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In a recent letter, Dornheim et al. [Phys. Rev. Lett. 125, 085001 (2020)] have investigated the nonlinear density
response of the uniform electron gas in the warm dense matter regime. More specifically, they have studied the
cubic response function at the first harmonic, which cannot be neglected in many situations of experimental
relevance. In this paper, we go one step further and study the full spectrum of excitations at the higher harmonics
of the original perturbation based on extensive new ab initio path integral Monte Carlo (PIMC) simulations. We
find that the dominant contribution to the density response beyond linear response theory is given by the quadratic
response function at the second harmonic in the moderately nonlinear regime. Furthermore, we show that the
nonlinear density response is highly sensitive to exchange-correlation effects, which makes it a potentially
valuable tool of diagnostics. To this end, we present a theoretical description of the nonlinear electronic density
response based on the recent effective static approximation to the local field correction [T. Dornheim et al., Phys.
Rev. Lett. 125, 235001 (2020)], which accurately reproduces our PIMC data with negligible computational cost.
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I. INTRODUCTION

Linear response theory (LRT), i.e., the assumption of a
linear response of a system of interest to a sufficiently small
perturbation, is ubiquitous throughout physics and related dis-
ciplines. Prominent examples include the density and current
response of many-body systems to external fields, e.g., [1], the
computation of optical absorption or plasmon spectra [2,3],
the probing of superfluidity [4,5], the description of electron-
phonon interactions [6], and dynamical simulations based on
density functional theory [7]. From a practical point of view,
the linear response only depends on the equilibrium properties
of the unperturbed system, which often makes an accurate
theoretical description feasible in the first place. This also
allows one to characterize a system in terms of its response,
which is of fundamental importance for diagnostics.

Yet, while it is clear that LRT is only accurate for small
perturbations, often the validity of this assumption is not
checked. On the one hand, this is quite understandable, as
the general nonlinear response is substantially more compli-
cated than LRT and, consequently, much poorer understood.
On the other hand, it is well known that nonlinear effects
play an important role for many applications, e.g., in the
optical excitation and ionization of atoms [8,9], in nonlinear
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optics [10], in nuclear physics [11], in laser plasmas [12], in
the inverse bremsstrahlung heating of plasmas [13,14], non-
linear plasmons in magnetized plasmas [15–17], the excitation
spectrum of graphene [18–20], the optical properties of large
molecules [21], or intersubband transitions in quantum-well
semiconductor heterostructures [22].

The present paper is devoted to the nonlinear density re-
sponse of warm dense matter (WDM), an exotic state with
extreme temperatures (T ∼ 104 − 108 K) and densities in
the vicinity of solid states [23–25]. These conditions occur
naturally in astrophysical objects such as giant planet in-
teriors [26,27] and brown dwarfs [28,29]. In addition, the
compression path of a fuel capsule towards inertial confine-
ment fusion has to traverse the WDM regime [30]. Finally,
we mention the potential of hot electrons as a catalyst for
chemical reactions [31], and the recent discovery of new
materials such as lonsdaleite [32] and nanodiamonds [33]
at extreme conditions. Due to this gamut of applications,
WDM has emerged as one of the most active frontiers in
plasma physics and material science, and WDM is nowadays
routinely realized in experiments at large research facilities
around the globe; see the recent review article by Falk [34]
for an overview of different experimental techniques.

Unfortunately, the theoretical description of WDM is no-
toriously difficult due to the intriguingly intricate interplay
of Coulomb correlations, thermal excitations, and quan-
tum effects. The correlation strength rules out perturbative
expansions, e.g. in the frame of Green functions [35], a
nonvanishing temperature precludes the applications of the
well-stocked arsenal of ground-state methods, and quantum
effects make semiclassical methods like molecular dynamics
insufficient. Therefore, computationally expensive quantum
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Monte Carlo methods [36,37] have emerged as the method
of choice to determine the basic properties of WDM [38–44].

Like theoretical concepts in many other fields, current
WDM theory is based, to a large extent, on LRT. For
example, the theory of x-ray Thomson scattering [45,46],
the most capable diagnostics in WDM experiments, pre-
supposes a purely linear relation between perturbation and
response. Other examples include the construction of elec-
tronically screened effective potentials [47–49], the estimation
of energy-relaxation rates [50–52], and the description of
energy-loss properties like the stopping power [53,54]. In this
context, the central property is often given by the linear den-
sity response function χ (q, ω) (with q and ω being the wave
number and frequency of the perturbation) of the electrons
in the system. These can be approximated by the uniform
electron gas (UEG) [1], one of the most fundamental model
systems in physics and quantum chemistry [36,55].

In a recent letter [56], three of us carried out extensive
ab initio path integral Monte Carlo (PIMC) simulations of
the harmonically perturbed electron gas in the WDM regime
without any assumptions about the response being linear. First
and foremost, this has allowed us to check the validity range
of LRT in WDM systems. While many applications such as
the aforementioned XRTS are safely located within the LRT
regime, it was found that it is indeed feasible to induce non-
linear effects using currently available experimental setups.
For example, the intentional probing of the nonlinear density
response might be developed as an additional method of diag-
nostics [57]. In addition, we used the exact PIMC data for the
density response to extract the cubic density response function
at the wave number of the perturbation itself.

In the present paper, we substantially extend these ef-
forts by considering the full excitation spectrum over the
entire range of wave numbers. In particular, we find strong
nonlinear excitations at the integer higher harmonics of the
original perturbation. The quadratic response at the sec-
ond harmonic constitutes the largest nonlinear contribution
for moderate perturbations. Furthermore, we find that the
nonlinear response functions strongly depend on electronic
exchange-correlation effects, thus making them a potentially
valuable new tool of diagnostics. To this end, we introduce
a theory of the nonlinear density response based on available
representations of the LFC [58,59], which is capable to accu-
rately reproduce our PIMC data with negligible computational
cost.

The paper is organized as follows: In Sec. II, we intro-
duce the relevant theoretical background, including the PIMC
method (II A), the simulation idea and setup (II B), the ex-
tended theory of the nonlinear density response functions
(II C), and the specific way how the latter can be estimated
from our PIMC data (II D). In Sec. III, we present our ex-
tensive simulation results covering a metallic density (III A),
the temperature dependence (III B), and a strongly coupled
case (III C). The paper is concluded by a brief summary and
outlook in Sec. IV.

II. THEORY

We assume Hartree atomic units throughout this work.
From a theoretical perspective, the WDM regime is typically

defined by two characteristic parameters that are both of the
order of one: (i) the density parameter (Wigner-Seitz radius)
rs = r/aB, where r and aB are the average interparticle dis-
tance and first Bohr radius, and (ii) the reduced temperature
θ = kBT/EF, with EF being the usual Fermi energy [1]. A
third principle parameter is given by the spin-polarization ξ =
(N↑ − N↓)/N . Throughout this paper, we restrict ourselves to
the case of a purely unpolarized system, i.e., N↑ = N↓ = N/2
and ξ = 0.

A. Path integral Monte Carlo

We carry out path integral Monte Carlo (PIMC) simula-
tions [4,60,61] of N electrons in the canonical ensemble, i.e.,
the volume V = L3 (with L being the box length), inverse
temperature β = 1/kBT , and particle number N are constant.

The basic idea of the PIMC method is to stochastically
sample the thermal density matrix

ρ(R, R, β ) = 〈R| e−βĤ |R〉 , (1)

where R = (r1, . . . , rN )T contains the coordinates of all N
electrons. In the end, the partition function is recast into the in-
tegral over P density matrices at a P times higher temperature,
and the resulting high-dimensional integrals are evaluated us-
ing the Metropolis Monte Carlo method [62] to avoid the curse
of dimensionality of standard quadrature methods; see Ref. [4]
for an extensive review article on the PIMC method.

An additional obstacle regarding the PIMC simulations of
electrons is the requirement of antisymmetry under particle
exchange, which renders the partition function into a sum
over both positive and negative contributions. The resulting
cancellation of terms with opposite sign is the origin of the
notorious fermion sign problem [63,64] that leads to an expo-
nential increase in computation time both with increasing the
system size N and with decreasing temperature T [64].

For this reason, one often employs approximate methods
like the restricted path integral Monte Carlo method [65] that
are not afflicted with the sign problem. Unfortunately, this
advantage comes at the cost of an in practice uncontrolled
systematic error [41,43,66]. Therefore, we here avoid such
nodal restrictions and carry out the computationally expen-
sive, yet exact standard PIMC simulations and deal with the
sign problem by increasing the computation time, where this
is feasible.

For completeness, we mention that all PIMC results
presented in this paper have been obtained using a canon-
ical adaption [67] of the worm algorithm by Boninsegni
et al. [68,69].

B. Simulation idea

Following Refs. [56,70–74], we simulate a uniform elec-
tron gas that is subject to an external static harmonic
perturbation. The corresponding Hamiltonian is given by

Ĥ = ĤUEG + 2A
N∑

l=1

cos(r̂l · q), (2)

where ĤUEG is the standard (unperturbed) UEG Hamilto-
nian [1,36,55]. The second term on the right-hand side (r.h.s.)
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of Eq. (2) is the external potential corresponding to a single
cosine of wave vector q = 2π/L(nx, ny, nz )T (with ni ∈ Z,
and L being the length of the simulation box) and the per-
turbation amplitude A. As A corresponds to an energy in this
notation, it is given in Hartree throughout this work. More-
over, we restrict ourselves to a strictly static perturbation as
PIMC simulations of a time-dependent system are severely
hampered by an additional dynamic sign problem [75].

To measure the density response, we compute the induced
density

〈ρ̂k〉q,A = 1

V

〈
N∑

l=1

e−ik·r̂l

〉
q,A

, (3)

where 〈. . .〉q,A indicates the parameters of the perturbation in
Eq. (2), and k corresponds to the wave vector at which we
measure the response of the system. In particular, within linear
response theory it holds

〈ρ̂k〉q,A = δq,kχ
(1)(q)A, (4)

with χ (1)(q) being the standard linear response function [1].
The latter is conveniently expressed as

χ (1)(q) = χ
(1)
0 (q)

1 − 4π
q2 [1 − G(q)]χ (1)

0 (q)
, (5)

where v(q) = 4π/q2 is the Fourier transform of the Coulomb
potential (we use atomic units throughout), χ

(1)
0 (q) is the

density response function of the ideal (non-interacting) Fermi
gas that is known from the literature [1], and G(q) is the
static local field correction containing the full wave-number
resolved information about exchange-correlation effects. In
particular, highly accurate data for G(q) have recently become
available as a neural-net representation that was constructed
on the basis of extensive PIMC simulations [58,76].

In addition, we mention that the full wave-number depen-
dence of χ (1)(q) can be computed from a single simulation of
the unperturbed UEG via the imaginary-time version of the
fluctuation-dissipation theorem, which states that

χ (1)(q) = −n
∫ β

0
dτ F (q, τ ) , (6)

with F (q, τ ) being the intermediate scattering function [45]
evaluated at an imaginary time argument τ ∈ [0, β], see
Refs. [42,58,77–83] for different applications of this quantity.

Finally, we mention the density of the perturbed electron
gas in coordinate space, which, in LRT, is given by

n(r) = n0 + 2Acos(q · r)χ (1)(q), (7)

with n0 being the average value of the density.

C. Theory of nonlinear density response

The nonlinear density response of plasmas and condensed
matter systems in and out of equilibrium has been studied in
some detail theoretically and by simulations, e.g., [84–87].
Here we concentrate on the nonlinear response functions in
thermodynamic equilibrium. The general definitions of the
second- and third-order response functions are given by an ex-
pansion of the induced density, nind(r) = n(r) − n0, according

to a weak perturbation assumption [88,89]:

nind(r) =
∫

dr′χ (r, r′)V (r′)

+
∫

dr′dr′′Y (r, r′, r′′)V (r′)V (r′′)

+
∫

dr′dr′′dr′′′Z (r, r′, r′′, r′′′)V (r′)V (r′′)V (r′′′)

+ · · · , (8)

where V is the perturbing potential, whereas Y and Z are the
second-order and third-order response functions, respectively.

Taking into account that, for a homogeneous system,
χ (r, r′) = χ (r − r′), Y (r, r′, r′′) = Y (r − r′, r − r′′), and
Z (r, r′, r′′, r′′′) = Z (r − r′, r − r′′, r − r′′′), Eq. (8) can be
rewritten in Fourier space as (� denotes the volume)

nind(k) = χ (k)V (k) + 1

�

∑
k2

Y (k − k2, k2)V (k − k2)V (k2)

+ 1

�2

∑
k2

∑
k3

Z (k − k2 + k3, k2, k3)

× V (k − k2 + k3)V (k2)V (k3) + · · · , (9)

where wave-vector notation k is used to avoid confusion with
the wave vector q of the external harmonic field V (r) =
2A cos q · r.

By substituting into Eq. (9) the Fourier representation of
the external potential (A = Ã/�),

V (k) = Ã[δk,q + δk,−q], (10)

we arrive at

nind(k) = Ã[χ (1)(k)δk,q + χ (1)(k)δk,−q]

+ Ã2

�
[Y (k − q, q)δk,2q + Y (k + q,−q)δk,−2q]

+ Ã3

�2
[χ (1,cubic)(k, q)δk,q + χ (1,cubic)(k,−q)δk,−q

+ Z (k − 2q, q, q)δk,3q

+ Z (k + 2q,−q,−q)δk,−3q] · · · . (11)

The first line contains the linear response χ (1) at the incoming
wave vector q. The second line collects the quadratic response
Y at the second harmonic 2q. The third line gives the cubic
response at the first harmonic χ (1,cubic) where the following
notation for brevity was introduced:

χ (1,cubic)(k, k′) = Z (k, k′,−k′) + Z (k,−k′, k′)

+ Z (k − 2k′, k′, k′). (12)

Finally, the third and fourth lines contain the cubic response
function Z at the third harmonic 3q. We will drop all negative
wave vectors from now on as the behavior is symmetric for
positive and negative q. It should also be noted that only in-
teger multiples of the original wave vector appear as possible
higher-order excitations.
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Now, by performing an inverse Fourier transform of
Eq. (11), we obtain, for the induced density in real space,

nind(r) = 1

�

∑
k

nind(k) exp(ikr)

= 2
∞∑

η=1

〈ρ̂ηq〉q,A cos(ηq · r) (13)

where, for η = 1, η = 2, and η = 3:

〈ρ̂q〉q,A = χ (1)(q)A + χ (1,cubic)(q)A3, (14)

〈ρ̂2q〉q,A = χ (2)(q)A2, (15)

〈ρ̂3q〉q,A = χ (3)(q)A3, (16)

and, using Eqs. (11) and (12) we identify

χ (2)(q) = Y (k − q, q)δk,2q, (17)

χ (1,cubic)(q) = [Z (q, q,−q) + Z (q,−q, q)

+ Z (k − 2q, q, q)]δk,q, (18)

χ (3)(q) = Z (k − 2q, q, q)δk,3q. (19)

Equations (17) and (19) show the connection between the
general second-order Y and third-order Z response functions
with the response functions of the system at the second and
third harmonics [χ (2)(q) and χ (3)(q), respectively]. Further-
more, Eq. (18) shows the connection of the cubic response
at the first harmonic, χ (1,cubic)(q), to the third-order response
function Z .

By definition, the total density in coordinate space n(r)
can as well be written as the Fourier series over all wave
numbers q,

Yet, as only the harmonics of the perturbation wave vector
q exhibit a nonzero response, the density is simply

n(r) = n0 + 2
∞∑

η=1

〈ρ̂ηq〉q,A cos(ηq · r). (20)

1. Noninteracting case

A general expression for the ideal second-order response
function, Y0, and some of its properties were considered in
Refs. [88–98].

Mikhailov [19,99] expressed the ideal response functions
at the second harmonic χ

(2)
0 (q), and third harmonic χ

(3)
0 (q)

in terms of the first-order response function χ
(1)
0 (q) without

invoking Y0(k, q) and Z0(k, k′, q) but by directly expanding
the induced density at harmonics. The recursion relations de-
rived by Mikhailov [19,99] are

χ
(2)
0 (q) = 2

q2

(
χ

(1)
0 (2q) − χ

(1)
0 (q)

)
, (21)

and [19]

χ
(3)
0 (q) = 3χ

(1)
0 (3q) − 8χ

(1)
0 (2q) + 5χ

(1)
0 (q)

3q4
. (22)

Such a recursion formula does not exist for the ideal cubic
response at the first harmonic χ (1,cubic)(q). In fact, the terms

making up the ideal cubic response at the first harmonic di-
verge.

2. Random phase approximation

Taking into account screening in linear approximation, the
RPA result for the response function from the Green’s func-
tions based consideration has the following form [88]:

Y (k − q, q) = Y (k − q, q)[
1 − v(q)χ (1)

0 (q)
]2[

1 − v(k)χ (1)
0 (k)

] .

(23)

At the second harmonic χ
(2)
RPA(q) is found using the rela-

tion (17) and Eq. (23),

χ
(2)
RPA(q) = χ

(2)
0 (q)[

1 − v(q)χ (1)
0 (q)

]2[
1 − v(2q)χ (1)

0 (2q)
] . (24)

To illustrate the level of approximation in Eqs. (23)
and (24), it is instructive to provide an alternative derivation of
Eq. (24). To begin with, we recall that, in contrast to the ideal
response function, the response function in RPA takes into
account interelectronic interactions in a mean field approxi-
mation. Therefore, introducing a total potential as a sum of the
external potential and the Hartree potential due to the induced
electronic density, 
tot = 
ext + 
ind, the induced density in
RPA at the second harmonic is obtained in terms of the ideal
response functions:

nRPA
ind (2q) = χ

(2)
0 (q)[
tot (q)]2 + χ

(1)
0 (2q)
ind(2q)

+ χ
(1,cubic)
0 (2q)[
ind(2q)]3, (25)

where the first term on the r.h.s. of Eq. (25) is the second-order
response of the system, which is proportional to the square of
the perturbing potential [as can be seen from Eq.(15)], the sec-
ond and third terms on the r.h.s. of Eq. (25) are contributions
from the linear and cubic responses induced by 
ind at 2q [in
accordance with Eq. (14)].

On the other hand, the induced density in RPA is expressed
as the response to the external field using the quadratic re-
sponse function in RPA,

nRPA
ind (2q) = χ

(2)
RPA(q)[
ext (q)]2. (26)

From Eqs. (26) and (25), we find

χ
(2)
RPA(q)[
ext (q)]2 = χ

(2)
0 (q)[
tot (q)]2 + χ

(1)
0 (2q)
ind(2q)

+ χ
(1,cubic)
0 (2q)[
ind(2q)]3. (27)

To solve Eq. (27), we combine the Poisson equation for the
induced potential at the second harmonic with Eq. (26) and
find a relation between 
ind(2q) and 
ext (q),


ind(2q) = 
tot (2q) = 4π

(2q)2
nRPA

ind (2q)

= 4π

(2q)2
χ

(2)
RPA(q)[
ext (q)]2, (28)

where it was taken into account that there is no contribution
from the external potential to the total potential at the second
harmonic.
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Secondly, we neglect the contribution from the cubic term,
i.e., set χ

(1,cubic)
0 (2q) = 0 in Eqs. (25) and (27), and thus ap-

proximate the total potential at the first harmonic using linear
response theory, which reads in RPA


tot (q) = 
ext (q)

1 − v(q)χ (1)
0 (q)

. (29)

Using Eqs. (28) and (29), we can solve Eq. (27) with respect
to χ

(2)
RPA(q) to find Eq. (24).

For further discussion of the QMC data, it is important to
emphasize that, in χ

(2)
RPA defined by Eq. (24), (i) the screening

is taken into account only in linear approximation and (ii) the
contribution due to the cubic response function is neglected.

Next, by following the steps from Eq. (25) to Eq. (27),
but for the induced density at the third harmonic, and making
use of the screening in linear approximation, we find for the
response function at the third harmonic in RPA:

χ
(3)
RPA(q) = χ

(3)
0 (q)[

1 − v(q)χ (1)
0 (q)

]3[
1 − v(3q)χ (1)

0 (3q)
] . (30)

Note that for a weak perturbation the neglected contribution to
the screening due to the cubic response χ

(1,cubic)
0 in Eq. (24) is

a higher-order correction compared to the quadratic response.
In contrast, for χ

(3)
RPA, the neglected cubic response χ

(1,cubic)
0

has the same order contribution as χ
(3)
0 . Therefore, it can be

expected that Eq. (24) performs better than Eq. (30) when ap-
plied for the description of the QMC data at the corresponding
harmonics.

The corresponding cubic response in RPA at the first har-
monic is given by

χ
(1,cubic)
RPA (q) = χ

(1,cubic)
0 (q)[

1 − v(q)χ (1)
0 (q)

]4 . (31)

It is known that there are further terms that are technically
contributing to the cubic response at the level of RPA. These
terms are made up from nondiagonal quadratic response func-
tions entirely [100,101].

3. Going beyond the RPA description by using LFC

In Eqs. (24) and (30), the electronic interactions effect
is included on the basis of the linear response functions in
the denominator. Therefore, in analogy to the usual practice
in linear response theory, we can go beyond RPA by intro-
ducing a local field correction (LFC) G(q). In this way, we
arrive at the following equations for the response functions at
the second and third harmonics with higher-order electronic
exchange-correlations effect included by using LFC:

χ
(2)
LFC(q) = χ

(2)
0 (q)

[
1 − v(q)[1 − G(q)]χ (1)

0 (q)
]−2

(32)

×[
1 − v(2q)[1 − G(2q)]χ (1)

0 (2q)
]−1

, (33)

and

χ
(3)
LFC(q) = χ

(3)
0 (q)

[
1 − v(q)[1 − G(q)]χ (1)

0 (q)
]−3

× [
1 − v(3q)[1 − G(3q)]χ (1)

0 (3q)
]−1

. (34)

Equations (33) and (34) provide an improved description of
the response functions on the second and third harmonics with

electronic exchange-correlation effects taken into account on
the level of the linear response theory. We next give the re-
spective result for the cubic response at the first harmonic,

χ
(1,cubic)
RPA (q) = χ

(1,cubic)
0 (q)[

1 − v(q)[1 − G(q)]χ (1)
0 (q)

]4 . (35)

The temperature- and density-dependent static LFC has been
obtained from QMC simulations recently [58,73,74,77,102].
Furthermore, Dornheim et al. [59,76] have introduced the con-
cept of the effective static approximation to the LFC, which is
available as a simple analytical representation [59].

D. PIMC approach to nonlinear density response functions

To extract the nonlinear density response functions of dif-
ferent harmonics from our PIMC simulation, we evaluate
Eq. (3) given above for different perturbation amplitudes A
and subsequently perform fits to these data.

In particular, the density response in reciprocal space for
the same wave number as the perturbation is fitted to [71,72]

〈ρ̂q〉q,A = χ (1)(q)A + χ (1,cubic)(q)A3, (36)

where the coefficients χ (1)(q) and χ (1,cubic)(q) are the free
parameters. Note that the determination of χ (1)(q) from
the PIMC data via Eq. (36) is redundant as it is already
known from previous simulations of the unperturbed UEG
via Eq. (6). However, these independent benchmark data can
be compared to our new results for χ (1)(q) and thus consti-
tute a valuable consistency check of our approach, see also
Ref. [56]. Furthermore, it is important to note that Eq. (36)
only holds up to a maximum perturbation strength, beyond
which contributions with a higher order of A start to substan-
tially contribute; see Sec. III for a hands-on discussion of this
point.

The density response of the second harmonic is, in first
order in A, given by

〈ρ̂2q〉q,A = χ (2)(q)A2, (37)

where χ (2)(q) is the free parameter that is obtained from a
fit to the A dependence for a fixed perturbation wave number
q. Similarly, the density response of the third harmonic is
obtained by fitting the PIMC data for the response at k = 3q
to

〈ρ̂3q〉q,A = χ (3)(q)A3. (38)

III. RESULTS

A. Metallic density: rs = 2

Let us start our investigation by considering the response
of the electron gas at rs = 2 and θ = 1. These conditions are
located at the center of the WDM regime and are realized
experimentally for example in experiments with aluminum,
e.g., Ref. [103]. In Fig. 1, we show the density response of
the system in dependence on the perturbation amplitude A for
the same wave number as the perturbation, i.e., for the first
harmonic 〈ρ̂q〉q,A. The green crosses show the raw PIMC data,
which have been obtained by evaluating Eq. (3). The solid
red line shows the prediction by LRT and has been obtained
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FIG. 1. Panel (a): Dependence of the density response of the first
harmonic 〈ρ̂q〉q,A of the UEG on the perturbation amplitude A for
N = 14, rs = 2, and θ = 1 with the perturbation wave number q ≈
1.69qF. The green crosses are PIMC data evaluated from Eq. (3),
and the solid red line is the prediction from LRT, cf. Eq. (6). The
dotted-blue line has been obtained by fitting Eq. (36) to the PIMC
data within the interval A ∈ [0, 0.225] (vertical grey dashed line),
and the dashed-black line shows the corresponding LRT prediction
from the first coefficient only. Panel (b) shows the deviation of LRT
and the cubic fit to the PIMC data.

from a previous simulation of the unperturbed UEG [58] by
evaluating Eq. (6). Evidently, LRT is in excellent agreement
with the PIMC data for small A only and the disagreement
rapidly increases with A. This can be seen particularly well
in Fig. 1(b) showing the relative deviation to the PIMC data.
For completeness, we mention that a similar analysis has been
presented in Ref. [56], although for a different wave number.

The dotted-blue curve has been obtained by fitting Eq. (36)
to the PIMC data within the interval A ∈ [0, 0.225], see also
the vertical dashed-grey line. Evidently, this curve captures
the emerging deviations between the green crosses and the
red line and remains accurate for substantially larger values
of A. In particular, it remains accurate even beyond the fitting
interval, which constitutes a strong empirical confirmation of
the functional form in Eq. (36). In addition, the dashed-black
line shows the LRT prediction using the first coefficient from
the fit and perfectly agrees with the independent red line.
Still, we note that the blue curve, too, eventually becomes
inaccurate, as the higher-order terms in A that are neglected
in Eq. (36) start to significantly contribute.

A possibly more intuitive illustration of the impact of the
harmonic perturbation on the system is presented in Fig. 2
where we show the density of the system along the direction
of the perturbation. More specifically, the left column corre-

sponds to A = 0.02, which falls well into the LRT regime,
cf. Fig. 1. Consequently, the red curve that has been obtained
from Eq. (7) is in excellent agreement to the green crosses
depicting the PIMC data. The relative deviation of LRT to the
latter is shown in the bottom panel (c) of the same figure, and
we find perfect agreement within the given Monte Carlo error
bars that are of the order of �n/n � 0.1%. Overall, we find
that the density modulation attains an amplitude of almost 5%
of the unperturbed density.

Let us next turn to the right column of Fig. 2 showing the
same quantity for a larger perturbation amplitude, A = 0.2. In
this case, the density modulation is substantially larger and
the amplitudes of n(x) are of the order of 50% with respect
to the unperturbed density. Thus, the system is indeed to a
large degree shaped by the presence of the external potential.
Consequently, the red LRT curve only gives a qualitative
description of the density and systematically underestimates
(overestimates) the height of the peaks (depth of the minima)
of n. This can again be seen most clearly in the deviation plot
in the bottom panel (d), where we find differences between
LRT and the PIMC data exceeding 5%.

As a first step towards an improved description of the
density profile n(x), we go beyond LRT by including the cubic
contribution χ (1,cubic) to the first harmonic. Indeed, Fig. 1
clearly indicates that this provides a fully adequate description
of 〈ρ̂q〉q,A, and the dash-dotted black curve in Fig. 2 corre-
sponds to Eq. (20) truncated after η = 1. Let us list a few
observations: (i) the impact of χ (1,cubic) on n(x) is relatively
small despite the large density modulation amplitude and the
inaccurate description of LRT; (ii) from panel (a) we see that
χ (1,cubic) leads to a somewhat improved agreement with the
PIMC data around the minima but increased deviations around
the peaks. This becomes more clear by looking at �n/n0 in
panel (b). The LRT curve exhibits a deviation profile that
oscillates twice as fast in space as the original density modula-
tion, but the amplitude of this deviation is not constant. In fact
this deviation profile is a combination of (a) the insufficient
description of 〈ρ̂q〉q,A by LRT (cf. Fig. 1) and (b) the omission
of the second harmonic that does, by definition, oscillate twice
as fast in space as the first one. By including χ (1,cubic) in the
description of 〈ρ̂q〉q,A, we have removed effect (a), and the
residual deviation profile (black squares in the bottom panel of
Fig. 2) does indeed have a constant amplitude and corresponds
to the contribution of the second harmonic.

Evaluating Eq. (20) up to η = 2 gives the dashed blue
curve, which is in striking agreement with the green crosses,
over the entire x range. This is again confirmed by the de-
viation plot in the bottom, where the corresponding blue
diamonds fluctuate around zero deviation with a relative ac-
curacy of �n ∼ 0.1%.

A more systematic investigation of the emerging impact of
higher harmonics upon increasing the perturbation amplitude
is presented in Fig. 3, where we show the full wave-number
dependence of 〈ρ̂k〉q,A for different values of A. Panel (a)
shows results for q ≈ 1.69qF, i.e., the same perturbation wave
number as in Figs. 1 and 2. First and foremost, we empirically
confirm that a nonzero value for the density response can
indeed only be found at the integer harmonics of the original
perturbation wave vector q. For the smallest depicted value
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FIG. 2. Density profile of the harmonically perturbed electron gas for N = 14, rs = 2, and θ = 1 with q ≈ 1.69qF and q = 2π/L(2, 0, 0)T

for A = 0.02 (a) and A = 0.2 (b). Top row: Density n(x) along the direction of the perturbation, with the green crosses and solid-red curves
corresponding to PIMC data and LRT [cf. Eq. (7)]. The dash-dotted black and dashed-blue curves have been obtained by truncating Eq. (20)
after the first (η = 1) and second (η = 2) harmonic, respectively. The bottom panels (c) and (d) show the corresponding deviation of different
theories to the PIMC data.

of the perturbation amplitude, A = 0.02 (black squares), we
only find a signal at q itself, which agrees with the prediction
known from LRT. Increasing the perturbation strength by a
factor of five (A = 0.1) leads to the results given by the red
circles. For the first harmonic, the response remains almost
unchanged and varies only by ∼1% (cf. the bottom panel of

Fig. 1). At the same time, we find a significant response at the
second harmonic that cannot be neglected and substantially
contributes to observables like the density profile in coordi-
nate space n(r) that was discussed above.

A further increase of A by a factor of two is depicted
by the green crosses. In this case, the response at the first

FIG. 3. Full wave-number dependence of the density response 〈ρ̂k〉q,A of the UEG for N = 14, rs = 2, and θ = 1 with q ≈ 1.69qF (a) and
q ≈ 0.84qF (b) for different values of the perturbation amplitude A. The vertical dotted lines indicate the location of the first harmonics.
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FIG. 4. Density profile of the harmonically perturbed electron
gas for N = 14, rs = 2, and θ = 1 with q ≈ 1.69qF and q =
2π/L(2, 0, 0)T for A = 0.7. Panel (a): Density n(x) along the di-
rection of the perturbation, with the green crosses and solid-red
curves corresponding to PIMC data and LRT [cf. Eq. (7)], and
the yellow dash-double-dotted, black dash-dotted, purple-dotted, and
blue-dashed line corresponding to different evaluations of Eq. (20),
see the main text. Panel (b) shows the corresponding deviation of
different theories to the PIMC data.

harmonic clearly deviates from the prediction by LRT, and
we have already seen that the cubic contribution χ (1,cubic)(q)
is required for an adequate description. Further, we observe
an even more pronounced deviation from LRT at the second
harmonic, which was shown to be responsible for the bulk
of the deviation between LRT and the PIMC data for n(r) in
Fig. 2. At the same time, no significant response is observed
for higher harmonics (η > 2) at these conditions.

This changes for the largest depicted perturbation strength
shown in Fig. 3, i.e., A = 0.7 (blue diamonds). In this case, the
signal at the first harmonic is substantially reduced compared
to the other data points, and even the cubic response function
χ (1,cubic)(q) cannot provide a reasonable description of the
density response at these conditions, see Fig. 1. Moreover, we
find a large signal at the second harmonic, as it is expected,
and a significant contribution for the third harmonic, k = 3q.

The corresponding density profile in coordinate space is
depicted in Fig. 4, with the green crosses again being the exact
PIMC data. Evidently, the external perturbation dominates the
behavior of the system under these conditions and we find an

almost shell-like structure with two pronounced peaks at the
positions of the minima of the harmonic potential exceeding
2.5 times the original unperturbed density n0. These shells
are separated by two deep minima where the cosinusoidal
potential has its maxima.

Let us next consider the solid-red line showing the pre-
diction by LRT, i.e., Eq. (7). Evidently, the deviation to the
PIMC data is dramatic and almost attains 80% in terms of the
unperturbed density n0. In particular, LRT predicts an unphys-
ical negative density around the minima of the density profile.
Furthermore, we find that the deviation profile (bottom panel)
is quickly oscillating and exhibits a complicated behavior,
which means that the systematic deficiencies of LRT are both
quantitative and qualitative.

The next step towards an improved description of n(x)
is given by the inclusion of the cubic response func-
tion χ (1,cubic)(q) into 〈ρ̂q〉q,A, i.e., 〈ρ̂q〉q,A ≈ χ (1)(q)A +
χ (1,cubic)(q)A3. The resulting evaluation of Eq. (20) truncated
at η = 1 is depicted as the dash-double-dotted yellow curve
and leads to a qualitative improvement of the description of
the exact PIMC data, even though the deviations are still
systematic and partly attain ∼60% of the unperturbed density
n0. This is somewhat expected as we know from Fig. 1 that
even the first harmonic is not properly described by χ (1)(q)
and χ (1,cubic)(q) alone, and more terms in the expansion would
be needed.

This is remedied by the dash-dotted black curve, where we
again truncate Eq. (20) after η = 1, but include the full PIMC
expectation value for 〈ρ̂q〉q,A. On the one hand, this does not
substantially improve the agreement with the exact PIMC data
and there remain systematic deviation of ∼40%. On the other
hand, it makes the deviation profile shown in the bottom panel
more uniform. In particular, it exhibits oscillations with twice
the wave number q and a nearly constant amplitude.

Naturally, these deviations are caused by the second har-
monic, and including the η = 2 term with the exact PIMC
expectation value for 〈ρ̂2q〉q,A in Eq. (20) leads to the dotted
purple curve. The inclusion of the second harmonic leads to
a drastic improvement, and the purple curve is in qualitative
agreement with the green crosses everywhere. In particular,
we note that the unphysical negative density points no longer
appear. Still, the examination of the deviation profile of this
curve shown in the bottom panel reveals that there remain
systematic errors exceeding 5%. Further, the deviation has
a rapidly oscillating form with a constant amplitude, and is
readily identified as the contribution of the third harmonic
k = 3q.

In other words, it is necessary to evaluate Eq. (20) up to
η = 3 for such a large perturbation amplitude, and the results
are shown as the dashed blue curve. Evidently, it is in excellent
agreement with the PIMC data over the entire x range, and the
deviation plot shows that the difference between the two is
fluctuating around zero within the given statistical uncertainty.

For completeness, we mention that the strong oscillations
of the PIMC data in Fig. 4 are not related to the formation
of a charge-density wave (CDW), which has been predicted
for the UEG based on different approximations; see, e.g.,
Refs. [1,104–109] and references therein for more details.
While the actual manifestation of a CDW in the UEG is
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still being debated in the literature, such a transition would
be expected at substantially larger values of rs. In addition
we note that the density modulations observed in Fig. 4 are
significantly overestimated by LRT. This, in turn, means that
the nonlinear contributions actually reduce the total density
response and thus tend to stabilize a uniform state even at
these conditions.

Let us next consider Fig. 3(b), where we show the k de-
pendence of the density response 〈ρ̂k〉q,A for a smaller wave
number, q ≈ 0.84qF. In particular, this is the smallest wave
number that is accessible within a PIMC simulation for N =
14, see also Sec. II B above.

For the lowest depicted value of the perturbation amplitude
(A = 0.05, black squares), the signal at the first harmonic
k = q cannot be distinguished from LRT [56]. In addition,
we find a small yet significant signal for k = 2q, which indi-
cates that the second harmonic is the dominant contribution
to nonlinear effects in the density response of electrons in the
WDM regime. This is an important finding that is discussed
extensively in the context of Fig. 11 below.

For A = 0.15 (red circles), LRT still relatively accurately
describes the signal at the first harmonic, and we find a de-
viation to the PIMC data of less than 1%. At the same time,
the signal at k = 2q is significantly increased, which further
corroborates the previous observation about the respective
importance of the different harmonics to the nonlinear density
response.

Upon further increasing the perturbation strength to A =
0.3 (green crosses), the systematic error of LRT in the descrip-
tion of 〈ρ̂q〉q,A increases to ∼3%, while the second harmonic
continues to have a higher impact. Moreover, we observe a
small but significant density response at the third harmonic,
that was absent for A � 0.15.

The blue diamonds show 〈ρ̂k〉q,A for A = 0.7, which was
the largest perturbation strength considered for q ≈ 1.69qF

shown in Fig. 3(a). For the smaller q we observe a large sys-
tematic error of LRT for the first harmonic, which, however,
is very accurately described by the cubic response function
χ (1,cubic)(q). This is a direct consequence of screening effects,
which make nonlinear effects less important for small wave
numbers, see Ref. [56] for the first description of this finding.
In the present paper, we find similar effects for the second
and third harmonics as well, see below. Further, we find a
large signal for k = 2q and a smaller, but noticeable signal
for k = 3q.

Finally, we consider the case of strong perturbation
strength (A = 1.5), which is depicted by the yellow triangles.
At these parameters, the density response at the first harmonic
is substantially reduced compared to LRT, and the signal at
k = 2q is of the same order of magnitude. Further, the re-
sponse at the third harmonic is drastically increased compared
to A = 0.7, and we even find a significant response for the
fourth harmonic k = 4q.

Let us proceed with a more rigorous quantification of the
nonlinear electronic density response by obtaining the respec-
tive generalized response functions defined in Eqs. (36)–(38).
For the case of the cubic response function of the first har-
monic χ (1,cubic)(q), this is demonstrated in Fig. 5 for three
different wave numbers. More specifically, we show PIMC
results for the dependence of 〈ρ̂q〉q,A on the perturbation

FIG. 5. Determination of the cubic response function
χ (1,cubic)(q). Panel (a): Density response of the UEG for N = 14,
rs = 2, and θ = 1 for q ≈ 0.84qF (green crosses) q ≈ 1.69qF (blue
diamonds), and q ≈ 2.53qF (red circles). The corresponding curves
of the same color have been obtained by fitting Eq. (36) to the PIMC
data. Panel (b): Relative deviation of the fits to the PIMC data. The
vertical lines show the respective maximum value of A that was
included in the fits.

strength for q ≈ 0.84qF (green crosses), q ≈ 1.69qF (blue di-
amonds), and q ≈ 2.53qF (red circles), and the corresponding
curves show the respective fits according to Eq. (36). Panel
(b) shows the deviation between fits and PIMC data and the
vertical lines indicate the respective maximum values of A up
to which data have been included in the fitting procedure.

Let us briefly touch upon the A dependence of the Monte
Carlo error bars in the deviation plot. For weak perturba-
tions A, the absolute values of the density response 〈ρ̂q〉q,A
are small, which means that the denominator of the relative
deviations shown in the bottom of Fig. 5 is small, too. At the
same time, the absolute values of the Monte Carlo error bars
are nearly independent of A, which means that the relative
accuracy of our PIMC data for Eq. (3) decreases for weak
perturbations, and, eventually, the density response cannot be
resolved within the given statistical uncertainty.

Regarding the A dependence of 〈ρ̂q〉q,A itself, we find that
the blue diamonds exhibit the largest density response at the
first harmonic, whereas the signal is weakest for the largest
wave number, q = 2.53qF. While not being trivial, this is
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FIG. 6. Wave-number dependence of the cubic response function
of the first harmonic χ (1,cubic)(q) for the warm dense electron gas at
rs = 2 and θ = 1.

somewhat expected as the LRT function χ (1)(q), too, exhibits
a maximum response around q ∼ 1.5qF, cf. Fig. 17 below.
Interestingly, Eq. (36) remains accurate for larger perturbation
amplitudes A for the green crosses compared to the other two
cases. This can be explained by the comparatively smaller
value of χ (1,cubic) in this case, see Fig. 6.

Repeating the fitting procedure demonstrated in Fig. 5 for
different values of the perturbation wave numbers gives us
access to the full q dependence of χ (1,cubic)(q), and the results
are shown in Fig. 6. More specifically, the green data points
have been obtained from our PIMC simulations and the stars
and diamonds show results for N = 14 and N = 20 particles.
While being available at different discrete q points [41,110],
we note that no dependence on the system size can be re-
solved within the given confidence intervals [56]. This is
expected as previous studies of related properties such as the
static structure factor S(q) [41,111], dynamic structure factor
S(q, ω) [78] and the linear response function χ (1)(q) [58], too,
have found finite-size effects to be small in this regime. For
completeness, we mention that this changes towards lower
temperature, where momentum shell effects [112] induce a
more pronounced dependence on N . The grey stars, too, have
been obtained from PIMC data, but for N = 14 ideal (nonin-
teracting) fermions. In this case, there are no screening effects
and χ

(1,cubic)
0 (q) attains a finite value in the limit of q → 0.

Unfortunately, no simple recursion relation is available for
the ideal function χ

(1,cubic)
0 (q) [see Sec. II above], so that we

cannot evaluate the RPA and LFC expressions for the cubic
response at the first harmonic given in Eqs. (31) and (35) for
all wave numbers. Yet, we can still use the three PIMC data
points, and the results are depicted by the blue (RPA) and red
(LFC) data points in Fig. 6. Evidently, the RPA curve seems to
qualitatively reproduce the correct behavior, but severely un-
derestimates the true magnitude of the cubic response around
its maximum. In contrast, the LFC curve nicely agrees with
the PIMC data points for the interacting systems for all three
wave numbers.

FIG. 7. Determination of the quadratic response function χ (2)(q).
Panel (a): Density response of the second harmonic 〈ρ̂2q〉q,A of the
UEG for N = 14, rs = 2, and θ = 1 for q ≈ 0.84qF (green crosses)
q ≈ 1.69qF (blue diamonds), and q ≈ 2.53qF (red circles). The cor-
responding curves of the same color have been obtained by fitting
Eq. (37) to the PIMC data. Panel (b): Relative deviation of the fits
to the PIMC data. The vertical lines show the respective maximum
value of A that was included in the fits.

Let us next repeat this analysis for the quadratic response
function of the second harmonic χ (2)(q), that has been shown
to constitute the dominant nonlinear effect above. To this end,
we show the A dependence of the density response of the
second harmonic 〈ρ̂2q〉q,A in Fig. 7 for the same wave numbers
as in Fig. 5.

Firstly, we observe the same absolute ordering of the three
data sets with q as for the first harmonic, with q = 1.69qF

(q = 0.84qF) exhibiting the largest (weakest) signal for the
density response. Further, we see that the parabolic expansion
given in Eq. (37) is in excellent agreement with the PIMC
data points for small q, which gives us direct access to the
corresponding quadratic density response function.

The results for the full wave-number dependence of χ (2)(q)
are shown in Fig. 8 with the same key as χ (1,cubic)(q) shown in
Fig. 6 above. There is excellent agreement between the exact
quadratic response function of the ideal Fermi gas [yellow
curve, cf. Eq. (21)] and our PIMC data for N = 14 noninter-
acting fermions (grey stars) over the entire depicted q range.
In addition, we find that the quadratic response function of
the UEG χ (2)(q) exhibits a qualitatively similar behavior to
χ (1,cubic)(q) shown above. More specifically, χ (2)(q) vanishes
for small wave numbers due to the perfect screening in the
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FIG. 8. Wave-number dependence of the quadratic response
function of the second harmonic χ (2)(q) for the warm dense electron
gas at rs = 2 and θ = 1. The green stars (green diamonds) show
PIMC results obtained from Eq. (37) for N = 14 (N = 20) electrons,
and the grey stars to PIMC data for ideal (noninteracting) fermions.
The dashed blue and dotted-red lines show theoretical results within
RPA [Eq. (24)] and using the static LFC from Ref. [58] [Eq. (33)],
and the solid-yellow line shows the ideal response function χ

(2)
0 (q)

[Eq. (21)].

UEG, and, too, vanishes in the limit of large q, albeit slower
than for q → 0.

The dashed-blue RPA curve [Eq. (24)] is in qualitative
agreement with our PIMC data for the UEG (green stars and
diamonds) and correctly reproduces both of these limits. Yet,
there appear systematic deviations exceeding 20% for inter-
mediate wave numbers q ∼ 1.5qF (i.e., in the vicinity of the
maximum), which resembles the known deficiencies of RPA
within LRT, see, e.g., Refs [36,58,113].

Finally, the dotted red curve has been obtained by including
the neural-net representation of the static LFC G(q) given by
Dornheim et al. [58] [Eq. (33)] and is in excellent agreement
with the PIMC data for all q.

The last generalized response function to be considered in
this work is the cubic response function of the third harmonic
χ (3)(q), that can be obtained by fitting Eq. (38) to PIMC data
for 〈ρ̂3q〉q,A. This is shown in Fig. 9, where the A dependence
of the density response at k = 3q is shown for the same three
wave numbers as for the other response functions investigated
above. In this case, we observe a comparatively large increase
of 〈ρ̂3q〉q,A with A at q = 1.69qF that is approximately four
times as large as for the other two wave numbers, which are
similar in magnitude.

Moreover, we note that the absolute value of the density
response at k = 3q is an order of magnitude smaller than for
k = 2q for the same values of the perturbation amplitude A.
This, in turn, means that the relative error bars in 〈ρ̂3q〉q,A are
larger than for the other harmonics shown above, which makes
the determination of χ (3)(q) more challenging.

The corresponding wave-number dependence of this func-
tion is shown in Fig. 10. Let us first focus on the noninteract-

FIG. 9. Determination of the cubic response function χ (3)(q).
Panel (a): Density response of the third harmonic 〈ρ̂3q〉q,A of the
UEG for N = 14, rs = 2, and θ = 1 for q ≈ 0.84qF (green crosses)
q ≈ 1.69qF (blue diamonds), and q ≈ 2.53qF (red circles). The cor-
responding curves of the same color have been obtained by fitting
Eq. (38) to the PIMC data. Panel (b): Relative deviation of the fits
to the PIMC data. The vertical lines show the respective maximum
value of A that was included in the fits.

ing case, with the grey stars depicting PIMC results for N =
14 ideal fermions and the solid yellow curve the exact ideal
response function χ

(3)
0 (q) that we obtain from Eq. (22). Re-

markably, even without the electronic Coulomb repulsion and
the associated screening effects, the density response function
of the third harmonic exhibits a complicated, nonmonotonous
behavior, with a maximum in magnitude around the Fermi
wave number. This is confirmed by the corresponding ideal
PIMC data point at q = 0.84qF, which nicely agrees with the
exact result.

For the interacting UEG, this interesting behavior at small
q is masked by screening effects, and the generalized response
function exhibits similar trends as χ (1,cubic)(q) and χ (2)(q),
that is, it vanishes both in the limits of small and large q.
As seen before, the RPA of the cubic response at the third
harmonic underestimates the response, but the inclusion of
LFCs gives a nice agreement between QMC simulations and
theory.

Let us conclude this section with a systematic investiga-
tion of the respective contribution of the different generalized
response functions to the total nonlinear density response. In
Fig. 11, we show the relative contribution of χ (2)(q) (blue),
χ (1,cubic)(q) (green), and χ (3)(q) (black) compared to the
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FIG. 10. Wave-number dependence of the cubic response func-
tion of the third harmonic χ (3)(q) for the warm dense electron gas
at rs = 2 and θ = 1. The green stars (green diamonds) show PIMC
results obtained from Eq. (38) for N = 14 (N = 20) electrons, and
the grey stars to PIMC data for ideal (noninteracting) fermions. The
dashed-blue and dotted-red lines show theoretical results within RPA
[Eq. (30)] and using the static LFC from Ref. [58] [Eq. (34)], and the
solid yellow line shows the ideal response function χ

(3)
0 (q) [Eq. (22)].

density response at the first harmonic predicted by LRT,
Eq. (4). More specifically, the data points have been obtained
from fits to PIMC data, and the dotted (dashed) lines are
theoretical results including an LFC (RPA only).

Panel (a) of Fig. 11 corresponds to a weak perturbation,
A = 0.02. At these conditions, LRT is relatively accurate (see,
e.g., the left panel of Fig. 2) and the response due to the
cubic response functions for both the first and third harmonic
is smaller than 0.1% compared to LRT. By far the largest
nonlinear effect can be observed at the second harmonic with a
maximum signal of almost 1% in terms of ρLRT. In particular,
the response for k = 2q is more than an order of magnitude
larger than the other two depicted curves.

Figure 11(b) corresponds to a stronger perturbation, A =
0.2. This is a particularly interesting example, as the density
response for the first three harmonics is fully described by the
different response functions at these conditions. In contrast,
additional terms of the respective expansions in powers of
A would be needed for an accurate description of 〈ρ̂k〉q,A at
much larger values of A.

Let us first consider the density response of the second
harmonic, which again constitutes the largest nonlinear effect
with a maximum contribution of almost 10% around q ∼
1.5qF compared to Eq. (4). Further, we note that the relative
impact of 〈ρ̂2q〉q,A only diminishes in the small wave-number
limit for q � 0.2qF, and disappears even more slowly for
large values of q, with 〈ρ̂2q〉q,A /ρLRT exceeding 1% even at
q = 5qF.

In addition, the cubic contribution to the density response
at the first harmonic 〈�ρ̂q〉q,A = χ (1,cubic)(q)A3 is substan-
tially more important compared to A = 0.02, and we find a
maximum impact of approximately 4% around q = 1.5qF.

FIG. 11. Relative impact of different nonlinear contributions to
the density response 〈ρ̂q〉 compared to the prediction for 〈ρ̂q〉q,A
from LRT for A = 0.02 (a) and A = 0.2 (b). Shown are 〈ρ̂2q〉q,A =
χ (2)(q)A2 (blue), 〈ρ̂3q〉q,A = χ (3)(q)A3 (black), and 〈�ρ̂q〉q,A =
χ (1,cubic)(q)A3 (green). The dashed and dotted lines have been ob-
tained within RPA and using a LFC, respectively.

Indeed, this is the same order of magnitude as the signal
of the second harmonic, which means that both χ (2)(q) and
χ (1,cubic)(q) have to be taken into account for an accurate
description of the system, cf. the right column of Fig. 2 above
showing the radial density n(r) for this case. At the same time,
we find that the impact of the cubic contribution to the first
harmonic rapidly vanishes in both the limits of large and small
wave numbers and is only relevant for intermediate q.

Finally, the black points and curves correspond to the con-
tribution of the third harmonic, which is an order of magnitude
smaller than the green curve. Therefore, it appears to be
mostly negligible for practical purposes.

B. Temperature dependence

Let us next turn our attention to the dependence of nonlin-
ear effects in the static density response on the temperature
θ . In Fig. 12(a), we show the density profile in coordinate
space n(r) along the direction of the perturbation, for N = 14
electrons at rs = 2 for q ≈ 0.84qF and a relatively small value
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FIG. 12. Density profile of the harmonically perturbed electron
gas for N = 14 and rs = 2, with q ≈ 0.84qF and q = 2π/L(1, 0, 0)T

for A = 0.1. Panel (a): PIMC results for the density n(x) along the
direction of the perturbation for θ = 1 (blue diamonds), θ = 2 (red
circles), and θ = 4 (green crosses). The solid curves correspond to
LRT [cf. Eq. (7)]. Panel (b): Relative deviation of LRT to the PIMC
data.

of the perturbation amplitude A = 0.1. The blue diamonds
have been obtained for θ = 1 and exhibit a deviation from
the unperturbed density n0 of almost 20% at the maxima and
minima. The solid-blue curve shows the prediction from LRT
[cf. Eq. (7)] and qualitatively captures the correct behavior.
This can again be seen particularly well in panel (b), where we
show the relative deviation between the PIMC data and LRT.
Evidently, LRT results in an oscillating deviation profile that
is mainly due to the density response at the second harmonic
〈ρ̂2q〉q,A (see the previous section III A), with a maximum
deviation below 0.8%.

Let us next focus on the red circles corresponding to twice
the temperature, θ = 2. Firstly, we note that the overall den-
sity response is reduced compared to θ = 1, as it is expected,
see also the corresponding discussion in Refs. [56,113]. In
particular, an increasing temperature leads to an increased
internal energy scale of the system, which, in turn, means
that the relative impact of an external potential is reduced
if the perturbation amplitude A is kept constant. The green
crosses correspond to a further increase of the temperature by
a factor of two, and the total density response is again reduced
compared to the other data sets.

FIG. 13. Density profile of the harmonically perturbed electron
gas for N = 14 and rs = 2, with q ≈ 0.84qF and q = 2π/L(1, 0, 0)T

for A = 0.7. Panel (a): PIMC results for the density n(x) along the
direction of the perturbation for θ = 1 (blue diamonds), θ = 2 (red
circles), and θ = 4 (green crosses). The solid curves correspond to
the evaluation of Eq. (20) truncated after η = 2. Panel (b): Relative
deviation of solid curves from the PIMC data.

In addition, a reduced density response means that non-
linear effects become less important and we find maximum
deviations between LRT and the PIMC data of 0.4% (0.2%)
for θ = 2 (θ = 4). At the same time, we note that the nonlin-
ear response is significant for all three depicted temperatures
and is mainly given by the signal at the second harmonic,
k = 2q.

Let us next consider Fig. 13, which shows the same
information as Fig. 12, but for a significantly increased per-
turbation strength A = 0.7. In this case, the density response
is strongly nonlinear for all three depicted temperatures, al-
though the density profile n(r) is substantially different for
all three cases. For θ = 1, the external perturbation constitutes
the dominant effect and fully shapes the physical behavior of
the system. Most particles are, on average, located around the
center of the simulation cell where the cosinusoidal potential
has its minimum, whereas the density is reduced by roughly
90% for small and large x. The solid-blue curve has been
computed by truncating Eq. (20) after the second harmonic
(η = 2) using the exact PIMC expectation values for the co-
efficients 〈ρ̂q〉q,A and 〈ρ̂2q〉q,A. In this case, we find that the
agreement to the PIMC data is only very qualitative, and

033231-13



TOBIAS DORNHEIM et al. PHYSICAL REVIEW RESEARCH 3, 033231 (2021)

FIG. 14. Full wave-number dependence of the density response
〈ρ̂k〉q,A of the UEG for N = 14, rs = 2, and θ = 1 with q ≈ 0.84qF

and A = 0.1 (a) and A = 0.7 (b). Shown are PIMC results for Eq. (3)
for θ = 1 (blue diamonds), θ = 2 (red circles), and θ = 4 (green
crosses). The vertical dotted lines indicate the location of the first
four harmonics.

there appear rapidly oscillating deviations [panel (b)] with an
amplitude exceeding 3%. Naturally, these deviations consti-
tute the signal of the third harmonic, k = 3q, see also the
discussion of Fig. 14 below.

For θ = 2, the density at the maxima of the external
perturbation is substantially larger compared to the lower
temperature, and the impact of the third harmonic on the
density profile n(r) does not exceed 2%. Finally at the highest
temperature, we find oscillations in the total density n of ap-
proximately 50%, which is substantially smaller compared to
the other cases. Consequently, the first two harmonics already

provide a rather accurate description, and the systematic error
is smaller than 1% everywhere.

A more systematic investigation of the respective strength
of the density response at different harmonics is shown in
Fig. 14, where we show the full k dependence of 〈ρ̂k〉q,A for
the two examples investigated in Figs. 12 and 13. Panel (a)
corresponds to the weaker perturbation, A = 0.1. We note that
we again only observe a nonzero signal for the integer har-
monics of q, as it is expected. For the first harmonic (k = q),
we see the expected order of the signals for the three depicted
temperatures, with the response at θ = 4 being less than half
the response at θ = 1.

For the second harmonic (k = 2q), the relative strength of
the signals for different temperatures is even more different,
with the response for θ = 4 (θ = 2) being approximately 25%
(50%) of the response for θ = 1.

Finally, we mention that the signal at the third harmonic
(k = 3q) vanishes within the given level of accuracy for all θ .

Figure 14(b) shows the same results for A = 0.7 and we
find similar trends. In fact, the ratio of density response for
θ = 2 and θ = 4 for both the first and second harmonic
compared to the respective response at θ = 1 is remarkably
unchanged, although the total response at k = 2q has substan-
tially increased. Moreover, we find a nonzero signal at k = 3q
for all three temperatures, whereas the response at the fourth
harmonic vanishes even for θ = 1.

The next step towards a more complete description of the
temperature dependence of the nonlinear density response is
given by the determination of the different generalized re-
sponse functions. To this end, we show the dependence of
the density response at the second harmonic 〈ρ̂2q〉q,A on the
perturbation amplitude A in Fig. 15 for the same conditions
as in the previous figures in this section. The points depict
PIMC data for the three different temperatures, and the curves
parabolic fits to these data according to Eq. (37). Panel (b)
shows the relative deviation between PIMC and the fits, and
the vertical bars show the respective maximum value of A up
to which points have been included into the fitting procedure.
Evidently, Eq. (37) is capable to accurately reproduce the
PIMC data for A � 0.4 in all three cases. Going back to panel
(a), we see that both the PIMC results and the parabolic fits
are systematically ordered with θ , as it is expected.

Repeating this analysis for different values of the perturba-
tion wave number q gives us access to the full wave-number
dependence of the quadratic response function of the second
harmonic χ (2)(q), and the results are shown in Fig. 16 for dif-
ferent relevant temperatures. The symbols have been obtained
on the basis of fitting Eq. (37) to PIMC data, and the solid
[dashed] curves correspond to the theory with a LFC [within
RPA], cf. Eq. (33) [Eq. (24)].

First and foremost, we note that χ (2) exhibits a substantial
dependence on θ , and the maximum value of this function at
θ = 0.01 (black) is larger by an order of magnitude compared
to θ = 4 (green). Moreover, the shape of the curves strongly
depends on θ as well: while the curves for all temperatures
are relatively similar both in the limit of small and large wave
numbers q, there emerges a sharp peak around q ∼ 1.3qF with
decreasing θ .
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FIG. 15. Determination of the quadratic response function
χ (2)(q). Panel (a): Density response of the second harmonic 〈ρ2q〉q,A
of the UEG for N = 14, rs = 2, and q ≈ 0.84qF for θ = 1 (blue
diamonds) θ = 2 (red circles), and θ = 4 (green crosses). The cor-
responding curves of the same color have been obtained by fitting
Eq. (37) to the PIMC data. Panel (b): Relative deviation of the fits
to the PIMC data. The vertical lines show the respective maximum
value of A that was included in the fits.

Let us next analyze the level of accuracy of both RPA
and LFC, which, too, strongly depends on θ . For θ = 4, the
system is only weakly coupled and both RPA and LFC are in
very good agreement to the PIMC data (green crosses) over
the entire depicted wave-number range. Upon decreasing the
temperature to θ = 2, RPA systematically underestimates the
quadratic response function in the vicinity of its maximum,
whereas the LFC still nicely reproduces the PIMC results
(red circles) everywhere. For θ = 1, the deviation between
RPA and LFC becomes substantial and partly exceeds 20%,
whereas the LFC gives both a qualitatively and quantitatively
sufficient description. At the same time, we like to reiterate
the point that Eq. (33) does only include screening effects to
a linear order, and, thus does not give an exact description
even with the exact static limit of the LFC G(q) taken from
Ref. [58]. Indeed, the systematic inaccuracy of the approx-
imate description of screening effects in Eq. (33) increases
with the effective coupling strength of the system. With the
density parameter rs being constant, the effective coupling
increases towards small temperature and small deviations be-
tween the PIMC data points and the theoretical prediction
become noticeable for θ � 1.

Finally, the black curves show results for θ = 0.01, where
the system is in the ground state. In this case, the systematic
deviation between LFC and RPA is even larger compared

FIG. 16. Wave-number dependence of the quadratic response
function of the second harmonic χ (2)(q) for the warm dense electron
gas at rs = 2 and θ = 1 (blue diamonds), θ = 2 (red circles), and
θ = 4 (green crosses). The dashed and solid lines show theoretical
results within RPA and using the LFC from Ref. [58], cf. Eqs. (24)
and (32).

to θ = 1, as the effective coupling strength of the system is
further increased. Unfortunately, PIMC simulations are not
feasible at these conditions due to the fermion sign prob-

FIG. 17. Wave-number dependence of the linear response func-
tion χ (1)(q) for the warm dense electron gas at rs = 2 and θ = 1
(blue diamonds), θ = 2 (red circles), and θ = 4 (green crosses). The
dashed and solid lines have been obtained within RPA and using the
LFC from Ref. [58], see Eq. (5).
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FIG. 18. Determination of the cubic response function
χ (1,cubic)(q). Panel (a): Density response of the first harmonic 〈ρq〉q,A
of the UEG for N = 14, rs = 2, and q ≈ 0.84qF for θ = 1 (blue
diamonds) θ = 2 (red circles), and θ = 4 (green crosses). The
corresponding curves of the same color have been obtained by fitting
Eq. (36) to the PIMC data. Panel (b): Relative deviation of the fits
to the PIMC data. The vertical lines show the respective maximum
value of A that was included in the fits.

lem [64], and ground-state QMC simulations are not available
for this quantity.

As a reference, we show the analogous temperature de-
pendence of the LRT response function χ (1)(q) in Fig. 17.
Overall, χ (1)(q) exhibits a qualitatively similar behavior as
χ (2)(q), with a screening-induced decay at small wave num-
bers, and a maximum of its modulus around q ∼ 1.5qF. Still,
the decrease of the density response towards high temperature
is substantially less pronounced for χ (1)(q), which makes the
experimental probing of the second harmonic a potentially
valuable method of diagnostic for the temperature [45,46].

The next generalized response function of interest is given
by χ (1,cubic)(q), the determination of which is demonstrated in
Fig. 18 for the usual three values of θ . The data points are
PIMC results for 〈ρ̂q〉q,A and the different curves have been
fitted to the latter via Eq. (36). Evidently, this functional form
is again well suited to represent the PIMC data, and deviations
can only be spotted with the naked eye at large perturbation
amplitudes and are most pronounced for θ = 1. In panel (b),
we show the corresponding relative deviations �ρ/ρ, with
the vertical lines representing the maximum values of the per-
turbation amplitude A that have been included into the fitting
procedure. In particular, the fit function remains accurate for

FIG. 19. Wave-number dependence of the cubic response func-
tion of the first harmonic χ (1,cubic)(q) for the warm dense electron
gas at rs = 2 and θ = 1 (blue diamonds), θ = 2 (red circles), and
θ = 4 (green crosses).

large values of A beyond the respective fitting interval for all
three temperatures, which is a strong indication for the high
quality of our approach.

The full wave-number dependence of the thus determined
cubic response function of the first harmonic χ (1,cubic)(q)
is shown in Fig. 19. First and foremost, we find that this
function exhibits an even more pronounced dependence on
the temperature compared to both χ (1)(q) and χ (2)(q), which
further highlights the potential utility of the nonlinear density
response as a method of diagnostics for WDM. More specif-
ically, the magnitude of the maximum at θ = 4 is more than
order of magnitude smaller compared to its analog at θ = 1.
Unfortunately, no RPA and LFC data are available in this case,
as the ideal cubic response function is not known analytically
and, hence, would require extensive PIMC simulations of the
harmonically perturbed ideal Fermi gas.

The final response function considered in this work is given
by the cubic response function of the third harmonic χ (3)(q).
The determination of this function on the basis of our PIMC
data for 〈ρ̂3q〉q,A is shown in Fig. 20, where the curves have
been fitted to the latter via Eq. (38). Since the observed signal
for the third harmonic is comparably quite small for all three
temperatures (cf. Fig. 14), the relative statistical uncertainty
of the PIMC data points is large, especially at small A. Yet,
Eq. (38) only constitutes the lowest order in A of 〈ρ̂3q〉q,A,

which makes the determination of the coefficient χ (3)(q) dif-
ficult. This is particularly true for θ = 4, where we can only
give a qualitative estimation of the order of magnitude of this
function.

The full wave-number dependence of χ (3)(q) is shown in
Fig. 21, again for a gamut of different values of θ . For the
highest temperature (θ = 4, green curve), the signal is two
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FIG. 20. Determination of the cubic response function χ (3)(q).
Panel (a): Density response of the third harmonic 〈ρ3q〉q,A of the UEG
for N = 14, rs = 2, and q ≈ 0.84qF for θ = 1 (blue diamonds) θ = 2
(red circles), and θ = 4 (green crosses). The corresponding curves of
the same color have been obtained by fitting Eq. (37) to the PIMC
data. Panel (b): Relative deviation of the fits from the PIMC data.
The vertical lines show the respective maximum value of A that was
included in the fits.

orders of magnitude smaller than in the ground state (θ =
0.01, black curve) and can hardly be resolved with the bare
eye. Upon decreasing the temperature to θ = 2 (red curve),
the signal is increased by a factor of five and can be re-
solved with the PIMC procedure described in the discussion of
Fig. 20. Moreover, the difference between RPA [Eq. (30)] and
the LFC-based description [Eq. (34)] is quite small, and the
PIMC data points are in excellent agreement with the latter.

Decreasing the temperature by an additional factor of two
leads to the blue curves and data points, which display approx-
imately thrice the magnitude in the maximum of the density
response around q ∼ 1.5qF. In addition, there appears a much
larger difference between RPA and LFC, and—although to a
much smaller degree—between the LFC curve and the PIMC
data; see also the discussion of Fig. 6 above.

Lastly, the black curves correspond to the ground state
(θ = 0.01), where no PIMC simulations are available due to
the fermion sign problem [64]. Evidently, RPA underestimates
the depth of the minimum of χ (3)(q) around q ≈ 1.5qF by
almost 50% and, thus, only gives a very qualitative description
of the density response at the third harmonic of the original
perturbation. In addition, we find a complicated, nontrivial
behavior as χ (3)(q) changes its sign around the Fermi wave

FIG. 21. Wave-number dependence of the cubic response func-
tion of the third harmonic χ (3)(q) for the warm dense electron gas
at rs = 2 and θ = 1 (blue diamonds), θ = 2 (red circles), and θ = 4
(green crosses). The solid and dashed lines have been obtained using
the LFC from Ref. [58] and within RPA, respectively.

number. We expect this to be a real physical effect, as a quite
similar behavior has been detected on the basis of our PIMC
data at a lower density, rs = 6, shown in Fig. 22 below.

C. Strong coupling: rs = 6

Let us next investigate the nonlinear density response of the
UEG at stronger coupling, rs = 6 and θ = 1. Such conditions
can be realized experimentally for example in evaporation
experiments [114–117] and constitute a challenging bench-
mark for models and theories due to the pronounced impact
of electronic exchange-correlation effects [76,116].

Since the determination of the different generalized re-
sponse functions from ab initio PIMC data for 〈ρ̂k〉q,A is
completely analogous to the case of rs = 2 that was discussed
in the previous sections, here we restrict ourselves to a concise
discussion of the final results summarized in Fig. 22.

Panel (a) corresponds to the usual LRT function χ (1)(q),
where the green stars have been obtained from a single
simulation of the unperturbed UEG by evaluating Eq. (6)
for N = 34 unpolarized electrons. These data are in good
agreement with the dotted red curve that has been computed
from the static LFC presented in Ref. [58], whereas RPA
(dashed blue) substantially underestimates the magnitude of
the minimum of χ (1)(q) around q = 2qF by more than 25%.
This is of course expected and a direct consequence of the
increased importance of electronic correlation effects at low
density [36]. The solid yellow curve depicts results for the
ideal Fermi gas and becomes increasingly inaccurate towards
small wave numbers, when screening effects start to manifest
in the UEG [118].
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FIG. 22. Wave-number dependence of the linear response function χ (1)(q) (a), the quadratic response function of the second harmonic
χ (2)(q) (b), the cubic response function of the first harmonic χ (1,cubic)(q) (c), and the cubic response function of the third harmonic χ (3)(q)
(d). The green stars and diamonds correspond to PIMC data points for N = 34 and N = 14, the solid-yellow curve to the ideal Fermi gas, the
dashed-blue curves to RPA, and the dotted-red curves have been obtained using the LFC from Ref. [58]. All data have been obtained for rs = 6
and θ = 1.

Panel (b) shows the wave-number dependence of the
quadratic response function of the second harmonic, χ (2)(q).
We find that this function exhibits a significantly faster decay
towards zero both in the small- and large-q limits, similar to
our findings for rs = 2 above. In addition, the electronic LFC
G(q) has a substantially larger impact on χ (2)(q) compared to
χ (1)(q), and the RPA underestimates the peak at q ≈ 1.75qF

by 50%. In contrast, the LFC curve is in good agreement with
the PIMC data points for both N = 14 (green diamonds) and
N = 34 (green stars) over the entire depicted wave-number
range, and the deviation due to the approximate treatment
of screening effects [cf. Sec. II] is small. In addition, the
PIMC data points for the two system sizes exhibit a smooth
progression, which means that no finite-size effects can be
resolved within the given level of accuracy. This is in good
agreement with the recent investigation of χ (1,cubic)(q) pre-
sented in Ref. [56].

Let us next focus on panel (c) showing the cubic density
response function of the first harmonic, χ (1,cubic)(q) at the
same conditions. In particular, this function is sharply peaked
around q ≈ 2qF and quickly vanishes both in the limits of
small and large wave numbers. We again mention that the
evaluation of the RPA and LFC expressions given in Eqs. (31)
and (35) is not possible as χ

(1,cubic)
0 (q) cannot be readily

evaluated.
Finally, we investigate the cubic density response function

of the third harmonic, χ (3)(q) shown in Fig. 22(d). While

the associated density response at the third harmonic is rela-
tively small and unimportant compared to the signals at k = q
and k = 2q, this function still deserves close attention as
it exhibits interesting, nontrivial behavior. More specifically,
the PIMC data points are positive for small wave numbers
and χ (2)(q) changes its sign around the Fermi wave number
q = qF.

This trend is further substantiated in Fig. 23, where we
show the dependence of the actual density response at the
third harmonic 〈ρ̂3q〉q,A on the perturbation amplitude A. The
green crosses show results for the smallest wave number
accessible for N = 34 electrons, q ≈ 0.62qF, and we can
clearly resolve a positive density response that monotonically
increases with A. In contrast, the blue diamonds and red cir-
cles corresponding to two larger wave numbers (q ≈ 1.25qF

and q ≈ 2.51qF, respectively) both exhibit a negative density
response. As usual, the different curves have been obtained
by fitting Eq. (38) to the PIMC data, and Fig. 23(b) shows the
relative deviation. Interestingly, the fit function remains accu-
rate for larger A at both q = 0.62qF and q = 1.25qF than for
q = 2.51qF, even though the response is substantially larger
at the intermediate wave number (see also the vertical lines in
the bottom panel showing the maximum value of A that has
been included into the fitting procedure).

Let us get back to the full wave-number dependence of
χ (3)(q) shown in Fig. 22(d). Evidently, neglecting electronic
exchange-correlation effects within the RPA (dashed-blue
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FIG. 23. Determination of the cubic response function χ (3)(q).
Panel (a): Density response of the third harmonic 〈ρ̂3q〉q,A of the
UEG for N = 34, rs = 6, and θ = 1 for q ≈ 0.62qF (green crosses)
q ≈ 1.25qF (blue diamonds), and q ≈ 2.51qF (red circles). The cor-
responding curves of the same color have been obtained by fitting
Eq. (38) to the PIMC data. Panel (b): Relative deviation of the fits
to the PIMC data. The vertical lines show the respective maximum
value of A that was included in the fits.

curve) results in a very poor description of the cubic response
function, and the real depth of the minimum is underestimated
by a factor of two. Including the static LFC gives the dotted
red curve that is in very good agreement with the PIMC data
points for q � qF. Yet, the LFC result, Eq. (34), is not capable
to describe the sign change in χ (3)(q) around the Fermi wave
number and, thus, stays negative over the entire q range. This,
in turn, means that the approximate linear treatment of screen-
ing effects [cf. Sec. II above] leads to a description where this
sign change is missed.

Finally, the dotted black curve has also been obtained by
evaluating Eq. (34) including the LFC, but for θ = 0.01, i.e,
in the ground state. While this leads to a curve with a substan-
tially deeper minimum around q ∼ 1.5qF than at the Fermi
temperature, it does exhibit the sign change in χ (3)(q) that we
find in our PIMC data at the higher temperature.

IV. SUMMARY AND DISCUSSION

In this paper, we have presented an in-depth analysis of
nonlinear effects in the density response of the warm dense
electron gas, substantially extending the first investigation of
Ref. [56]. We have obtained extensive PIMC results carry-
ing out simulations of a harmonically perturbed electron gas,

which has allowed us to obtain the full spectrum of excitations
at the integer harmonics of the original perturbation. First
and foremost, we have found that the dominant nonlinear
contribution is given by the quadratic response at the second
harmonic, for weak to moderate values of the perturbation
amplitude A. The second potentially important nonlinear term
is given by the cubic response at the first harmonic studied in
Ref. [56], whereas the cubic response at the third harmonic is
practically negligible in most realistic situations. In addition,
we have found that the nonlinear response functions more
strongly depend on system parameters such as the temperature
compared to the usual LRT, which makes them a potentially
valuable tool of diagnostics for WDM experiments. In addi-
tion, the nonlinear response is strongly shaped by electronic
exchange–correlation effects, which makes a reliable theory
based on ab initio PIMC data indispensable. Furthermore,
we have extended previous works on the nonlinear density
response of warm dense electrons and presented expressions
for the response functions in terms of the well-known LFC
that is readily available based on previous PIMC simula-
tions [58,59,76]. In particular, this approach is capable to
reproduce the benchmark PIMC data for the nonlinear density
response with negligible computational cost.

It is important to note that the present paper has been
limited to the nonlinear density response of the UEG, which
is a highly important, yet substantially simplified model sys-
tem [36,55]. Consequently, the response of a real physical
system that is composed of both electrons and ions is expected
to be substantially more complicated. For example, the excita-
tion of atoms for wave numbers in the vicinity of qF cannot be
addressed within the framework of the UEG. Still, we stress
that the density response of the UEG constitutes the starting
point for many applications in WDM theory and beyond, often
with reasonable accuracy [1]. Therefore, our new results can
directly be used to take into account nonlinear effects in the
description of properties such as the stopping power or elec-
tronically screened potentials. Moreover, the UEG constitutes
a remarkably good approximation for the conduction elec-
trons of metals such as aluminum [76]. This is particularly true
at warm dense matter conditions, when electron-ion coupling
is weak. Lastly, we mention that the accurate description of
the nonlinear density response of the UEG is interesting in its
own right as it further advances our current understanding of
this fundamental model system [36,55,119].

In addition, we mention that intense laser interaction with
warm dense matter gives rise to various nonequilibrium ef-
fects that have been studied, e.g., with quantum kinetic
equations [13,120]. The first is due to scattering in the pres-
ence of the field. Note that electron-electron scattering is not
modified by the laser field (two particles move in phase)
and quickly establishes an equilibrium distribution. On the
other hand, electron-ion scattering is strongly modified giving
rise to inverse bremsstrahlung heating of the electrons [120]
slowly increasing the temperature of the equilibrium elec-
trons. The second effect is a modification of the electronic
spectral function, which develops photonic side peaks [13]. In
principle, both effects can be qualitatively captured by PIMC
simulations, which will be studied elsewhere.

While the present analysis was based on simulations for
a purely static density perturbation, even stronger nonlinear
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effects are to be expected for dynamic excitations. For ex-
ample, the excitation of warm dense matter by a strong laser
field will give rise to a time-dependent density response that
will involve harmonics. If proper resonance conditions are
fulfilled, as e.g., in the case of high harmonics generation in
rare gases [9], or laser plasmas [120], the excitation of even
higher harmonic orders should be expected.

We are convinced that the findings of our paper will open
up many avenues of future research in multiple directions.
For example, a realistic perturbation in a WDM experiment
will be given by a superposition of many distinct harmonic
perturbations. While this has no profound consequence within
LRT, a nonlinear treatment of the density response will give
rise to mode-coupling between different perturbations, which
will make the excitation spectrum more interesting and com-
plicated. One can imagine two-color x-ray beam experiments
to intentionally use the mode coupling for diagnostics. A
second topic for future research is given by the investigation
of the dynamic density response, which can be done on the
basis of our new theoretical expressions and a suitable local
field correction such as the ESA presented in Refs. [59,76].
In addition to these basic questions, we stress that an accu-
rate theory of nonlinear effects can be directly used for the
improved computation of different material properties such
as the electronic stopping power, screened potentials, or en-

ergy relaxation rates. Lastly, the investigation of the nonlinear
density response of real physical systems such as warm dense
hydrogen based on either ab initio PIMC simulations or more
approximate density functional theory constitutes a challeng-
ing and highly interesting project and will help to resolve the
as of yet poorly understood interplay between the electrons
and ions in this regime.
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