication
that chirped pulses can be generated in very low-Q cavities
without significant drive power, in contrast to conventional
wisdom regarding microresonator systems.

IV. DISCUSSION

Here, we report on a chirped-pulse solution to a general
master-equation model for Kerr resonators, the LLE-F. This is
a strongly dissipative system in which stable pulse formation
relies on a strong double balance of amplitude and phase
modulations. The analogous undriven Ginzburg-Landau equa-
tion with gain is a similarly highly dissipative system which
also supports chirped pulses. Unlike the present LLE-F in
the normal dispersion region, the Ginzburg-Landau system
in the normal dispersion region is very well studied. The
Ginzburg-Landau system [e.g., the cubic-quintic Ginzburg-
Landau equation (CQGLE)] has been shown to support a wide
variety of nonlinear phenomena in addition to stable chirped
pulses, including dissipative soliton resonances [56], soliton
explosions [57], pulsations [58], rains [59], soliton molecules
[60], and optical bullets [61]. The demonstration of chirped
pulses in the simple and passive LLE-F suggests several re-
search directions of interest for Kerr resonators.

The numerical existence of stable chirped solitons to the
LLE-F motivates the search for a corresponding closed-form
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solution. A closed-form solution allows for more efficient
theoretical predictions for the behavior and existence of stable
solutions. For example, for the analogous CQGLE, a particu-
lar closed-form solution for chirped pulses [53] has enabled
simple design rules and predictions [32] and has been used
as an ideal trial function for variational approach calculations
[62]. The variational approach has been applied to the LLE-F
in Ref. [34] but with a chirped Gaussian profile with strict as-
sumptions that are violated for most realistic conditions. The
results from that model have not yet been validated with full
numerical simulations. Ultimately, the variational approach
with the appropriate ansatz has the promise of providing an
accurate and efficient approach for calculating pulsed solu-
tions for exploring and optimizing the performance of normal
dispersion Kerr resonators.

Using the variational approach for the CQGLE, researchers
discovered a resonance phenomenon in which, for a particular
value of parameters, the soliton energy increases indefinitely
[56,63]. This dissipative soliton resonance is predicted to lead
to remarkable performance advances for mode-locked lasers.
It will be interesting and important to investigate the potential
for a related dissipative soliton resonance in Kerr resonator
systems.

The strongly dissipative CQGLE has also been shown to
support more exotic dynamic behavior in specific parame-
ter regimes [64]. For example, so-called exploding solitons
exhibit large nonlinear instabilities in which the field can
transition from a smooth localized pulse to a wildly oscillating
and noisy field profile, before returning to the original smooth
localized pulse. Remarkably, this exotic behavior has also
been observed experimentally in mode-locked lasers [57,65].
The discovery of chirped pulses in the LLE-F motivates the
investigation of related complex nonlinear phenomena such
as exploding, creeping, and pulsating solitons in normal dis-
persion Kerr resonators with a filter.

In this paper, we report on the deviation of the Ikeda-type
model, where the cavity is driven a one point in the resonator,
from the mean-field LLE-F model, where the cavity is driven
continuously around the resonator (Sec. III D). In the LLE-F
system, the drive has a strong dependence on loss, suggesting
that low drive powers will be achievable with high-Q cavities,
as is typical with traditional anomalous dispersion Kerr res-
onators. In the Ikeda-type model, however, the parameters are
insensitive to loss, which enables opportunities for generating
frequency combs in low-Q cavities. In addition to allowing
for lossy material designs, this loss insensitivity could enable
large output coupling for high output energy designs.

As discussed in Sec. III D, the deviation of the system from
the mean-field LLE model stems from the large intracavity
evolution of chirped pulses in the resonator. This motivates
further investigation into other pulse solutions featuring large
intracavity evolution. For example, stretched pulse solitons
are defined by periodic temporal stretching and compress-
ing in the resonator, with breathing ratios demonstrated >3
[16]. The stretched-pulse soliton may therefore deviate signif-
icantly from a mean-field model, leading to unconventional
parameter dependence.

Note that, while this paper is restricted to the lowest
order of dispersion and self-phase modulation in a single-
mode waveguide, higher-order nonlinearity and dispersion,

as well as intermodal interactions, are known to stabilize
pulse forms in normal dispersion Kerr resonators [23–30].
For example, in one related study, Huang et al. [34] studied
the effect of low-modulation depth intrinsic spectral filtering
on normal dispersion microresonators. This system features
strongly frequency-dependent dissipation and dispersion in-
cluding mode crossings and effective higher-order dispersion.
Indeed, the authors found evidence of weakly chirped bright-
pulse formation experimentally and theoretically in a model
including these effects. It would be interesting to determine
whether highly chirped pulses could be stable in a microres-
onator system with or without higher-order effects as well.
Regardless, mode crossings and higher-order effects may also
be important for the dynamics of high energy and ultrashort
chirped pulses in normal dispersion Kerr resonators with a
filter and merits further investigation.

V. CONCLUSIONS

In this paper, we examine stable solutions to the LLE-F. We
find stable highly chirped solitons over a range of parameters.
The range of parameters for which stable chirped pulses exist
is identified, and simple scaling laws are shown to be useful
for designing practical resonators. The LLE-F model is found
to deviate from the experimentally accurate Ikeda-F model for
chirped pulses because of the large intracavity dynamics of
these solutions. This deviation leads to a weak dependence on
the system loss, contrary to conventional design rules for Kerr
resonators. As described in detail in the Discussion section,
the results of this study lay the foundations for investigating
a variety of nonlinear dynamical phenomena, give design
guidelines based on simple scaling laws for the generation
of chirped pulses in Kerr resonators, and enable additional
flexibility for ultrashort pulse and frequency comb generation
in low-Q cavities.
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APPENDIX A: NUMERICAL MODEL

The LLE-F accounts for dispersion, Kerr nonlinearity,
the drive, drive frequency detuning, loss, and spectral fil-
tering. The LLE-F is solved numerically with a standard
split-step Fourier technique with the dispersive effects calcu-
lated in the Fourier domain and the nonlinear effects solved
with a fourth-order Runge-Kutta method. The cavity param-
eters are chosen to correspond to experimentally relevant
parameters [35]. For example, β2 = 9688 fs2/m, n2 = 3.2 ×
10−20 m2/W, mode − field diameter = 8.1 μm, and the total
loss is 20.25 dB/km [35]. The spectral filter bandwidth is
fixed, and the simulations are run for a wide range of drive
power and detuning values. The waveform is numerically
propagated for 52.5 km, which is sufficient for convergence
without excessive computation time. Solutions at the end of
propagation with a difference between the peak and min-
imum intensity of <0.1 W are indicated as CW (trivial)
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FIG. 7. Location of stable nontrivial solitons in drive-detuning parameter space with (LLE-F) and without (LLE) spectral filtering. Black
points represent dark solitons of the LLE, orange points represent dark solitons of the LLE-F with a 14.5 nm per unit length spectral filter, and
red dots represent chirped-pulse solitons in the LLE-F with the same filter. The shaded regions indicate the boundaries of each stable solution
in parameter space. The dashed line and indicated points correspond to the solutions examined in Fig. 8.

by white regions in Fig. 7. Solutions with larger peak to
minimum intensity differences are evaluated for convergence
(as in Ref. [35]). Nontrivial converged solutions are indicated
by points in Fig. 7. With no spectral filtering (LLE), the
stable nontrivial solutions are dark solitons, indicated with
black points in Fig. 7. With spectral filtering (LLE-F), sta-
ble nontrivial solutions include dark solitons (indicated with
orange) and chirped pulses (indicted with red). The regions
of existence of each solution are determined by fitting the nu-
merically determined upper and lower boundary of the regions
with a polynomial. The regions of existence between these
two boundaries are shaded in color for each solution in Figs. 1
and 7. The steady-state solutions are strongly sensitive to the
initial conditions. To maximize the probability of obtaining
nontrivial solutions, for each choice of system parameters,
several different initial conditions are evaluated, and only the
nontrivial solutions are retained. Gaussian and randomly vary-
ing initial conditions can result in different solutions (e.g., see
Ref. [35]), and therefore, to increase the diversity of outcomes
and maximize the number of nontrivial solutions obtained in
the given computation time, three Gaussian pulses with 60-
W peak power and pulse durations of 4, 5, and 6 ps; and three
random intensity distributions with power varying from 0 to
120 W are used to obtain enough stable solutions to determine
smooth boundaries defining the relevant regions of stability in
parameter space (Fig. 7).

The lumped-element Ikeda-F model consists of an evolu-
tion equation describing the propagation of the slowly varying
field envelope inside the resonator waveguide in addition
to periodic boundary conditions. Pulse propagation in the
waveguide is governed by a nonlinear Schrödinger equation
as

∂A

∂z
= −i

β2

2

∂2A

∂t2
+ iγ |A|2A, (A1)

where A is the slowly varying field, z is the propagation
coordinate, t is time in the moving frame, β2 is the average
group-velocity dispersion, and γ is the nonlinearity per unit
length. The interaction between the intracavity field, the drive,
component loss, and the spectral filter can be described in the
Fourier domain as

An+1(ω) = exp(−iδtot )An(ω)exp

{
−

[
(ω − ω0)2

f 2
tot

+ αtot

2

]}

+ √
Dtotδ(ω − ω0), (A2)

where αtot is the roundtrip loss, Dtot is the total input coupled
drive power, An(ω) is the spectral field at the end of the
nth roundtrip, An+1(ω) is the spectral field at the beginning
of the (n + 1)th roundtrip, ω0 is the pumping frequency, ftot

represents the bandwidth of the spectral filter applied each
roundtrip, and δtot is the total phase detuning resulting from
the frequency detuned from the cavity resonance. The detun-
ing represents a phase slip between the drive and the cavity
field and can be expressed either as a boundary condition or
in the propagation equation for the field. The phase detuning
δtot can be expressed as a detuning per unit length δ times the
cavity length δtot = δL, giving

An+1(ω) = exp(−iδL)An(ω)exp

{
−

[
(ω − ω0)2

f 2
tot

+ αtot

2

]}

+ √
Dtotδ(ω − ω0). (A3)

If A′(z) = e−iδzA(z), then

∂A′

∂z
= ∂A

∂z
e−iδz − iδA′, (A4)

which when combined with Eq. (A1) gives the detuned non-
linear Schrödinger equation:

∂A′

∂z
= −i

β2

2

∂2A′

∂t2
+ iγ |A′|2A′ − iδA′. (A5)
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FIG. 8. Evolution to the converged solution for the Lugiato-
Lefever equation with (LLE-F) and without (LLE) a spectral filter.
The subpanels (a)–(h) correspond to the parameters with the same
labels in Fig. 7. (a), (e), (d), and (h) At the highest and lowest drive
powers, both systems converge to the trivial continuous wave (CW)
solution. At the drive powers from (b) and (f), both systems converge
to a dark soliton solution, with a smoother field supported by the
LLE-F. At lower drive powers from (b) and (f), while without a filter,
only the CW solution is found, but (g) with a filter, stable chirped
pulses are stabilized.

Expressing the boundary conditions for A′(ω) yields an
expression without additional phase detuning:

A′
n+1(ω) = A′

n(ω)exp

{
−

[
(ω − ω0)2

f 2
tot

+ αtot

2

]}

+ √
Dtotδ(ω − ω0). (A6)

The system of equations for A′ can also be solved using the
split-step Fourier technique. However, in this case, the drive,
loss, and spectral filter are applied as a lumped element once
per roundtrip. This technique was used to find the regions
where stable solutions exist in Fig. 3, where the boundary
fitting technique described above is also used.

APPENDIX B: FORMATION OF CHIRPED PULSES

Here, we develop some insight into the difference between
dark solitons in the LLE and LLE-F as well as into the forma-

FIG. 9. Illustration of the deviation of the LLE-F from the Ikeda-
F model. (a) Regions in the drive-detuning parameter space where
chirped pulses are found in the LLE-F (red) and Ikeda-F (blue)
models. Change in the required drive power between the LLE-F and
Ikeda-F models as a function of (b) the ratio of the longest to the
shortest pulse duration (full width at half maximum) and (c) the ratio
of the highest to lowest peak power for five different detuning values
with the other parameters fixed. The dashed line and indicated points
in (a) correspond to the solutions examined in (b) and (c).

tion of chirped-pulse solitons unique to the LLE-F. For fixed
detuning, Fig. 7 indicates that the drive power is a suitable
parameter for traversing between the different solution types.
We therefore examine the variation of steady-state solutions
along the dashed line in Fig. 7. For a normal dispersion
Kerr resonator without spectral filtering, front solutions (also
known as domain walls or switching waves) often move in
the reference frame of the driving field [19,54,55,66]. To
examine the moving properties of front solutions, we ini-
tialize the simulation with a two-front intensity variation in
the time domain. The equation is numerically solved with
this initial condition and examined as a function of propa-
gation distance until the waveform converges. At large drive
powers without a filter [Fig. 8(a) and a from Fig. 7], the
front solutions move together and vanish to converge to a
CW solution. With lower drive powers [Fig. 8(b) and b from
Fig. 7], the velocity of the domain walls decreases as they
lock together to form a converged dark soliton. The stabilizing
force has been shown previously to stem from the overlapping
oscillatory tails of the domain walls [55,67]. With still lower
drive powers [Fig. 8(c) and c from Fig. 7], the front solutions
move in the opposite direction until the solution converges
to a CW solution. The same behavior occurs at lower drive
powers [Fig. 8(d) and d from Fig. 7], with a higher front
velocity. Note that the intensity peak of the initial condition
is either presented at the center of the window [Figs. 8(c)
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and 8(d)] or the edges of the window [Figs. 8(a) and 8(b)]
to best emphasize the salient properties of the converged
solution.

With a filter, in the LLE-F, the front behavior is altered
slightly. At high drive powers [Fig. 8(e) and e from Fig. 7], as
without a filter, the front solutions move together and vanish,
to converge to a CW solution. Likewise, at slightly lower drive
powers [Fig. 8(f) and f from Fig. 7], the velocity of the domain
walls decreases as they lock together to form a converged dark
soliton. The solutions in the LLE-F appear smoother than in
the LLE without oscillatory tails.

In the LLE-F, at still lower drive powers [Fig. 8(g) and
g from Fig. 7], the front solutions move in the opposite
direction, but in this case, they lock together to converge
to a bright-pulse solution. This bright-pulse solution is the
chirped-pulse soliton. The spectral filter serves as a stabilizing
mechanism for the two front solutions. When the drive power
is even lower [Fig. 8(h) and h from Fig. 7], the domain walls
move at a faster rate, and they are not stabilized into a chirped
pulse but rather converge to a CW solution. To summarize,
while the front velocity dynamics remain qualitatively the
same with and without a filter, in the LLE-F, the drive power

is larger, the solutions are smoother, and importantly, chirped
pulses can be stabilized.

APPENDIX C: VALIDITY OF THE LLE-F MODEL

The variation of the electric field of the stable chirped
pulses in the steady-state cavity is examined at five different
frequency detuning values, with other parameters fixed (points
in Fig. 9). For the converged solution, the ratio of the longest
to the shortest pulse duration (full width at half maximum) and
highest to lowest peak power is examined as a function of the
deviation of the required drive from that of the Ikeda-F model
[Figs. 9(b) and 9(c)]. The deviation of the models is clearly
correlated to changes in the electric field with respect to pulse
duration [Fig. 9(b)], peak power [Fig. 9(c)], or bandwidth
(Fig. 4). The deviation of the models is larger at larger values
of detuning. These results suggest that predictions based on
master-equation (averaged-cavity) models should be carefully
confirmed for validity in the case of large intracavity pulse
evolutions.
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