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Variational tight-binding method for simulating large superconducting circuits
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We generalize solid-state tight-binding techniques for the spectral analysis of large superconducting circuits.
We find that tight-binding states can be better suited for approximating the low-energy excitations than charge
basis states, as illustrated for the interesting example of the current-mirror circuit. The use of tight binding can
dramatically lower the Hilbert-space dimension required for convergence to the true spectrum, and allows for
the accurate simulation of larger circuits that are out of reach of charge basis diagonalization.
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I. INTRODUCTION

Increasing coherence and noise resilience in supercon-
ducting qubits is a key requirement on the roadmap for
developing the next generation of error-corrected quantum
processors surpassing the NISQ era. Intrinsic noise protec-
tion in superconducting circuits has therefore become an
important focus of research [1–13]. However, achieving si-
multaneous protection from depolarization and dephasing is
impossible for small circuits like the transmon, and instead
necessitates circuits with two or more degrees of freedom.
Such larger circuits, especially of the size considered for
the current-mirror circuit [3] or rhombi lattice [4,5], pose
significant challenges for the quantitative analysis of energy
spectra and prediction of coherence times. Consequently,
the development of more efficient numerical tools capable
of solving for eigenstates and eigenenergies of large su-
perconducting circuits has emerged as a vital imperative.
Strategies recently introduced for that purpose include hier-
archical diagonalization [14], adaptive mode decoupling [15],
and density matrix renormalization group (DMRG) methods
[16–18]. Here, we propose variational tight binding as another
strategy complementing the former ones and illustrate its
application.

Since the Hilbert-space dimension d of even a single trans-
mon circuit is infinite, it is not fully accurate to blame the
“growth” of d for the challenges encountered with circuits of
larger size. Nonetheless, when representing the Hamiltonian
in a basis not specifically tailored for the problem at hand,
the dimension of the truncated Hilbert space typically grows
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exponentially when choosing the truncation level such that
a particular level of convergence is reached. This turns the
numerical diagonalization of the circuit Hamiltonian into a
hard problem. An approach to address this challenge, which is
also implicitly represented by the strategies mentioned above,
consists of constructing basis states which more closely ap-
proximate the desired low-energy eigenstates from the very
beginning. As long as construction of the tailored basis and
decomposition of the Hamiltonian in that basis can be ac-
complished efficiently, this approach will allow for reduced
truncation levels and hence enable coverage of circuit sizes
otherwise inaccessible numerically.

Our construction of such tailored basis states is based on
the observation that low-lying eigenstates of superconduct-
ing circuits are often localized in the vicinity of minima of
the potential energy, when expressed in terms of appropriate
generalized-flux variables. If the potential energy is periodic
or at least periodic along certain axes, then the situation re-
sembles the setting of a particle in a periodic potential, as
commonly encountered in solid-state physics when consid-
ering electrons inside a crystal lattice. In the regime where
tunneling between atomic orbitals of different atoms is weak,
tight-binding methods are appropriate for band structure cal-
culations [19,20]. An analogous treatment has previously been
applied to small circuits; see, for example, the discussions
of tunneling between minima in the flux qubit [21–24], the
derivation of an asymptotic expression for the charge disper-
sion in the transmon qubit [25], or the analysis of charge noise
in the fluxonium circuit [26]. Chirolli and Burkard carry out
a full tight-binding description of the low-energy physics of
the flux qubit, considering Bloch sums of harmonic oscillator
ground-state wave functions localized in each minimum at
the half-flux sweet spot [22]. Motivated by the new interest
in circuits of increased size and complexity, we build upon
this research in two specific ways. First, we consider multiple
basis states in each minimum, to both improve ground-state
energy estimates and extract excited-state energies. Second,
we consider minima that are not necessarily identical, and
introduce an efficient means of calculating matrix elements
between states localized in such inequivalent minima. These
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FIG. 1. Comparison between tight binding as applied to solids and superconducting circuits. On the left is an example two-dimensional
lattice with a two-atom basis, signified by the gray and blue atoms. On the far left are example atomic wave functions. On the right is the
potential of the flux qubit, which has two inequivalent minima in each unit cell at the chosen value of flux. We only color the potential below
a cutoff value to draw the eye to the potential minima locations. Near the minima the potential is approximately harmonic, therefore the local
wave functions take the form of harmonic oscillator states. Example wave functions are shown on the right.

techniques allow us to demonstrate that tight-binding methods
can be adapted for efficient computation of energy spectra of
large circuits.

Our paper is organized as follows. In Sec. II we review
the tight-binding treatment in solid-state physics and develop
its adaptation for superconducting circuits. We then detail
our numerical implementation, involving the calculation of
tight-binding matrix elements using ladder operator algebra.
In Sec. III we first apply our numerical method to the simple
example of a flux qubit and illustrate that tight binding can
accurately reproduce the well-known results for the spectrum.
In Sec. IV we then apply tight binding to the current-mirror
circuit with up to nine degrees of freedom, and demon-
strate that tight binding outperforms the diagonalization of the
Hamiltonian in charge basis representation in terms of accu-
racy, convergence behavior, and memory efficiency. We close
with our conclusions in Sec. V.

II. TIGHT BINDING FOR SUPERCONDUCTING CIRCUITS

Research on superconducting qubits has repeatedly en-
countered physics familiar from models and phenomena in
solid-state physics. Examples include the close connection be-
tween the Cooper pair box and a particle in a one-dimensional
crystal, or the interpretation of the fluxonium Hamiltonian
in terms of Bloch states subject to interband coupling [27].
Another analogy, which points to the computational technique
applied to circuits in this paper, is the consideration of crystal
electrons in the tight-binding limit. In this regime, tunnel-
ing between electronic orbitals of different atoms is weak,
and linear combinations of atomic orbitals constructed by
“periodically repeating” localized wave functions serve as a
meaningful basis. The tight-binding method then employs this
basis in an approximate solution to the Schrödinger equation.
An analogous scenario can be encountered for superconduct-
ing circuits as shown in Fig. 1. Minima of the potential energy
may give rise to localized states that are only weakly con-
nected by tunneling to partner states in other potential minima.
The “atomic orbitals” which we will refer to as “local wave
functions” in this case can be identified with the harmonic os-
cillator states associated with a local Taylor expansion around
each minimum.

A. Local-wave-function construction

The starting point for this treatment is the full circuit
Hamiltonian H = T + V . To stress the analogy with the set-
ting of an infinite crystal, we first focus on a purely periodic
potential V ( �φ), as realized by a circuit that does not in-
clude any inductors. (Including inductors is possible, which
we comment on further in Sec. II B). In terms of the node
variables �φ = (φ1, . . . , φN )T , the potential energy obeys the
periodicity condition V ( �φ + 2π �j) = V ( �φ) with �j ∈ ZN and
thus forms a (hyper-)cubic Bravais lattice. Within the central
unit cell defined by �φ ∈ [−π, π )×N , the potential energy will
exhibit a set of M minima located at positions �θm where
m = 0, 1, . . . , M, where m orders the minima from lowest to
highest in energy.1 In the language of solid-state physics, this
set of minima corresponds to the multiatomic basis associated
with the Bravais lattice.

The analogy with solid-state physics is further strength-
ened by considering a gauge where the offset charge
dependence is shifted from the Hamiltonian to the wave func-
tions [22,28]. In this representation, solutions |ψ〉 to the full
Hamiltonian H obey quasiperiodic boundary conditions

T�θ |ψ〉 = e−i�ng·�θ |ψ〉, (1)

for every �θ in the Bravais lattice, where T is the transla-
tion operator and �ng = (ng1, · · · , ngN )T is the vector of offset
charges. We recognize Eq. (1) as an expression of Bloch’s
theorem with wave vector −�ng (typically denoted as �k in a
solid-state context).

The construction of the local wave functions now pro-
ceeds by considering the individual harmonic oscillator
Hamiltonians H′

m = T + Vm where each local potential is
obtained by Taylor expansion around the respective mth min-
imum:

Vm = 1

2

∑
i, j

ϕ2
0φ

(m)
i Γ

(m)
i j φ

(m)
j . (2)

1Degenerate minima pose no issue, and the ordering is decided
arbitrarily.
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Here, ϕ0 = h̄/2e is the reduced flux quantum, Γ
(m)
i j =

ϕ−2
0 ∂φi∂φ jV |�θm

is the inverse of the inductance matrix, and
�φ(m) = �φ − �θm is the “position” relative to the minimum lo-
cation. The local Hamiltonian then takes the form

H′
m = 1

2

∑
i, j

(
ni8

e2

2
(C)−1

i j n j + ϕ2
0φ

(m)
i Γ

(m)
i j φ

(m)
j

)
, (3)

where ni is the charge number operator for node i obeying
the commutation relation [φ(m)

j , nk] = iδ jk and C is the ca-
pacitance matrix. Hereafter, explicit references to m will be
omitted for notational simplicity. To obtain the eigenstates of
the coupled oscillator Hamiltonian Eq. (3) we first determine
its normal modes. This is accomplished most efficiently based
on the corresponding classical Lagrangian

L′ = 1

2
ϕ2

0

∑
i, j

(φ̇iCi j φ̇ j − φiΓi jφ j ), (4)

where we emphasize that all variables appearing in Eq. (4)
are classical. Using the usual oscillatory solution ansatz �φ =
�ξμe−iωμt reduces the equations of motion to the generalized
eigenvalue problem Γ�ξμ = ω2

μC �ξμ [29]. Here, latin indices re-
fer to node variables, and greek indices refer to normal-mode
variables. The eigenmode vectors �ξμ are only determined
up to normalization, �ξ T

μ C �ξμ = cμ, implying �ξ T
μ Γ�ξμ = ω2

μcμ,
where cμ is undetermined. This normalization will be fixed
when we return to the quantum-mechanical description, in
such a way that the Hamiltonian for each mode takes the
standard form

H′
μ/h̄ωμ = 1

2

(
− ∂2

∂ζ 2
μ

+ ζ 2
μ

)
. (5)

Here, �ζ = (ζμ) collects the normal-mode variables related to
the original generalized fluxes via �φ = ��ζ , where � is the
matrix of column vectors �ξμ.2 In these new variables, both
bilinear forms in L′ are diagonal. Legendre transform and
quantization thus readily yield

H′ = 1

2

∑
μ

[
−

(
h̄

ϕ0

)2 1

cμ

∂2

∂ζ 2
μ

+ (ϕ0ωμ)2cμζ 2
μ

]
. (6)

To cast H′ into the form suggested by Eq. (5) we now choose
cμ = (2e)2/h̄ωμ as our normalization constants. We denote
the eigenstates of H′ by |�s, m〉. Here, �s collects the excitation
numbers sμ = 0, 1, . . . for each mode μ and m specifies the
minimum of interest.

B. Bloch summation and the generalized eigenvalue problem

Solution of the Schrödinger equation H|ψ〉 = E |ψ〉 pro-
ceeds by choosing a basis with which to express H in matrix
form. We construct this basis by periodic repetition over the

2Note that the matrix � encodes both the normal-mode directions
and oscillator lengths. For the one-dimensional example of a trans-
mon within the harmonic approximation, H′

tran = 4ECn2 + 1
2 EJφ

2,
the matrix � reduces to the number (8EC/EJ )1/4 which indeed is the
corresponding harmonic length.

entire Bravais lattice of the local wave functions |�s, m〉 defined
in the central unit cell, subject to quasiperiodic boundary
conditions [Eq. (1)]

|ψ�ng,�s,m〉 = 1√
N

∑
�j

e−i�ng·(2π �j+�θm )T2π �j |�s, m〉

= 1√
N

∑
�j

|�s, m; �j〉. (7)

Here, N is the number of unit cells and |�s, m; �j〉 is the wave
function localized in minimum m in the unit cell located at
2π �j. (Note that these kets |�s, m; �j〉 are implictly offset-charge
dependent). It is straightforward to show that |ψ�ng,�s,m〉 satis-
fies the quasiperiodicity condition (1). We now represent the
Schrödinger equation in terms of these basis states. Due to
their lack of orthogonality, this transforms the Schrödinger
equation into the generalized eigenvalue problem

1

N
∑
�s,m

∑
�j,�j ′

(〈�s ′, m′; �j ′|H|�s, m; �j 〉

− E〈�s ′, m′; �j ′|�s, m; �j 〉)b�s,m = 0, (8)

where E is the eigenenergy and b�s,m are the coefficients in the
decomposition

|ψ�ng〉 =
∑
�s,m

b�s,m|ψ�ng,�s,m〉. (9)

Equation (8) can be simplified by performing one of the sums
over lattice vectors [19]. This can be done by expressing the
kets explicitly in terms of the translation operators |�s, m; �j〉 =
e−i�ng·(2π �j+�θm )T2π �j |�s, m; �0〉 and noting that the operator T2π �j
commutes with the Hamiltonian. The summation yields a
factor of N and we obtain∑

�s,m

∑
�j

(〈�s ′, m′; �0 |H|�s, m; �j 〉

− E〈�s ′, m′; �0 |�s, m; �j 〉)b�s,m = 0. (10)

Formally, Eq. (10) now has the standard form of a generalized
eigenvalue problem with two semidefinite positive Hermitian
matrices and can be handled numerically by an appropriate
solver. To accomplish this, the crucial remaining task con-
sists of the efficient evaluation of the matrix elements and
state overlaps in Eq. (10). Note that an alternative route to
this equation is application of the variational principle to
〈ψ�ng|H|ψ�ng〉 = E〈ψ�ng|ψ�ng〉 [30]; the benefit of this viewpoint
is that the eigenenergies thus obtained represent upper bounds
to the true eigenenergies of the system [30,31].

Our analysis thus far has assumed a purely periodic po-
tential, allowing for a direct analogy with the theory of tight
binding as applied to solids. Including inductive terms in
the potential immediately implies that associated degrees of
freedom are no longer subject to (quasi-)periodic boundary
conditions. Alternatively, we can say that the unit cell no
longer has finite volume, but must extend along the relevant
axes. To include such inductive potential terms, we therefore
do not perform periodic summation in Eq. (7) along these
nonperiodic directions. We have successfully implemented

033244-3



WEISS, DEGOTTARDI, KOCH, AND FERGUSON PHYSICAL REVIEW RESEARCH 3, 033244 (2021)

the tight-binding method for the symmetric 0 − π qubit [6,8],
a circuit with one periodic and one extended degree of free-
dom. The low-energy spectra thus obtained are in excellent
agreement with exact results over a wide range of circuit
parameters. In this paper we will continue to focus on circuits
with purely periodic potentials, the natural setting for the
tight-binding method. We defer a detailed discussion of our
results for the 0 − π qubit to a future publication.

C. Efficient computation of matrix elements and overlaps

The relevant matrix elements involve harmonic-oscillator
states at different locations and, possibly, with different
normal-mode orientations and oscillator lengths. The cal-
culation of these quantities proceeds either via use of
ladder operators or by explicit integration within the position
representation. Even though integration can in principle be ac-
complished analytically, the expressions become increasingly
tedious in higher dimensions. (The integrals are generally
two-center integrals that lead to two-variable Hermite poly-
nomials [32]). By contrast, the ladder-operator formalism is
more readily adapted for the numerical calculations of the
matrix elements in question. Therefore, we focus on this
approach.

The matrix elements and overlaps to be evaluated have
the form

〈�s ′, m′; �0 |O|�s, m; �j 〉, (11)

where O is either the Hamiltonian H or the identity. To
facilitate the use of the ladder-operator formalism, we next
reexpress operators and states in terms of the creation and
annihilation operators associated with the m = 0 minimum
in the central unit cell. Since inequivalent minima differ in
locations and curvatures, local wave functions are shifted and
possibly squeezed relative to each other:

T�θm
Sm|�s 〉 = |�s, m〉, (12)

where |�s 〉 ≡ |�s, 0〉 and we have taken the location of the
m = 0 minimum to be the origin, �θm=0 = �0. The intuitive
interpretation of Eq. (12) is based on a two-step process: first
the harmonic oscillator states for m = 0 are deformed via the
squeezing operator Sm to match the local curvature of the mth
minimum and they are then shifted over to the appropriate
location of that minimum via the translation operator T�θm

.
According to Eq. (12), the matrix elements take the form

〈�s ′, m′; �0 |O|�s, m; �j 〉 = 〈�s ′|S†
m′T †

�θm′
OT�θm+2π �jSm|�s 〉. (13)

The expression for the states is readily obtained:

|�s 〉 =
∏
μ

1√
sμ!

(a†
μ)sμ |�s = �0 〉, (14)

where we introduce the ladder operators aμ obeying the com-
mutation relation [aμ, a†

ν] = δμν . Likewise the treatment of

the translation operator T�θ = e−i�θ ·�n is straightforward: making
use of the relation between the number operators and ladder
operators

n j =
∑

μ

−i√
2
�−T

jμ (aμ − a †
μ), (15)

the translation operator can be expressed as

T�θ = exp

(
− 1√

2
�θ T �−T [�a − �a†]

)
, (16)

which translates the position variables �φ by �θ . Here we
use the compact notation �a = (a1, · · · , aN )T and �a† =
(a1

†, · · · , aN
†)T and denote �−T = (�−1)T .

The expression for the squeezing operator can be found
by considering a simplified situation of two harmonic
Hamiltonians Ha,Hc of the form of Eq. (3), but defined at
the same center point. The Hamiltonian Ha is diagonalized by
the ladder operators �a, �a† and Hc is diagonalized by �c, �c†. The
respective eigenfunctions |�s 〉a and |�s 〉c are related by a unitary
squeezing transformation,

S|�s 〉a = |�s 〉c, (17)

which is equivalent to S�aS† = �c. To obtain a concrete expres-
sion for S we note that the bosonic ladder operators are related
by a Bogoliubov transformation [33,34](

u v

v∗ u∗

)( �a
�a†

)
=

( �c
�c†

)
, (18)

where u, v are N × N matrices. These can be found by con-
sidering the two decompositions of the phase and number
operators in terms of the differing sets of ladder operators( �φ

�n
)

= 1√
2

(
� �

−i�−T i�−T

)( �a
�a†

)

= 1√
2

(
�′ �′

−i�′−T i�′−T

)( �c
�c†

)
, (19)

where the matrix � is defined for Ha and �′ is defined for Hc

as in Sec. II A. Solving Eq. (19) for the ladder operators �c, �c†

yields the real-valued Bogoliubov matrices

u = 1
2 (�′−1� + �′T �−T ), (20)

v = 1
2 (�′−1� − �′T �−T ). (21)

As shown in Ref. [35], the multimode squeezing operator can
now be expressed in terms of u, v as follows:

S = exp
[

1
2 (�a T �a†

T
)J ln M(�a �a†)T

]
, (22)

where

M =
(

u v

v u

)
, J =

(
0 1

−1 0

)
. (23)

Returning now to our original notation, we identify Sm with
S in Eq. (22), where the m dependence carries forward
to the Bogoliubov u, v matrices. With Eqs. (14), (16), and
(22) we have, in principle, collected all ingredients neces-
sary for the evaluation of the matrix elements and overlaps
[Eq. (13)]. However, numerical implementation necessarily
involves truncation, and we will show in the following that
normal ordering operator expressions is essential for maxi-
mizing accuracy.

A standard approach for truncating the infinite-
dimensional operators aμ, a†

μ consists of excitation cutoffs
smax applied to each individual mode. This is a fine strategy
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for moderate sized systems, but quickly becomes intractable
for larger systems due to the exponential growth of the
Hilbert-space dimension dindv = (M + 1)(smax + 1)N ,
where we recall that M corresponds to the number of
minima. To mitigate this bottleneck, one can instead use
a global excitation number cutoff �max, which institutes a
maximum Manhattan length of the excitation number vector,
‖�s ‖1 � �max [36]. The Hilbert-space dimension can be found
using the “hockey-stick identity” to be

dglobal = (M + 1)

(
�max + N

N

)
. (24)

While dglobal still grows exponentially, the prefactor of the
exponential growth is smaller than that associated with dindv.
For example, if we consider M = 0 (a single minimum),
smax = �max = 3, and N = 5, we obtain dindv = 1024 and
dglobal = 56.

Given a specific truncation level, it makes a difference
whether operator expressions are normal ordered or not.
Denoting the truncated operators as ãμ, ã†

μ, the nominally
identical expressions ãμã†

μ and ã†
μãμ + δμμ in fact give dif-

ferent results as seen, for instance, in

〈smax|ãμã†
μ|smax〉 = 0,

〈smax|(ã†
μãμ + δμμ)|smax〉 = smax + 1. (25)

Here, the “wrong” result of the first expression can be cir-
cumvented by using the normal-ordered version in the second
expression. This example is indicative of a general result, that
it is beneficial to normal order ladder-operator expressions
before further numerical evaluation.

The translation operator T�θ can be normal ordered via the
the Baker-Campbell-Hausdorff (BCH) formula [37], which
takes the form eX eY = eX+Y + 1

2 [X,Y ] when X and Y are oper-
ators that commute with their commutator [X,Y ]. This yields

T�θ =V†
�θ V−�θ exp(− 1

4
�θ T �−T �−1�θ ), (26)

where

V�θ = exp( 1√
2
�θ T �−T �a). (27)

Expressions for commuting V operators past operators such as
n j and eiφ j [which enter O in Eq. (11)] can be easily obtained:

V�θ �n =
(
�n + i

2
�−T �−1�θ

)
V�θ , (28)

V�θ eiφ j = ei(φ j+ 1
2 θ j )V�θ , (29)

where in Eq. (28) we have used the identity [37] eXY = (Y +
[X,Y ])eX , again valid when X and Y commute with [X,Y ].

The normal-ordering procedure for the squeezing operators
is more involved and we defer it to the Appendix. In the
following sections where we apply the tight-binding method
to several example systems, we find that the sets of basis states
constructed with or without squeezing (proper vs improper
tight binding) may yield similar numerical performance. This
is naturally the case if minima contributing to the low-energy
spectrum have similar curvatures, or if all amplitudes of the
lowest-energy states are concentrated in the m = 0 minimum.
Whenever possible, omitting squeezing from the construction
of basis states significantly simplifies the numerical treatment.

The final step in setting up the generalized eigenvalue
problem (10) is truncating the sum over vectors �j. A typi-
cal truncation scheme is the nearest-neighbor approximation
which selects only those unit cells that have the minimal
Euclidean distance from the central unit cell. This strategy
however does not account for any anisotropy in the harmonic
lengths, which results in local wave functions whose Gaussian
tails extend further in some directions than in others. We
therefore use a different criterion based on the overlap of local
wave functions. Whether the unit cell centered at 2π �j is a
nearest neighbor to the central unit cell now generally depends
on the minima under consideration. Specifically, given a min-
imum m′ in the central unit cell, and a minimum m in the unit
cell at vector 2π �j, we determine the nearest-neighbor charac-
ter by computing the overlap of the two harmonic oscillator
ground-state wave functions. For a given overlap threshold
value ε, we call the two unit cells nearest neighbors with
respect to m and m′ if

〈�0, m′; �0|�0, m; �j 〉 =
√

2N det(�m)1/2 det(�m′ )1/2

det(�m + �m′ )

× exp

[
− 1

2
�δθT (

�−1
m + �−1

m′
)−1 �δθ

]

> ε. (30)

Here, we have defined �δθ = 2π �j + �θm − �θm′ and �m =
�−T

m �−1
m , where �m is defined relative to minimum m. With

this definition in place, we truncate the sum over �j by select-
ing neighbors up to a certain degree. (Note that the overlap
threshold ε must ultimately be adjusted adaptively in order to
ensure convergence.)

A possible challenge for the numerical treatment, which
we have observed in several cases, is that the overlap ma-
trix 〈ψ�ng,�s ′,m′ |ψ�ng,�s,m〉 may approach singularity (and possibly
become indefinite due to rounding errors). This is a famil-
iar problem in quantum chemistry calculations [38,39] and
arises when the set of “basis” states {|ψ1〉, |ψ2〉, . . . , |ψh〉} is
approximately linearly dependent. A common technique for
resolving this issue which we have implemented here is the
canonical orthogonalization procedure of Löwdin [40]. One
diagonalizes the inner product matrix to obtain the eigenval-
ues {�1,�2, . . . ,�h} and matrix of column eigenvectors U .
The orthonormalized states are [40]

|ψ ′
k〉 = �

−1/2
k

∑
�

|ψ�〉U�k . (31)

Choosing a cutoff �min allows for the rejection of states |ψ ′
k〉

where �k < �min. The Hamiltonian H is then projected onto
the deflated basis and we are left with a standard eigenvalue
problem.

D. Optimization and anharmonicity correction of the ansatz
wave functions

One of the main goals of this paper is the construc-
tion of basis states that closely approximate the low-energy
eigenstates of superconducting circuits. We can optimize the
tight-binding wave functions (7) for this purpose by rec-
ognizing that sufficiently far from each minimum location

033244-5



WEISS, DEGOTTARDI, KOCH, AND FERGUSON PHYSICAL REVIEW RESEARCH 3, 033244 (2021)

FIG. 2. Schematic of ansatz construction schemes. (a) Improper,
where local wave functions are defined according to the curvature of
the m = 0 minimum and are reused to form the local wave func-
tions of other inequivalent minima. (b) Proper, where local wave
functions for every minimum are defined according to the local cur-
vature. (c) Improper with anharmonicity correction, where harmonic
length(s) of the ansatz ground-state wave function of the m = 0
minimum are optimized to account for anharmonicity corrections to
the potential. The resulting wave functions are then also used for
m �= 0 minima as in (a). The dashed lines show the unoptimized
local ground-state wave function defined for the m = 0 minimum
(the change in the harmonic length due to anharmonicity corrections
has been exaggerated). (d) Proper with anharmonicity correction of
only the m = 0 minimum. Wave functions for the m = 0 minimum
are defined according to the local curvature and anharmonicity cor-
rection scheme, while wave functions for m �= 0 minima are defined
only according to the local curvature.

the potential ceases to be strictly harmonic. The low-energy
eigenfunctions typically have spatial spreads that are broader
if the leading-order anharmonic term is negative and narrower
if it is positive. We take this effect into account and improve
the tight-binding wave functions by treating the harmonic
length of each mode as a variational parameter. Specifically,
we modify the matrix � by optimizing the magnitude of
the eigenvectors �ξμ, leaving the directions unchanged, �ξμ →
λμ�ξμ, where λμ is optimized. We perform this optimization
procedure for the ansatz ground state |ψ�ng,�0,m(λμ)〉, making
the dependence on λμ explicit, minimizing

E =
〈ψ�ng,�0,m(λμ)|H|ψ�ng,�0,m(λμ)〉
〈ψ�ng,�0,m(λμ)|ψ�ng,�0,m(λμ)〉 . (32)

The resulting harmonic lengths are then used for all other
states defined in the same minimum m.3 We term this
optimization scheme “anharmonicity correction,” which com-
bined with improper and proper tight binding leads to
additional choices for constructing tight-binding states: im-
proper with anharmonicity correction (IPAC) and proper with
anharmonicity correction of the m = 0 minimum (PAC). Re-
call that the improper scheme calls for the construction of
states based only on the curvature of the m = 0 minimum,
while the proper scheme constructs states in each minimum

3Alternatively, one could optimize the harmonic lengths of a
higher-lying basis state [30], which is a possible avenue for future
research.

according to the local curvature. Therefore IPAC uses an-
harmonicity correction of the m = 0 minimum and applies
the resulting states to all minima, while PAC applies anhar-
monicity correction only to the m = 0 minimum, and uses
uncorrected states in m �= 0 minima (see Fig. 2). We could
further envision the construction of states according to proper
with anharmonicity correction of all minima. However, in
the cases considered here, this scheme frequently encounters
numerical stability issues far in excess of those of the previ-
ously discussed schemes, with no benefit in terms of spectral
convergence. In many cases this issue is due to states in m �=
0 minima being optimized with excessively large harmonic
lengths, leading to large wave-function overlap and hence
numerical instability. Resolution of this problem is an interest-
ing open question, as the proper scheme with anharmonicity
correction of all minima could perhaps be useful when applied
to other systems.

E. Applicability of tight binding

A natural question to ask is whether the tight-binding
method is appropriate for obtaining the eigenspectrum of a
given superconducting circuit. A general and systematic an-
swer to this question is difficult to obtain and we do not aim
to give a comprehensive answer here. Instead we seek to mo-
tivate a “rule-of-thumb” criterion that serves as an indicator
of whether the tight-binding method can produce meaningful
results.

If the spatial spread of the localized harmonic-oscillator
states [eigenfunctions of Eq. (6)] is small compared to
distances between minima then the tight-binding approach
is physically well motivated and we expect tight-binding
wave functions to serve as good approximations to low-
energy eigenstates. If, on the other hand, the wave functions
have large spatial spread and significant overlap, then the
weak-periodic-potential approximation is more appropriate
for describing the low-energy excitations.

To quantify this discussion, we define length scales to
compare the spatial spread of wave functions with the distance
between minima. Examining the exponential dependence
exp(− 1

2
�φ T �−T �−1 �φ) of the local harmonic wave functions,

we can extract the effective harmonic length �mm′ along the
unit vector ûmm′ separating two minima m and m′:

�mm′ ≡ (
ûT

mm′�
−T �−1ûmm′

)−1/2
. (33)

It is natural to compare �mm′ to dmm′/2, half the distance
between the minima. Our rule of thumb for application of
the tight-binding method is based on the largeness of the
localization ratios

rmm′ = dmm′/2

�mm′
, (34)

compared to unity. This provides a rough threshold for judg-
ing whether the tight-binding method might be appropriate.

III. TIGHT BINDING APPLIED TO THE FLUX QUBIT

In order to evaluate the accuracy of the tight-binding
method, we first apply it to the familiar case of the three-
junction flux qubit. The spectrum of the flux qubit is well
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understood [21,41], but applying the method in this context is
of interest and nontrivial because the flux qubit has multiple
degrees of freedom and multiple inequivalent minima in the
central unit cell. Additionally, the flux qubit is typically op-
erated in a parameter regime where tight-binding techniques
are applicable. Indeed, many authors have used tight-binding
techniques to get analytical estimates of tunneling rates and
low-energy eigenvalues [21–23]. We extend this previous re-
search by using multiple tight-binding basis states in each
inequivalent minimum to obtain improved low-energy eigen-
value estimates.

We consider the case where two of the junctions are iden-
tical with junction energy EJ and capacitance CJ , while the
third has junction energy and capacitance reduced by a factor
of α. The Hamiltonian is [21]

Hflux =
2∑

i, j=1

(ni − ngi )4(EC)i j (n j − ngj )

− EJ cos(φ1) − EJ cos(φ2)

− αEJ cos(φ1 − φ2 + ϕext ) + EJ (2 + α), (35)

where ϕext = 2π�ext/�0, �0 = h/2e is the flux quantum,
EC = e2

2 C−1 is the charging energy matrix, and the constant
term is included to ensure that the spectrum of Hflux is positive.
The capacitance matrix C is

C =
(

CJ (1 + α) + Cg −αCJ

−αCJ CJ (1 + α) + Cg

)
, (36)

where Cg is the capacitance to ground of each island. [See
Refs. [21,41] for details on the derivation of Eq. (35).]

In order to demonstrate quantitative accuracy of the tight-
binding method, we calculate the flux and offset-charge
dependence of the spectrum (see Fig. 3). For the parameters
considered, the localization ratios are large compared with
unity, indicating that the parameter regimes are amenable
to tight binding. Figures 3(a) and 3(b) show the spectrum
as a function of flux and offset charge, respectively, with
improper-tight-binding results overlaying the exact spectrum
obtained via charge basis diagonalization. While the spectra
from the two different methods are indistinguishable in the
upper panels of Figs. 3(a) and 3(b), we explicitly visualize
the residuals for the four lowest eigenenergies in the lower
panels of Figs. 3(a) and 3(b). For �max = 5, the residuals are
all below 1 MHz for flux and offset-charge variation. Further
suppression of the absolute error below 1 kHz is possible by
increasing the global excitation number cutoff to �max = 10.

Even for relatively greedy cutoffs of the global excitation
number �max, the improper-tight-binding method can provide
accurate estimates of the eigenspectrum. To compare results
obtained using tight-binding methods with results from exact
diagonalization, we compute the relative deviation from the
exact low-energy spectrum, averaged over the four lowest-
energy eigenvalues:

ηavg = 1

4

3∑
i=0

Ei − εi

εi
. (37)

Here, εi is the exact eigenenergy of the state indexed by i
and Ei is the approximate eigenenergy. We also define the

FIG. 3. Spectrum of the flux qubit as a function of (a) flux and
(b) offset charge ng1, calculated using charge basis diagonalization
(solid) and improper tight binding (dashed). At the magnifica-
tion level of the two figures, the spectra almost exactly overlap.
Below each spectrum is the absolute error of the tight-binding
calculation relative to the exact spectrum for each of the four lowest-
energy eigenstates. Sub-MHz level agreement is achieved in all
cases considered here with �max = 5, and sub-kHz level absolute
error is possible for both parameter sets by increasing �max. For
(a) flux modulation, we choose parameters EJ/h = 1 GHz, EJ/ECJ =
60, ECg/ECJ = 50, α = 0.8, and ngi = 0 [41]. For (b) tuning ng1, we
use parameters EJ/h = 1 GHz, EJ/ECJ = 5, ECg/ECJ = 50, α = 0.8
and have set ng2 = 0, ϕext = 0.5.

minimum and maximum relative deviations

ηmin = min
i = 0, . . . , 3

(Ei − εi

εi

)
,

with ηmax defined similarly. To monitor convergence and as-
sess the memory requirements for reaching a desired accuracy,
we plot in Fig. 4 ηavg as a function of nonzero Hamiltonian
matrix elements (nH ). We use nH rather than Hilbert-space
dimension as a proxy for memory usage to account for the
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FIG. 4. Comparison of convergence to the exact low-energy flux
qubit spectrum between improper tight binding (blue circle, solid
line) and approximate diagonalization in the charge basis (green
circle, dashed line) as a function of nH . The colored circles repre-
sent the average relative deviation ηavg, while the colored lines are
merely a guide to the eye. The colored shaded regions encompass
the range between ηmin and ηmax. The gray shaded region represents
the nH values for which tight binding yields an advantage over charge
basis diagonalization, comparing ηavg for a given nH . Improper tight
binding allows for an accurate estimate of the low-energy eigenspec-
trum already at �max = 1, yielding ηavg < 7 × 10−3 and maximum
absolute error of less than 25 MHz. We choose the parameters
of Fig. 3(a), as well as ϕext = 0.47, ng1 = 0.2, ng2 = 0.3. We can
perform the same calculation for the parameters of Fig. 3(b) and
obtain similar results, with tight binding outperforming charge basis
diagonalization for small nH . The inset shows a schematic of the
flux-qubit circuit.

different cases of sparse vs dense matrix numerics encoun-
tered for diagonalization in the charge basis vs tight binding.
For a cutoff as greedy as �max = 1, corresponding to nH = 36,
we find ηavg < 7 × 10−3 using improper tight binding. Note
that for the flux qubit in the parameter regimes considered
here, neither the proper-tight-binding technique nor anhar-
monicity correction provided any appreciable benefit in terms
of convergence to the spectrum over improper tight binding.

To benchmark convergence of the tight-binding method,
we compare against results obtained using truncated diago-
nalization in the charge basis. We compute the average relative
deviation ηavg using energy estimates obtained via a choice of
charge basis cutoff ncut. By increasing ncut, we increase nH

and can thereby perform a direct comparison with ηavg values
obtained via tight binding (see Fig. 4). The shaded region of
Fig. 4 indicates where tight binding outperforms approximate
diagonalization in the charge basis for a given nH . The advan-
tage region for tight binding is for small values of nH , indi-
cating that when keeping few basis states tight-binding states
yield a closer approximation to the true low-energy eigen-
states than charge basis states. At larger values of nH , charge
basis diagonalization begins to outperform tight binding.

IV. TIGHT BINDING APPLIED TO THE
CURRENT-MIRROR CIRCUIT

We expect the tight-binding method to be most useful in
the study of larger circuits, where keeping a generous number

FIG. 5. Performance of the tight-binding method as applied to
the NB = 3 current-mirror circuit. Similarly to the case of the flux
qubit, we plot ηavg for improper tight binding (blue circle, solid
line), improper tight binding with anharmonicity correction (red
triangle, solid line), and approximate diagonalization in the charge
basis (green circle, dashed line) as a function of nH . Improper tight
binding with anharmonicity correction outperforms charge basis di-
agonalization across approximately four orders of magnitude in nH ,
as indicated by the shaded region. The sharp cliff in ηmin for improper
tight binding with anharmonicity correction at nH ≈ 105 is due to
the inclusion of new basis states that contribute to the ground state,
yielding ηmin ≈ 10−4. The inset shows a schematic of the NB = 3
current-mirror circuit. We choose ϕext = 0 and ngi = 0, with circuit
parameters given in the main text.

of basis states is not feasible due to memory requirements. To
demonstrate the tight-binding method on such a larger circuit,
we apply it to the current-mirror circuit [3], described by the
Hamiltonian [17,18]

HCM =
2NB−1∑
i, j=1

(ni − ngi )4(EC)i j (n j − ngj )

− EJ

2NB−1∑
i=1

cos(φi − ϕext/2NB)

− EJ cos
(
�

2NB−1
i=1 φi − ϕext/2NB

) + 2NBEJ , (38)

where NB refers to the number of big capacitors. The charg-
ing energy matrix EC involves contributions from individual
charging energies ECB , ECJ , ECg due to the big-shunt, junction,
and ground capacitances, respectively [17]. An example cir-
cuit with NB = 3 without the capacitors to ground is shown
in the inset of Fig. 5. The number of degrees of freedom of
the circuit is given by 2NB − 1. The interest in this circuit
originates from Kitaev’s prediction that quantum information
should be protected against relaxation and dephasing in the
current mirror [3]. For a representative choice of parameters,
one can identify NB ≈ 12 as the ideal value of NB [17]. Circuit
sizes with such large values of NB exceed our capabilities
for finding eigenstates and eigenenergies via diagonalization
in the charge basis; the maximum value of NB where we
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TABLE I. Eigenenergies for the ground state and first-excited state of the NB = 5 current-mirror circuit. Energies were computed using
tight-binding schemes (IP) improper, (P) proper, (IPAC) improper with anharmonicity correction, (PAC) proper with anharmonicity correction
of the m = 0 minimum, as well as (AD) approximate diagonalization in the charge basis. The energies are color coded from least accurate
(darkest) to most accurate (lightest). The three tight-binding flavors P, IPAC, and PAC all perform similarly and outperform IP. The most
accurate results for E0 and E1 were obtained with tight binding rather than with approximate diagonalization in the charge basis (circuit
parameters used are the same as in Fig. 5).

can achieve spectral convergence is NB = 3.4 We note that
we additionally attempted to simulate Eq. (38) using DMRG
[17,42], and similarly found a limit of NB = 3. Due to the
long-range interactions present in Eq. (38), bond dimensions
become prohibitively large, which is a challenge for con-
vergence. Below, we show that the tight-binding method is
an advantageous alternative for simulating the current-mirror
circuit at larger values of NB.

Implementation of the tight-binding method for the
current-mirror circuit proceeds in a manner analogous to
the case of the flux qubit, as neither circuit contains induc-
tors. We choose a set of protected circuit parameters given
by ECB/h = 0.2 GHz, ECJ /h = 35 GHz, ECg/h = 45 GHz,
EJ/h = 10 GHz, ϕext = 0, and ngi = 0. To establish qualita-
tively that the current-mirror circuit with these parameters is
amenable to a tight-binding treatment, we fix a value of NB

and verify that the localization ratios are all of order unity
or larger. We observe that the localization ratios generally
increase with NB, indicating that the tight-binding method
should become increasingly accurate with larger NB. For an
independent quantitative assessment of the validity of tight
binding, we will compare spectra obtained with tight-binding
methods with exact results. For this purpose we first apply the
tight-binding method to the NB = 3 current-mirror circuit. We
can obtain excellent agreement between spectra obtained via
tight binding and exact results, with average relative devia-
tions ηavg below 2 × 10−5 (see Fig. 5). The best agreement
is for the energy of the ground state, for which we obtain
agreement to within 16 kHz. For the first- and second-excited
states these results correspond to sub-MHz agreement, while
for the third-excited state agreement is on the order of 1 MHz.
The use of the anharmonicity correction yields a substantial
benefit that is critical for achieving this level of accuracy.
We find that the proper-tight-binding method yields nearly
identical results to those produced by improper tight binding,
and therefore those results are not shown in Fig. 5. Our highest
accuracy approximations are obtained with �max = 8, cor-
responding to nH = 1.5 × 107, beyond which we encounter

4Our calculations were performed on an Intel Xeon CPU E5-1650
24 core processor with 128 GB RAM.

numerical instabilities. We emphasize that one can actually
obtain a reasonable approximation to the spectrum based on
moderate values of �max, as shown in Fig. 5. For example,
with �max = 1 and nH = 324, improper tight binding with an-
harmonicity correction yields ηavg ≈ 8 × 10−3, corresponding
to absolute errors of about 300 MHz.

We can contrast these results with those obtained using
truncated diagonalization in the charge basis. Using the same
metric for memory efficiency previously applied to the flux-
qubit example, we find that tight binding is advantageous over
a wide range of nH values (see Fig. 5). Specifically, to achieve
ηavg ≈ 8 × 10−3, truncated diagonalization in the charge basis
requires about three more orders of magnitude in memory
resources as compared to tight binding. The advantage region
for tight binding extends over approximately four orders of
magnitude 102 � nH � 106, as shown in the shaded area of
Fig. 5.

To extend toward the regime of ideal NB, we apply the
tight-binding method to obtain the spectrum of the NB = 5
current-mirror circuit, which has nine degrees of freedom.
We compute the ground-state energy E0 and first-excited-state
energy E1 using the four tight-binding techniques (improper,
proper, IPAC and PAC; see Table I). By the variational prin-
ciple, our computed eigenenergies are upper bounds to the
true eigenenergies [30,31,40]. Therefore, lower eigenenergy
values always imply higher accuracy. The proper, IPAC,
and PAC tight-binding schemes all perform similarly but
collectively outperform the improper scheme. The lowest
eigenenergies are obtained using IPAC, with bounds ε0 �
81.6472 GHz and ε1 � 82.7224 GHz. The largest cutoff
we can handle is �max = 5 (nH = 1.0 × 108), beyond which
we encounter memory issues. We observe that for this cir-
cuit ansatz states localized in minima aside from the m = 0
minimum contribute to the low-energy spectrum, and more-
over the curvatures of those minima differ from those of
the m = 0 minimum. Otherwise, there would be no dif-
ference between the eigenenergies computed with improper
and proper tight binding. Note that schemes IPAC and
PAC allow for rough estimates of the eigenspectrum with
a greedy cutoff �max = 2 (nH = 7.6 × 104), with calculated
E0, E1 less than 200 MHz greater than the lowest obtained
respective values.
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FIG. 6. Comparison of computed ground-state energies for the
NB = 5 current-mirror circuit. Individual curves correspond to results
obtained with tight-binding schemes improper (blue solid circle,
solid line), improper with anharmonicity correction (red triangle,
solid line), proper (orange open circle, solid line), and proper
with anharmonicity correction of the global minimum (pink star,
solid line), as well as approximate diagonalization in the charge
basis (green solid circle, dashed line). Tight-binding techniques
consistently yield lower and hence more accurate eigenenergies
as compared to charge basis diagonalization, with a difference of
163 MHz between the best results obtained with tight binding and
approximate diagonalization in the charge basis (see the inset). We
used the same current-mirror circuit parameters here as in Fig. 5.

We next compare tight-binding results with those from
approximate diagonalization using the truncated charge ba-
sis. For NB = 5 the maximum possible charge cutoff we can
handle is ncut = 3, corresponding to a Hilbert-space dimen-
sion of d = 4.0 × 107 and number of nonzero Hamiltonian
matrix elements nH = 6.8 × 108. The best estimates for E0

and E1 obtained using approximate diagonalization in the
charge basis are in fact higher and therefore less accurate than
the lowest obtained values using tight-binding methods (see
Table I). Moreover, the tight-binding methods consistently
yield lower eigenenergy approximations across all nH values.
Figure 6 illustrates this point for the ground-state energy E0,
and similar results hold for the first-excited-state energy E1.
We thus find that the tight-binding method is more memory
efficient than charge basis diagonalization for the NB = 5
current-mirror circuit. More broadly, this may indicate that the
tight-binding method can serve as an interesting and useful
method in the context of large circuits.

V. CONCLUSION

We have generalized the well-known method of tight
binding for the purpose of efficiently and accurately ob-
taining the low-energy spectra of superconducting circuits.
We demonstrated the method on systems with many degrees
of freedom, multiple inequivalent minima, and periodic po-
tentials. Though not discussed here in detail, the method
can be generalized to extended systems. Construction of the
Hamiltonian proceeds by using ansatz Bloch states that lo-
calize in minima of the potential. In terms of these states,
the Schrödinger equation turns into a generalized eigenvalue
problem. Solving it yields a spectrum that provides upper
bounds to the true eigenenergies. To establish the accuracy
of the tight-binding method we apply it to the flux qubit and
achieve agreement with exact results at the kHz level.

Because the method is expected to be of use for larger
circuits, we apply it to the NB = 3, 5 current-mirror circuits,
which have five and nine degrees of freedom, respectively. We
find excellent agreement with exact results in the case of the
NB = 3 circuit. Moreover, across multiple orders of magni-
tude in memory usage (as quantified by nH ), eigenenergies
computed using tight binding are found to be more accurate
than those calculated using the charge basis. For the NB = 5
circuit, the tight-binding method allows for the extraction of
eigenenergies that are lower than any obtainable using the
charge basis, given our computational resources. This paper
supplements recent research also focused on the efficient sim-
ulation of large superconducting circuits [14,15].

To extend and improve the tight-binding method beyond
what is described here, we envision developing an improved
state-optimization procedure beyond optimizing the harmonic
lengths of the ansatz ground state, as well as devising a hybrid
method including both tight binding and charge basis diag-
onalization to accommodate circuits with both localized and
delocalized degrees of freedom.
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APPENDIX: NORMAL ORDERING IN THE PRESENCE OF SQUEEZING

As discussed in the main text, we must normal order the operator product

S†
m′T †

�θm′
OT�θm+2π �j Sm (A1)

prior to numerical evaluation. Normal ordering of the squeezing operator Sm [Eq. (22)] proceeds by first placing Sm in so-called
disentangled form [35,43]

Sm = exp
( − 1

2 TrY
)

exp
( − 1

2 a†
μXμνa†

ν

)
exp

( − a†
μYμνaν

)
exp

(
1
2 aμZμνaν

)
, (A2)

where X = u−1v,Y = ln u, Z = vu−1, where we omit the m dependence of these quantities for notational simplicity [33]. The
inner term of Eq. (A2) with Y is not yet normal ordered. This can be rectified via the formula [44]

exp(a†
μYμνaν ) = : exp(a†

μ(eY − 1)μνaν ) :, (A3)
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where : : is known as the normal-ordering symbol. Creation and annihilation operators inside the normal-ordering symbol can be
commuted without making use of the commutation relations. A trivial example of the use of this superoperator is : aa† : = a†a.

To commute exponentials and V operators appearing for example in Eqs. (A2) and (27) we make use of the following
normal-ordering formulas [45,46]:

exp(aμZμνaν ) exp(a†
μXμνa†

ν ) = 1√
det(1 − 4ZX )

exp{ a†
μ[(1 − 4XZ )−1X ]μνa†

ν} (A4)

exp{a†
μ[ln(1 − 4XZ )−1]μνaν} exp{aμ[(1 − 4ZX )−1Z]μνaν}, (A5)

exp(a†
μYμνaν ) exp(a†

μY ′
μνaν ) = exp[a†

μ ln(eY eY ′
)μνaν], (A6)

exp(aμZμνaν ) exp(λμa†
μ) = exp(λμZμνλν ) exp(λμa†

μ) exp(aμZμνaν ) exp
[
λμ

(
Zμν + ZT

μν

)
aν

]
, (A7)

exp(a†
μYμνaν ) exp(λμa†

μ) = exp[a†
μ(eY )μνλν] exp(a†

μYμνaν ),

exp(a†
μYμνaν ) exp(a†

μXμνa†
ν ) = exp[a†

μ(eY )μνXνσ (eY )T
στ a†

τ ] exp(a†
μYμνaν ). (A8)

Here, X,Y,Y ′, Z , and �λ are arbitrary, except for the requirement of 1 − 4XZ and 1 − 4ZX to be nonsingular in Eq. (A4). We
note that it is relatively straightforward to obtain Eqs. (A6)–(A8) from standard applications of the BCH formula [37]. Obtaining
Eqs. (A4) and (A5) is slightly more difficult, and requires using either Lie algebra techniques [45,47] or the so-called integration
within ordered products (IWOP) procedure [46].

An instance of Eq. (A1) relevant for computing wave-function overlaps is S†
m′ exp(�λT �a†) exp(−�λT �a)Sm, identifying

�λ = 1√
2

(�θm − �θm′ + 2π �j)T �−T , (A9)

and neglecting the overall multiplicative factor [cf. Eq. (26)]. To simplify notation, we have suppressed the dependence of �λ on
m, m′, and �j. We will continue to likewise suppress the m dependence of the various matrices and distinguish between Xm and
Xm′ by using the notation X and X ′, etc. Applying each of the relations Eq. (A4)–(A8) in a few steps of algebra leads to the
normal-ordered result

S†
m′ exp(�λT �a†) exp(−�λT �a)Sm = exp ( − 1

2 [�λT {X + (1 + X )PT X ′(1 + X )}�λ + TrY ′† + TrY ])√
det(1 − X ′X )

× exp
(− 1

2
�a†

T
[{e−Y ′ }†PX {e−Y ′ }∗−Z ′] �a†

)
exp(�λT [1+X ]PT [e−Y ′

]∗ �a†) : exp( �a†
T

[e−Y ′†
Pe−Y −1]�a)

× : exp(−�λT [1 + {1 + X }PT X ′]e−Y �a) exp
(

1
2 �aT [Z − {e−Y }T PT X ′e−Y ]�a

)
, (A10)

where P = (1 − XX ′)−1, PT X ′ = 1
2 (PT X ′ + X ′P), and the matrices X, X ′, etc., can be taken to be symmetric. Similar expres-

sions can be obtained when the operator O is an explicit function of the ladder operators �a, �a†.
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