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Spin waves propagating through a stripe domain structure and reservoir computing with their spin dynamics
have been numerically studied, focusing on the relation between physical phenomena and computing capabilities.
Our system utilizes a spin-wave-based device that has a continuous magnetic garnet film and one-input/72-
output electrodes on top. To control spatially distributed spin dynamics, a stripe magnetic domain structure
and amplitude-modulated triangular input waves were used. The spatially arranged electrodes detected spin
vector outputs with various nonlinear characteristics that were leveraged for reservoir computing. By moderately
suppressing nonlinear phenomena, our system achieves 100% prediction accuracy in temporal exclusive-OR
problems with a delay step up to 5. At the same time, it shows perfect inference in delay tasks with a delay
step more than 7 and its memory capacity has a maximum value of 21. This study demonstrated that our spin-
wave-based reservoir computing has a high potential for edge-computing applications and also can offer a rich
opportunity for further understanding the underlying nonlinear physics.
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I. INTRODUCTION

Reservoir computing is a computational framework which
is originally based on recurrent neural networks [1,2]. It is
realized with a system having a reservoir part and a read-
out part. In this computational framework, the role of the
reservoir part is to nonlinearly transform time-series input
data to high-dimensional spatiotemporal signals, which allows
us to optimize the readout part with linear regression while
the reservoir part is unchanged. Owing to its unique fea-
ture, reservoir computing models require much less training
cost than deep neural networks. Thus, it is promising for
machine-learning-based edge computing [3,4] that can per-
form energy-efficient information processing of a time-series
data obtained from mobile devices and sensors. Recently, it
has been demonstrated that reservoir computing systems can
be realized with reservoirs based on physical phenomena.
Such reservoir computing, called physical reservoir comput-
ing [5], has the above-described valuable features as well as
feasibility for machine-learning electronic devices: Since the
role of the reservoir can be realized by appropriately con-
trolled physical phenomena in feasible hardware structures,
it is unnecessary to implement large and complex structures,
such as a network structure with massive numbers of internal
units and connections. Thus, physical reservoir computing has
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a high potential for revolutionary hardware technologies in the
next-generation Internet of Things era.

The following examples are some of the typical systems
and devices used for physical reservoir computing: optelec-
tronic systems [6,7], optical systems [8,9], an electronic
circuit [10], memristive resistance networks [11,12], a soft
material [13], water in a bucket [14], a silicon beam [15],
a ferroelectric metal-oxide-semiconductor field-effect transis-
tor [16], spin torque oscillators [17–19], a magnetic tunnel
junction [20], nanomagnets [21], and spin waves [22,23].
Although the relation between physical properties and com-
putation capabilities in these physical systems has not been
fully understood, physical reservoir computing can be per-
formed well when a physical system possesses rich dynamics
including high-dimensionality, nonlinearity, input-history de-
pendency, and fading memory property (echo state property)
[5]. In particular, high capabilities in extremely efficient in-
formation processing are expected for excitable continuous
medium reservoirs utilizing propagation of waves triggered by
stimulation inputs [14], without internal wiring. In these reser-
voirs, a high dimensionality can be realized by large numbers
of spatially arranged inputs and/or detectors for input/output
signals. To take advantage of this characteristic, it is primarily
important to excite, control, and detect waves to have rich
dynamics.

In our recent papers [22,23], a spin-wave-based reser-
voir computing device has been proposed as an on-chip
excitable continuous medium reservoir and its application to
machine-learning computation has been demonstrated. The
spin-wave-based reservoir computing device is fairly attrac-
tive for applications in edge domains, since it can be feasibly
realized on a chip with electrical wires just for input/output
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FIG. 1. Spin-wave-based reservoir computing system that is composed of an input preprocessing, a reservoir part, and a readout part. The
computing is executed following the order of (1)–(8) in the training, whereas it is executed following the order of (3)–(6) and then (9)–(10) in
the testing. In a spin-wave-based reservoir device in the reservoir part, a red area is the input exciter, a zebra pattern with pale and deep greens
represents a stripe magnetic domain structure, and bended black arrows schematically illustrate the expected propagation of spin waves with
multiple reflections by the magnetic domains. Blue curves schematically illustrate time-series output wave forms obtained at 72 detectors in
the device

electrodes and its power consumption is expected to be low
because of the signal transmission using spin waves [24].
Moreover, since spin waves originate from the dynamical
change in the spin distribution that is one of the electronic
properties, highly tolerant computing is expected. Toward
practical applications, steady progress in computing capabil-
ities can be made by starting with simple benchmark tasks:
temporal exclusive-OR (XOR) problems and delay tasks for
evaluating memory capacity. For the reservoir system, the for-
mer task requires both nonlinearity and short-term memory,
whereas the latter task requires only short-term memory. Since
these characteristics play crucial roles in reservoir computing,
the achievements of high computing capabilities for these
tasks clearly show the high potential of the system. Further-
more, a comprehensive study on spin-wave-based reservoir
computing can provide deep insight into the relation between
physical phenomena and computing capabilities, which is one
main interest in the field of physical reservoir computing.

In this paper, we numerically study reservoir computing
using a spin-wave-based reservoir device. To efficiently re-
alize spatially distributed rich dynamics of spin waves with
nonlinear phenomena, including nonlinear propagation and
multiple reflections, amplitude-modulated waves representing
a bit sequence are used for input signals and a stripe magnetic
domain structure is introduced in a continuous magnetic gar-
net film where spin waves propagate. It appears that various
wave forms are obtained at different positions in the mag-
netic garnet film by controlling nonlinear phenomena with
input and material parameters. Then, using the resultant wave
forms under various parameter conditions, benchmark tasks
are solved to reveal what features of spin waves are effective
for high-capability reservoir computing. In temporal XOR
problems with various interval time steps, it is found that the
prediction accuracy strongly depends on the above two param-
eters. Under moderate suppression of nonlinear phenomena

in spin waves, 100% prediction accuracy is achieved for rela-
tively large delay steps up to 5. At the same time, the memory
capacity estimated using delay tasks with various delay time
steps has a maximum value of 21. Finally, the relation between
physical phenomena and computing capabilities is discussed.

II. RESERVOIR COMPUTING SYSTEM

Spin-wave-based reservoir computing was performed with
simulator-calculated spin waves. Figure 1 shows a schematic
of our reservoir computing system that consists of a signal
preprocessing part, a spin-wave-based reservoir part, and a
readout part. In this study, the discrete time step is expressed
by n(= 1, 2, · · · , 1100) and the input data is expressed by
u(n) that has a bit value (0 or 1) changing randomly with n.

First, in the preprocessing part, u(n) is transformed to
a reservoir input signal that is the change in the uniaxial
magnetic anisotropy Ku(n) of the magnetic garnet film in the
reservoir device. When a time-series reservoir input signal
Ku(n) is fed into the input exciter of the magnetic garnet film
(the red line), spin waves are excited and then propagated.
Since the magnetic garnet film has a stripe domain structure
illustrated by pale and very-pale green stripes, as shown later,
it is expected that spin waves reflected multiple times interfere
with each other, as illustrated by black bended arrows. Reser-
voir output signals xi(t ) (i = 1, 2, · · · , 72) in response to the
reservoir input signal are obtained by detecting spin waves at
the ith detector on the magnetic garnet film, where t represents
continuous time. To use steady response, the output signals in
the first 100 time steps (corresponding to the first 100 bits) are
discarded in the readout processing.

In the readout part, xi(t ) are converted to yi(n) through
some signal processing: an envelope processing, a low-pass
filtering, and an averaging over the time step range. Then, an
optimization of the readout part is performed based on a linear
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regression [25]. By collecting yi(n) for i = 1, 2, . . . , Ny with
Ny � 72, a reservoir output vector y(n) is given by

y(n) = (y1(n), . . . , yNy (n))T ∈ RNy . (1)

The system output at the kth node is expressed by zk (n) and
then a system output vector z(n) is given by

z(n) = (z1(n), . . . , zNz (n))T ∈ RNz . (2)

The system output is expressed by

z(n) = Wouty(n), (3)

where Wout is an output weight matrix:

Wout = (
wout

ki

) ∈ RNz×Ny . (4)

After the reservoir outputs y(n) from n = 101 to 1100 are
divided into two parts, 500 steps in the first part are used
for training. Then, the time steps from 601 + L0 to 1098 (i.e.
totally L time steps) in the second part are used for testing,
where L0 corresponds to the maximum delay step in each task.
The initial L0 steps are discarded to use the common y(n) for
all the delay steps and the last two steps are discarded to avoid
artifacts in the envelope processing. In the training, the target
signal dk (n) for the kth system output in each task is generated
using u(n) and then the target of the system output vector d(n)
is given by

d(n) = (d1(n), . . . , dNz (n))T ∈ RNz . (5)

In the training, to determine the optimum weight matrix W∗,
Y and D matrices are given by column-wise collections of
y(n) and d(n), respectively, as follows:

Y = [y(101), . . . , y(600)] ∈ RNy×500, (6)

D = [d(101), . . . , d(600)] ∈ RNz×500. (7)

Then, W∗ is calculated by using the pseudoinverse matrix Y†:

W∗ = DY†. (8)

In the testing, a model output signal vector z∗(n) is calcu-
lated using W∗ and y(n) as follows:

z∗(n) = W∗y(n). (9)

Then, a binary output signal b∗
k (n) at the kth node is calculated

from z∗
k (n) with a threshold of 0.5 as follows:

b∗
k (n) =

{
1 (z∗

k (n) � 0.5)
0 (z∗

k (n) < 0.5).

For evaluating the computing capability with the system
output at the kth node, the prediction accuracy of a computing
task in the testing is calculated using the normalized Hamming
distance as follows:

acc = 1 −
∑

n

|yk (n) − b∗
k (n)|

L
, (10)

where the second term is the normalized Hamming distance.
Here, L for temporal XOR problems is 474 and that for delay
tasks is 426.

FIG. 2. Schematic illustration of a spin-wave-based reservoir
computing device that is composed of (from the bottom to top)
a conductive substrate, a magnetic garnet film, a magnetoelectric
coupling layer, and input (a red cuboid)/output (gray cylinders)
electrodes. The stripes in the magnetic garnet film denote a stripe
magnetic domain structure. In the operation of an actual device, spin
waves in the magnetic garnet film are excited by an input voltage,
they propagate through the magnetic garnet film, and their dynamics
beneath the output electrodes are detected by output voltages.

III. SPIN-WAVE-BASED RESERVOIR
COMPUTING DEVICE

A. Device structure

Figure 2 shows a schematic device structure that is com-
posed of (from the bottom to top) a conductive substrate, a
magnetic garnet film, a magnetoelectric (ME) coupling layer,
and input (a red cuboid)/output (gray cuboids) electrodes. It
is basically the same as that in our previous paper [22] and
the main differences are the shape of the input electrode, the
arrangement of the output electrodes, and the stripe magnetic
domain structure. The magnetic garnet film/ME coupling
bilayer structure is typically called a synthetic multiferroic
structure that converts from magnetic to electrical properties,
and vice versa.

In the operation of an actual device, spin waves in the
magnetic garnet film are excited by an input voltage, they
propagate through the magnetic garnet film, and their dy-
namics beneath the output electrodes are detected by output
voltages. The exchanges from spin to voltage, and vice versa,
are realized through the function of the synthetic multifer-
roic structure, such as voltage controlled magnetic anisotropy
(VCMA) [26].

In numerical experiments in this study, since spin dynamics
in the magnetic garnet film is simulated, input and output are
expressed by the change in the properties of the magnetic
garnet film near the surface, as a typical ME coupling in
synthetic multiferroic structures. The input is expressed by
the change in the magnetic anisotropy near the surface. The
output is expressed by the out-of-plane component of the aver-
aged spins over a small volume beneath each output electrode
since the output voltage is expected to be proportional to the
out-of-plane component of spins near the surface.
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B. Key ideas for high performance in reservoir computing

The following are our considerations on what physical
phenomena are specifically needed in our spin-wave-based
reservoir computing device:

(1) High-dimensionality: Different wave forms are ob-
tained at different positions in space.

(2) Nonlinearity: Nonlinear phenomena, such as nonlinear
propagation and interference, occur in response to a time-
series input signal.

(3) Input-history dependency and fading memory prop-
erty: Spin waves excited by an input signal that corresponds
to one bit information causes fluctuations at the same position
for a certain time length.

In physical reservoir computing, the reservoir part appro-
priately designed in advance is unchanged. Thus, the input
transformation from a time-series data to time-series physical
quantities and the configuration of a reservoir device are es-
sential for the realization of rich physical dynamics. Our key
ideas for these two building blocks are described below.

Regarding input signals, our idea is to use amplitude-
modulated waves corresponding to bit sequence data. This
is because transient nonlinear responses to input signals are
effective for reservoir computing [10] and such responses
excited by forced oscillations can be reliably measured in
the signal envelope, as in spin torque oscillators [17]. When
the input u(n) is transformed to a reservoir input signal, the
time period of the modulation signal is an important param-
eter, since it is expected that nonlinear transient phenomena
strongly depend on it. Thus, this study examines how spin
dynamics changes depending on this time period.

Regarding the configuration of a reservoir device, our idea
is to realize unstable spin waves in a stripe domain structure
that is frequently obtained in magnetic garnet films under
near-zero external DC magnetic field HEX [27]. Here, unstable
spin waves is used to indicate a situation that long-range
dipole interactions are not negligible due to large polar angles
in spin precessions and the precession axis for each spin
dynamically changes. From previous papers by other groups
[28], unstable spin waves can lead to rich dynamics, includ-
ing period-doubling bifurcations and chaotic behavior, when
a high-power radio-frequency input is used. Instead of this
method, when a stripe domain structure with a small HEX is
used, the following features are expected: Unstable spin waves
result in space-varying spin dynamics, they show nonlinear
phenomena, and they are split and reflected multiple times
in the presence of domains (and domain boundaries). These
can lead to the aforementioned physical characteristics needed
for reservoir computing. Since the properties of the magnetic
garnet film are important parameters, this study examines how
spin dynamics changes depending on the damping factor at the
boundaries of the garnet film, as will be specifically explained
in Sec. III C. It is noteworthy that a small HEX can be realized
by an available technology for on-chip devices [29], which is
advantageous for feasible implementation.

C. Simulation procedure and material parameters

Figures 3(a) and 3(b) show top-schematic and cross-
sectional-schematic views of a magnetic garnet film used for
the simulation, respectively, where red and blue regions are

FIG. 3. (a) Top and (b) cross-sectional views of the spin-wave-
based reservoir computing device utilizing a magnetic garnet film,
where a Cartesian coordinate is defined in each figure, pale-green and
deep-green regions are the transmission and damping regions of spin
waves in the garnet film, respectively, and red and blue regions are
the input exciter and detectors, respectively. The damping constant
α0 in the transmission region is 0.001, whereas the damping constant
α in the damping regions is varied (α = 0.001, 0.01, 0.1, and 1)
to examine the change in spin dynamics, as described in Sec. III B.
The x-y plane and thickness along the z axis of the magnetic garnet
film is 12 × 12 μm2 and 320 nm, respectively. The depths of the
input exciter and detectors are 40 nm from the surface, as shown in
(b). (c) Detailed top-view structure of the input exciter and detectors
on the top of the garnet film, where detectors with 200 × 200 nm2

are arranged with 400 nm and 1000 nm in pitch along the x and y
axes, respectively, and the number is defined for each detector. All
the detectors are divited into four groups: areas 1, 2, 3, and 4, each
of which has 18 detectors.

the input and output regions, respectively, and a Cartesian co-
ordinate system is defined in each figure. Hereafter, the input
and output region are called the input exciter and detector,
respectively. The x-y plane has an area of 12 × 12 μm2 and a
thickness of 320 nm along the z direction, where pale-green
and deep-green regions are the transmission and damping
regions of spin waves, respectively, and the transmission re-
gion includes the input exciter and detectors. The upper and
lower boundaries in Fig. 3(a) are connected for reducing the
simulation time, which is expected to have no influence on
detected spin waves since the detectors are arranged far from
these boundaries. Figure 3(c) shows the detailed top-view
arrangement of the input exciter (a red rectangle) and detec-
tors (blue rectangles) in the magnetic garnet film, respectively.
The input exciter has an area of 800 nm × 4 μm centered
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at the origin of the x-y plane and has a depth of 40 nm
along the z axis [Fig. 3(b)]. The detectors have an area of
200 nm × 200 nm and a depth of 40 nm along the z axis
[Fig. 3(b)], they are arranged at a 400 nm pitch interval along
the x axis and at a 1000 nm pitch interval along the y axis,
respectively, and the detector number is defined in Fig. 3(c).
The detectors are divided into four groups, areas 1, 2, 3, and
4, by the broken-gray boundaries along the y axis and each
group has 18 detectors. The damping regions at the left and
right boundaries are expected to fully damp the spin waves
propagating from the input region at the center, i.e., there is
no reflection of spin waves from the boundaries to the center.
The reflection of spin waves will be verified later.

We used a micromagnetic simulator Mumax3 [30] for nu-
merical experiments on spin dynamics in the magnetic garnet
film in Figs. 3(a) and 3(b). The simulation and material param-
eters are as follows: The mesh unit defined by the xyz axes
is cubic with 40 nm on one side, a spin (magnetic moment)
is located at every mesh corner, the simulation temperature
is 0 K, the saturation magnetization Ms is 190 kA/m, the
stiffness constant AEX is 3.7 × 10−12 J/m, the uniaxial mag-
netic anisotropy Ku along the z axis is KH

u = 5 kJ/m3 in
the damping region and the transmission region except the
input exciter, and the damping constant α0 is 0.001 in the
transmission region. The Ms value is that of a bulk Y3Fe5O12

(YIG) at a few K [31], the AEX value is identical with the value
for a liquid-phase epitaxy grown YIG film on a Gd3Ga5O12

(GGG) substrate [32], and the KH
u is similar to the values for

pulsed laser deposition grown YIG films on GGG substrates
[33]. In the input exciter, Ku along the z axis was changed in
proportion to an input signal, as will be explained in Sec. III E.
To study fundamental properties and reservoir computing with
various types of spin dynamics, α in the damping region was
varied (= 0.001, 0.01, 0.1, and 1). During the simulation, a
constant external magnetic field HEX was applied along the
+y direction. The time step in the simulation was 1 × 10−12 s,
whereas averaged spin values for a specific detector were
recorded at every 5 × 10−11 s. Hereafter, the x, y, and z com-
ponents of the normalized spin are expressed by sx, sy, and sz,
respectively.

It should be noted that the α0 value 0.001 in the trans-
mission region is larger by one order of magnitude than the
experimentally estimated values in epitaxial YIG films with
high quality [34–37]. The reasons are simply to reduce sim-
ulation time and to eliminate the influence of spin waves
reflected back from the left and right boundaries by intention-
ally reducing the amplitudes of spin waves while propagating
(the latter will be discussed in VI A). Thus, since this α0 value
just leads to smaller decay lengths of propagating spin waves,
consistent results with those in this paper will be obtained
when simulation is performed using a YIG film having a larger
x-y plane and a smaller α0 value.

D. Magnetic domain structure

The initial magnetic domain structure for spin dynamics
simulation was formed using the following procedure: First,
μ0HEX = 0.05 T was applied, then it was reduced to 0.01 T
in step of 0.01 T and, finally, it was reduced to 0.005 T in step
of 0.001 T. At each step, the spin distribution was relaxed.

FIG. 4. (a) Top and (b) cross-sectional views of the distributions
of sz in the magnetic garnet film after the relaxation under a magnetic
field μ0HEX = 0.005 T along the +y direction, where the magnitude
is defined by a color bar. The cross-sectional view is along the x
axis between two open arrows and it is extended along the z axis for
visibility.

Figures 4(a) and 4(b) show top and cross-sectional views of
the distributions of sz in the magnetic garnet film after the
final step, respectively, where the magnitude is defined by a
color bar and the cross-sectional view is extended along the
z axis for visibility. The magnetic domain has a checkered
pattern composed of red and blue lines along the y axis, i.e., a
stripe domain structure with two spin directions along the ± z
directions. The deviation from the complete stripe structure
increases as the x position approaches the left and right
boundaries. This feature is preferable for reservoir computing
because it can lead to various wave forms at the detectors.

E. Reservoir input signals

In the preprocessing part in Fig. 1, u(n) was transformed
to the reservoir input signal Ku(n) as follows. First, the time
lengths of a triangular pulse and the time step length X were
set at 1 ns and a multiple of 1 ns, respectively. As described in
Sec. III B, X is the time period of the modulation signal, which
is an important parameter for controlling spin dynamics. To
analyze the effect of X on spin dynamics as well as on the
capabilities in reservoir computing, responses to various X
values were examined: X = 1, 2, 4, 6, and 8 ns. The repetition
number of triangular pulses for one bit can be calculated such
that X ns is divided by 1 ns. For example, when X = 4 ns,
the repetition number is 4. Next, to change the amplitude of
�Ku following the input data, KM

u = 4.5 and KL
u = 4 kJ/m3

were prepared with a use of the maximum KH
u = 5.0 kJ/m3 as

the baseline. As an example, Fig. 5(a) shows a reservoir input
signal with X = 4 ns, in which 0 and 1 in u(n) are expressed
by �Ku, 0 = KH

u − KL
u and �Ku, 1 = KH

u − KM
u , respectively.

Finally, time-series reservoir input signals with various X
were prepared using the same u(n) for n = 1, . . . , 1100.
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FIG. 5. (a) Example of a reservoir input signal Ku(n) with the
time step length X = 4 ns: 0 and 1 in u(n) are expressed by �Ku, 0 =
KH

u − KL
u and �Ku, 1 = KH

u − KM
u , respectively, with a use of KH

u as
the baseline, where KH

u , KM
u , and KL

u are 5.0, 4.5, and 4.0 kJ/m3, re-
spectively. To analyze the effect of X on the properties of spin waves
as well as on the capability of the reservoir computing, reservoir
input signals with various X values were prepared; X = 1, 2, 4, 6, and
8 ns. The repetition number of triangular pulses for one bit can be cal-
culated such that X ns is divided by 1 ns. (b) Schematic illustration of
a DFT spectrum, where fIN, odd, and even denote the pulse repetion
frequency (1 GHz), the odd-number harmonic frequencies (3 and
5 GHz), and the even-number harmonic frequencies (2 and 4 GHz),
respectively, and sub- fIN and IH denote interhamonics below fIN and
interharmonics between the interger-number harmonic frequencies,
respectively.

F. Analysis of spin dynamics

To clarify the relation between physical phenomena and
computing capabilities, it is necessary to analyze how spin
dynamics are changed by the values of the two parameters
α and X . Hence, reservoir output wave forms at the detectors
were observed and they were also characterized by discrete
Fourier transform (DFT) spectra that were calculated using
output wave forms in the n range from 101 to 1100. In input
signals, since a triangular pulse with a period of 1 ns is
repeated, namely, a triangular wave with 1 GHz is used as
a carrier wave, a DFT spectrum always has a component at
1 GHz. Hereafter, the input signal frequency 1 GHz is denoted
by fIN. In the analysis, a DFT spectrum is divided into four
parts with different names, following each feature [38], as
shown in Fig. 5(b):

(1) Odd-number harmonics: Waves characterized by DFT
components at 1, 3, and 5 GHz that are the fundamental
frequencies for a triangular pulse.

(2) Even-number harmonics: Waves characterized by DFT
components at 2 and 4 GHz.

(3) Interharmonics: Waves characterized by DFT compo-
nents between the odd- and even-number harmonic frequen-
cies, including the fractional-order harmonics at 1.5, 2.5, 3.5,
and 4.5 GHz.

(4) Sub- fIN: Waves characterized by DFT components be-
low 1 GHz, including subharmonics, and supersubharmonics.
In a broad definition, this part is included in interharmonics.

Since triangular pulses were used in input signals, the odd-
number harmonics are linear responses, whereas the others are
nonlinear responses due to nonlinear phenomena. Hereafter,
the odd-number harmonics and even-number harmonics are
sometimes collectively called the integer-number harmonics.
To obtain accurate components at the integer-number and
fractional-number harmonic frequencies in DFT spectra, the
window function in the calculation was rectangle and the time
length was the maximum common multiples of the time peri-
ods of these harmonics in the n range from 101 to 1100. The
reason why the rectangle window function was used is that a
time-varying mean value is hardly subtracted from the output
signal and it possibly has important components for reservoir
computing. It is well recognized that this DFT procedure can
lead to components at frequencies other than these harmonic
frequencies and that quantitative analyses on sub- fIN and in-
terharmonics have not yet been established [38]. Hence, the
analysis with DFT spectra is phenomenological based on how
the spectrum feature changes with the parameters X and α.

IV. PHYSICAL PROPERTIES OF SPIN
DYNAMICS AT DETECTORS

Figure 6 shows wave forms and DFT spectra obtained with
α = 0.1 and various X (= 1, 2, 4, 6, and 8 ns), where the unit of
the horizontal axis for the wave forms is time step n, red-line
plots are results for the reservoir input signal with X = 4 ns,
and blue-line plots are results for reservoir output signals at
detector 1. In the wave forms, the green sections correspond to
input value of 0 (�Ku, 0), whereas the rest of the white sections
correspond to input value of 1(�Ku, 1). In the DFT spectrum of
the reservoir input signal in the upper-right panel, whereas the
peaks at 1.0, 3.0, and 5.0 GHz are dominant, the background
amplitude shows a gradual decrease with increasing frequency
as well as a small oscillation with a constant period. The
odd-number harmonics are consistent with the Fourier series
expansion of sequential triangular pulses and the gradual de-
crease is simply interpreted as the random change in �Ku

with n. On the other hand, the period of the small oscillation
is 0.25 GHz that corresponds to 1/X = 1/4 ns−1. Since this
relation in oscillation was also confirmed in the DFT spectra
for input signals with other X values (not shown here), it is
attributable to the change in �Ku with the step of X .

In the reservoir output signals plotted with the blue lines,
the following features are seen. The prominent feature is that
nonlinear phenomena were obtained under all the conditions
examined, since all the DFT spectra have peaked components
at the even-number harmonic frequencies and components
at the sub- fIN and interharmonic frequencies. At X = 1 ns,
the amplitude of the wave form changes frequently with n
and its outline does not apparently respond to the reservoir
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FIG. 6. Red lines in the top two figures: A wave form and a DFT
spectrum of input triangular pulses with two modulated amplitudes
corresponding to bit sequence data, for which the transformation
rule from the bit to amplitude of KU is shown in Fig. 5(a). On the
left-hand side, the unit of the horizontal axis is time step n, i.e., the
time normalized by X ns. On the right-hand side, the DFT spectrum
calculated for X = 4 ns is shown. Blue lines: Wave forms and DFT
spectra of the resultant spin waves detected at detector 1 when α

= 0.1 and various time steps X (= 1, 2, 4, 6, and 8 ns). In the
wave forms, the green ranges correspond to the bit value 0 (�Ku, 0),
whereas the rest white ranges correspond to the bit value 1 (�Ku, 1).
Note that the widths of the lines for X = 1 and 2 ns are broadened
compared to those of the others to clearly see the outlines.

input signal at the present time step n. As X is increased,
the outline of the wave form more clearly responds to the
reservoir input signal at the present time step, in such a way
that the amplitude of the wave form increases (decreases) after
the bit transition from 1 to 0 (from 0 to 1). In the n range of
107–114 (corresponds to an input sequence of [0, 1, 1, 1, 0, 0,
0]), the wave forms for X = 2, 4, 6, and 8 ns show an almost
complete change from the maximum to minimum amplitudes,
and vice versa, with similar relaxation times. In the n range
of 100–107 (corresponds to an input sequence of [0, 1, 0,
1, 0, 1, 0]), the outlines of the wave forms slightly differ
from each other. Considering the similar relaxation times in
the n range of 107–114, the difference in the outline of the
wave form between X = 2, 4, 6, and 8 ns mainly arises
from the difference in the time step length X . On the other
hand, the DFT spectrum changes with X . As X is increased,
the sub- fIN and interharmonic components decrease, whereas
the integer-number harmonic components remain almost un-
changed. These features indicate that the most change in spin

FIG. 7. Wave forms and DFT spectra of reservoir output signals
obtained at detector 1 when various α values (= 0.001, 0.01, 0.1, and
1) and X = 4 ns.

dynamics originates from nonlinear phenomena characterized
by the sub- fIN and interharmonic components.

Figure 7 shows wave forms and DFT spectra obtained with
various α values (= 0.001, 0.01, 0.1, and 1) and X = 4 ns,
where blue lines are the results for reservoir output signals
at detector 1. In the n range of 100–107 (corresponds to an
input sequence of [0, 1, 0, 1, 0, 1, 0]), the outline of the wave
form responds to the present input signal more clearly with
increasing α, while the amplitude becomes smaller. In the
DFT spectra, when the sub- fIN components and the relative
ratios between the integer-number harmonic components are
observed, they change little with α. In contrast, the interha-
monic components greatly increase with decreasing α, which
is similar to the feature with decreasing X in Fig. 6. However,
the spectrum for α = 0.001 and X = 4 ns in Fig. 7 differs
from that for α = 0.1 and X = 1 ns in Fig. 6. Thus, the
effects of decreasing α and X on the reservoir output signal
are roughly similar, but they are not identical. This indicates
that the change in the spin dynamics by α is different from
that by X .

Reservoir output signals at various detectors were observed
to confirm the realization of various wave forms. Figure 8
shows wave forms and DFT spectra at detectors 1, 13, and
37 obtained for α = 0.1 and X = 4 ns. Whereas the three
detectors are located at the nearest x position from the input
exciter, the y positions are different, as shown in Fig. 3(c).
The three wave forms are roughly similar, but not identi-
cal. The difference is also characterized by the DFT spectra,
where each spectrum has a unique feature that is most simply
confirmed in the relative ratios between the integer-number
harmonic components. Thus, it was found that the three de-
tectors have different output wave forms even though they
are located in the stripe domain structure without significant
deviation, as seen in Fig. 4(a). In the same manner, when
wave forms and DFT spectra at all the detectors were ob-
served, they were unique for each detector. To understand such
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FIG. 8. Wave forms and DFT spectra of reservoir output signals
obtained at detectors 37, 13, and 1 when α = 0.1 and X = 4 ns.

detector-dependent wave forms, the spatial distributions of sz

at different n are also helpful, as shown in Appendix A.
Important phenomena were also found when wave forms

at detectors in the same line along the x axis were observed.
Figure 9 shows wave forms and DFT spectra at detectors 1,
7, and 12 when α = 0.1 and X = 4 ns. With the increase of
the detector number from 1 to 7 (the increase of the distance
from the input exciter), the wave forms more ambiguously
respond to the present input signal, which are confirmed by
the valleys and peaks of the outline. Moreover, even when the
wave form at detector 1 is shifted along the horizontal axis
and its amplitude is reduced, a wave form identical with that
at detector 7 cannot be created. Thus, it is very probable that
the spin waves are nonlinearly changed while propagating due
to nonlinear phenomena and reflection with multiple times.
In the wave form at detector 12, long-period beats with a
width of ∼4 ns appear and the relation between the wave form
and input signal is unclear. On the other hand, in the DFT
spectra, as the detector number increases, the components
at higher frequencies preferentially decrease and finally the
components at around 1 GHz are present at detector 12. Thus,
the change in the wave form with increasing distance from
the input exciter partially originates from the feature that spin

FIG. 9. Wave forms and DFT spectra of reservoir output signals
obtained at detectors 1, 7, and 12 when α = 0.1 and X = 4 ns.

waves propagating in long distances are inevitably determined
by the stripe domain structure.

V. POSTPROCESS OF RESERVOIR OUTPUT SIGNALS

In the readout part in Fig. 1, the reservoir output signals
xi(t )(i = 1, · · · , 72) are converted to a 72-dimensional output
vector y(n) at each time step n. More specifically, xi(t ) in a
time step period are summarized into one value that reflects a
characteristic response to the input signals from near past to n.
As seen in the DFT spectra, the reservoir output signals have
oscillations whose fundamental time period is smaller than X
and their envelopes are expected to reflect characteristic re-
sponses. Moreover, instantaneous changes should be excluded
since they can be noise that does not reflect characteristic
responses. Based on these considerations, the following pro-
cedure of the post signal processing was used, as shown in
Figs. 10(a)–10(d). First, an envelope processing and a sub-
sequent low-pass filtering were performed for the reservoir
output signals xi(t )(i = 1, · · · , 72), as shown in Figs. 10(b)
and 10(c). In the low-pass filtering, the cutoff frequency fc

defined by −10 dB is 1.3 GHz. Then, the resultant signal at
each detector was averaged over the time period of n, i.e., X ,
as shown in Fig. 10(d). Finally, the averaged value at detector i
was assigned to yi(n)(i = 1, · · · , 72) in y(n). Clearly, the post
signal processing extracts information in the low-frequency
range � fc. Nonetheless, spin waves in a wide frequency range
are probably related to y(n) since they can dynamically inter-
act with each other through nonlinear phenomena. It should
be noted that the above postprocess procedure is feasible for
implementation since each signal processing is a widely used
one.

VI. RESERVOIR COMPUTING

In this section, reservoir computing is performed with two
main purposes. The first purpose is to find parameter sets of
α and X values that achieve high computing capabilities for
two different tasks, which is needed for an adjustable reservoir
computing system. The second purpose is to explore how the
computing capabilities for the two tasks change with the phys-
ical properties of the spin waves, for deep understanding of
physical reservoir computing. Whereas the specifications (1)
and (2) in Sec. III B were basically characterized in Sec. IV,
the specification (3) can be evaluated only by computing tasks.
Here, what can be revealed by computing tasks is briefly
described below.

(1) Temporal XOR problems [39]
These problems are linearly inseparable tasks that need

both nonlinearity and fading memory. Since the relation be-
tween nonlinear physical phenomena and nonlinearity for
computing is unclear, we can discuss what nonlinear physical
phenomena are effective for high computing capabilities.

(2) Delay tasks [40]
When the computing capability is plotted against delay

step, the curve is directly related to the time length of fading
memory in specification (3). Using the index memory capacity
estimated from the plot, we can qualitatively discuss how
long input information is preserved in the reservoir. Moreover,
by combining the computing capability for temporal XOR
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FIG. 10. Postprocessing of a reservoir output signal, which is
executed in the order of (a) reservoir output signal, (b) an envelope
processing, (c) a low-pass filtering, and (d) averaging over the time
step X . Blue lines in (a)−(d) are the same signal obtained at detector
1 when α = 0.1 and X = 4 ns. Colored lines in (b)−(d) are the
signals after the processing. The xi(n) value in (d) is assigned to
yi(n)(i = 1, · · · , 72) in y(n).

problems under a certain parameter set of α and X , it is pos-
sible to discuss the relation between nonlinearity and memory
capacity, which is one of the interests in the research field of
reservoir computing [41].

A. Temporal XOR problems

Reservoir computing was performed using 72-dimensional
y(n) for various conditions with α (= 0.001, 0.01, 0.1, and
1) and X (= 1, 2, 4, 6, and 8 ns). Hereafter, y(n) has 72
dimensions unless otherwise noted. To evaluate the device
capability for nonlinear transformation of the input signal to
y(n), temporal XOR problems were solved with the target
output:

dk (n) = XOR(u(n − 1), u(n − k))

for delay k = 2, . . . , 24. (11)

FIG. 11. Singals in solving a XOR problem using 72-
dimensional y(n) with the target output d3(n) = XOR(u(n −
1), u(n − 3)) (corresponding to delay k = 3) when α = 0.1 and X
= 4 ns. Red open circles are the input binary data and blue open
circles represent the calculated values in the readout part. (a) Input
u(n) that has a bit value (0 or 1) changing randomly with n. (b) Target
signal d3(n) = XOR(u(n − 1), u(n − 3)). (c) Model output z∗

3 (n).
(d) Binary output b∗

3(n) calculated from z∗
3 (n) with a threshold of

0.5.

To solve the temporal XOR problem with delay k, the signal
transformation by the reservoir requires nonlinearity and a
memory of past k inputs. We assume k � 2 to eliminate the
trivial case of k = 1 where dk (n) = 0 for all n. Here, to eval-
uate the capability, the index CP is defined by the maximum
value of k such that 100% prediction accuracy (acc = 1) is
maintained when k is increased. First, signals in the computa-
tion flow were observed by one example. Figures 11(a)–11(d)
show the input u(n), the target output d3(n), the model output
z∗

3 (n), and the binary output b∗(n), respectively, where α =
0.1, X = 4 ns, open circles are the values at n, and colored
lines connecting the nearest-neighbor open circles are guides.
In this case, d3(n) = b∗

3(n) in the entire n range, meaning acc
= 1. Figures 12(a)–12(d) show acc calculated for α = 0.001,
0.01, 0.1, and 1, respectively, plotted against k, where black,
red, blue, brown, and green dots represent the results for X =
1, 2, 4, 6, and 8 ns, respectively. When α = 0.001 in Fig. 12(a),
all the curves do not have acc = 1 and immediately decrease
to the minimum acc = 0.5 with increasing k, in which the
decreasing slope changes little with X . When α is increased
from 0.001 to 0.01, acc for each X becomes larger at k = 2
and the decreasing slope in each curve becomes more steep
except X = 1 ns, as shown in Fig. 12(b). However, since all
the curves do not have acc = 1, CP was not obtained. When
α is increased from 0.01 to 0.1, the features of the curves are
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FIG. 12. Prediction accuracy plotted against delay k, which were
estimated by solving XOR problems using 72-dimensional y(n)
with dk (n) = XOR(u(n − 1), u(n − k)) for delay k = 2, · · · , 24: α

= (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1, where black, red, blue, brown,
and green dots represent the results for X = 1, 2, 4, 6, and 8 ns,
respectively, and colored lines connecting nearest-neighbor dots are
guides.

highly improved, as shown in Fig. 12(c). The curves for X =
2, 4, 6, and 8 ns have acc = 1 for k � 2, which are confirmed
by the plateau in the low k range. The curves for X = 4, 6,
and 8 ns have similar decreasing slopes. When α is increased
from 0.1 to 1, the feature of the curve for X = 2 ns is slightly
improved, whereas the features of the curves for X = 4, 6, and
8 ns are almost unchanged, as shown in Fig. 12(d). Table I
lists CP for all the α and X conditions, in which CP � 4 was
obtained for 7 conditions and the highest CP = 5 was obtained
for α = 0.1 with X = 4 and 6 ns.

So far, the reservoir computing was performed using 72-
dimensional y(n) from 72 detectors. Here, the detectors are
divided into four groups named areas 1, 2, 3, and 4, as shown

� =  0.001
X = 4 ns

� =  0.1
X = 4 ns

� =  0.01
X = 4 ns

� =  1
X = 4 ns

Area-1
Area-2
Area-3
Area-4

(a) (b)

(c) (d)

0 10 20

0.5

0.6

0.7

0.8

0.9

1

0 10 20

0.5

0.6

0.7

0.8

0.9

1

0 10 20

0.5

0.6

0.7

0.8

0.9

1

0 10 20

0.5

0.6

0.7

0.8

0.9

1

Area-1
Area-2
Area-3
Area-4

Area-1
Area-2
Area-3
Area-4

Area-1
Area-2
Area-3
Area-4

Delay k Delay k

Delay k Delay k
Pr

ed
ic

tio
n 

ac
cu

ra
cy

 a
cc

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 a

cc

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 a

cc

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 a

cc

FIG. 13. Prediction accuracy plotted against delay k, which were
estimated by solving XOR problems using 18-dimensional y(n)
with dk (n) = XOR(u(n − 1), u(n − k)) for delay k = 2, · · · , 24: α

= (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1, where grey, orange, pale-blue,
and pale-green dots represent the results with X = 4 ns for areas 1, 2,
3, and 4, respectively, and colored lines connecting nearest-neighbor
dots are guides.

in Fig. 3(c), and then the temporal XOR problems were solved
using 18 detectors in each area, when α was varied and X
= 4 ns. In consequence, y(n) for each computation is an 18-
dimensional vector. Figures 13(a)–13(d) show acc calculated
for α = 0.001, 0.01, 0.1, and 1, respectively, plotted against k,
where grey, orange, pale-blue, and pale-green dots represent
the results for areas 1, 2, 3, and 4, respectively. At each α

value, the curves for areas 1, 2, 3, and 4 are similar to each
other and have smaller values than the curve for X = 4 ns in
Figs. 12(a)–12(d). The results clearly indicate that the y(n)
dimension effective for reservoir computing increases with
increasing number of the detector, i.e., higher dimensionality
was efficiently obtained by the increase of the reservoir output

TABLE I. Summaries of the computing capabilities CP, MCacc, and MC obtained for various α and X values. CP for the temporal XOR
ploblems is defined by the maximum value of delay k such that 100% prediction accuracy (acc = 1) is maintained when k is increased, where
bars in CP columns represent N/A. MCacc for the delay tasks is defined by the maximum value of delay k such that 100% prediction accuracy
(acc = 1) is maintained when k is increased. MC for the delay tasks is defined by Eq. (13).

α = 0.001 α = 0.01 α = 0.1 α = 1

XOR problem Delay task XOR problem Delay task XOR problem Delay task XOR problem Delay task

X CP MCacc MC CP MCacc MC CP MCacc MC CP MCacc MC

1 ns − 0 14 − 0 36 − 15 31 − 18 28
2 ns − 0 19 − 9 42 2 16 24 4 13 21
4 ns − 1 20 − 15 32 5 12 16 4 11 15
6 ns − 3 18 − 15 26 5 10 13 4 10 13
8 ns − 5 18 − 13 23 4 9 10 4 8 11
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signals with various wave forms. This finding also leads to
a conclusion that the periodic arrangement of detectors in
Fig. 3(c) works well for the realization of high dimensionality
in y(n), which is advantageous for feasible implementation of
the device.

Here, we discuss the effectiveness of the damping regions
at the left and right boundaries. If spin waves are significantly
reflected from these boundaries, they also contribute to the
output signals at the detectors, particularly, in areas 1 and 4.
This is because spin waves propagating from the input exciter
can interfere with reflected spin waves that have memories
in the further past. In this situation, acc values for areas 1
and 4 can differ from those for areas 2 and 3. On the other
hand, the curves in Figs. 13(a)–13(d) do not have a clear area
dependence at each α value. Thus, the results indicate that
spin waves reflected from the left and right boundaries were
satisfactorily suppressed.

Further analyses on the wave forms for α = 0.1 and X =
4 ns were performed with various combinations of the detec-
tors to mainly evaluate whether the wave forms near the left
and right boundaries contribute to the computing capability
(Appendix B). This is because these wave forms seemingly
do not reflect the input information, as seen in that at detector
12 in Fig. 9. The results clearly support the fact that the wave
form obtained at each detector has a similar contribution to
the computing capability.

B. Delay tasks and memory capacity

Memory capacity was estimated by solving delay tasks
with the target output:

dk (n) = u(n − k) for delay k = 1, . . . , 72. (12)

In this paper, we evaluated memory capacity by two standards.
The first one is MC that is defined by the widely used formula
as follows [40]:

MC =
72∑

k=1

γ 2(k)

=
72∑

k=1

Cov2(u(n − k), b∗
k (n))

Var(u(n))Var(b∗
k (n))

, (13)

where γ , Cov, and Var denote the coefficient of determination,
covariance, and variance, respectively, and b∗

k (n) is the binary
output at n in the delay task with k, respectively. The main
purpose of using this index is to study a fundamental feature
of the reservoir device by comparing estimated values with
those in other works. On the other hand, the second one is
MCacc that is defined by the maximum value of k such that
100% prediction accuracy (acc = 1) is maintained when k is
increased. The purpose of using this index is to clarify the
conditions for applications with high-accuracy and long-step
memory, such as forecasting nonlinear autoregressive moving
average time series [42]. It should be noted that MCacc has a
value that is equal to or less than MC.

Figures 14(a)–14(d) show γ 2(k) calculated for α = 0.001,
0.01, 0.1, and 1, respectively, plotted against delay k, where
black, red, blue, brown, and green dots represent the results
for X = 1, 2, 4, 6, and 8 ns, respectively. When α = 0.001

FIG. 14. Coefficient of determination γ 2(k) plotted against delay
k, which were estimated by solving delay tasks using 72-dimensional
y(n) with the target output d (n) = u(n − k) for delay k = 1, · · · , 72:
α = (a) 0.001, (b) 0.01, (c) 0.1, and (d) 1, where black, red, blue,
brown, and green dots represent the results for X = 1, 2, 4, 6, and
8 ns, respectively, and colored lines connecting nearest-neighbor dots
are guides.

in Fig. 14(a), the curves for all the X values monotonically
decrease with increasing k and their shapes are similar to each
other. The estimated values of MCacc for X = 1, 2, 4, 6, and
8 ns are 0, 0, 1, 3, and 5, respectively. When α = 0.01 in
Fig. 14(b), the curves show different features depending on
X . As k is increased from 0, the curves except X = 1 ns show
γ 2(k) = 1 at first and then they monotonically decrease. It was
found that MCacc are not related to the fact that the decreasing
slope becomes more steep with increasing X : MCacc for X =
1, 2, 4, 6, and 8 ns are 0, 9, 15, 15, and 13, respectively. When
α = 0.1 in Fig. 14(c), all the curves are clearly different. As
k is increased from 0, all the curves show γ 2(k) = 1 at first,
whereas the k position where the curve bends toward 0 be-
comes lower with increasing X . Owing to this feature, MCacc

approximately decreases with increasing X : The estimated
values of MCacc for X = 1, 2, 4, 6, and 8 ns are 15, 16, 12,
10, and 9, respectively. When α = 1 in Fig. 14(d), the overall
feature is similar to that in Fig. 14(c), whereas MCacc for X =
1 ns is slightly improved: The estimated values of MCacc for
X = 1, 2, 4, 6, and 8 ns are 18, 13, 11, 10, and 8, respectively.
On the other hand, further analyses on the wave forms for
α = 0.1 and X = 4 ns were performed with various com-
binations of the detectors, as the temporal XOR problems in
Appendix B. It was also confirmed that the wave form ob-
tained at each detector has a similar contribution to the
computing capability.

The results for MCacc and MC are summarized in Table I.
When α = 0.001, MC is considerably larger than MCacc in all
the X cases, which arise from the gentle decreases in γ 2(k)
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with increasing k in Fig. 14(a). When α = 0.01, MC is also
considerably larger than MCacc in the cases of X = 1 and
2 ns. This is because the decreasing slopes for X = 1 and
2 ns are more gradual than those for other X values, as seen
in Fig. 14(b). Thus, under the α condition that the decreasing
slope depends significantly on X , larger MCacc does not al-
ways lead to larger MC, i.e., MCacc is not correlated with MC.
For α = 0.1 and 1, where the decreasing slopes for all the X
values are similar to each other, the estimated values of MCacc

are reasonably correlated with MC and, in a wide range of X ,
MCacc > 10 and MC > 13 were achieved. These MC values
are comparable to those obtained in the reservoir system with
a Mackey-Glass nonlinearity and a feedback loop [43] and, to
the best of our knowledge, the maximum MC value of 21 is
the highest ever in the on-chip electronic systems [16,18–20].

C. Parameter conditions for high computing capabilities

The first purpose in this section is to find sets of the
physical and input parameters, α and X , that achieve the high
computing capabilities for both two tasks. From Table I, the
following (α, X ) conditions have relatively high computing
capabilities: (0.1, 4 ns), (0.1, 6 ns), (1, 2 ns), and (1, 4 ns). The
second purpose is to reveal the origins of why these conditions
show the high computing capabilities, which will be discussed
with the physical properties of the spin waves in the next
section.

VII. DISCUSSION

Toward deep understanding of physical reservoir com-
puting, it is worthwhile to discuss the relationship between
the reservoir-computing capabilities CP and MCacc, with

suggestions on the physical properties of the spin waves be-
hind the reservoir computing. The preceding sections have
mainly studied how the physical properties of spin waves
and the reservoir-computing capabilities are changed by the
two parameters: the device parameter α and the input signal
parameter X .

In the evaluation of the capability for the temporal XOR
problems, the α and X conditions are narrow for CP � 2:
X = 2, 4, 6, and 8 ns with α = 0.1 and X = 2, 4, 6,
and 8 ns with α = 1. Thus, α is the primal parameter for
solving the temporal XOR problems. Since the decreases of
α and X result in the enhancement of nonlinear phenomena
characterized by the sub- fIN and interhamonic components,
excessive nonlinear phenomena degrade CP. It may be con-
sidered that richer nonlinear phenomena are preferable for
linearly-inseparable problems as the temporal XOR problems,
but the results indicate that there are effective and obstructive
nonlinear phenomena for reservoir computing. In the evalua-
tion of the memory capacities, the MCacc values higher than
10 were obtained under the following conditions: X = 4, 6,
and 8 ns with α = 0.01, X = 1, 2, 4, and 6 ns with α = 0.1, and
X = 1, 2, 4, and 6 ns with α = 1. Thus, the X and α conditions
are broad even though the DFT spectra are clearly changed
with the X and α values in those ranges. Considering CP
and MCacc, the device and input conditions for high-accuracy
computing is more restrictive for the temporal XOR problems.

On the other hand, as pointed out previously, whereas
the post signal processing in the readout part extracts the
characteristics only in the frequency range lower than fc =
1.3 GHz, the computation capabilities strongly depend on α

and X . This is clear evidence that the characteristics in the
high and low frequency ranges dynamically interact with each
other through nonlinear phenomena since the influence of the

FIG. 15. Time-domain wave form at detector 1 (the upper side) and instantaneous top-view sz distributions in space (the bottom side),
when α = 0.1 and X = 4 ns. The sz distributions with 12 × 12 μm2 in area are the differences from the reference sz distribution at the end of
n = 100 (after [1, 0, 1, 0, 0, 0] input sequence), where bright and dense-gray areas are the detector and exciter areas, respectively, light-gray
areas are the other areas, and the direction and strength of sz is defined by a color bar.
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change in α and X was mostly observed in the frequency range
higher than fc. Since nonlinear phenomena were characterized
only by the DFT spectra that do not directly capture dynamic
behavior, further analyses would be necessary. Nonetheless,
the above finding is noteworthy for understanding of physical
reservoir computing.

When the discussion is focused on the cases of α = 0.1
and 1, MCacc almost monotonically decreases and CP appears
with increasing X at each α, as confirmed in Table I. This
may indicate a tradeoff between MCacc and CP, as pointed
out for the echo state network [41]. In the present study,
since the CP values are not so high, the change in CP with
X is not significant. This probably arises from the fact that
the y(n) dimension is 72. Considering the result that the CP
value becomes higher with increasing number of the output
electrodes in Figs. 12 and 13, it is expected that much higher
CP values can be obtained with higher-dimensional y(n) that
is generated by a reservoir device with larger numbers of
output electrodes. This achievement may lead to a significant
change in CP with X , which can provide further insight into
the relation between MCacc and CP.

VIII. SUMMARY

In the first half of the numerical experiments, it was shown
how the physical properties of the spin waves were changed
by the two parameters: the device parameter α and the input
signal parameter X . From the characterization by the DFT
spectra, it was found that nonlinear phenomena were obtained
in all the α and X conditions examined here, which is mainly
attributable to the stripe domain structure and unstable spin
waves under the low external magnetic field. As α and X
are decreased, nonlinear phenomena more frequently occur,
which was mostly characterized by the increase of the sub- fIN

and interhamonic components in the DFT spectra. In the latter
half of the numerical experiments, the reservoir computing
was performed to evaluate CP by solving the temporal XOR
problems as well as MCacc and MC by solving the delay tasks.
In the temporal XOR problems, CP � 4 was obtained under
the following conditions: X = 4, 6, and 8 ns with α = 0.1
and X = 2, 4, 6, and 8 ns with α = 1. Since the sub- fIN

and interhamonic components for α = 0.1 and 1 are smaller
than those for α = 0.001 and 0.01, moderate suppression of
nonlinear physical phenomena was found to be a key to such
high CP values. Among the conditions for CP � 4, MCacc

and MC are relatively high and decrease with increasing X .
The maximum value of MCacc is 13 at α = 1 and X = 2 ns
condition and the value of MC is 21 at the same condition.
Therefore, this study demonstrated that the spin-wave-based
reservoir computing system simultaneously achieves the rel-
atively high CP, MCacc, and MC values among electronic
reservoir-computing hardware systems.

Since the spin-wave-based reservoir device utilizes the sig-
nal transmission through a continuous magnetic garnet film
and the signal excitation/detection by input/output electrodes
on the top, it is expected that the computing capabilities of the
reservoir system can be further improved and various func-
tionalities for edge-computing applications can be realized
just by changing the number, selection, and the arrangement
of input/output electrodes, an external magnetic field, and the

magnetic domain structure. Such scalability also can offer a
rich opportunity for further understanding of the underlying
nonlinear physics.
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APPENDIX A: SPATIAL DISTRIBUTIONS OF
sz AT DIFFERENT n

Figure 15 shows the time-domain wave form at detector 1
and instantaneous top-view sz distributions in space, when α

= 0.1 and X = 4 ns. The sz distributions with 12 × 12 μm2

in area are the differences from the reference sz distribution
at the end of n = 100 (after [1, 0, 1, 0, 0, 0] input sequence),
where bright and dense-gray areas are the detector and exciter
areas, respectively, and light-gray areas are the other areas, as

FIG. 16. (a) Detector numbers and group names, where center,
inside, middle, and outside groups are referred to as C, I, M, and O,
respectively, in (b) and (c). (b) Two types of methods for changing
detector numbers): Type I increases the groups toward the outside
boundaries (from I to O), whereas type II increases the groups to-
ward the inside exciter (from O to I). (c) Computing capabilities for
temporal XOR problems and delay tasks plotted against delay step k,
where each color of line/dots shown in the inset corresponds to the
combination of the groups in (b).
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TABLE II. Summary of computing capabilities CP, MCacc, and MC obtained with various group sets, where types I and II are the methods
for changing detector groups and C, I, M, and O denote center, inside, Mmiddle, and outside groups in Fig. 16(a), respectively.

Type I Type II

Combination CP MCacc MC CP MCacc MC Combination

C 3 8 12 3 8 12 C
C + I 4 10 14 4 11 14 C + O
C + I + M 5 12 15 5 11 15 C + I + O
C + I + M + O 5 12 16 5 12 16 C + I + M + O

confirmed from Fig. 3. Unlike spherical spin waves propagat-
ing through a uniform magnetic domain in our previous study
[22], the sz distributions are complex due to the stripe domain
structure. This fact is preferable for reservoir computing since
it results in the various time-domain waveforms at the de-
tectors, which leads to a high dimensionality in the reservoir
output signals. From the sz distributions in the detector areas,
the following characteristics were found, which is consistent
with MCacc = 13.

(1) The sz distributions at n = 100 and 112 were obtained
after [1, 0, 1, 0, 0, 0] and [1, 1, 1, 0, 0, 0] input sequences,
respectively. Since some red and blue distributions are seen
in the sz distribution at n = 112, these two distributions are
different from each other. This result reflects the difference in
the input sequence (0 or 1 at the past 5 time steps).

(2) The sz distributions at n = 101 and 113 were obtained
after [1, 0, 1, 0, 0, 0, 1] and [1, 1, 1, 0, 0, 0, 1] input sequences,
respectively. From detailed observations, these sz distributions
are different from each other. This result reflects the difference
in the input sequence (0 or 1 at the past six time steps).

APPENDIX B: CONTRIBUTIONS OF THE WAVE FORMS
NEAR THE LEFT AND RIGHT BOUNDARIES TO THE

COMPUTING CAPABILITY

There is a trend that the influence of the input sequence
on the wave form becomes more ambiguous with increasing
distance from the exciter, leading to the fact that the wave
form at detector 12 in Fig. 9 seemingly does not contain the
input information. To clearly analyze whether the wave forms
near the outside boundaries contribute to the computing capa-
bilities, numerical experiments were additionally performed.

The contribution of one detector to computing capabilities
is not so large and it probably does not exhibit a linear increase
with increasing number of the detectors. Based on these con-
siderations, some numbers of the detectors were grouped, as
shown in Fig. 16(a), where center, inside, middle, and outside
groups will be referred to as C, I, M, and O, respectively.
Then, while C group is commonly used, two types of methods
are explored to change the detector numbers, as shown in
Fig. 16(b): Type I increases the groups toward the outside
boundaries (from I to O), whereas type II increases the groups
toward the inside exciter (from O to I). If computation capa-
bilities are improved with a similar trend in types I and II, the
contribution of each group is comparable, i.e., computation
capabilities are determined mostly by the numbers of the
detectors, irrespective of the spatial position. In the following
numerical experiment, we use the wave forms obtained for α

= 0.1 and X = 4 ns.
Figure 16(c) shows computing capabilities for the temporal

XOR problems and delay tasks, where results obtained in
types I and II are shown on the left- and right-hand sides,
respectively, and each color of line and/or dots shown in the
inset corresponds to the combination of the groups in (b). In
all the graphs, the downward slope shifts toward the right and
the flat range at 1 basically increases with increasing detector
numbers, which indicates the improvement of the computing
capabilities. When the computing capabilities for the same
task in types I and II are compared with each other, they
similarly increase with increasing number of the detectors,
as summarized in Table II. Thus, the detectors in O group
(including detector 12) actually improves the computing ca-
pabilities and its contribution is comparable to those in I and
M groups.
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