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Qualitative chirality effects on the Casimir-Lifshitz torque with liquid crystals
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We model a cholesteric liquid crystal as a planar birefringent multilayer system, where the orientation of each
layer differs slightly from that of the adjacent one. This allows us to analytically simplify the otherwise acutely
complicated calculation of the Casimir-Lifshitz torque. Numerical results differ appreciably from the case of
nematic liquid crystals, which can be treated like bloc birefringent media. In particular, we find that the torque
deviates considerably from its usual sinusoidal behavior as a function of the misalignment angle. In the case
of a birefringent crystal faced with a cholesteric liquid one, the Casimir-Lifshitz torque decreases more slowly
as a function of distance than in the nematic case. In the case of two cholesteric liquid crystals, either in the
homochiral or in the heterochiral configuration, the angular dependence changes qualitatively as a function of
distance. In all considered cases, finite pitch length effects are most pronounced at distances of about 10 nm.
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I. INTRODUCTION

Casimir-Lifshitz interactions [1,2] are macroscopic disper-
sion forces that arise from quantum mechanical and thermal
fluctuations of the electromagnetic field. The name “disper-
sion forces” originates from the fact that their properties are
governed by the dielectric and magnetic dispersion of the
interacting materials [3–6]. Casimir-Lifshitz forces share the
same physical origin as the van der Waals–London forces,
which conventionally denote the interaction in cases where
retardation effects are negligible.

These forces are studied for both fundamental and practical
reasons. From a fundamental point of view, the Casimir-
Lifshitz force plays an important role in the search for
deviations from Newtonian gravitation in short-range grav-
itation experiments. Its study can facilitate the precise
comparisons between theoretical predictions and experimen-
tal data [7]. More practically, Casimir-Lifshitz interactions
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affect the actuation dynamics of nano and micromechani-
cal systems, such as switches, cantilevers, and actuators at
a submicrometer lengthscale [8–13]. The Casimir-Lifshitz
interactions also underpin the stability of colloidal and bio-
physical macromolecular systems. These forces represent one
of the pillars of the fundamental Deryaguin-Landau-Verwey-
Overbeek theory of colloid stability [14].

Precise evaluation of the Casimir-Lifshitz force between
real materials requires a detailed knowledge of the materi-
als’ electromagnetic susceptibilities as inputs [2]. Because
this interaction is mediated by virtual photons, the frequency
of which cannot be controlled directly, the Casimir-Lifshitz
interaction is a broadband phenomenon. Consequently, the
electromagnetic susceptibilities of the materials involved must
be known—either theoretically or experimentally—as a func-
tion of frequency in a sufficiently broad range. Another
requirement to evaluate the Casimir-Lifshitz interaction is
solving Maxwell’s equations for the given geometric con-
figuration of the interacting bodies. This later aspect of the
Casimir-Lifshitz calculations is the focus of this paper.

The presence of anisotropies, either in the susceptibili-
ties or the morphological anisotropy induced by the shape
of the interacting bodies [15], implies the existence of not
only forces but also Casimir-Lifshitz torques between the
interacting bodies [16]. Specifically, the dielectric anisotropy
in the plane of reflection, which will exclusively concern
us in what follows, creates a dielectric contrast in the
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azimuthal direction, which gives rise to the Casimir-Lifshitz
torque attempting to align the orientations of both materials
[17]. An exact analytical description of the Casimir-Lifshitz
torque between two planar uniaxially anisotropic half spaces
was originally based on the direct solution of the Maxwell
equations and the pertaining dispersion equation by Barash
more than four decades ago [18]. An alternative methodol-
ogy applicable to the Casimir-Lifshitz torque can be based
on the solutions of the Maxwell’s equations by interpreting
them as an eigenvalue problem. This method is known as the
transfer matrix method. It is especially suited for describing
electromagnetic field propagation through anisotropic mate-
rials [19–21], and can be used to derive the Casimir torque
between semi-infinite birefringent plates [22,23]. The results
of the transfer matrix methodology were later shown to be
consistent with the direct method of Barash [24]. Some recent
examples of the application of this method in the context of
Casimir physics include biaxial materials [25], Weyl semi-
metals [26,27], and magnetic ferrite slabs [28].

The first experimental observation of Casimir-Lifshitz
torques was accomplished only recently, by relying on the
anisotropic dielectric response of nematic liquid crystals [29].
It seems that further experiments on Casimir-Lifshitz torques
with liquid crystals are within experimental reach presently
or in the near future. Apart from the Casimir-Lifshitz torques,
liquid crystals exhibit diverse other Casimir fluctuation phe-
nomena and so might prove to be an abundant source of a
variety of distinct Casimir phenomena [30,31]. The simplest
way to theoretically describe the anisotropy of liquid crystals
is by approximating them as uniaxial half spaces with a unique
orientation [32]. This essentially approximates the liquid crys-
tal as a birefringent half space. In what follows we will refer
to this approximation as “half space approximation.” This is
indeed a valid approach if the liquid crystal is aligned, such
as in the case of nematic liquid crystals [33]. However, a
cholesteric liquid crystal actually consists of a sequence of
many thin, planar, uniaxially oriented layers, whose orienta-
tion varies periodically in space with a periodicity given by
the cholesteric pitch [34]. This type of layered system has
been shown to be amenable to the transfer matrix method [19]
as electromagnetic waves in layered anisotropic media can be
described by an algebra of 4 × 4 matrices [35].

However, a major complication arises from the fact that the
cholesteric liquid crystal consists of a large number of layers
(∼104), which generally implies a product of an equally large
number of 4 × 4 matrices. Even though the nonretarded limit
reduces the size of the matrices to 2 × 2, it does not reduce
the number of matrix multiplications [33,36–38]. Since the
computational complexity of matrix multiplication increases
linearly with the number of multiplications, an explicit an-
alytical expression for the transfer matrix can reduce this
complexity by up to four orders of magnitude. Hence here
we propose a way to analytically simplify this problem and
derive an explicit expression for the composite transfer ma-
trix for a specific planar multilayer structure that models a
cholesteric liquid crystal. We have taken advantage of the
facts that each layer is very thin, and that the difference in
orientation between each successive layer is small [34]. This
allows us to write an analytic result for the transfer matrix
based on the Baker-Campbell-Hausdorff (BCH) formula [39]

FIG. 1. One-dimensional stratification of N finite thickness
anisotropic dielectric slabs representing an arbitrary planar multi-
layer stack. The stratified media, i = 1, N , with generally anisotropic
layers are embedded in an isotropic bathing medium. Each layer has
an arbitrary material composition, thickness, and orientation.

as a second-order expansion in this parameter δ, which is
inversely proportional to the pitch length of the cholesteric
liquid crystal. The form of the transfer matrix is then obtained
as a function of the ordinary and extraordinary eigenvalues of
the Maxwell equations, averaged over the orientations in the
multilayer system. Consequently, our solutions enable us to
analyze the interaction between two semi-infinite homochiral
or heterochiral layers and thus quantify macroscopically the
effects of chirality. Our results point to a realistic possibility of
measuring the effects of chirality in the macroscopic Casimir-
Lifshitz torque for interaction geometries involving oriented
cholesteric liquid crystals. Note that this is different from the
effects of chirality of an intervening medium [40–42].

The paper is organized as follows. After the Introduction
we will discuss the solutions of the Maxwell equations for a
general planar anisotropic multilayer in Sec. II. Next we will
introduce the simplification for the cholesteric liquid crystal
configuration in Sec. III, the numerical implementation of
which is then covered in Sec. IV. Conclusions can be found in
Sec. V.

II. PLANAR ANISOTROPIC MULTILAYER

A. Transfer matrix

Here we will formulate the theory of Casimir-Lifshitz
interactions in a system composed of a one-dimensional
layering of finite thickness anisotropic dielectric slabs (see
Fig. 1). Later on, we will use this geometry to model a
cholesteric liquid crystal. Our approach is based on an appli-
cation of the transfer matrix method for the electromagnetic
field modes propagating through one-dimensional stratifi-
cations. This method was introduced as an algebra of 4
× 4 matrices by Berreman [19] and later reformulated by
Yeh [20]. Here we will follow the latter author’s formula-
tion, which is based on the change of basis transform in
linear algebra. However, both formulations are equivalent
[43]. We assume that the anisotropic stratification coincides
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with the direction of the cholesteric axis, oriented along
the z-direction, and perpendicular to the translational x-y-
plane of symmetry of the laboratory coordinate system (see
Fig. 1).

We start by formulating Maxwell’s equations as an eigen-
value problem, as we have done before for the case of single
interfaces [24]. Assume that the electromagnetic (EM) wave

propagates within one of the anisotropic slabs labeled as j
whose anisotropic plane is facing the surface, which is defined
as the x-y-plane in the laboratory coordinate system. Further-
more, the magnetic and electric anisotropy axes are assumed
to be identical, implying that the electric permittivity and the
magnetic permeability are given by

ε j (ω) =

⎛
⎜⎝

ε jx cos2 θ j + ε jy sin2 θ j (ε jx − ε jy) sin θ j cos θ j 0

(ε jx − ε jy) sin θ j cos θ j ε jx sin2 θ j + ε jy cos2 θ j 0

0 0 ε jz

⎞
⎟⎠, (1)

μ
j
(ω) =

⎛
⎜⎝

μ jx cos2 θ j + μ jy sin2 θ j (μ jx − μ jy) sin θ j cos θ j 0

(μ jx − μ jy) sin θ j cos θ j μ jx sin2 θ j + μ jy cos2 θ j 0

0 0 μ jz,

⎞
⎟⎠, (2)

where θ j denotes the angle between the optic axis of layer j and the x-axis of the laboratory’s coordinate system. It must be
stressed that the entries of both ε j and μ

j
depend on frequency, but that the argument will be suppressed from now on. Because of

this dependence it is convenient to represent the electromagnetic fields in the frequency domain as well. After also transforming
to Fourier space, the vectorial Maxwell equations are given by

k × E = ω

c
B, k × H = −ω

c
D, (3)

where B = μ · H and D = ε · E. Equation (3) is a system of six linear equations with six unknowns, four of which are
independent. Elimination of the z component of E and H leads to the following four-dimensional eigenvalue equation [44]:

Q
j
� = q �, (4)

for the four-dimensional EM field vector � = (Ex, Ey, Hx, Hy )T . Q
j

denotes a 4 × 4 antidiagonal block matrix whose explicit
entries are given in the Supplemental Material [45], Sec. I.

The four eigenvector solutions of Eq. (4) represent the orientation-dependent modes, which both can propagate forward and
backward. They are denoted by �±

jo and �±
je, where the subscripts e and o denote extraordinary and ordinary, respectively (for

the case of birefringent media), and the superscripts + and − indicate forward and backward propagating modes, respectively.
The mode eigenvalues are given by

q±
jo = ±

√
ε jyμ jxω2/c2 − (μ jx/μ jz )k2

ρ cos2(θ j − η) − k2
ρ sin2(θ j − η), (5a)

q±
je = ±

√
ε jxμ jyω2/c2 − (ε jx/ε jz )k2

ρ cos2(θ j − η) − k2
ρ sin2(θ j − η), (5b)

where kρ denotes the radial component of the wave vector
and η represents the azimuthal component of the EM wave
propagation direction.

Here we formulate a 4 × 4 transfer matrix formalism for
a one-dimensional stratified system composed planar slabs of
finite thickness with in-plane anisotropy (see Fig. 1), based on
the methodology found in Ref. [20].

The matrix in Eq. (4) has distinct eigenvalues so it is
diagonalizable. This brings us to the so-called propagation
matrix

P j ≡ diag[exp(−iq jed j ), exp(iq jed j ), exp(−iq jod j ),

exp(iq jod j )]. (6)

Multiplication from the left of the matrix P j by the EM field
vector represents propagation within an anisotropic slab in the

z-direction over a distance d j , the thickness of the jth layer

�(z + d j ) = P j · �(z),

where � again denotes a four-dimensional EM wave vector.
P j is a valid representation only in the eigenvector basis where
the matrix is diagonal. Hence it is transformed to the xy basis
as follows:

exp(−iQ
j
d j ) = S j · P j · S−1

j , (7)

where the columns of S j consist of the eigenvectors of
Maxwell’s equations

SSSj = ΨΨΨ+
je ΨΨΨ−

je ΨΨΨ+
jo ΨΨΨ−

jo (8)
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which is analogous to what is called the “rotation matrix”
in Ref. [35]. In Eq. (8) the normalization constants of the
eigenvectors can be omitted because P j is multiplied by the
inverse of S j from the right. The total transfer matrix that
represents the EM wave propagation through all N layers is
given by

T N ≡ . . .S j−1 · P j−1 · S−1
j−1 · S j · P j · S−1

j · S j+1

· P j+1 · S−1
j+1. . . ≡

N∏
j=1

S j · P j · S−1
j , (9)

where the product symbol denotes matrix multiplication from
the right for each subsequent index.

Next we have to consider what happens outside the slab,
i.e., the cases j = 0 and j = N + 1. The EM field propagating
through the isotropic embedding medium can be written as a
linear combination of the s- and p-polarized modes. By the
same token as before, since the s- and p-polarized modes are
the eigenmodes for isotropic media, a matrix can be con-
structed with the s- and p-polarized mode eigenvectors as
columns for j = 0:

SSS0 = ΨΨΨ+
js ΨΨΨ−

js ΨΨΨ+
jp ΨΨΨ−

jp (10)

the explicit form of which can be found in the Supplemental
Material [45], Sec. I. However, the case j = N + 1 is a little
different. Here only forward-propagating modes exist, which
does not affect the matrix itself but instead only affects the
vector on which the matrix acts. After all, in the s- and p-mode
basis, this information can be represented by two nonzero
components, which represent the amplitudes of the forward
propagating s- and p-polarized modes, (see Sec. II B for de-
tails). Note that the matrices of Eqs. (8) and (10) are singular
at zero frequency. However, physically “zero frequency” cor-
responds to a static limit where the frequency is small on the
scale of the main absorption frequency of the materials. Hence
within this limit it is possible to obtain the inverses of the
matrices of Eqs. (8) and (10). See also Supplemental Material
[45], Sec. V for more details on how to take the nonretarded
limit.

Since Eq. (9) is valid in the laboratory xy basis, it must
be transformed to the sp-mode basis, which is the proper
eigenmode basis for isotropic media. The total transfer matrix
is hence

M = S−1
0 · T N · S0, (11)

where T N is given by Eq. (9). For the general case considered
here it is not possible to give an explicit closed expression
for the matrix M. As a test case, let us consider the limit
of an infinitely thick slab. This limit does not directly and
algebraically follow from Eq. (11) (see Supplemental Material
[45], Sec. III for details). It can be shown that for a semi-
infinite slab, the transfer matrix simplifies to

M = S−1
0 · S1. (12)

B. Lifshitz formula

The Casimir-Lifshitz interaction free energy can be ob-
tained from the secular determinant of the modes whose zeros
give the eigenfrequencies of the bound states [35]. However,
in its turn the secular determinant itself can be rewritten in
terms of the Fresnel reflection coefficients that can be obtained
from the transfer matrix formalism. This route then connects
the transfer matrix formalism with the Casimir-Lifshitz inter-
actions, which we elucidate in what follows. Grosso modo one
can follow either the approach based on the Green’s function
tensors, closest to the original papers by Lifshitz et al. [2] (see,
e.g., Refs. [46–48]) or follow the heuristic derivation by van
Kampen et al. [49,50], which was later shown to be actually
exact [51], and based on the summation over the allowed EM
modes within a given geometry, more akin to the original pa-
per by Casimir [1]. It can be shown that both approaches lead
to the same result [52], namely the Lifshitz formula for disper-
sion interactions. Here we will take advantage of this result.

We assume that the matrix M from Eq. (11) is known and

that its entries are given by M = (Mik ) with i, k ∈ {1, 2, 3, 4}.
In such a case, the Fresnel reflection matrix elements can be
shown to be given by [20,43]

rss = M21M33 − M23M31

M11M33 − M13M31
, (13a)

rsp = M33M41 − M31M43

M11M33 − M13M31
, (13b)

rps = M11M23 − M13M21

M11M33 − M13M31
, (13c)

rpp = M11M43 − M13M41

M11M33 − M13M31
. (13d)

We verified that combining Eq. (12) with Eq. (13) restores
the known Fresnel reflection matrix [21,24] for a semi-infinite
birefringent plate.

To determine the Casimir energy and torque, (13a) to (13d)
must be inserted into the Lifshitz formula. The energy per unit
area is given by

ECas

A
= kbT

4π2

∞∑
n=0

(
1 − 1

2
δ0n

)∫ ∞

0

∫ 2π

0
ln[D(kρ, η, {θ j}, ϕ, iζn)]

× kρdkρdη, (14)

where [47]

D = det[I − r1({θ j}, iζn) · r2(θ1 + ϕ, iζn)e−2k3a], (15)

and the reflection matrices are given by

rq =
(

rq,ss rq,sp

rq,ps rq,pp

)
, q ∈ {1, 2}. (16)

The subscript q is merely a label for each multilayer stack. The
entries of the matrices are given by (13a) to (13d). All quan-
tities are evaluated at the imaginary Matsubara frequencies
ζn = 2πnkbT

h̄ so that each contribution to the Casimir energy
decreases monotonically with n. The Casimir torque is then
given by

τ (a, ϕ) = −∂ECas

∂ϕ
, (17)
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FIG. 2. Illustration of the continuum approximation used here to
model a liquid crystal. It consists of layers with identical thicknesses
d but each with a slightly different orientation, each with identical
increments δ � 1. Consequently, the multilayer structure manifests
as a continuous inhomogeneity in the direction perpendicular to the
plane of reflection (defined as the z-direction), where the orientation
effectively behaves as a helix with pitch length L.

where ϕ denotes the angle between the optic axes of the layers
of each stack closest to the gap. This result is equivalent to
that of Ref. [35], which uses the formalism of Berreman [19],
while here the same formalism has been used with the basis
suggested by Yeh [20].

III. MODELING A CHOLESTERIC LIQUID CRYSTAL

A cholesteric liquid crystal is modeled as a nonmagnetic
uniaxial planar multilayer stack. All anisotropic layers of
equal thickness d are made of identical materials, and only
differ by their orientation θ j . We start by writing Eq. (7) as

exp(−iQ
j
d ) = S j · P j · S−1

j

for a single slab with label j.
Now let us formulate the conditions of validity of this

approximation. In accordance with an actual cholesteric liquid
crystal [34], each layer is assumed to be infinitesimally thin,
i.e., d → 0. Moreover, let the difference in orientation be-
tween each subsequent layer δ also be infinitesimally small, in
such a way that this quantity parametrically describes a helix
in space (see Fig. 2). Consequently, an infinitesimal change in
z within the liquid crystal is proportional to an infinitesimal
change in the orientation:

dz = d = L

2π
δ, (18)

where L denotes the pitch length, in which the orientations
of the layers complete one period, and δ � 1. Hence there
is some freedom of choice, we can use either z or θ as a
(continuous) variable. In what follows we will use two vari-
ables interchangeably. Another assumption is that the total
thickness Nd , where N denotes the total number of layers,
is infinite. This is justifiable because a typical thickness of
liquid crystals is of the order of several microns, and we will
limit ourselves to separation distances of less than one micron
(a � Nd), where the Casimir-Lifshitz torque is likely to be
large enough to be measured [29]. Finally, it will be assumed
that the pitch length of the cholesteric liquid crystal L, in
which the orientations of the layers complete one period, is

smaller than the total thickness. Hence at least one period
is assumed to fit inside the crystal. We can summarize the
condition for our approximation as follows:

d � L � Nd, (19)

which means that the difference between the first orientation
and last orientation is at least 2π radians. This is applicable to
a cholesteric liquid crystal [34]. We also require d to be small
on the scale of the matrix norm of Q

j
:

||Q
j
||d � 1 for all 1 � j � N. (20)

Physically, Eq. (20) can be understood as the thickness d
being much smaller than the typical values of the relevant
wavelengths. After all, in a continuous medium approach, the
relevant wavelengths are assumed to be larger than the typical
distances between atoms. Since the physical thickness is actu-
ally of the same order of magnitude, it can be approximated as
a numerical integration stepsize in the context of a continuous
medium approach. The condition Eq. (20) allows us to use the
Baker-Campbell-Hausdorff (BCH) formula [39]. The second
condition of Eq. (19) allows us to use Eq. (12) instead of
Eq. (11).

In Sec. IV of the Supplemental Material [45] we derive
the following expression valid up to the second order in the
angular deviation in the orientation between the neighboring
uniaxial layers:

N∏
j=1

exp(−idQ
j
) = exp

(
− id

N∑
j=1

Q
j
+ O(δ2)

)

−→ exp

(
− i

∫ max(z)

min(z)
Q(θ )dz + O(δ2)

)
,

(21)

where eventually we assumed that j changes as a continuous
variable associated with z. The full derivation is somewhat
lengthy so we will summarize it here. In short, we use the
Baker-Campbell-Haussdorff (BCH) formula [39] up to third
order in δ. Then we combine the BCH formula with finite
difference coefficients [53] to determine that three nearest
neighbors to the right are needed to obtain the same accuracy
as the BCH formula.

To evaluate the argument of the exponential matrix in
Eq. (21) we will try to determine its diagonalized form. Let us
focus on the leading-order term −id

∑N
j=1 Q

j
. Even though

Eq. (7) tells us that each individual matrix Q
j

is diagonal-
izable, it does not follow in general that their sum is also
diagonalizable. However, within this particular approximation
it is assumed that the commutators between the matrices Q

j
are negligible and the matrices effectively commute, with the
error of this approximation being of second order. Commuting
diagonalizable matrices can be shown to have the same eigen-
vectors. Consequently, each diagonalizable matrix Q

j
can be

transformed to the same eigenvector basis via one matrix,
say S. In other words, the matrices Q

j
can be simultaneously
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diagonalized

N∑
j=1

Q
j
= S · D · S−1,

where D is a diagonal matrix. This furthermore implies that

exp

(
−id

N∑
j=1

Q
j

)
= S exp[−idD + O(d2)]S−1. (22)

We know that the matrices S and D exist but now we want
to determine their explicit form. The physical interpretation
of Eq. (22) is that, in this approximation, the orientations of
the different layers are averaged over the entire crystal. Since
d → 0 and N → ∞, it can be proposed that d ∼ 1/N , and
the left-hand side of Eq. (22) becomes an average over all
eigenvalues. Hence it follows that

D = 1

N

N∑
j=1

diag{qe[(θ j − η)],−qe[(θ j − η)], qo,−qo},

(23)
which changes to an average with respect to a continuous
distribution where the sum is replaced by an integral. The
approximation of Eq. (23) is of course simple and crude,
its error being of second order in the stepsize d . It assumes
that the planar multilayered system can be approximated as a
single slab with an averaged orientation. Essentially the effect
of the presence of multiple layers is treated additively in this
case.

The transfer matrix for such a configuration is given by
[see Eq. (22)]

exp

(
−id

N∑
j=1

Q
j

)
= 〈S〉Ptot(〈qe〉)〈S〉−1, (24)

where

Ptot(〈qe〉) = diag[exp(−idtot〈qe〉), exp(idtot〈qe〉,
exp(−idtotqo), exp(idtotqo)]. (25)

Here dtot = Nd represents the total thickness, and in the limit
dtot → ∞, Ptot tends to Ptot → diag(1, 0, 1, 0). (This does
not follow directly algebraically, but from physical consider-
ations, see Supplemental Material [45], Sec. III). In Eq. (25)
the eigenvectors are the ones corresponding to 〈qe〉:

〈S〉 = S(〈qe〉, 〈θ〉), (26)

where S is given by Eq. (8) and 〈qe〉 denotes the extraordinary
eigenvalue, averaged over the orientations

〈qe〉 = 1

N

N∑
j=1

qe[(θ j − η)] −→ 1

Nδ

∫ Nδ

0
qe(θ − η)dθ. (27)

The rightmost expression follows after the continuity approx-
imation that allows us to replace the sums over the discrete
index j by integrals over the continuous variable θ .

Due to the periodicity of qe, Nδ can be replaced by π ,
so that qe is averaged over one period and it can take all
possible real values. This is because the thickness of the liquid
crystal is assumed to be larger than the pitch length [see
Eq. (19)]. Consequently, at least one period can be fit into
the crystal. The integer part of the ratio between the thickness

and the pitch length will dominate the remainder because the
remainder represents a part of the liquid crystal located at an
infinite distance from the plane of reflection. Setting Nδ = π

also allows us to set η = 0 because the integral becomes
translation invariant over one period. In this case, the integral
of Eq. (27) can be evaluated analytically

〈qe〉 = 1

π

∫ π

0
qe(θ )dθ

= ± 2

π

√
ε1x

(
k2
ρ

ε1y
+ ζ 2

c2

)
E

⎛
⎝ k2

ρ

(
ε1x
ε1y

− 1
)

ε1x
( k2

ρ

ε1y
+ ζ 2

c2

)
⎞
⎠, (28)

where E (z) denotes the complete elliptic integral of the sec-
ond kind, given by [54]

E (z) =
∫ π

2

0

√
1 − z sin2 tdt,

the value of which is real for arguments −1 � z � 1.
To determine the average orientation, we must solve the

following equation:

〈qe〉 = ±
√

ε1x
ζ 2

c2 + ε1x
ε1y

k2
ρ cos2 〈θ〉 + k2

ρ sin2 〈θ〉, (29)

which has four possible solutions

〈θ〉 = ± arccos

⎛
⎝±

√
k2
ρ + ε1xζ 2/c2 − 〈qe〉2

kρ

√
1 − ε1x

ε1y

⎞
⎠. (30)

Here the different signs of 〈θ〉 represent the different chiral-
ities of the liquid crystal: a positive 〈θ〉 is associated with
right handed chirality and the minus sign corresponds to
left-handed chirality, if the axial wave vector component is
positive. The different signs in the argument of the arc-cosine
in Eq. (30) come from the different square roots in Eq. (29),
associated with the two different propagation directions of the
extraordinary modes in the liquid crystal. However, since the
quantity 〈qe〉 is an average along the helix, its sign must be
interpreted as the direction of the helical spiral. Alternatively,
the different signs of the square root of 〈qe〉 in Eq. (29) can be
thought of as the location of the crystal: since the thicknesses
of the crystals are assumed to be infinite, the negative square
root represents the crystal being on the left and the positive
square root represents the crystal being on the right. This
distinction depends on the arbitrary choice of coordinates and
it is hence not physical. Equation (30) provides four solutions,
whereas there are only two physically distinguishable shapes
of the helix, namely left- and right-handed. Therefore, we
need to establish how they can be physically interpreted. We
require that the physical 〈θ〉 is real. First, we have to verify
that such solutions exist. To this end we distinguish two cases:
ε1y � ε1x and ε1y � ε1x. In order for 〈θ〉 to be real, we need to
check that

0 � k2
ρ + ε1x

ζ 2

c2
− 〈qe〉2 � k2

ρ

(
1 − ε1x

ε1y

)
,

which can be seen to be the case since

min

(
1,

ε1x

ε1y

)
� ε1x

ε1y
cos2 θ + sin2 θ � max

(
1,

ε1x

ε1y

)
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for all real θ . Here it is assumed that |〈θ〉| � π . Hence the real
value of the average within the domain −π � 〈θ〉 � π

orientation is

〈θ〉L = arccos

⎛
⎝−

√
k2
ρ + ε1xζ 2/c2 − 〈qe〉2

kρ

√
1 − ε1x

ε1y

⎞
⎠, (31a)

〈θ〉R = − arccos

⎛
⎝−

√
k2
ρ + ε1xζ 2/c2 − 〈qe〉2

kρ

√
1 − ε1x

ε1y

⎞
⎠, (31b)

if the crystal is on the left and

〈θ〉L = − arccos

⎛
⎝

√
k2
ρ + ε1xζ 2/c2 − 〈qe〉2

kρ

√
1 − ε1x

ε1y

⎞
⎠, (32a)

〈θ〉R = arccos

⎛
⎝

√
k2
ρ + ε1xζ 2/c2 − 〈qe〉2

kρ

√
1 − ε1x

ε1y

⎞
⎠, (32b)

if the crystal is on the right. Here 〈qe〉 is given by Eq. (28). The
subscripts L and R in Eqs. (32) and (31) denote the left- and
right-handedness of the liquid crystal, respectively. Note that
Eqs. (32) and (31) depend on frequency, which in turn affects
the frequency dependence of the reflection matrix. Finally,
Eqs. (28), (32), and (31) have to be inserted into Eq. (8) to
obtain 〈S〉1.

Now we move on to the next-order term in the BCH
expansion. Here the contribution of nested commutators is
neglected, i.e., commutators are assumed to commute with
other matrices. To take advantage of Eq. (24) we apply the
BCH formula again to separate the BCH terms as follows (see
Supplemental Material [45], Sec. IV for a detailed derivation):

exp

(
−i

L

π

∫ Nδ

0
Q(θ )dθ − 3

L2

π2

∫ (N−3)δ

0

[
Q(θ ),

∂Q(θ )

∂θ

]
dθ + O(δ3)

)

= 〈S〉1Ptot(〈qe〉)〈S〉−1
1 exp

(
− 3

L2

π2

∫ (N−3)θ

j=1

[
Q(θ ),

∂Q(θ )

∂θ

]
dθ

)
, (33)

where we took advantage of the transfer matrix for the single interface case, Eq. (12). The argument of rightmost exponential
matrix on the right-hand side of Eq. (33) is not jointly diagonalizable with the first BCH term [55]. However, this correction
is expected to be small compared to the averaged factor on its left. This allows us to write it as a Taylor expansion. Hence we
obtain

N∏
j=1

exp(−idQ
j
) = 〈S〉1Ptot(〈qe〉)〈S〉−1

1

(
I − 3

L2

π2

∫ (N−3)δ

0

[
Q(θ ),

∂Q(θ )

∂θ

]
dθ + O(δ3)

)
. (34)

The leading-order term in Eq. (34) can be understood as a slab with infinite thickness and an averaged orientation. The second-
order correction describes the effect due to the finite thicknesses of the layers and their slightly different orientations. For a liquid
crystal of infinite thickness Eq. (34) becomes

N∏
j=1

exp(−idQ
j
) = S−1

0 〈S〉1

(
I − 3

L2

π2

∫ (N−3)δ

0

[
Q(θ ),

∂Q(θ )

∂θ

]
dθ + O(δ3)

)
. (35)

Next we are faced with the task of writing Eq. (35) as an ex-
pansion in δ. Note that the integral absorbs one factor of δ and
that the integration from 0 to Nδ = π will not contribute to the
integral (see Supplemental Material [45], Sec. I for the explicit
expressions for the commutator), so the integral is expected to
be small ∼δ. Within the approximations used here, it suffices
to calculate the integral up to first order in δ. (A more precise
calculation would be beyond the approximation and hence be
inconsistent). We will denote this first-order coefficient by A.
Hence the transfer matrix is

N∏
j=1

exp(−idQ
j
) = S−1

0 〈S〉1

(
I − 3

L2

π2
Aδ + O(δ3)

)
, (36)

where A is given by the integral in Eq. (35), and its explicit
expressions can be found in the Supplemental Material [45],
Sec. I. Note that the error of the BCH formula is of third order
in δ, as the higher-order term Eq. (36) is actually quadratic in

δ. So this term does not have to follow the sign convention
of Eqs. (31) and (32). Since the approximate transfer matrix
is known now, Eq. (13) can be applied to it to obtain the cor-
responding Fresnel matrix. Note that the factor of L2 cancels
out of the higher-order correction for the Fresnel matrix. How-
ever, it is worth pointing out that δ is inversely proportional
to L [see Eq. (18)], so that the final result still depends on
the pitch length. We again refer to the Supplemental Material
[45], Sec. I for the explicit expressions for the corrections to
the Fresnel matrix. It is worth noting that the Fresnel matrices
are invariant under k → −k, hence they are identical whether
they are placed on the left or on the right (if they have the
same orientation). However, in general this is not necessarily
true [56].

IV. RESULTS

Here we will use the results derived in Sec. III to calculate
the Casimir-Lifshitz torque given by Eq. (17). The first config-
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uration we consider is composed of a birefringent half-space,
a finite vacuum gap of thickness 10 nm < a < 1 μm, and a
cholesteric half-space. Next we will investigate the combi-
nation of two cholesteric liquid crystals. The first in general
should be accessible to experiments [29]. While realistically,
surface roughness generally plays a significant role at this
range [58], the roughness effects were considered elsewhere
in detail [59–61] and we will ignore them here. We verified
our calculations by reproducing earlier results obtained by
implementations of the Barash formula [32,62,63] (see Sup-
plemental Material [45], Sec. V).

To calculate Casimir-Lifshitz interactions, the frequency-
dependent dielectric function of the interacting materials must
be known. This is why we introduce it here first. We will
ignore the temperature dependence of the dielectric function
and assume a constant temperature of 293 K. This is because
we are interested in the cholesteric phase only.

The dielectric function of a nematic liquid crystal can be
described by a semi-empirical three band model [64]

εN,x,y(iζ ) =
⎛
⎝1 +

3∑
k=1

Ck,x,y

1 + ζ 2

ω2
k

⎞
⎠

2

. (37)

However, a pure 5CB crystal is nematic and not cholesteric.
It needs to be doped to reach a cholesteric phase, which is
typically described by a Debye model [65]

εD,x,y(iζ ) = ε∞,x,y + εx,y(0) − ε∞,x,y

1 + ζ τ
. (38)

Therefore we propose to model a doped nematic liquid crystal
as the sum of these dielectric functions

εx,y(iζ ) = εD,x,y(iζ ) + εN,x,y(iζ ). (39)

However, the Debye relaxation processes take place on a
much smaller frequency scale than the Matsubara frequencies
at room temperature. More precisely, the smallest Matsubara
frequency (n = 1) at 293 K is six orders of magnitude larger
than the typical values of the Debye relaxation frequencies
[57,65]. Therefore we propose to approximate it as the static
term from Eq. (39)

εx,y(iζ ) ≈ εD,x,y(0) + ε5CB,x,y(iζ ), (40)

in other words, the Debye processes only affect the static
permittivity of the liquid crystal. The different components
of the dielectric functions for both the nematic and cholesteric
case in Fig. 3.

Now we are in a position to specify the materials, i.e.,
assign values to the parameters in Eq. (40). Let the cholesteric
liquid crystal consist of 96 mass % nematic 5CB (4- cyano-
4′-pentyl-biphenyl) doped with 4 mass % chiral dopant S811
[57]. The value of the static Debye term for this mixture was
taken from a recent experiment [57]. The dielectric function of
5CB was established in Ref. [33] based on data from Ref. [66].
The optical data of barium titanate (BTO BaTiO3) [67] will be
used to describe the semi-infinite birefringent half-space. For
more details about the parameter values and their effect on the
Casimir-Lifshitz interaction we refer to Sec. VI of the Supple-
mental Material [45]. Throughout this section we choose the
value of δ (if nonzero) to be 0.03, which corresponds to a pitch

10 -5 10 0
0

5

10

15

FIG. 3. Dielectric functions of pure, nematic, and doped,
cholesteric 5CB. The dielectric function of nematic 5CB as proposed
in Ref. [33] (indicated by the black squares and blue triangles) is
modified to account for the presence of a chiral dopant. This affects
the static values (see the magenta crosses and the red circles), which
were obtained from Ref. [57].

length of 200 nm [see Eq. (18)]. This case will be indicated by
the word “perturbative.”

The results are shown in Fig. 4. The upper two panels in
Figs. 4(a) and 4(b) display the two cases we distinguish here:
the BaTiO3 crystal can be faced with either a right-handed or
a left-handed crystal. Figure 4(c) shows the Casimir torque
as a function of the misalignment angle ϕ. For reference, we
included the usual case for a nematic liquid crystal, indicated
by the cyan curve with triangles pointing to the right. The
leading-order term in Eq. (36) creates a shift in the angu-
lar dependence of the torque of about π/2 radians, making
the proportionality closer to cos 2ϕ than the usual sin 2ϕ.
The sign of the torque changes depending on the left- or
right-handedness of the cholesteric liquid crystal, which is a
qualitative chirality effect. In other words, the torque follows
the direction of the helix. While the leading-order term hor-
izontally shifts the graph, the next-order term enhances the
amplitude in only one direction, creating a clear deviation
from the usual sinusoidal shape of the curve (even though it is
still periodic with period π ). For this reason we verified that∫ π

0
τdϕ = 0, (41)

so that no energy is gained or lost during a rotation over
a period. Note that the shape of the curve is unlikely to
be attributed to retardation effects, which are less signifi-
cant at a distance of 10 nm than at larger separations. The
higher-order correction actually is most significant at short
distances ∼10 nm, whereas retardation effects become more
pronounced at larger distances. Even though the full retarded
calculation was performed here, it turns out that retardation
and finite pitch length effects do not correlate with each other.
Finally, Fig. 4(d) shows the distance dependence of the am-
plitude of the torque. Not only is the amplitude enhanced
significantly compared to the nematic case, it also decreases
more slowly as a function of distance. Since the configura-
tion of a birefringent and a semi-infinite liquid crystalline
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FIG. 4. The Casimir torque between a birefringent (BaTiO3) crystal and a cholesteric liquid crystal. (a) A left-handed crystal facing a
birefringent one. (b) A right-handed crystal facing a birefringent one. (c) The Casimir torque as a function of misalignment angle at a distance
of a = 10 nm. The different curves are as follows. The triangles pointing right show the usual result for a nematic liquid crystal. Red circles:
left-handed crystal, δ = 0. Blue triangles pointing left: left-handed crystal, δ �= 0. Magenta crosses: right-handed crystal, δ = 0. Black squares:
right-handed crystal, δ �= 0. (d): The amplitude of the Casimir torque as a function of separation. The triangles pointing right show the nematic
case. The cholesteric case is shown by the other two curves, of which the red circles represents δ = 0 and the black squares show the perturbed
case. The inset of panel (d) shows the Casimir torque for the cases (a) (red circles) and (b) (blue crosses) at distances between 380 and 800 nm.

sample is presently experimentally accessible [29], this could
make experimental observation of the torque easier at larger
distances. The inset of Fig. 4(d) shows that the angular depen-
dence remains the same at large distances (between 380 and
800 nm): the positions of the extrema and the nodes do not
change as a function of distance. The higher-order correction
of the BCH formula [Eq. (36)] is negligible in this separation
range, contributing significantly only at distances of ∼10 nm.

Next, we proceed to the case of two liquid crystals facing
each other. Here we distinguish between the so-called homo
and heterochiral cases, shown in Figs. 5 and 6, respectively.
In the first case two right-handed or two left-handed crystals
face each other, and in the second case a left-handed crystal is
faced with a right-handed one.

First we will discuss the homochiral case, as shown in
Fig. 5. Figures 5(a) and 5(b) illustrate the possible configu-
rations: two right- and two left-handed crystals. Figure 5(c)
shows a plot of the Casimir torque as a function of misalign-
ment angle at a distance of 10 nm. For reference, the case of
two nematic liquid (light blue triangles) was also included.
As in the previous case (see Fig. 4), the leading-order term
shifts the usual sine to a cosine. However, unlike the previous
case, here the higher-order terms decrease the amplitude of
the torque in one direction, which does give rise to a devia-
tion from the sinusoidal form. This short distance is the only
range where the finite pitch length effects, represented by the

higher-order term in Eq. (36), actually contribute significantly.
At this range, it seems as though the torque for the left-
handed configuration is opposite of that of the right-handed
one. However, at larger distances it can be seen that this is
not the case. In Fig. 5(d) the Casimir torque is plotted as
a function of the misalignment angle for distances between
380 and 800 nm. At this distance range, the higher-order term
of Eq. (36) contributes negligibly. Still even the lower-order
terms give rise to a significant deviation from the sinusoidal
behavior from the previous case. Moreover, the position of
the extrema changes with the distance, and the nodes are
not on the x-axis. In other words, the angular dependence
changes with the separation distance, which is qualitatively
different from the previous case or the case of two birefringent
materials. The left- and right-handed configurations do not
exhibit opposite torques, but the phase difference between the
curves changes as a function of distance as well. It is worth
pointing out that, if a particular angle is chosen, near one of
the nodes, it becomes possible to see the torque change sign
as a function of distance. This kind of sign change has also
been reported for biaxial materials [63] and Weyl semi-metals
[26], for example.

Next we will address the heterochiral case shown in Fig. 6.
Figures 6(a) and 6(b) show the configurations of a left-handed
crystal on the left- and a right-handed crystal on the right,
and the reverse configuration, respectively. These configura-
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FIG. 5. The Casimir torque between two cholesteric liquid crystals of identical chirality. (a) Homochiral configuration of two left-handed
crystals (b) Homochiral configuration of two right-handed crystals. (c) Casimir torque as a function of misalignment angle at a distance of
a = 10 nm. The different curves are as follows. Triangles pointing right: two nematic liquid crystals. Black crosses: unperturbed, case (a). Blue
squares: perturbative contribution to case (a). Red circles: unperturbed case (b). Orange circles: perturbative contribution to case (b). (d) The
Casimir torque as a function of misalignment angle for distances between 380 an 800 nm. The blue triangles represent case (a) and the red
circles represent case (b).

tions are expected to be physically indistinguishable. To test
this, we plot the different contributions to the torque as a
function of misalignment angle again at 10-nm distance, see
Fig. 6(c). It can be seen that the difference between the torque
of Figs. 6(a) and 6(b) is nonnegligible if the higher-order term
in Eq. (36) is omitted [see the black crosses in Fig. 6(c)].
However, the inclusion of the higher-order terms renders this
difference negligible [the red asterisks in Fig. 6(c)]. So even
though the higher-order corrections themselves are differ-
ent [as indicated by the orange circles and blue squares in
Fig. 6(c)], the total torque is identical for both configurations.
Finally, the torque is plotted as a function of the misalign-
ment angle for distances of 380 to 800 nm in Fig. 6(d). Here
the torque behaves qualitatively similar to the previous case,
with the phase somewhere in between that of the torque for
the two homochiral configurations of Fig. 5(d). As expected,
the torques for the configurations of Figs. 6(a) and 6(b) are
identical. Since the lowest-order term in the BCH expansion
assumes pitch length is infinite, it can lead to unphysical re-
sults as shown in Fig. 6(c). A more realistic inclusion of finite
pitch length effects is needed, in this case in the form of the
higher-order correction to the BCH formula. In all considered
cases, these corrections are most significant at short distances
of about 10 nm. This is most likely because the end of the
pitch is relatively close to the other surface at this range. This

way, the pitch end can be “felt” by the other surface, and affect
the Casimir-Lifshitz torque.

V. CONCLUSION AND OUTLOOK

To understand the effects of cholesteric chirality on the
Casimir-Lifshitz torque, we modeled a cholesteric liquid crys-
tal as a uniaxial planar multilayer system. The system consists
of identical layers of equal thicknesses, but the orientation of
each layer differs slightly from that of the adjacent one. This
model allows us to derive an analytical simplification of the
Fresnel matrices as an expansion in this small orientation dif-
ference, by means of the Baker-Campbell-Hausdorff (BCH)
formula.

Numerically, we obtained results that are appreciably dif-
ferent from the case of two semi-infinite birefringent plates,
which is a valid approximation for nematic liquid crystals
[29,32]. In particular, in the case of a birefringent half space
facing a cholesteric liquid crystal, the leading-order term in
the BCH expansion shifts the angular dependence of the
torque by about ±π/2 radians, depending on the chirality of
the liquid crystal. At very short distances of about 10 nm, the
higher-order BCH term gives rise to a significant deviation
from the usual sinusoidal shape of the torque as a function
of misalignment angle. Moreover, the amplitude of the torque
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FIG. 6. The Casimir torque for the heterochiral case. (a) The left-handed crystal is placed on the left, and the right-handed crystal is on the
right. (b) The reverse of panel (a). (c) Several different contributions at 10-nm distance. Black crosses: difference between case (a) and case
(b), including only lowest-order terms. Red asterisks: idem, including higher-order terms. Orange circles: perturbative contribution to case (a),
blue squares: perturbative contribution to case (b). (d) Casimir torque at distances between 380 and 800 nm, both for case (a) (black asterisks),
and case (b) (red circles).

decreases more slowly as a function of distance than in the
nematic case. Since the configuration of a birefringent crystal
faced with a liquid crystal is presently experimentally acces-
sible [29], we believe that especially this later result can be
useful for detecting the torque at large separation distances.

The case of two cholesteric liquid crystals consists of three
physically different configurations: two homochiral ones (two
left-handed crystals or two right-handed crystals), and one
heterochiral one. In each case, the higher-order term of the
BCH expansion, which is associated with finite pitch length,
contributes significantly at about 10-nm distance. We showed
that it must be included to obtain physically consistent results
in the heterochiral case. At larger distances, the angular de-
pendence of the torque turns out to change as a function of
distance, while again significantly deviating from the known
sinusoidal behavior. Moreover, for certain values of the mis-
alignment angle, the torque can change sign as a function of
distance. Present technology does not yet make it possible to
reach a sufficient degree of parallelism to measure the Casimir
torque between two liquid crystals with satisfactory accuracy
[13]. However, present efforts directed at a resolution of this

problem [7] give us hope that it may be possible in the future
to measure the torque for such a case.

Possible future endeavors include calculations beyond the
approximations used here. For example, one could allow
discontinuity in the inhomogeneous dielectric function. This
would make it possible to study the effect of a thin water
layer between two layers of the cholesteric liquid crystal.
Alternatively, one could explore a larger distance range in
which case one needs to investigate the effects of a finite total
thickness. Finally, the approximate solution of the Maxwell
equations obtained here may be of interest for the study of
cholesterics in different contexts, or for the understanding of
chiral media in general.
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