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High-gain quantum free-electron laser: Long-time dynamics and requirements
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We solve the long-time dynamics of a high-gain free-electron laser in the quantum regime. In this regime each
electron emits at most one photon on average, independently of the initial field. In contrast, the variance of the
photon statistics shows a qualitatively different behavior for different initial states of the field. We find that the
realization of a seeded quantum free-electron laser is more feasible than self-amplified spontaneous emission.
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I. INTRODUCTION

In the quantum regime of the free-electron laser (FEL)
the electrons undergo discrete scattering events instead of
following continuous trajectories [1]. More precisely, an elec-
tron in the Quantum FEL [2–9] occupies only two discrete
momentum levels [10] in analogy to an atomic laser [11].

By identifying three constants of motion we solve in the
present paper the long-time dynamics of a Quantum FEL in
the high-gain regime, within (i) an analytical approximation
and (ii) a numerical simulation. Moreover, we discuss fun-
damental requirements [12] to realize such a device in an
experiment.

Employing momentum-jump operators we showed in
Ref. [13] that the dynamics of a high-gain Quantum FEL
is effectively governed by the Dicke Hamiltonian [14]. We
briefly review this model in Sec. II. In order to solve the result-
ing equations of motion we applied in Ref. [13] a parametric
approximation [15] and obtained an exponential growth of the
laser intensity along the wiggler length. However, this approx-
imation breaks down when the number of emitted photons
becomes large after a certain interaction time. Therefore, we
derive in Sec. III solutions beyond the short-time limit.

As a first result of these studies, we find that in the quantum
regime each electron emits at most only a single photon [3], in
contrast to the multiphoton processes dominating the classical
regime [16]. Moreover, we derive expressions for the satura-
tion length and consider deviations from resonance.

Secondly, we discuss the variance of the photon number.
For a startup from vacuum, the field possesses almost chaotic
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statistics. In the case of a seeded Quantum FEL, the behavior
of the variance depends strongly on the initial field state. A
Fock state or a coherent state with a high photon number leads
to comparably narrow photon distributions in the course of
time. In contrast, the statistics evolving from a thermal state
remains broad, but becomes much narrower than a thermal
distribution when the intensity assumes its maximal value.

Our results allow us in Sec. IV to identify the challenges for
a Quantum FEL experiment, and to explain the necessity for
an optical undulator [17,18]. Indeed, it was argued in Ref. [12]
that the combined influence of space charge and spontaneous
emission into all modes prevents an effective Quantum FEL
operation for more than several gain lengths which drastically
reduces the feasible laser intensity. We can circumvent this
loss of intensity if we consider a seeded FEL instead of self-
amplified spontaneous emission (SASE). This effect is a direct
consequence of the decreased saturation length in a seeded
Quantum FEL so that one drops below the problematic limit
put forward in Ref. [12].

Finally, we summarize our main results and conclude in
Sec. V. To keep this paper self-contained, we add Appendices
A and B which are devoted to the detailed calculations as-
sociated with our analytical approximation and the numerical
approach, respectively.

II. QUANTUM FEL: BASIC BUILDING BLOCKS

In Ref. [13] we have formulated the FEL dynamics [19,20]
in terms of collective jump operators for the electron momen-
tum. In the following, we review this description, where each
electron populates levels on a discrete momentum ladder in-
duced by the quantum mechanical recoil q ≡ 2h̄k the electron
experiences when it scatters from the fields. Here h̄ denotes
the reduced Planck constant while k is the wave number of
the laser and wiggler field in the comoving Bambini-Renieri
frame [21] where both coincide.
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A. Collective Hamiltonian

By performing a rotating-wave-like approximation [13] we
found that the motion of each electron in the quantum regime
is restricted to only two momentum levels, that is, the excited
state with momentum p, close to the resonant momentum p =
q/2, and the ground state with p − q ∼= −q/2. In the language
of collective operators we therefore defined

N∑
j=1

|p − q〉( j) 〈p| ≡ Ĵ− ≡ (
Ĵ+

)†
(1)

and

1

2

N∑
j=1

(|p〉( j) 〈p| − |p − q〉( j) 〈p − q|) ≡ Ĵz, (2)

where we sum over projection operators for all N elec-
trons with |p〉( j) denoting the momentum eigenstate of the
jth electron.

Indeed, Ĵ+, Ĵ−, and Ĵz satisfy the commutation relations
for angular momentum [22,23], that is, [Ĵ+, Ĵ−] = 2Ĵz and
[Ĵz, Ĵ±] = ±Ĵ±. Hence, we identify the jump operators with
the ladder operators Ĵ+ and Ĵ− of angular momentum, while
Ĵz describes its z component [24].

The restriction to two momentum levels leads us to the
dimensionless Dicke Hamiltonian [14]

Ĥeff ≡ ε
(
âLĴ+ + â†

LĴ−
) − δ n̂, (3)

where the dynamics of the laser mode is described by the
photon annihilation, creation, and number operator, âL, â†

L,
and n̂ ≡ â†

LâL, respectively. These field operators fulfill the
commutation relation [âL, â†

L] = 1.
Moreover, we have recalled the dimensionless parameter

ε ≡ g/ωr as the ratio of the coupling constant g for elec-
trons and fields [10,25] and the recoil frequency [10] ωr ≡
q2/(2mh̄) with m denoting the mass of an electron. In addi-
tion, δ ≡ (p − q/2)/(q/2) describes the scaled detuning of
the initial momentum p of the electrons from resonance at
p = q/2. We emphasize that also the time variable τ ≡ ωrt
in this description is in a dimensionless form.

The approximation leading to the effective Hamiltonian
of Eq. (3) is only valid, provided the quantum parameter αN

(compare to Table I) satisfies the inequality

αN ≡ g
√

N

ωr
� 1, (4)

which defines the quantum regime of the FEL.
Moreover, we require that the detuning from resonance is

small, that is, δ < 1. For a realistic electron beam, where each
electron has a different initial momentum, we additionally
require �p < q for the initial momentum spread �p of the
electrons.

We emphasize that our single-mode model is indeed very
simplified. While this approach seems justified for an FEL
seeded by a single mode, it breaks down for the startup from
vacuum, where no mode of the radiation field is preferred
and we know from classical SASE that a comparably broad
spectrum is emitted [26–28]. To gain some insights into the
subtleties of SASE in the quantum regime, we nevertheless
use this model as a starting point in rough analogy to the

development of classical FEL theory, where corrections due
to various effects were introduced step by step [29].

B. Constants of motion

Despite several attempts [22,30–35], no closed analytic
solution for the dynamics dictated by the Dicke Hamiltonian
has been found. Hence, we resort to approximations and nu-
merical methods. Hereby, we closely follow the lines of the
existing literature [22,32,33,36]. In addition, we study the
effect of a nonzero detuning from resonance.

The key ingredient of our approach is the identification
of three constants of motion [32]. From the Hamiltonian in
Eq. (3) we straightforwardly derive that the total angular mo-
mentum

Â ≡ Ĵ2 = 1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

) + Ĵ 2
z (5)

as well as the total number of excitations

B̂ ≡ n̂ + Ĵz (6)

are constants of motion which commute with each other, that
is, [Â, B̂] = 0.

Moreover, the Hamiltonian

Ĉ ≡ Ĥeff (7)

is independent of time and thus itself constitutes a third
constant.

C. Our approaches

We use these quantities to investigate the long-time dy-
namics of a high-gain Quantum FEL in an analytical as well
as a numerical approach. The former one is carried out in
detail in Appendix A and relies [32] on the decoupling of
the Heisenberg equations of motion of the photon-number
operator n̂ with the help of Â, B̂, and Ĉ. To solve the resulting
differential equation of noncommuting operators, we approx-
imate the operators by c-numbers [32,33]. By this procedure
we find an analytical expression for the mean photon number
n ≡ 〈n̂〉 in terms of a Jacobi elliptic function [22,33,37].

In contrast, the approach of Appendix B towards a numer-
ical solution [36] is based on the evolution of time-dependent
state vectors as solutions of the Schrödinger equation. For
that, we expand the state of the laser field into Fock states
|n〉 with photon number n while the collective state of the
electrons is described by the basis |r, m〉, where r corresponds
to the total angular momentum and m to its z component.
Since Â and B̂ are constant, the set n, r, m of three inde-
pendent quantum numbers is reduced to a single one. As a
consequence, the Schrödinger equation leads to a three-term
recurrence relation for the expansion coefficients which we
straightforwardly solve by the numerical diagonalization of a
tridiagonal matrix of dimension (N + 1) × (N + 1).

III. LONG-TIME DYNAMICS

In the following we present our results of the analytical
approximation and the numerical simulation for the long-time
dynamics of a high-gain Quantum FEL. Here we first focus
on the time evolution of the mean number of photons and
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concentrate on the dependence of the saturation intensity and
length on the number of electrons. We conclude by discussing
the variance of the photon distribution of the Quantum FEL.

A. Time evolution of mean photon number

In Appendix A we derive the approximate expression

n(L) = n0 + (n+ − n0) cn2

[
L

2Lg

√
n+ + n−

N
− K,K

]
(8)

for the mean photon number n ≡ 〈n̂〉 of a Quantum FEL as
a function of the length L of the wiggler, where cn denotes
a Jacobi elliptic function [37]. The quantities n+ and n− are
roots of the right-hand side of the differential equation (A9)
for n. The explicit expressions for these roots are given in
Eq. (A10) and depend on the parameters of this differential
equation, that is, the initial photon number n0, the electron
number N , and the detuning δ/αN from resonance in units of
the quantum parameter.

Moreover, we have recalled from Refs. [3,13] the gain
length

Lg ≡ c

2g
√

N
(9)

of a Quantum FEL.
In addition, the Jacobi elliptic function cn is characterized

by the modulus K = K(n+, n−) from Eq. (A15), whereas K ≡
K (K) describes a complete elliptic integral of first kind [37].

We emphasize that the initial state of the laser field en-
ters in the approximation, Eq. (8), only through the mean
photon number n0. In Fig. 1 we compare the analytical
approximation for the mean photon number n = 〈n̂〉 to the
numerical solution, for exact resonance p = q/2 and with
N = 104 electrons [38]. Here we consider the startup from
vacuum (top) despite the limitations of our single-mode model
as well as a seeded FEL evolving from a Fock state with
n0 = 103 photons (bottom).

In both cases we observe an exponential startup in ac-
cordance with Ref. [13]. However, this growth saturates for
increasing values of the wiggler length L leading to a local
maximum of the photon number. The mean photon number
then decreases until it reaches its initial value, before it again
increases in an oscillatory-like behavior.

For startup from vacuum we deduce from the analytical
approach that each electron emits at most one photon, that
is, nmax = N , in contrast to the smaller value nmax

∼= 0.8N
obtained by the numerical simulation. The second maximum
of the numerical solution, however, is even more suppressed
compared to the analytical approximation.

We interpret these deviations as the result of entangled
Dicke states for the electron momenta [13,14] which the nu-
merical solution takes into account. The oscillations of the
analytical solution between 0 and N indicate that in this model
all electrons are in the ground state when the maximum pho-
ton number is reached. In the exact treatment, however, the
electrons become entangled due to their common interaction
with the laser field. This entanglement prevents a product
state, where each electron is in the ground state, decreasing
the maximum photon number.

FIG. 1. Mean photon number n = 〈n̂〉 of a high-gain Quantum
FEL as a function of the wiggler length L scaled in units of the
gain length Lg. We compare the analytical approximation (red line)
from Eq. (8) to the numerical solution (blue, dashed line) of Eq. (B4)
for the startup from vacuum (top), that is, n0 = 0, as well as for a
seeded FEL (bottom) with n0 = 103 photons in an initial Fock state.
For both plots we have assumed resonance, p = q/2, and the value
N = 104 for the number of electrons. In all cases the curves show
an exponential growth for short times which saturates and leads to
a first maximum followed by further oscillations. For the startup
from vacuum the photon number saturates at about ten gain lengths.
There, the approximate solution takes on the value n = N , that is,
each electron has emitted exactly one photon, while the numerically
computed maximum is at about n ∼= 0.8N . In addition, the locations
of these maxima for analytics and numerics are slightly shifted with
respect to each other. For an FEL seeded by a large Fock state, nu-
merics and analytics agree very well. In this case, we obtain complete
oscillations of the mean photon number between the values n0 and
n0 + N with a significantly shorter periodicity than for the startup
from vacuum.

Despite these differences between the numerical and the
approximate result, the latter one is helpful to estimate the
qualitative behavior of the dynamics. This feature becomes
even more important in the discussion of experimentally rel-
evant length scales in Sec. IV, when we increase the electron
number N to more realistic values where a numerical diag-
onalization becomes impracticable. In this limit, we have to
resort to the predictions given by the expression in Eq. (8).

In contrast, for a seeded Quantum FEL the numerical and
analytical solution for the mean photon number agree very
well, at least for a Fock state. In this situation we observe os-
cillations of the mean photon number between n0 and n0 + N .
We note that the periodicity of these oscillations is much
shorter than for the startup from vacuum.

So far, we have only considered the case of the initial state
of the laser field being given by a Fock state. We now study
the influence of the photon statistics of the initial state on
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FIG. 2. Mean photon number n = 〈n̂〉 of a seeded high-gain
Quantum FEL as a function of the wiggler length L in units of the
gain length Lg. We depict the numerical solution for n with respect
to three different initial states for the laser field, that is, a Fock
state (red line), a coherent state (blue, dashed line), and a thermal
state (black, dotted line). The latter two states are described by the
photon distributions in Eqs. (B6) and (B7). In all three examples we
have chosen the values n0 = 500 and N = 5000 for the initial mean
photon number and the number of electrons, respectively. While a
Fock state and a coherent state lead to the same oscillatory behavior
of the photon number between n0 and N + n0, the situation for a
thermal state is different. Here the first maximum of n attains the
decreased value of approximately 0.8N instead of 1.1N . Moreover,
we do not observe full oscillations, but the photon number seems to
approach a constant value of approximately 0.5N .

the time evolution of the mean photon number and refer to
Appendix B for details.

Therefore, we show in Fig. 2 the numerically evaluated
expectation value n = 〈n̂〉 as a function of L, with the initial
state of the field given by (i) a Fock state, (ii) a coherent state,
and (iii) a thermal state. To make a meaningful comparison
we have chosen in the three cases the same initial mean pho-
ton number n0 = 500 while assuming N = 5000 electrons. A
coherent state is usually employed to model the output of a
coherent light source such as a laser. In contrast, a thermal
state describes a random, incoherent source, for example, a
light bulb [39,40].

We observe that a coherent state leads approximately to
the same behavior as a Fock state, that is, an oscillation of the
photon number between n0 and N + n0. However, the curve
corresponding to a thermal input state is different. Here the
maximum photon number reaches only the decreased value
of 0.8N instead of 1.1N . In addition, the oscillatory behavior
is washed out and n seems to approach a constant value of
about 0.5N .

Similar to a Fock state, a coherent state with a high photon
number possesses a sharply peaked photon distribution pn. We
obtain the mean photon number through

n(L) =
∞∑

n′=0

pn′ nn′ (L) (10)

expressed by Eq. (B15). Here nn′ = nn′ (L) denotes the mean
photon number for the initial Fock state n′.

Hence, mainly contributions with photon numbers close to
the mean n0 are relevant. Since the dynamics of these con-
tributions occurs on similar timescales, the averaging process
yields results close to those originating from a delta-peaked
photon distribution, that is, for a Fock state.

In contrast, the photon distribution of a thermal state is
very broad and, moreover, is not symmetric around n0 [40].
Hence, we have to average over many differently weighted
contributions which corresponds to many different timescales
of the resulting dynamics.

Additionally, the probabilities pn for a thermal state in-
crease for photon numbers close to zero. There, the dynamics
of n is drastically different from high initial photon num-
bers as apparent in Fig. 1. This mixing of many different
timescales, combined with the influence of the qualitatively
different behavior for small photon numbers, explains the dif-
ference in Fig. 2 between a thermal input state and a coherent
or a Fock state.

B. Saturation intensity and length

In this section we investigate the magnitude nmax and
the position Lmax of the first maximum of the mean photon
number shown in Fig. 1, that is, the saturation intensity and
the saturation length, respectively, of a Quantum FEL. Our
analysis distinguishes the two cases of exact resonance and
near resonance.

1. Resonant case

For the time being, we consider exact resonance, that is,
p = q/2, and assume that the laser field is initially described
by a Fock state. From Eqs. (8) and (A10) we derive the sim-
ple relation nmax

∼= n0 + N for the maximum photon number
which we have already deduced from Fig. 1. There, we have
also found that for n0 = 0 the numerical result is lower than
the estimated one, at least for our choice of N = 104 electrons.

In the upper part of Fig. 3 we now examine if this discrep-
ancy between analytics and numerics continues to exist for
different values of N by plotting the numerically evaluated re-
sult for nmax against N . In the limit of a single electron exactly
one photon is emitted in accordance with the single-electron
approach of Ref. [10]. Here Rabi oscillations between excited
and ground state occur and no entangled Dicke states, which
we have identified as the reason for a decreased ratio nmax/N ,
emerge.

However, already for low electron numbers the value
nmax

∼= 0.78N is reached which then remains constant for the
whole range of the considered values for N . We therefore
deduce that (i) this behavior continues for increasing values
of N where numerics starts to become impracticable, and that
(ii) the analytical result nmax = N provides us at least with
the correct order of magnitude. Already in Ref. [31] it was
predicted that the maximum photon number nmax resulting
from the Dicke Hamiltonian with N 
 1 atoms varies be-
tween nmax

∼= n0 + N for a large initial photon number n0 
 1
and nmax

∼= 4/5 for n0 = 0 in accordance with our numerical
solution. Note that these results have been obtained within our
singe-mode model, whose predictive power is limited for a
startup from vacuum.

In Fig. 1 we have also observed a different Lmax for the
startup from vacuum compared to the seeded case. To find
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FIG. 3. The first maximum nmax (top) of the photon number and
the corresponding saturation length Lmax (bottom), both as functions
of the number N of electrons and for resonance p = q/2. In the
top panel, which covers only the startup from vacuum with n0 =
0, we observe that nmax very quickly reaches the constant value
of nmax = 0.78N in contrast to the analytical approximation which
predicts nmax = N . The inset shows the behavior of nmax for very
small values of N . For N = 1 we find that the electron emits one
photon due to the Rabi oscillation in the single-electron approach of
Ref. [10]. At the bottom, the comparison of analytics, Eq. (11) (red
line) to numerics (blue, dashed line) reveals the same logarithmic
behavior of Lmax apart from a small shift between the two curves, if
we consider startup from vacuum, n0 = 0. In the case of a Quantum
FEL seeded with a Fock state and with a fixed ratio of n0/N = 0.1
analytics (green line) and numerics (black, dashed line) also agree
well. Here both curves predict the constant value Lmax

∼= 5Lg with Lg

denoting the gain length from Eq. (9).

an analytical expression for Lmax we now take a closer look
at the elliptic function cn in Eq. (8). The first maximum of
this function occurs, when its arguments vanish. With the
help of this condition and the asymptotic behavior [37] of
K in Eq. (A13) for K = 1 − O(N−1) → 1 we arrive at the
expression

Lmax

Lg

∼= 2 ln

(
4

√
N

n0 + 1

)
(11)

for the saturation length with p = q/2 and N 
 1 [41].
For n0 = 0 we thus read off a logarithmic growth of Lmax

with the electron number N , that is, Lmax ∝ ln N . In the case of
a seeded Quantum FEL with n0 
 1 the important parameter
that determines the magnitude of Lmax is the ratio of electron
number N and initial photon number n0. This scaling explains
the difference in Fig. 1 of Lmax for a seeded FEL, and one
starting from vacuum because of N/n0 � N .

In the lower part of Fig. 3 we depict Lmax as a function
of N . Here we compare the analytical expression in Eq. (11)

FIG. 4. Saturation length Lmax (upper curves) and the corre-
sponding maximum photon number nmax (lower curves), as functions
of the momenta p in the neighborhood of resonance for N = 103

electrons and for n0 = 0. We observe that nmax decreases and Lmax

increases for a growing deviation from resonance p = q/2. For both,
Lmax and nmax, we find perfect agreement between analytics, that is,
the red curve and the green curve, respectively, and numerics, that
is, the blue dotted and the black dotted curve, respectively. We em-
phasize that the analytical and the numerical curves are normalized
to their respective values at resonance which, however, differ from
each other. For example, the analytical result for nmax is divided by
N while its numerical counterpart is divided by 0.78N .

to the numerical simulation. For the startup from vacuum we
observe that both curves show the same behavior, apart from
a small shift, already apparent in Fig. 1. Hence, we infer that
the analytical approximation gives a reasonable estimate also
for Lmax. For a seeded FEL with the fixed ratio n0/N = 0.1,
the numerical and the analytical curve also match very well
with both predicting a constant value of Lmax, in accordance
with Eq. (11).

2. Off-resonant case

We now study the dependence of the maximum photon
number on the detuning of the momentum of the electrons
from resonance. For that, we restrict ourselves to the startup
from vacuum n0 = 0.

According to the analytical solution from Eq. (8), the max-
imum photon number nmax is given by the elementary relation

nmax = n+ ∼= N

(
1 − δ2

4α2
N

)
(12)

valid for N 
 1, where we have used the expression for n+
from Eq. (A10).

Thus, nmax is different from zero only for −2αN < δ <

2αN , which gives rise to a gain bandwidth of q/(2αN ) in
momentum space, in accordance with the exponential-gain
regime [13].

Moreover, from Eq. (A13) we derive for N 
 1 the asymp-
totic expression

Lmax

Lg
= 1√

1 − δ2

4α2
N

[
ln N + 4 ln 2 + 2 ln

(
1 − δ2

4α2
N

)]
(13)

for the saturation length.
In Fig. 4 we show both nmax and Lmax as a function of

p which reveals a perfect agreement between our analytical
results and numerics. We note that nmax decreases for an
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FIG. 5. Variance �n2 of the photon-number distribution in a
high-gain Quantum FEL as a function of the wiggler length L scaled
in units of the gain length Lg. For the underlying numerical simu-
lation we have assumed resonance p = q/2, N = 104 electrons, and
startup from vacuum, that is, n0 = 0. We obtain a qualitatively simi-
lar behavior as for the mean photon number (compare to gray, dashed
line and right axis), that is, exponential growth, local maximum,
and decrease in an oscillatory-like fashion. However, the structure
of �n2 is more complicated. For example, close to Lmax a dip occurs,
where �n2 ∼= 0.05N2 while nmax

∼= 0.8N . Hence, the value of �n2 is
smaller, but roughly of the order of magnitude of n2

max corresponding
to an almost chaotic behavior of the laser field.

increasing deviation from resonance p = q/2, while the value
of Lmax increases.

C. Variance of photon number

A quantum mechanical observable is not only character-
ized by its mean value, but also by its higher moments. The
numerical solution of Eq. (B4) enables us to calculate these
moments for the observables of a high-gain Quantum FEL.
We now study the second moment, that is, the variance of the
photon number which is a measure of the intensity fluctuations
of the emitted radiation.

In Fig. 5 we depict the variance

�n2 ≡ 〈n̂2〉 − 〈n̂〉2 (14)

of the photon number as a function of the wiggler length L
for resonance p = q/2, and for the startup from vacuum with
N = 104 electrons. Similar to the mean value in Fig. 1, the
variance shows an oscillatory behavior [31]. However, com-
pared to the mean value (dotted line) the curve corresponding
to the variance displays a richer structure with a dip close to
Lmax. Here we find �n2 ∼= 0.05N2 while nmax

∼= 0.8N . Hence,
the variance is smaller, but of the same order of magnitude,
compared to the square of the mean value and we deduce a
nearly chaotic behavior of the radiation field [15].

The situation, however, changes, when we consider a
seeded FEL illustrated in Fig. 6. Here we compare the Fano
factor [39] σ 2 ≡ �n2/ 〈n̂〉 depending on the wiggler length L
for two different initial states of the radiation field, that is, a
Fock state [31] and a coherent state characterized by the same
mean number of photons.

While the variance for a Fock state vanishes, a coherent
state has Poissonian photon statistics with �n2 = 〈n̂〉. As time
evolves we obtain in both cases super- but also sub-Poissonian

FIG. 6. Fano factor σ 2 ≡ �n2/ 〈n̂〉 of the photon-number dis-
tribution in a seeded high-gain Quantum FEL as a function of the
wiggler length L scaled in units of the gain length Lg for two dif-
ferent initial states, that is, a Fock state (red line) and a coherent
state (blue, dashed line). For the underlying numerical simulations
we have assumed resonance p = q/2, N = 103 electrons, and an
initial mean photon number of n0 = 102. In both cases we observe
super- as well as sub-Poissonian behavior which are separated by the
horizontal dotted line at σ 2 = 1. We note that the first minimum of
this normalized variance occurs in the vicinity of the first maximum
of the mean photon number (compare to the gray solid and dotted
lines as well as to the right axis) at L ∼= 5Lg. Moreover, we find that
the fluctuations for the initially coherent case drastically increase at
around ten gain lengths, while only slowly increasing for the case of
a Fock state.

photon statistics, in contrast to the broad distribution originat-
ing from the startup from vacuum displayed in Fig. 5. Both
curves show sub-Poissonian statistics close to the first max-
imum of the mean photon number indicating a nonclassical
state of light. Moreover, we obtain a drastic increase of the
fluctuations for larger values of L, when the field initially
was in a coherent state. In contrast, for an initial Fock state
a growth of the fluctuations is hardly visible.

In Fig. 7 we study the second moment of the field when
it starts from a thermal state where �n2 = 〈n̂〉2. Although the
variance of the photon number remains of the same order of
magnitude as the square of the mean value, the corresponding
ratio attains a prominent minimum close to the saturation
length where the mean intensity assumes a maximum. Here
the corresponding statistics with �n2 < 〈n̂〉2 deviates signifi-
cantly from the thermal distribution of the initial state. Hence,
the intensity noise of the emitted light is at least partially
decreased.

IV. EXPERIMENTAL REQUIREMENTS

In this section we address the challenges associated with
realizing a Quantum FEL. Already from our elementary one-
dimensional description we can establish the most relevant
experimental conditions. Constraints which go beyond the
limits of our model are only mentioned here, but are studied
in more detail in Ref. [12].

In Table I we have summarized the important parameters of
our model of a Quantum FEL in the Bambini–Renieri frame
as well as in the laboratory frame [42]. In addition, we have
expressed these quantities in terms of the “universal scaling”

033232-6



HIGH-GAIN QUANTUM FREE-ELECTRON LASER: … PHYSICAL REVIEW RESEARCH 3, 033232 (2021)

FIG. 7. Variance �n2 of the photon number in a seeded high-gain
Quantum FEL as a function of the wiggler length L scaled in units
of the gain length Lg. We have normalized the variance with respect
to 〈n̂〉2 to investigate the evolution of the fluctuations in an initial
thermal state. The variance �n2 is of the same order of magnitude as
〈n̂〉2. However, this ratio attains a significant minimum when the first
maximum of the mean photon number is reached (compare to gray,
dashed line and right axis).

of Ref. [3], where ρ̄ ≡ ρmc/q with the Pierce parameter ρ

[26], is the analog of our quantum parameter αN [43].

A. Need for optical undulator

From Table I we deduce the condition

1 
 αN ∝ a0
(
1 + a2

0

)3/2 λ
5/2
W n1/2

e

γ 3
0

(15)

for the quantum regime in the laboratory frame, where ne de-
notes the electron density while a0, λW, and γ0 are the wiggler
parameter, the wavelength of the wiggler in the laboratory
frame, and the ratio of the kinetic energy to the rest energy
of an electron, respectively.

This relation implies that either increasing the electron
energy γ0, or lowering the wiggler wavelength λW leads to
a decreasing value of the quantum parameter.

At the same time, we have to ensure that the gain length

Lg ∝ 1

a0
(
1 + a2

0

)1/2

γ 2
0

λ
1/2
W n1/2

e

(16)

given in Table I does not become unfeasibly large.
We observe that high γ0 as well as small λW lead to

a large gain length. However, while the scaling of Lg with
the energy γ0 is quadratic, the dependence on the undulator
wavelength scales only with λ

−1/2
W . Hence, in order to satisfy

Eq. (15) and at the same time minimizing the gain length Lg,
Eq. (16), we propose to operate a Quantum FEL with a small
undulator wavelength and with a moderately high electron
energy [44] resulting in the emission of x-ray radiation due
to λL ∼ λW/γ 2 [26].

The requirement of a small undulator wavelength quite nat-
urally forces us to employ an optical undulator [17], where the
periodic array of magnets is replaced by counterpropagating
laser fields [17,18,45,46]. For an efficient interaction between
electrons and wiggler we also need according to Eq. (16) a
relatively large value of the wiggler parameter a0, that is, a
high intensity of the counterpropagating “pump” laser.

However, a laser with the required intensity would not
operate in a continuous way, but rather in a pulsed mode
which decreases the interaction length. To overcome this
problem the authors in Ref. [18] proposed a “traveling-wave
Thompson scattering” (TWTS) scheme. Instead of the usual
head-on geometry for electrons and optical undulator, TWTS
uses a side-scattering geometry, where a laser pulse with a
tilted front interacts under an optimal angle with the electron
beam. This procedure can considerably enhance the interac-
tion length.

TABLE I. Parameters of a Quantum FEL in the Bambini–Renieri (BR) frame (left), in the universal scaling of Ref. [3] (center), and in
the laboratory frame (right). We consider the five adjustable parameters wavelength λW of the undulator, its dimensionless field amplitude a0,
electron density ne, dimensionless energy γ0 of the electrons, and associated spread �γ0. Here, λC and re are the Compton wavelength of the
electron and the classical electron radius, respectively. In addition, we have introduced the longitudinal dimensionless energy γ of the electrons
in the wiggler which is connected by the relation γ = γ0(1 + a2

0 )−1/2 to the free energy and the wiggler parameter.

BR frame Universal scaling Laboratory frame

Quantum parameter αN
g
√

N

ωr
ρ̄3/2

√
rene

32γ 3
0

√
π

λ
5/2
W

λ
3/2
C

a0

(
1 + a2

0

)3/2

Momentum spread �p < 2h̄k
�γ

γ
<

ρ

ρ̄

�γ0

γ0
<

4γ0

1 + a2
0

λC

λW

Quantum gain length Lg
c

2g
√

N

1√
ρ̄

λW

4πρ

γ 2
0

√
πa0

√
1 + a2

0

√
λC/λW

rene

Classical gain length Lcl
g

c√
3

[
2

g2ωrN

]1/3 1√
3

λW

4πρ

1√
3

γ0λ
1/3
W

2π 2/3(a2
0rene )1/3

Plasma wave number kp

√
e2ne

ε0mc2

4kW

a0
ρ3/2

√
4πrene

γ 3
0

Spontaneous decay rate Rsp
2π

3

re

λC
a2

0k
(2π )2

3

a2
0re

λWλC
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B. Electron beam

Apart from the condition in Eq. (15) on the quantum pa-
rameter αN which has led to constraints for the wiggler, we
have the inequality �p < q for the momentum spread of the
electrons which reflects itself in the required quality of the
electron beam. According to Table I this condition translates
into the inequality

�γ0

γ0
<

4γ0

1 + a2
0

λC

λW
(17)

for the relative energy spread of the electron beam in the
laboratory frame with λC denoting the Compton wavelength
of the electron.

Nevertheless, we note that also here a short wiggler wave-
length is advantageous since it raises the upper bound of the
inequality. Equation (17) represents an ambitious requirement
on the quality of the electron beam [10,47].

Indeed, for an efficient operation of a Quantum FEL the
momentum spread �p has to be smaller than the gain band-
width 2αN q, that is,

�p < 2αN q, (18)

due to momentum selectivity [13]. Since αN � 1, Eq. (18)
even lowers the maximally allowed energy spread.

Further experimental challenges due to the interaction ge-
ometry and intensity fluctuations of the pump laser as well
as the required properties of the electron beam taking into
account three-dimensional effects are discussed in more detail
in Ref. [12].

C. Space charge vs spontaneous emission

So far, we have considered the dynamics of a Quan-
tum FEL governed by a unitary time evolution neglecting
processes which destroy the strong correlation between mo-
mentum jumps of the electrons and the emission or absorption
of photons. Decoherence mechanisms of this kind can be, for
example, spontaneous emission into all modes of the radiation
field [48], or space-charge effects [49,50] due to the Coulomb
interaction between the electrons. As these processes may
eventually prevent the operation of a Quantum FEL, strong
limits were imposed in Ref. [12] on the parameter regime for
the electron beam and the wiggler field. We now show with
the help of our results of Sec. III that these constraints can be
weakened.

The discussion in Ref. [12] relied on estimating the typ-
ical length scales of the decoherence processes by classical
theories. Hence, we consider the rates kp and Rsp, that is, the
plasma wave number [26,50] of the electron beam and the
inverse decay length [48,51,52], respectively, which both are
listed in Table I.

To ensure a coherent time evolution over the total length
L of the wiggler, both processes have to occur on longer
length scales than the interaction. Hence, in accordance with
Ref. [12] we require the inequalities 1/(2Rsp) > L and 1/kp >

L, that is, RspL < 1/2 and kpL < 1. In addition, we demand
in the quantum regime that multiphoton processes are sup-
pressed, that is, αN � 1.

However, the parameters kpL, RspL, and αN are not in-
dependent of each other due to their mutual dependence on

γ0, ne, λW, and a0. Indeed, we can relate [12] the wiggler
length L

L

Lg
=

[
12

αN

αf
(RspL)(kpL)2

]1/3

(19)

to these three parameters and the gain length. Here we have
used the definitions from Table I and introduced [53] the fine-
structure constant αf ≡ 2πre/λC.

We emphasize that the values of the parameters on the
right-hand side of Eq. (19) can be chosen independently from
each other. However, once this choice is made, the interaction
length on the left-hand side is fixed.

In order to get an estimate for L/Lg we set kpL and RspL to
their upper bounds, that is, kpL = 1 and RspL = 0.5, respec-
tively. For the example of αN = 0.25 we obtain from Eq. (19)
the value

L

Lg

∼= 5.9 (estimated limit) (20)

for the maximally allowed interaction length.
However, from Eq. (11) we derive the saturation length

Lmax

Lg

∼= 23.5 (startup from vacuum) (21)

for startup from vacuum with n0 = 0 and for N = 109 elec-
trons based on our single-mode theory. This choice for N is a
typical number [26,29] for electron bunches in an FEL.

Since L � Lmax the coherent time evolution breaks down
long before saturation is reached, and the maximally possible
intensity is extremely decreased.

In contrast, for a seeded FEL with n0 = 0.1N we deduce
from Eq. (11) the saturation length

Lmax

Lg

∼= 5.1 (seeded FEL), (22)

which is of the same order of magnitude as the allowed inter-
action length from Eq. (19) and thus the maximum intensity
can be reached.

As a consequence, we believe in accordance with Ref. [12]
that the focus of the research on Quantum FELs should shift
from SASE to seeded FELs. We emphasize, however, that
this discussion is based on arguments borrowed from classical
theories and that a rigorous quantum theory covering the full
interplay between multiphoton processes, spontaneous emis-
sion, and space charge is necessary to prove our statements.

Moreover, the transition to seeded FELs shifts the ex-
perimental challenges towards providing a narrow-band seed
source with sufficient intensity in the x-ray regime. The lack
of high-quality mirrors in this part of the spectrum impedes
the construction of laser sources with sufficient power to
obtain a seed with n0 ∼ 0.1N . However, one could design a
hybrid scheme as proposed in Ref. [12], where a classical FEL
serves as the seed for the Quantum FEL. Either the broadband
output of a classical SASE FEL can be filtered and is then
amplified in the Quantum FEL or a classical, (self-)seeded
x-ray FEL with powers up to the GW range [54] can be used
for seeding. In the latter case, the number n0 of photons in
a single mode can attain values up to 1011–1012, at least in
the soft x-ray regime according to Ref. [55]. This order of
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magnitude indicates that our example of n0 ∼ 108 can be in
reach of experimental capabilities.

V. CONCLUSIONS

In the present paper we have studied the mean intensity as
well as the intensity fluctuations in a high-gain Quantum FEL.
The reduction to two momentum levels limits the maximum
intensity to a single emitted photon per electron. We have
found that the necessary wiggler length for this maximum is
significantly decreased if we consider a seeded FEL instead
of SASE. Hence, the experimental realization of the former
seems more feasible, especially with regard to the problem-
atic requirements pointed out in Ref. [12]. Our results have
also shown why the short wavelength of an optical undulator
is necessary to fulfill the most important constraints for the
operation of a high-gain Quantum FEL.

Moreover, we have observed that the time-evolved inten-
sity fluctuations are mainly determined by the initial field
state—ranging from super- to sub-Poissonian statistics in the
case of a Fock or a coherent state with a high photon number,
to a very broad photon distribution for vacuum.

To refine our model to more realistic scenarios we have
to take space charge and spontaneous emission into all
modes into account. In particular, we have to combine our
many-electron theory [13] with a multimode model [52]
in order to make more precise statements for the startup
from vacuum. Additional to the copropagating plane wave
with fixed frequency and polarization—that together with the
operators âL and â†

L define the “laser mode”—we would have
to include all directions, frequencies, and polarizations; each
connected to a an annihilation and creation operator. We note
that each mode corresponds to a different momentum transfer
on the electrons. Moreover, relativistic effects such as slippage
[27] of the radiation pulse over the electron bunch have to
be included, which also represent a multimode effect since
a radiation pulse represents a superposition of plane waves.
However, these topics go beyond the scope of our paper and
are subject to further studies.
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APPENDIX A: ANALYTICAL APPROXIMATION

In this Appendix we summarize the most important steps
to obtain an analytical approximation for the mean photon
number in terms of Jacobi elliptic functions. Our procedure
for Heisenberg operators is closely related to the one of

Ref. [32] in Schwinger representation [56] while it also leads
to analogous results as other models [22,33].

1. Dynamics of number operator

Our analytical approach is based on the decoupling of the
Heisenberg equations of motion for the photon-number oper-
ator n̂ with the help of three constants of motion, in analogy
to Ref. [32].

The time evolution of any operator Ô = Ô(τ ) in the
Heisenberg picture is dictated by the Heisenberg equation
of motion

d

dτ
Ô = i

[
Ĥeff, Ô

]
(A1)

with the Hamiltonian

Ĥeff ≡ ε
(
âLĴ+ + â†

LĴ−
) − δn̂, (A2)

from Eq. (3), which is independent of the time variable τ .
With the help of Eqs. (A1) and (A2), together with the

commutation relations [Ĵ+, Ĵ−] = 2Ĵz, [Ĵz, Ĵ±] = ±Ĵ±, and
[âL, â†

L] = 1 we verify that the total angular momentum

Â ≡ Ĵ2 = 1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

) + Ĵ2
z , (A3)

the total number of excitations

B̂ ≡ n̂ + Ĵz, (A4)

and the Hamiltonian

Ĉ ≡ Ĥeff (A5)

are constants of motion. We note that the three constants Â,
B̂, and Ĉ, as well as the photon-number operator n̂ ≡ â†

LâL

mutually commute with each other.
The second derivative of n̂ with respect to time reads

d2n̂

dτ 2
= i

[
Ĥeff,

dn̂

dτ

]
= −[

Ĥeff,
[
Ĥeff, n̂

]]
(A6)

and after inserting Ĥeff from Eq. (A2) and calculating the
nested commutator we arrive at

d2n̂

dτ 2
= ε2

[
(2n̂ + 1)Ĵz + Ĵ+Ĵ− + Ĵ+Ĵ− − δ

ε

(
âLĴ+ + â†

LĴ−
)]

.

(A7)

When we express the right-hand side purely in terms of the
operators Â, B̂, Ĉ, and n̂ we finally obtain the second-order
differential equation [32]

d2n̂

dτ 2
=− 2ε2

{
3n̂2−2

[
2B̂ −

(
δ

2ε

)2

−1

2

]
n̂ −

(
Â+B̂−B̂2− δĈ

2ε2

)}

(A8)

for n̂.
The dynamics of n̂ is indeed decoupled from the electron

operators. Unfortunately, we cannot solve Eq. (A8) by inte-
gration since it is a nonlinear equation of operators instead of
numbers. Hence, n̂ and dn̂/dτ do not necessarily commute.
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2. Approximating operators as c-numbers

In order to find an estimate for the mean photon number
n ≡ 〈n̂〉 we approximate the constant operators in Eq. (A8)
by their expectation values at τ = 0, that is, A = r(r + 1),
B = n0 + m, and C = −δn0 with r = m = N/2. Here we have
assumed that the field starts with the photon number n = n0,
and initially all electrons are in the excited state close to
p = q/2. Strictly speaking, this approximation is only valid
as long as products of operators result in products of expecta-
tion values [32] when we form the total expectation value of
Eq. (A8).

We then multiply the resulting c-number equation by
dn/dτ and integrate over time τ . This procedure yields the
equation of motion

(
dn

dτ

)2

= 4ε2(n+ − n)(n − n0)(n + n−), (A9)

where

n± ≡ ±N

2

(
1 − δ2

4α2
N

)
± 1

2

(
n0 − 1

2

)
+ 1

2

[
N2

(
1 − δ2

4α2
N

)2

+
(

n0 + 1

2

)2

+ 2Nn0

(
1 + δ2

4α2
N

)
+ 3N

(
1 + δ2

12α2
N

)]1/2

(A10)

denotes the roots of the right-hand side of Eq. (A9).
By setting dn/dτ = 0 in Eq. (A9) we observe that the

maximum photon number is given by n+. The other two roots
of Eq. (A9), that is, n = n0 and n = −n−, correspond to the
minimum and initial value of n, and to an unphysical negative
photon number, respectively.

We proceed by integrating Eq. (A9) and arrive at the
expression

2αNτ =
∫ n/N

n0/N

dy√
(n+/N − y)(y − n0/N )(y + n−/N )

, (A11)

which describes an elliptic integral.

3. Solution of elliptic integral

Next we invert the elliptic integral from Eq. (A11) in order
to express the mean photon number n as a function of the
dimensionless time τ . Our result is then presented in terms
of Jacobi elliptic functions [37].

These special functions are defined as inverse functions of
the elliptic integral of first kind

u(ϕ,K) ≡
∫ ϕ

0

dy√
1 − K2 sin2 y

, (A12)

which is characterized by the amplitude ϕ and the modulus K
with 0 < K < 1.

There exists a set of elliptic functions, for example, sn ≡
sin ϕ and cn ≡ cos ϕ, which are called sine amplitude and
cosine amplitude, respectively. They vary between −1 and
1 and are 4K-periodic, with K (K) ≡ u(π/2,K) denoting a
complete elliptic integral of first kind [37].

We note that K shows the asymptotic behavior [37]

K ∼= ln

(
4√

1 − K2

)
(A13)

for K approaching unity, that is, K → 1.
We now return to the solution of the integral in Eq. (A11)

and observe for N 
 n0 and δ/αN < 2 the relative ordering
n+ � n � n0 > −n− for the roots of the denominator. Follow-
ing Ref. [37] we proceed by performing the substitution

sn2(u,K) = 1

K2

y − n0/N

y + n−/N
, (A14)

where

K ≡
√

n+ − n0

n+ + n−
(A15)

denotes the modulus corresponding to the sn function.
With the help of the substitution in Eqs. (A14) and (A15)

we perform the integration in Eq. (A11). Solving the resulting
expression for n leads us finally to

n = n0 + (n+ − n0) cn2

(
L

2Lg

√
n+ + n−

N
− K,K

)
(A16)

after using several fundamental identities [37] for Jacobi ellip-
tic functions. Moreover, we have expressed our result in terms
of the length L ≡ ct and the gain length Lg ≡ c/

(
2g

√
N

)
by

recalling the relation αNτ = L/(2Lg) from Ref. [13].

APPENDIX B: NUMERICAL SOLUTION

In contrast to our approach in Appendix A which is based
on time-dependent operators, we now employ for our numeri-
cal solution time-dependent state vectors following Ref. [36].
We first address the case of an initial Fock state and then turn
to an arbitrary initial state to obtain moments of the photon
distribution of a Quantum FEL.

1. Three-term recurrence relation

The suitable basis for the electrons in this description is
given by the states |r, m〉 which fulfill the eigenvalue equations
[23]

Ĵ2|r, m〉 = r(r + 1)|r, m〉 and Ĵz|r, m〉 = m|r, m〉. (B1)

Hence, the positive integer r corresponds to the total angular
momentum and m to its z component.

Moreover, we recall [23] the relation

Ĵ± |r, m〉 =
√

(r ± m + 1)(r ∓ m) |r, m ± 1〉 (B2)

for the action of the ladder operators Ĵ± on such a state.
Therefore, we expand the combined state vector |�〉 =

|�(τ )〉 of the laser field and the electrons into the basis
|n, r, m〉. Here |n〉 denotes a Fock state of the laser field with
n photons while the eigenstate |r, m〉 for angular momentum
describes the electrons.

Since the total angular momentum Â as well as the total
number of excitations B̂, Eqs. (5) and (6), are constants of
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motion, we deduce that r = N/2 = const and m + n = N/2 +
n0 = const, respectively.

Hence, we expand the total state vector [36]

|�(τ )〉 ≡
n0+N∑
ν=n0

cν (τ )
∣∣∣ ν, N

2
,

N

2
+ n0 − ν

〉
(B3)

in terms of the single quantum number ν with the expansion
coefficients cν = cν (τ ). We note that ν varies between ν = n0

and ν = n0 + N due to the constraint −N/2 � m � N/2.
With the help of Eq. (B2) and the Schrödinger equation

governed by the Hamiltonian from Eq. (3) we derive the
equation of motion

i
dcν

dτ
= −δνcν + αN [a(ν) cν−1 + a(ν + 1) cν+1] (B4)

for the probability amplitudes cν where the coefficients

a(ν) ≡
√

ν(ν − n0)

√
1 − ν − n0 − 1

N
(B5)

are independent of cν .
The solution of this linear system of differential equations

relies on the diagonalization of a tridiagonal matrix with
the dimension (N + 1) × (N + 1), which can be straightfor-
wardly achieved by numerical methods. For this purpose, we
choose the initial state |n0, N/2, N/2〉, that is, all electrons
initially are in the excited state while the laser field starts from
n = n0, which leads to the initial condition cν (0) = δν,n0 for
Eq. (B4).

2. Arbitrary initial state

So far, we have only considered a Fock state as initial field
state. We easily generalize our approach to an arbitrary initial
state characterized by the photon statistics pn.

In the present paper, we are mainly interested in the photon
statistics

pcoh
n = n0

n

n!
e−n0 (B6)

and

ptherm
n = 1

n0 + 1

(
n0

n0 + 1

)n

(B7)

of a coherent state and a thermal state both characterized by
the mean photon number n0.

The time-evolved density operator �̂ = �̂(τ ) of the com-
bined system of electrons and laser field reads

�̂(τ ) =
∞∑

k,l=0

�k,l

N+k∑
μ=k

N+l∑
ν=l

cμ(τ )c∗
ν (τ )M̂(μ, k|ν, l ) (B8)

with the operator

M̂(μ, k|ν, l ) ≡ |μ, N/2, N/2+k−μ〉 〈ν, N/2, N/2 + l−ν| .
(B9)

The coefficients �k,l denote the matrix elements of the initial
density operator for the laser field in photon-number represen-
tation. The diagonal elements of this matrix define the photon
statistics, that is, pn ≡ �n,n.

In order to calculate the expectation value of any function
f = f (n̂) of the number operator n̂, we trace over the electrons
and the laser field, that is,

〈 f (n̂)〉 = TrL {Trel {�̂(τ )} f (n̂)}, (B10)

and arrive at the relation

〈 f (n̂)〉 =
∞∑

n=0

〈n|
(

N/2∑
m=−N/2

〈N/2, m| �̂(τ ) |N/2, m〉
)

f (n) |n〉

(B11)

for this expectation value.
After inserting the expression for �̂ from Eq. (B8) into

Eq. (B11), and calculating the matrix element〈
n,

N

2
, m

∣∣∣M̂(μ, k|ν, l )
∣∣∣n,

N

2
, m

〉
= δn,νδm,N/2+l−ν δμ,νδk,l ,

(B12)

we obtain the expression

〈 f (n̂)〉 =
∞∑

n′=0

pn′

N+n′∑
ν=n′

|cν (τ )|2 f (ν), (B13)

which only contains the diagonal elements pn′ .
When we set pn′ = δn′,n, which corresponds to a Fock state,

Eq. (B13) reduces to the formula

〈 f (n̂)〉n ≡
N+n∑
ν=n

|cν (τ )|2 f (ν) (B14)

corresponding to the case with initial photon number n. This
result also emerges by solving Eq. (B4), and calculating the
expectation value of f (n̂) with respect to the state in Eq. (B3).

Hence, we finally obtain the elementary expression

〈 f (n̂)〉 =
∞∑

n′=0

pn′ 〈 f (n̂)〉n′ (B15)

for the expectation value of f = f (n̂).
This result arises due to our choice of the initial state

|N/2, N/2〉 of the electrons and due to the fact that there is
only one independent quantum number, ν.
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