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Enhancing nonclassical bosonic correlations in a quantum walk network
through experimental control of disorder
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The presence of disorder and inhomogeneities in quantum networks has often been unexpectedly beneficial
for both quantum and classical resources. Here we experimentally realize a controllable inhomogenous quantum
walk (QW) dynamics, which can be exploited to investigate the effect of coherent disorder on the quantum
correlations between two indistinguishable photons. Through the imposition of suitable disorder configurations,
we observe two-photon states that exhibit an enhancement in the quantum correlations between two selected
modes of the network, compared to the case of an ordered QW. Different configurations of disorder can steer the
system toward different realizations of such an enhancement, thus allowing spatial and temporal manipulation
of quantum correlations between remote modes of QW networks.
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I. INTRODUCTION

A thorough characterization of genuine quantum traits is
crucial to understand the boundary between classical and
quantum phenomena [1] and to perform quantum information
tasks [2]. To this aim, several quantification methods have
been introduced to faithfully identify the presence of quantum
(nonclassical) resources such as entanglement [3], coher-
ence [4], discord [5], joint measurability [6], steering [7], or
thermal operations [8] in the case of composite systems.

Indistinguishability of quantum identical particles [9,10]
has also been revealed as a useful nonclassical resource. From
an operational point of view, particles are so-called indis-
tinguishable if they are in the same mode with respect to
a characterization via two-particle interference [11]. From a
broader perspective, the indistinguishability concept is related
to a given set of quantum measurements [12]. In fact, indis-
tinguishability plays a fundamental role in raising quantum
processes, such as many-body interference [11,13], entan-
glement generation [9,10,14–17], quantum teleportation [17],
quantum metrology [18,19], quantum coherence [20–22],
quantumness protection [12,23,24], quantum key distribu-
tion [25,26], and the high state complexity exploited by boson
sampling algorithms [27,28].
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In this context, it is important to understand how quantum
features based on indistinguishability behave in a dynamical
framework, specifically in the case of bosons propagating
through a nonhomogeneous system. For a large variety of
systems, the disorder plays a detrimental role because it drives
the system into decoherence [29]. Contrarily, for some sys-
tems, the disorder can enhance physical properties such as
coherent transport [30], quantum algorithms speedup [31],
and quantum correlations [32–35]. These effects commonly
appear due to the interaction with an external environment,
though not always featuring a back-action mechanism [36,37].

A suitable theoretical platform to perform such a study
is represented by quantum walk (QW), which provides a
very general coherent propagation model: At variance with
classical random walks, QWs are able to preserve genuine
nonclassical features such as superposition, interference, and
entanglement [38–40]. QWs provide powerful models to
describe energy transport phenomena in different types of
systems like photosynthetic complexes [30,41], or solid state
ones, as in the case of Luttinger liquids [42].

It has been shown that adjustable disorder plays a sig-
nificant role in the evolution of quantum walker in which
the ballistic growth can become anomalous, classical, or
localized [43–47]. The dynamics of a quantum walker is
intimately connected to its nonclassical features. The way
quantum-correlated walkers, realized by photon pairs, evolve
in a homogeneous optical lattice has been investigated,
highlighting the different behavior of distinguishable or in-
distinguishable photons [48–52]. Moreover, the spreading
pattern of the quantum walker(s) can be modified through
various types of disorder [44,46,47,53].

At variance with previous studies so far [35], it still re-
mains to find strategies for enriching two-particle quantum
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correlations via disorder control. Here we fill this gap through
the experimental observation of the propagation of two
indistinguishable photons (biphoton) in a one-dimensional in-
homogeneous discrete time QW (1D DTQW). In the absence
of disorder, the initial quantum correlation in the system fea-
tures a global and local decrease as the evolution proceeds.
Contrarily, we achieve to find certain disorder configurations
that partially preserve the initial quantum correlation of a
biphoton propagating in a discrete QW network, after a given
number of evolution steps. The presented photonic setup is
therefore an experimental platform capable of enhancing the
biphoton quantum correlation between two selected modes
of the QW network via disorder realizations, without any
interaction with auxiliary systems. Our findings unambigu-
ously prove that the presence of disorder fosters the dynamical
enhancement of biphoton quantum correlations in a control-
lable fashion, paving the way to its potential employment in
quantum information scenarios.

II. THEORETICAL FRAMEWORK

The 1D QW model consists of one or more walkers co-
herently moving along the discretized sites of a line [39].
In general, the state of the system can always be written
as a superposition of the QW modes |�(t )〉 = ∑

k αk (t ) |k〉,
where each mode |k〉 := |x〉 |σ 〉 is defined by both position
|x〉 and its coin |σ 〉 = {|L〉 , |R〉}, and amplitudes αk (t ) depend
on the past evolution of the walker. Therefore, the single-
step evolution can be written as |�(t + 1)〉 = ∑

k Ûαk (t ) |k〉,
where Û = Ŝ · (Î ⊗ Ĉ) is the one-step evolution operator
with Ŝ = ∑

x |x + 1〉 〈x| ⊗ |L〉 〈L| + |x − 1〉 〈x| ⊗ |R〉 〈R| be-
ing the shift operator that moves the walker according to the
coin state, Î is the position identity operator, and Ĉ is the coin
operator, which in our case reads Ĉ = 1√

2
(|L〉 〈L| + i |L〉 〈R| +

i |R〉 〈L| + |R〉 〈R|). We also allow for the presence of step-
position-dependent phases φk (t ), which are responsible for
the dynamical disorder that the quantum walker experiences,
according to the so-called p-diluted model [46].

In this disorder framework, the single-step evolution of the
quantum state of the system can be written as

|�(t + 1)〉 =
∑

k

eiφk (t )Ûαk (t ) |k〉 , (1)

where step-position-dependent phases φk (t ) are chosen out
of two choices 0 or π . Here we assume that the phases
experienced by the quantum walker during its evolution are
independently and randomly generated. In order to generate a
random phase map, a Bernoulli process determines whether
the phase shift at step t and position x is φ = 0 [with a
certain probability (1 − p

2 )] or φ = π (with probability p
2 ).

In the end, a phase map is a set of matrices {�p(t )}t=0,...tmax

that describe all the phases imposed on the walker during the
QW process with a given fixed p. This results in a network
structure underlying the QW evolution, clearly represented by
Fig. 1. On average, photons will experience a p

2 percentage
of “flipped” phases during the quantum evolution. It is worth
noting that the evolution stays coherent; in fact, there is no
decoherence in this framework: If the initial state is pure, the
final state stays so. In the following, we especially focus on
the single phase maps that enhance the quantum correlation
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FIG. 1. Network representation of a disordered QW according
to p-diluted model. The green bars represent π phases on the path
which can be added to or removed from the network. Coin and shift
operations are represented here by BSs (shaded cyan squares). The
|R〉c and |L〉c states are indicated.

between the walkers; in that case, the average level of disorder
p is no more a relevant quantity.

In order to study the effect of disorder over nonclassi-
cal bosonic correlations in a QW dynamics, we consider
two indistinguishable photon walkers as input. This choice
is strategical since, unlike states of distinguishable pho-
tons, the state of an indistinguishable photon pair (biphoton)
|� (2)〉 = |k1, k2〉 (|ki〉 = |xi〉 |σi〉) exhibits intrinsic quantum
correlations [54,55]. The two-particle evolution is obtained
by applying Û ⊗ Û to the initial state. Inspired by classical
intensity correlation of light, one way to measure the nonclas-
sicality of the correlation between two detected outputs is by
violating the inequality [48,49],

Vi j = 2
3

√
�ii� j j − �i j < 0, (2)

where �i j is the probability of finding a photon in mode i
and the other one in j, namely, the probability of measur-
ing a coincidence between modes i and j. Inequality (2), in
fact, stands for classically correlated light and its violation
is assumed to witness and quantify the presence of quantum
correlations, as a signature of photon bunching [48,49,52]. In
a discrete network, the violation of the inequality between two
modes can be considered as evidence of quantum correlation
which contains part of the total correlation information (see
Appendix A for a detailed discussion of Vi j interpretation).

III. NUMERICAL RESULTS

Preliminary simulations were carried out in an ideal p-
diluted framework: Two indistinguishable photons traveling
a bulk-optics 1D DTQW provided with space-time disorder.

We studied the average behavior of the violation matrix
by averaging over many different evolution realizations with
randomness p. The average probability distribution is used to
obtain the output violation matrices. We show the violation
matrix of an indistinguishable photon pair after 15 steps for
the ordered case Fig. 2(a), corresponding to the disorder level
p = 0 and the completely disordered one Fig. 2(b) featured by
maximal randomness p = 1. In this case, the disorder level p
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FIG. 2. Numerical simulation of violation matrices. Step 15 matrices of the Vi j values of indistinguishable photons in the (a) ordered
case (p = 0) and the (b) completely disordered one (p = 1). The disordered matrix has been computed by averaging over 104 disorder
configurations.

is a relevant quantity since it indicates the average quantity of
disorder imposed on the evolution. As can be seen, violations
are present both in the ordered and in the disordered case,
though there is an evident migration of the violating values
toward the matrix tails. We report in Fig. 3 the values of
probability �i j of finding a coincidence between two photons
emerging from modes i and j. Indeed, in the completely dis-
ordered case, a strong funneling of population toward central
modes is present, while quantum correlations disappear in the
central region. This phenomenon may nourish the idea that
correlations specifically generated by the QW dynamics are
classical and may even smother the underlying nonclassical
correlations [56,57], especially in the completely disordered
case, when the QW dynamics emulates the one of a classical
random walk.

Here, the dynamical average behavior of quantum corre-
lation has been studied through total violation, defined as
the sum of all the Vi, j of the violating coincidences. It has
been considered as a measure of the total quantum correlation
present in the system. The normalized trend in function of the
disorder level is reported in Fig. 4 for different evolution time
lengths. total violation has a decreasing trend as p increases,
which can be seen as a consequence of the migration picture
described above. Since violations are bound to appear only
between scarcely populated modes, the global quantum corre-
lations diminishes.

In general, the average evolution appears naturally featured
by a decrease of global nonclassicality in time. Nevertheless,
this nonclassicality degradation can be challenged by specific
single realizations of disorder. In order to find such phase

FIG. 3. Numerical simulation of coincidences matrices. Step 15 output distributions of indistinguishable photons in the (a) ordered
case (p = 0) and the completely (b) disordered one (p = 1). The disordered matrix has been computed by averaging over 104 disorder
configurations.
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FIG. 4. Numerical simulation of total violation trends. Step 15,
step 10, and step 6 plot of the average total violation, computed over
104 disorder configurations, as a function of the disorder level p.

maps, we adopt a random search protocol: We simulate the
evolution with 104 different phase maps for each step num-
ber t up to 30 steps for a total amount 3 · 105 of explored
configurations. These configurations are generated for a fixed
level for disorder, but, since we focus on specific realizations,
the average level of disorder becomes irrelevant. We compute
the Vi j between each pair of output modes for each simulated
probability distribution, obtaining the corresponding violation
matrices. Then, the entire set of Vi j elements corresponding to
any combination of i and j modes is reported. Now we can
compare the values for any pair (i, j) and for each simulated
phase map at a given step to find the maximum achievable vi-
olation (MAV), i.e., the maximum positive value of Vi j which
could be achieved at that given step. In this way, it is also
possible to recognize the specific phase maps generating the
MAVs, which can then be experimentally exploited. A more
detailed numerical study about the conditions for emerging of
MAVs is reported in Appendix B.

Summarizing, for each configuration, the procedure con-
sists of comparing maximum positive violations of inequal-
ity (2) at step t . This also allows to know where and when it is
beneficial to apply the π phase shift within the QW network to
identify and select enhancing phase maps. Simulation results
are shown in Figs. 5(a) and 5(b), respectively. We report the
MAV as a function of the number of steps, and the step-
wise trend of the maximum achievable total violation, defined
as the sum of all the positive values Vi j of the considered
violation matrix (named here as total quantum correlation).
Since the explored configurations may not cover the entire
set of possible disorder patterns, the results cannot be consid-
ered absolutely optimal, but rather enhancing in comparison
with the ordered case. Nevertheless, the analysis highlights
that disorder helps to retrieve quantum correlations after a
specific step of QW, both for MAV and for total violation,
suggesting that the two quantities are related although not
bound to be maximized together. From numerical results, we
can conclude that disorder, acting through mere interference,
significantly modifies the evolution of the walker, not only
reshaping the probability distribution but also affecting the
amount of quantum correlation between the photons. As a
consequence, disorder may enable enhancement of the quan-
tum correlation of a bipartite system. It is worth noting that no
violations are observed, whatever the phase map, when a state
of distinguishable photons is employed [49].

IV. EXPERIMENTAL SETUP

The experimental setup consists of a bulk-optics multipass
double Sagnac interferometer (SI) in which inhomogeneities,
described by the phases φk (t ), can be addressed independently
both in step number and evolution mode. The bulk-optics
setup shown in Fig. 6 is analogous to a chain of intrin-
sically phase-stable Mach-Zehnder interferometers (MZIs),
each provided with an individually tunable phase shifting. The
additional exploitation of the z direction allows to effectively
realize a beam splitter (BS) network, such as the one in Fig. 1,
which reproduces a 1D DTQW dynamics where the coin and

(a) (b)

FIG. 5. Numerical simulation compression between ordered and enhancing disordered QW. (a) MAV and (b) maximum achievable total
violation versus the number of steps (discrete time) t for the ordered (blue circles) and enhancing disordered (red squares) QW.
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FIG. 6. The 2D sketch of the experimental setup. BS, beam split-
ter; BD, beam displacer; RP, rotating glass plates; MM, moving
mirror; S1, Sagnac interferometer 1; S2, Sagnac interferometer 2.
Blue and red beams circulate in opposite directions and impinge on
the BS1 in the same horizontal point but at different heights along the
z direction, due to the effect of BDs.

position states are both encoded in the input and output direc-
tion of photons with respect to the BS. Thanks to the particular
geometry of the implementation, each propagation mode of
the QW at each given step has a specific position in the plane
transverse to the propagation direction. Therefore, the phase
shifts can be independently addressed in each mesh of the QW
by the simple insertion of rotating glass plates (RP) along the
propagation path. The output state can be measured through
a set of moving mirrors (MMs), intercepting and extracting
from the setup-only modes of the selected step t j . Also, the
previous propagation steps t < t j are not affected in any way
by the measurement procedure. The extracted radiation is then
coupled to a single-mode fiber and measured (for further de-
tails on the setup, see Refs. [46,58]). Using couplers to collect
the extracted photons, we can measure coincidences between

all possible modes at each step and experimentally reconstruct
the two-photon probability distribution. The single-photon
source is described in detail in Appendix B, together with
further specifics of the experimental setup.

V. EXPERIMENTAL RESULTS

To experimentally verify disorder-induced changes in the
violation matrix, we measure both ordered and disordered
evolution QW output distributions. In fact, based on the sim-
ulation study displayed in Fig. 5, the first quantum correlation
enhancement, due to disorder, shall occur at the sixth step
of QW. Therefore, the output violation matrices for optimal
phase maps are measured up to the sixth step. Since there is
no enhancement until the fifth step, the corresponding optimal
phase maps can be considered equivalent to the ordered one,
while for the sixth step it is possible to find many specific
disorder configurations enhancing the nonclassicality in the
correlation between two chosen output modes for both the
ideal case and the accounting for experimental parameters.
The phase map selected for the experimental implementation
features phase shifters at step t = 4, position x = −2 with
coin σ = L, and x = 2 with coin σ = R set to π , while all the
others are left to zero; the corresponding experimental output
violation matrix is shown in Fig. 7, compared with the ex-
pected one, where the mode |k〉 = |x〉 |σ 〉 is indicated by xσ . A
strong quantum correlation peak appears at modes (2L,−2R)
and (−2R, 2L ) confirming the expectation. As a further rele-
vant result, the experimental stepwise trend for MAV is shown
in Fig. 8(a), in comparison with the expected enhanced one
obtained by numerical analysis, taking into account experi-
mental constraints. They are plotted together with the ordered
case trend to provide a clear display of the beneficial effect
of the nonhomogeneous evolution. Theoretical patterns are
shown up to the 10th step as a reference. The corresponding
trends for the total violation computed over the same output
distributions are also reported in Fig. 8(b). Simulations of
the MAV values in the ordered case show that the quantum

FIG. 7. Comparison between the theoretical and the experimental violation matrices at the sixth step for an enhancing disorder configuration.
Numerical simulations are performed taking into account experimental parameters. The expected peak in the value of V is experimentally
found, while the measured output coincidence distributions reach globally a similarity value of 97.5 (± 1.3)%.
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(a) (b)

FIG. 8. Experimental results compression between the order and the enhancing disordered configuration QW. Experimental results for (dark
dot) (a) MAV and (b) corresponding total violation versus the number of steps. The trends are compared with the simulation for enhancing
disorder (red squares) and ordered evolution (blue circles). The expected results are obtained by numerical simulations performed, accounting
for experimental parameters and asymmetries, so that the theoretical trends show some discrepancies with respect to those in Fig. 5.

correlation spreads in a homogeneous network so that the
values of Vi j and the total violation are going to decline as the
propagation proceeds. However, as can be seen in Fig. 8(a),
the inhomogeneity enriches the quantum correlation between
two indistinguishable photons at the given modes. Experimen-
tal evidences, reported in Fig. 8(a), show that the very same
configuration also enhances the total quantum correlation of
the QW. Experimental errors are derived from the Poissonian
statistics of the measured coincidences. Deviations from the
expected results are mainly due to modest drops in photons
indistinguishability along the evolution. Nevertheless, the in-
distinguishability decline slightly affects the exact violation
values, while not changing the overall trend.

VI. CONCLUSION

The presented numerical and experimental analysis
demonstrates that two-mode quantum correlations due to par-
ticle indistinguishability, which disperse through the lattice
and rapidly decay in an ordered evolution, can be retrieved
after a minimum evolution time by inserting suitable inho-
mogeneity patterns in the system. By changing the disorder
configurations, it is possible to tune the two-mode and total
enhancement of nonclassicality in position and intensity; this
corresponds to an adaptive network whose parameters eval-
uation determines the focusing of nonclassical resources in
selected modes. These findings allow for enriching quantum
correlation through controlling unitary evolution (effective
Hamiltonian engineering) of the biphoton. Also, we show that
the two-mode quantum correlation diminishes in the case of
random-phase disorder in the system, which can be interpreted
as a manifestation of detrimental classical noise. Nevertheless,
this quantum correlation degradation can be challenged by
single realizations of disorder. These results supply a con-
ceptual and practical advance compared to previous studies
limited to single-photon disorder-assisted quantum correlation
enhancement between two degrees of freedom of the pho-
ton [35]. In fact, since violations of Eq. (2) indicate biphoton
quantum correlations between two modes, our method may

also be interesting for quantum metrology issues. It is yet
to be understood whether this enhancement procedure can
be generalized to systems with N > 2 photons or not, which
could result in a benchmarking outcome in the context of
quantum resource theories.
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APPENDIX A: QUANTITATIVE ANALYSIS OF VIOLATION

The aim of this section is to provide a clearer interpreta-
tion of the quantity Vi j , which, in the main text, is exploited
as a quantifier for nonclassicality in bosonic correlations. In
particular, we focus on the relationship lying between this
quantity and the two-particle boson bunching, the most sim-
ple and straightforward effect of bosonic indistinguishability;
then, this relationship is extended to the network case, fitting
the experimental implementation presented in the main text.
As already described in the main text, the violation of the
inequality:

2
3

√
�i,i� j, j − �i, j < 0 (A1)

allows to point out the presence of nonclassical correlations in
photonic systems [48,50,52,53]. The meaning of this simple
relation can be traced back to the result of an elemental boson
bunching phenomenon, i.e., the HOM effect [59], for the
case of nonperfectly indistinguishable photons. We consider
a photon pair with a given probability q of being distin-
guishable, traveling through a supposedly balanced BS. After
the BS, photons can be measured in three possible combi-
nations of the two output modes and the probability of each
combination depends on the probability of the photons being
indistinguishable (which is 1 − q). Therefore, inequality (A1)
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FIG. 9. Numerical simulation of 9 step MAV landscape. Plot of
the maximum violation achievable for each output modes pair at step
9 obtained by comparing 106 different disorder realizations.

can be written as:

2

3

(
1

2
− q

4

)
− q

2
< 0, (A2)

which, in order to be violated, requires a value q < 1
2 ,

corresponding to photons that are more likely to be indis-
tinguishable than distinguishable. Hence, the inequality (A1)
provides a straightforward quantifier of the effective indistin-
guishability of photons, in the operational context of boson
bunching occurrence. In the general case of a BS network,
such as the one exploited in the present work, a value of
Vi j > 0 can be subject to multiple interpretations. In the gen-
eral case for a pure initial state, after an n step propagation the
system will be in a superposition state, which can be written
considering the number of photons traveling in the modes of
interest:

|�〉 = √
1 − 	(...) +

√
	(αk1k1 |2〉k1

|0〉k2
+

+ αk1k2 |1〉k1
|1〉k2

+ αk2k2 |0〉k1
|2〉k2

),

where 	 is the overall probability of having both photons
in the selected modes, which normalizes the αi j coefficients,
while {|k1〉 , |k2〉} are the two output modes under observation,
corresponding to combined states of position and coin of the
form |k〉 := |x〉 |σ 〉. We do not consider contributions of other
modes included in the first term (...). It is possible, obviously,
to also have single-photon states of the two modes, but they
would be invisible to coincidencelike measurements. In this
case, the amount of violation between modes k1 and k2 can be
computed as:

Vk1k2 = 	 ×
(

2

3

√
|αk1k1 |2|αk2k2 |2 − |αk1k2 |2

)
. (A3)

Therefore, the violation amount depends on two factors:
• The actual nonclassicality of the correlation determining a

positive or negative value.
• The global probability of the selected output modes (given

by 	).

The first factor is the one pointing out the form of a hy-
pothetically postselected state of the two photons emerging
from the considered modes. The higher this factor, the cleaner
the distillation of NOON states is by postselection, since it
necessarily corresponds to a low |αk1k2 |2. The second factor
is an amplification parameter, which gives the probability
of actually finding two photons in the two-modes selected
subsystem; hence, it gives the efficiency of the NOON states
distillation. In conclusion, the violation value provides an
indication over the composite effect of the two parameters;
hence, its maximization can be related to either one or the
other. Hence, this aspect needs to be taken into account in
a hypothetical application of this protocols. For instance, the
most external output modes will provide the most pure NOON
states, since they are the mere propagation of the first HOM
resulting state, but with a very low probability. On the other
hand, by means of disorder, it is possible to manipulate the
probability for central modes and get an higher efficiency, but
at the cost of a nonzero chance of extracting a useless state.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

The highest MAV, besides the first step, is achieved at the
output of the ninth step: The MAV for each modes pair (i, j)
of the ninth step output distribution was computed by analyz-
ing 106 different phase maps each. The resulting landscape
in Fig. 9 shows that this maximum can be achieved in dif-
ferent positions, depending on the chosen enhancing disorder

d

d (a)

(b)

FIG. 10. BD and spatial structure of the QW. (a) A sketch of
the BD functioning, provided with relevant geometrical parameters.
Through this device, it is possible to realize (b) a spatial structure
featured by a distinct localization of each QW mode at any evolution
step in the plane orthogonal to the propagation direction.
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FIG. 11. Violation matrices at the fifth step. Theoretical and experimental violation matrices at the fifth step for [(a) and (b)] ordered
evolution and [(c) and (d)] disordered evolution. The disorder configuration has been chosen randomly.

configuration. In particular, it suggests that the proper MAV
can be achieved only in “central” modes pairs: The MAV
can be induced between different mode pairs by imposing
different (yet equally enhancing) phase maps, although that
is not possible in modes that have not interfered enough. In
fact, photons emerging from central modes will have the most
interfering paths, becoming more affected by inhomogeneities
along the evolution. This phenomenon is quite understandable
considering the underlying network structure of the evolution
(Fig. 1). Indeed, central modes are subjected to more complex
interference phenomena with respect to those close to the
boundaries, even more complex when their correlations are
considered. This can be directly linked to the amount of MZIs
jointly traveled by photons emerging from the two selected
modes, i.e., the amount of phase shifts that are imposed
over both photons. Therefore, regarding central modes, the
manipulation of nonclassicality results is more powerful and
effective.

APPENDIX C: EXPERIMENTAL SETUP DETAILS

The exploitation of the z axis for the realization of the QW
network relies on BDs Fig. 10(a), implementing the unique
spatial distribution of the network nodes Fig. 10(b), essential
to the actual realization of a space-time disorder. Photon pairs
are generated by a high brilliance source realized according
to the model described in Ref. [60]: A PPKTP crystal, em-
bedded in a Sagnac interferometer, pumped by a CW laser
radiation (λp = 405 nm), which generates a collinear pair of

photons (idler and signal) with opposite polarization at a
wavelength of λi,s = 2λp = 810 nm. They are coupled to a
pair of optical fibers and experience an additional path through
air before starting the actual QW evolution. They are made
indistinguishable in all possible degrees of freedom such as
polarization, wavelength, and propagation mode. In particular,
we tuned the relative free-space path to get the best bunching
effect when they impinge on the bulk-optics BS (BS1 in
Fig. 6) for the first time, corresponding to the first step of the
QW. The unavoidable, critical free-space adjustment of beam
superposition on the BS mainly limits the achieved visibility
of HOM effect to an average V ∼ 89%.

It is also worth mentioning the experimental method of
measurement of the autocorrelation term �ii for each i: A BS
(BS2 in Fig. 6) placed at the output of the setup allows to
split two photons traveling the same mode with probability
2RT with R (T ) being the reflectivity (transmissivity) of the
BS. By carefully characterizing the BS2 we can weigh the
measured coincidences in order to compare them with the
values of �i j for j �= i. Our QW implementation is limited
to a six-step evolution because of the internal losses in each
unit passage (nearly 17%) and because of both the geometrical
structure and the length of the QW that make it difficult to
guarantee a high quality spatial overlap of the two photons
at each passage of light through the BS1. On the other hand,
the main advantages of the QW configuration consist of both
phase stability and a flexible disorder configurability and also
by the fact that the output distribution for any step of the QW
is directly accessible and measurable. As a consequence, this

FIG. 12. Numerical and experimental coincidences matrices. Fifth step (a) theoretical coincidences matrix and (b) corresponding ex-
perimental measurement output for the ordered QW. Sixth step (c) theoretical coincidences matrix and (d) corresponding experimental
measurement output for the optimal disordered configuration. The similarities between theoretical and experimental coincidences distributions
are 98 (±1)% for the fifth step case (a, b) and 97.5 (±1.3)% for the sixth step case (c, d). Errors are computed accounting for Poissonian
statistics of measured coincidences.
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QW platform is a powerful instrument for investigating the
dynamical behavior of quantum features under any type of
disorder.

An evolution of six steps through this setup is enough to
investigate on the photon correlation enhancement effect.

Indeed, the numerical analysis reported in the main text
indicates that a larger number of steps would not have brought
any further physical insight into the experiment.

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

The output violation distributions corresponding to the
fifth step are shown in Fig. 11. They provide a prelimi-
nary demonstration of the dependence of quantum correlation

distributions from the disorder pattern imposed on the evo-
lution. It is useful to observe the corresponding coincidence
matrices for the ordered fifth step and the optimal sixth
step (Fig. 12). Disorder, as demonstrated in several pre-
vious works [43,44,46,60], determines first an effect of
spread hindering, also for multiparticle systems. This effect
can be noticed even in the case of a single disorder con-
figuration (Fig. 12). The manipulation of this localization
effect can change the nonclassicality pattern in the output
distribution in many different configurations, changing the
probability of finding coincident photons between the output
modes. Indeed, the corresponding experimental coincidence
distributions result in good agreement with the expected
ones.
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