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Carlos Sanchez Mufioz ®,"* Gaetano Frascella®,

2,3 45,1

and Frank Schlawin

'Departamento de Fisica Tedrica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),
Universidad Autonoma de Madrid, Spain
2Max-Planck Institute for the Science of Light, Staudtstrasse 2, Erlangen D-91058, Germany
3University of Erlangen-Nuremberg, Staudtstrasse 7/B2, Erlangen D-91058, Germany
“Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
SThe Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany

® (Received 27 May 2021; accepted 9 August 2021; published 15 September 2021)

Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy.
Its nonlinear character allows for the prospect of using quantum resources, such as entanglement, to improve
measurement precision or to gain new information on, e.g., ultrafast molecular dynamics. Here, we establish

the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross
sections. We find that the Cramér-Rao bound does not provide a fundamental limit for the precision achievable
with squeezed states in the limit of very small cross sections. Considering the most relevant measurement
strategies—namely, photon-counting and quadrature measurements—we determine the quantum advantage
provided by squeezed states as compared to coherent states. We find that squeezed states outperform the precision
achievable by coherent states when performing quadrature measurements, which provide improved scaling of the
Fisher information with respect to the mean photon number ~n*. Due to the interplay of the incoherent nature
and the nonlinearity of the TPA process, unusual scaling can also be obtained with coherent states, which feature
an ~n? scaling in both quadrature and photon-counting measurements.

DOI: 10.1103/PhysRevResearch.3.033250

I. INTRODUCTION

Two-photon absorption (TPA), the simultaneous absorp-
tion of two quanta of light by a quantum system, was first
described theoretically by Goppert-Mayer in 1931 [1] and was
first observed experimentally only one year after Maiman’s
development of the laser [2]. It has since become a crucial
tool in spectroscopy and microscopy, where the nonlinear
nature of TPA enables enhancing the resolution beyond the
single-photon diffraction limit [3]. TPA also forms one of
the main fields of interest for the development of future
quantum-enhanced photonic technologies, and, in particular,
it is considered a possible application of entangled photon
sources in imaging applications. It was recognized already in
the later 1980s that the absorption probability of entangled
photon pairs scales linearly with the light field intensity [4-8].
This could enable nonlinear spectroscopy and microscopy at
low photon fluxes, which will be beneficial in photosensitive
samples and reduce phototoxicity in live organisms [9-15].
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Quantum-enhanced absorption measurements have re-
ceived renewed attention recently [16-24] with the develop-
ment of new quantum light sources and an increased interest
in sensing technologies [25], as well as the demonstration
of “sensing with undetected photons” [26-30]. Interest in
this problem dates back to 2007, where the optimal esti-
mation of single-photon losses was first considered [31,32].
The quantum Fisher information (QFI) of absorption mea-
surements was evaluated. Cramér-Rao bounds for dissipative
processes were determined [33,34]. Precision limits of phase
estimation in the presence of interactions were established in
Refs. [35,36], which noted that interactions can enable so-
called “super-Heisenberg scaling” with the photon number n
in the sense that the optimal scaling of linear phase estimation
precision (~n~') can be surpassed. These studies concern
linear spectroscopy, i.e., the absorption of single photons, or
the combination of classical lasers with quantum light sources
in two-photon Raman transitions [37,38]. The first theoret-
ical works also started to investigate the role of quantum
correlations in TPA of entangled photon pairs [39,40] or of
photon statistics in coherent control [41]. However, these first
studies fall short of providing a comprehensive understanding
of the role of photon statistics and correlations in nonlinear
spectroscopy and, in particular, in TPA. The establishment of
quantum metrological bounds has importance for both exist-
ing and future imaging technologies.

In this paper, we derive quantum metrological bounds on
the determination of two-photon absorption cross sections
of narrowband light fields and establish the metrological
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FIG. 1. Sketch of the investigated setup: An initial quantum state
of light py (here a squeezed state) evolves under two-photon absorp-
tion (TPA) into p, before being measured.

advantage provided by illumination with squeezed states of
light. As pointed out already in a series of older publications
[42—-45], TPA losses can create a certain amount of non-
Gaussianity in the transmitted field (see Fig. 1). The evolution
creating nonclassicality provides an additional layer of poten-
tial complexity and stands in contrast to conventional phase
estimation problems of coherent dynamics or losses, where
the nonclassicality of the injected quantum state is generically
either unaffected or reduced by the evolution. Therefore, TPA
measurements constitute a fascinating metrological problem.

In this work, we focus in particular on “large” photon
numbers, where TPA losses scale quadratically with the trans-
mitted photon number and can thus be distinguished from
linear losses. We find that, under TPA, the QFI scales with
the mean photon number n of the input light state as o 1,
when coherent states are employed. This scaling of the QFI
surpasses the Heisenberg limit of oc n? and is enabled by the
nonunitary character of the evolution under TPA and does
not occur in a coherent second-harmonic generation (SHG)
process. One can saturate this QFI by both photon number and
quadrature measurements. Moreover, we show this scaling
can be improved even further using squeezed states, where
the QFI diverges in the limit of very weak TPA losses and
homodyne measurements of the squeezed quadrature provide
a oc n* scaling of the corresponding Fisher information.

II. TWO-PHOTON ABSORPTION

We are interested in the situation sketched in Fig. 1. A
quantum state of light is transmitted through a TPA sample,
and then a measurement is carried out. We assume that there is
no resonant intermediate state in the sample, such that single-
photon losses can be neglected. We also assume a narrowband
light field which can be described by a single bosonic mode.
To describe this setup we integrate out the absorbing material
using the normal methods of open quantum systems to obtain
a Lindblad equation in the rotating frame with respect to the
optical field Hamiltonian, which reads [46—49]

d
—p =yrealp = —(2L L' —L'Lp — pLTL), (1)

dt
where the Lindblad operator is given by a two-photon loss
operator L = a®/~/2. Our objective will be to measure the ab-
sorbance & = ypat, where ¢ is the propagation time through
the sample. This allows us to determine the absorption cross
section through oy = ¢/(nf), where n is the TPA sample den-

sity and £ the length of the sample medium in the propagation
direction of the light.

Our work focuses mainly on the metrological advantage
of squeezed states of light, in which one quadrature features
fluctuations below the shot-noise limit, at the expense of
increased fluctuations in the opposite quadrature. The time
evolution of a squeezed state of light undergoing TPA losses is
sketched in Fig. 1, where the initial Wigner function is shown
on the left, and the output Wigner function after TPA losses
with ¢ = 0.1 is shown on the right. When the squeezed state
evolves according to the master equation (1), the squeezed
quadrature fluctuations increase, whereas the antisqueezed
quadrature fluctuations are reduced. Crucially, however, this
happens in a nonclassical way: notable negative areas in phase
space develop on the sides of the initially squeezed quadra-
ture direction, signifying non-Gaussianity of the output state.
This strongly contrasts with the evolution under single-photon
losses, or the action of a coherent squeezing operation, which
do not create negative values in the Wigner function. As a
consequence, the measurement of TPA losses represents a
fascinating quantum metrological problem of a fundamentally
distinct, dissipative process.

III. FUNDAMENTAL SENSITIVITY LIMITS

We first turn to the ultimate precision limit for TPA de-
tection. The sensitivity Ae with which one can estimate ¢ is
limited by the quantum Cramér-Rao bound [50-52],

> > 1/NF,, 2

where N is the number of measurements, which we set to
unity in the following, and ¥, is the QFI associated with
the estimation of ¢ [51]. This quantity can be obtained for
arbitrary states p, (denoting the state of light encoding the
value ¢) by constructing the symmetric logarithmic derivative
(SLD) L., which is defined by the equation

dp 1

d(: = E(Lspa + peLe), 3)
to yield the QFI F, = Tr[L?p.]. One can always diagonalize
Pe = Y i Milk)(k| and replace the left-hand side of Eq. (3)
according to Eq. (1) to find an explicit expression for the SLD
operator,

lI(Lp)Ik
L. _22 e 1y (k|. “4)

For coherent states of light with complex amplitude « and
photon number 7, = |a|?, we can carry out this construction
analytically in the limit of small TPA absorption. The details
are provided in Appendix B. We obtain

¢ﬂcoh (8 = O) = n(:jl + (5)

S |s::w

which, notably, displays a scaling o n*. This scaling is con-
sistent with earlier results concerning phase estimation in the
presence of two-body interactions [35,53,54], according to
which a scaling of the sensitivity Ae?> ~ n~3 in the absence
of entanglement is expected. However, this result does not
generalize straightforwardly to measurements with entangled
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probes, where two-body interactions are expected to give rise
to an n~* scaling of the achievable sensitivity. For a nonclas-
sical input state, such as the squeezed vacuum, we find that in
general the QFI is not a very useful boundary for practical
purposes: While the QFI of a coherent state approaches a
finite value for ¢ — 0, we find that the QFI for a squeezed
vacuum state, S(¢)[0), with S(¢) = exp(;*a2 —¢a'?) and
squeezing parameter { = re'?, diverges. Hence, the Cramér-
Rao bound does not provide a fundamental bound on the
precision with which small TPA losses can be detected [55].
As we demonstrate in Appendix B, the divergence of the QFI
can be traced back to the generation of a finite weight for non-
Gaussian squeezed Fock state populations ~S(£)[2)(2]S7(¢)
due to transient evolution with respect to Eq. (1) already to
linear order in e. Therefore, a projective measurement on
this non-Gaussian state is optimal and can determine very
small absorbances ¢ < 1 without any fundamental lower error
within the range of validity of the Markovian master equation
(1). Any fundamental error source would have to stem from
non-Markovian effects. A similar effect does not occur for
coherent probe states, and consequently no divergence takes
place in this case. This remarkable result is a direct conse-
quence of the incoherent nature of the TPA process and cannot
be found, e.g., in coherent nonlinear processes such as SHG.
To see this, consider the SHG Hamiltonian of the form

Hsug ~ a’b" + Hee., (6)

where b is the photon creation operator of the SHG field. For
a pure input state, the corresponding QFI is proportional to the
variance of the Hamiltonian,

?_?SSHG) — 4((H52HG>p - (HSHG>,2>)- 7

Without loss of generality, we assume that the SHG field is in
the vacuum, this variance evaluates for a squeezed vacuum to

;if’G) ~ n?, which does not show super-Heisenberg scaling,
nor can it ever diverge. Likewise, the QFI for coherent input
evaluates to 7 5H%) ~ n? and does not show super-Heisenberg
scaling either.

The positive operator-valued measurement (POVM) that
saturates the precision limit established by QFI can be forbid-
dingly complicated to express or implement in practice [such
as the projection on the state S(¢)|2)(2|ST(¢) in our case].
Hence, to assess the metrological advantage of nonclassical
inputs for the measurement of TPA losses, it is instead neces-
sary to consider particular measurement scenarios to derive
practical bounds on the precision for measuring a general
operator O, which can be found from error propagation (see,
e.g., Sec. 2 in Ref. [56]),

Var (O)

Agy = o (®)
’ de |

IV. PHOTON NUMBER MEASUREMENTS

The experimentally most relevant situation is a photon
number measurement, where TPA losses are detected through
a change in the transmitted photon number distribution. First,
we thus consider the change of the mean transmitted photon
number (A1) = (a’a). For a squeezed vacuum state, we find,
to leading order in €, (71)squ = 1, — €n,(1 + 3n,), where n, =

g 1000 — f(ﬂsq? q)
é 104 """" ]:(pcoh;Qan)
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FIG. 2. Classical Fisher information (CFI) vs the mean pho-
ton number for quadrature and photon number measurements with
squeezed input states, giving rise to quartic o< n* and quadratic o< n?
scaling, respectively, as well as coherent states, which feature cubic
scaling o n®. These scalings are obtained in the limit of very weak
TPA losses, i.e., ¢ = 0.

sinh?(r). The variance is given by Varg, () = sinh?(r)[1 +
cosh(2r)], such that the sensitivity for the mean photon num-
ber reads

A82(squ) _ 3 1+ n,
4 n, (14 3n,)*

An identical calculation for a coherent state with complex
amplitude o yields

®

Agl M = % (10)
nO{

Hence, photon number measurements of coherent states al-
ready saturate the scaling of the corresponding QFI (5).
Perhaps counterintuitively, the sensitivity scaling of squeezed
light for photon-counting measurements ~n~> is worse than
that of coherent light. Instead, it is the same as the scaling
we obtained above for the QFI of SHG measurements with
squeezed vacuum.

These different scaling behaviors cannot be improved by
a full knowledge of the photon number distribution. This
can be seen by analyzing the corresponding classical Fisher
information (CFI),

d 2
Felpe, i) = Zme)(glnpn(s)) : (11)

which bounds the inverse of the sensitivity for a given POVM.
Here, the POVM is given by {|n)(n|}, with |n) being the
n-photon Fock state, and the corresponding probabilities are
given by P,(g) = (n|e*£pp|n), describing the probability of
detecting n photons in transmission. Using Eq. (1), we find
that dP,/de o (n+ 1)(n + 2)P,» — n(n — 1)P,. As a con-
sequence, narrow photon number distributions appear to be
beneficial for detecting TPA losses, as they create large “gra-
dients” P,., — P, that enhance the Fisher information. This is
why coherent light can outperform squeezed vacuum states in
photon number measurements.

This can be seen in Fig. 2, where the corresponding Fisher
information for squeezed and coherent states are plotted vs
their respective photon number expectation values. We find
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that the classical Fisher information ¥ (p, 1) for squeezed
light scales quadratically, o< n?, while for coherent light it
coincides with the QFI in Eq. (5), i.e., oc n. As a consequence,
coherent light outperforms squeezed light for photon-counting
measurements at photon numbers n > 10 at small . With
increasing absorbance, this crossover decreases to smaller
photon numbers. The effect is not related to the crossover
from linear to quadratic scaling of the squeezed light TPA
absorption rate [7], which already takes place at (n) > 1. It is
rather a consequence of the fact that Eq. (11) favors narrow
photon number distributions. Hence, it appears that from a
quantum metrological perspective the use of squeezed states
for TPA detection with photon number measurements only
offers an advantage for small intensities. However, they do
offer a significant advantage for quadrature measurements, as
we show next.

V. QUADRATURE MEASUREMENTS

We now turn to the measurement of the field position
g = (a+a")/~/2 and the momentum quadrature p = (a —
a®)/(¥/2i). For a squeezed vacuum, the expectation value of
either quadrature is zero, (p) = (¢) = 0, and TPA will not
shift this expectation value as it cannot create coherence.
Nevertheless, the analysis of the probability distributions
associated with measurements of p and ¢ contains vital in-
formation: using the Wigner function representation of the
light fields [57,58], we find analytical expressions of the CFI
at ¢ = 0, which for large photon numbers scale as

Fe(psqus @) ~ 321, (12)

for the squeezed quadrature and as Fc(osqu, P) ~ 21nf /2 for
the antisqueezed field quadrature. The full expressions are
given in Appendix C. The precision for measurements with
coherent states again saturates Eq. (5), Fc(ocon, ¢) = 12 +
n2/2 for the displaced quadrature and Fc(pocon, p) = 12 /2
for the orthogonal quadrature; i.e., there is no improvement
compared to photon number measurements discussed before.
Thus, quadrature measurements of the squeezed quadrature
can outperform coherent light and, in principle, achieve better
sensitivity scaling than either photon number or quadrature
measurements of coherent states.

In Fig. 3, we investigate how this behavior changes with the
absorbance ¢. It shows the evolution of the two quadratures as
a function of ¢. Measurements of the squeezed quadratures
are superior only for small & < 1072, i.e., when less than
1 —exp(—1072) ~ 0.1% of the signal have been absorbed.
At larger ¢, the CFI of the antisqueezed quadrature becomes
larger. Incidentally, as can be seen in Fig. 3(a), this crossover
coincides with the emergence of negativity in the Wigner
function, i.e., non-Gaussianity, of the quantum state of light.
At even larger absorbances ¢ > 1, the Fisher information of
both quadratures merge, as the negativity disappears again and
the quantum state of light is reduced to the vacuum state.

At finite absorbance ¢, the n* scaling in Eq. (12) is eroded
concomitantly with the emergence of non-Gaussianity. We in-
vestigate this in Fig. 4 where we extract the dominant scaling
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FIG. 3. (a) Negativity of the Wigner function for an initial
squeezed state with squeezing parameter r = 1 or (n) >~ 1.4 (blue,
solid line) and r = 1.5 or (n) ~ 4.5 (orange, dashed line). (b) Classi-
cal Fisher Information (CFI) vs the TPA absorbance ¢ = yrpat for the
initial squeezed state with squeezing parameter » = 1 for measuring
the squeezed ¢ quadrature (red, solid line) and the anti-squeezed p
quadrature (blue, dashed line).
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FIG. 4. (a) The dominant scaling exponent, Eq. (13), of the clas-
sical Fisher information (11) for quadrature measurements of the
squeezed quadrature is plotted vs the average photon number n and
the absorbance ¢ of a squeezed vacuum state. (b) The same as in
panel (a) but for a coherent input state. (c) Classical Fisher infor-
mation (11) for quadrature measurements is plotted vs the average
photon number n and the absorbance ¢ of a squeezed vacuum state.
(d) The same as in panel (c) but for a coherent input state.
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exponent of the CFI using the derivative

_ dlogF(q)

13
dlogn (13

Naturally, to observe the n* scaling of squeezed vacuum or
the n’ scaling of coherent states numerically, we require a
substantial photon number n ~ 10, as otherwise lower orders
of the polynomial expansion remain dominant. These optimal
scalings are eroded very quickly at large photon numbers
(faster in the case of coherent states), while there is an in-
termediate regime at n ~ 1, where super-Heisenberg scaling
can be sustained up to & = 1072, As we show in Appendix C,
where we plot the absolute value of the CFI, this only applies
to the scaling; the absolute value of the CFI never decreases
with increasing photon numbers.

VI. CONCLUSION

We have examined precision bounds on the measure-
ment of two-photon absorption cross sections. We focused in
particular on the possible use of squeezed light for quantum-
enhanced measurements. Remarkably, we found that there
is no fundamental lower bound on the achievable precision
of TPA measurements using squeezed light, as the QFI for
squeezed states diverges in the limit of small absorbances.
Focusing on particular measurement setups, we found that
TPA absorption can be estimated with CFI that shows super-
Heisenberg scaling with the mean number of photons. In
particular, for the case of very low absorbance, photon-
counting measurements for an input coherent state show a
scaling oc n’, which is even greater for quadrature measure-
ments of a squeezed state, featuring a scaling o< n*. These
scalings cannot be achieved in coherent second-harmonic gen-
eration, where the CFI scales quadratically for both coherent
and squeezed states.

Future research should extend these results to the mul-
timode regime, where, in addition to the photon statistics
considered in this work, time-energy entanglement provides
an additional resource, whose impact on TPA measurements
is the subject of an intense current debate [59-62].
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APPENDIX A: SQUEEZED AND DISPLACED BASES

It is convenient to carry out the following derivations in the
Heisenberg picture. Therefore, we first list the transformation
rules to change to a squeezed or displaced basis.

The density matrix of a squeezed vacuum state is given by

po = S(£)|0){01S7(¢), (A1)

where ¢ = re'¥ is the squeezing parameter, and |0) is the
vacuum state. It is usually convenient to evaluate correlation
functions with respect to this operator in the Heisenberg pic-
ture, where the operators are transformed as

a = S"aS = cosh(r)a + € sinh(r)a’ (A2)
and
d" =8"a'S = cosh(r)a’ + e “sinh(r)a.  (A3)
Likewise, a coherent initial state is given by
po = U(@)|0)(0|U" (@), (A4)

and the Heisenberg evolution of the photon annihilation oper-
ator reads

d=U'alU =a+a. (AS)

APPENDIX B: QUANTUM FISHER INFORMATION

Information on the TPA losses is encoded by letting the
system evolve according to Eq. (1) for a certain time,

pe = ¢Lp(0). (B1)

The QFI Fo(p) associated with the estimation of ¢ can be
obtained from the symmetric logarithmic derivative (SLD) L,
as Fp = Tr[Lg,og], where the SLD is defined so as to fulfill
Eq. (3). Since dp, /de = Lp,, we can transform Eq. (3) into

%(Lspa + psLE) = -Ep5~ (BZ)

Taking matrix elements of both sides of this equation, we
obtain Eq. (4). For a squeezed vacuum or a coherent state,
we can even solve this analytically.

1. Squeezed vacuum
Let us consider the case ¢ = 0, such that in the Heisenberg
picture the initial state is simply p, = p(0) = |0)(0|. We can
then analytically compute Ly in the squeezed basis, where we
have

3(Lol0)(0] +10)(0ILo) = L|0)(0. (B3)

By application of Eq. (1) with the transformed operators in
Eq. (A2), L]0)(0]| reads

£]0)(0] = —4sinh* |0)(0] + 4 sinh* r|2) (2|
it
+ § —=[sinh(2r) — sinh(4r)]|0)(2| + H.c.}
{ 7 10) (2]
6 _,
- {%f” sinh?(2r)|0) (4] + Hc}
Here, we see that the application of the TPA Liouvillian on the

vacuum in the squeezed basis creates a population |2)(2|. This
matrix element cannot be obtained by the single application
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FIG. 5. Quantum Fisher Information (QFI) is shown vs the TPA
absorbance ¢ = yrpat. The QFI of a squeezed vacuum initial state
(blue) is compared the QFI of a coherent initial state (gray).

of a bounded operator Ly. As a consequence, the resulting
SLD operators are divergent. We can verify this numerically in
Fig. 5, where the QFI of squeezed states diverges for & — 0.

Transforming back to the normal basis, this matrix element
turns into the population of a squeezed two-photon Fock state,
S(¢)]2)(2|87(¢). As a consequence, a projective measurement
with P = S(¢)[2)(2|S7(¢) will be an optimal measurement to
determine TPA losses of a squeezed vacuum state. We note
in passing that the same also applies for incoherent single
photon losses [i.e., when in Eq. (1) the Lindblad operator is
L = a], where a similar analysis as above will reveal the pop-
ulation of the state S(¢)|1)(1]S7(¢), which again represents
an optimal measurement. This divergence takes place, even
though single-photon losses never create non-Gaussianity in
the time-evolved state. The Wigner function of the evolved
state will always remain positive.

2. Coherent light

As before, we compare matrix elements of the constituent
equation in the displaced basis:

1(Lol0) (0] + [0)(0ILo) = L]0)(0]. (B4)
We find
2
L0)(0] = —Jo|*a|1)(0] — %IZ)(OI +H.ec. (BS)

The Liouvillian in the displaced basis does not cre-
ate nonzero populations, as the displacement does not
mix creation and annihilation operators. Consequently, we
can identify the nonzero matrix elements of the SLD
operators:

Ly =0, (B6)

Lio = L, = —|a|’a, (B7)
|

_ 2 opp 1Yl —
W)= —e Re[Z( D™(1 ~ 8.m)

n=m

1
Ly =Ly = %az, (B8)
Loz = L3 =0, (B9)
Los = Lug = 0. (B10)

Using the SLD operator, we straightforwardly calculate the
QFI of a coherent state at ¢ = 0 as

4

. 1
7::00011(8 = O) = !lj)r(l)Tr[ngps] = ZO |L0i|2 = I’lg + El’li
(B11)

APPENDIX C: CLASSICAL FISHER INFORMATION

The classical Fisher information is defined in Eq. (11) of
the main text. We now evaluate it for different measurements.

1. Photon number measurements

Here, the probabilities are given by p,, = (n|p|n). To eval-
uate this, we note that the action of the TPA Lindbladian (1)
on a density matrix element |n) (m| yields

Liny(m| =5(2y/n(n — Dm(m — 1)|n — 2)(m — 2|
— [n(n = 1) + m(m — 1)]|n)(m]). (ChH

Consequently, the change of photon number distribution due
to TPA is given by
ap, 1
de 2

[(n+2)(n + D)Pry2 — n(n — 1)B,], (€2

where p, o denotes the probability to detect n photons prior to
the interaction with the TPA medium, and we arrive at

1[(n +2)(n + DPyyo — n(n — PP
4 b, '

n

Fclp, ) =

(C3)

2. Quadrature measurements

We want to construct the classical Fisher information re-
lated to quadrature measurements, i.e., for the measurement
based on a continuous probability distribution P(q) [or P(p)].
For the g quadrature, it reads, for instance,

1 (dP(@)\’
ol a) o

The necessary probability distributions can be constructed
most conveniently from the Wigner functions of the photonic
quantum states using the relation [57]

Felpe,q) = /dq

! n—m
(’;i,) <2a>"—'"L:1;m<4|a|2)pmn}, (C5)
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where o = g + ip, £, is a Laguerre polynomial, and p,,, is the density matrix element in the photon number basis. Integrating
out the conjugate variable, we obtain the probability distribution, i.e.,

P@ = [dpwa.p). (6)
Similarly, we can calculate the change of the Wigner functions due to TPA losses,
dw (q, 2 NN
WD) _ 2 e [Z(—l)’"(l ~ %)(ﬁ) (2a>”—'”£:’,,—'"<4|oe|2><Lp>mn}, (o)
de b4 et n!

and use it to straightforwardly calculate the change of the
probability distribution

dP(g) _ /°Zp dW (q. p)

C8
de o de (€8)

a. Squeezed vacuum

For a squeezed vacuum state, we use the transformation
(A2) to carry out the above analysis in the squeezed vacuum
basis, where the only nonzero matrix element in Eq. (C5) is
the vacuum state pgo. Hence, we have

[2 -
PsCIu(q) = ;er—Zez ¢

Pty sinh(r){e* + 64>

(C9)
and
dPsqu(Q) _ 1
de 2

+ 2¢% ¢*[sinh(r) — 5 cosh(r) + 8¢ sinh(r)]}.
(C10)

With Eq. (C4), we thus arrive at

e~ sinh?(r)
8

+33e% — 426 4 21).

TC(psqu, q) = (4€8r — 12¢%

(C11)

107!
1072
10-3
104

10-3

Absorbance €

1076

1077
10 102 10" 10° 10! ’
Average photon number 7

For large squeezing, the photon number is approximately
given by n, ~ ¢*" /4, such that we arrive at Eq. (12).

An identical calculation yields the CFI for the p quadra-
ture:

e~ sinh?(r)
8
+336" — 1267 + 4).

Fe(psqu, P) = (2168 — 425"

(C12)

b. Coherent state

Using Eq. (AS), the same calculation as for the squeezed
vacuum above yields

2
3 n

Fe(Peons ) = n, on (C13)

and

Fc(Peoh, P) = . (C14)

S |Qsl\)

¢. Classical Fisher information vs absorbance

The absolute value of the classical Fisher information
which is used to extract the scaling properties shown in Fig. 4
is shown in Fig. 6.

10! I '
102
1073
10~

10-5

Absorbance €

10¢

4
1077
1073 1072 101 10° 10!
Average photon number 7

FIG. 6. (a) Logarithm of the classical Fisher information (11), log,, Fc(p., 4), for quadrature measurements of the squeezed quadrature is
plotted vs the photon number 7, and the absorbance ¢ of a squeezed vacuum state. (b) The same as in panel (a) but for a coherent input state.
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