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Quantum Hall effect originated from helical edge states in Cd3As2
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The recent experimental observations of the quantum Hall effect in three-dimensional (3D) topological
semimetals have attracted great attention, but there are still debates on its origin. We systematically study the
dependence of the quantum Hall effect in topological semimetals on the thickness, Fermi energy, and growth
direction, taking into account the contributions from the Fermi-arc surface states, confinement-induced bulk
subbands, and helical side-surface edge states. In particular, we focus on the intensively studied Dirac semimetal
Cd3As2 and its slabs grown along experimentally accessible directions, including [001], [110], and [112]. We
reveal an ignored mechanism from the Zeeman splitting of the helical edge states, which along with Fermi-arc 3D
quantum Hall effect, may give a nonmonotonic dependence of the Hall conductance plateaus on the magnetic
field in the most experimentally studied [112] direction slab. Our results will be insightful for exploring the
quantum Hall effects beyond two dimensions.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect in two-
dimensional (2D) electron gases [1,2], tremendous efforts
have been devoted to generalizing the exotic phase of matter
to higher dimensions [3–13], in the absence of magnetic fields
[14,15], or the nonlinear-response regime [16–21]. Recently,
quantized Hall conductance plateaus were observed in the
topological Dirac semimetal Cd3As2, with sample thickness
ranging from tens to hundreds of nanometers [22–30]. One
of the mechanisms is a three-dimensional (3D) quantum Hall
effect supported by the Fermi-arc surface states in the topo-
logical semimetal [6–8], which also can support a quantum
oscillation [31–34]. Nevertheless, the nature of the quantum
Hall effect in 3D topological semimetals is still in debate
(Table I) and has been attracting growing attention.

In this work, we report a new mechanism of the quantum
Hall effect in topological semimetals. We numerically cal-
culate the Hall conductance of the Dirac-semimetal Cd3As2

slabs grown along three experimentally accessible and widely
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investigated crystallographic directions. For the slab grown
along the [001] direction, the magnitude of the quantized Hall
conductance increases with the increasing magnetic field, as
a result of the Zeeman splitting of the helical edge states on
the side surfaces (Fig. 1). The mechanism was previously
ignored and originated from the nontrivial topology of the
confinement induced bulk subbands characterized by the spin
Chern number. In contrast, for the slab grown along the [110]
direction, the Hall plateaus decrease with the increasing mag-
netic field, due to the Fermi-arc 3D quantum Hall effect [6].
As a result, the Hall conductance in the slab grown along the
[112] direction can be understood as a competition between
the helical edge states and Fermi-arc surface states, with Hall
plateaus decreasing in the weak-field region but growing in
the strong-field region.

II. MODEL AND METHOD

We start with an effective Hamiltonian for the Dirac
semimetal Cd3As2 [35], which reads

H = ε0(k) +

⎡
⎢⎣

M(k) Ak+ 0 0
Ak− −M(k) 0 0

0 0 M(k) −Ak−
0 0 −Ak+ −M(k)

⎤
⎥⎦, (1)

where k± = kx ± iky, ε0(k) = C0 + C1k2
z + C2(k2

x + k2
y ), and

M(k) = M0 + M1k2
z + M2(k2

x + k2
y ). The x, y, and z axes in

the Hamiltonian are defined along the [100], [010], and [001]
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TABLE I. The slab growth direction, thickness, and explanation
in the recent experiments on the quantum Hall effect in the topologi-
cal semimetal Cd3As2.

Refs. Direction Thickness (nm) Explanation in Refs.

[32] [010] 150–2000 Weyl orbit
[30] [001] 45–50 Topological insulator

type surface states
[22],[23] [112] 55–71, 80–150 Weyl orbit
[24],[25] [112] 80, 100 Mixed Fermi arcs
[26],[27] [112] 20, 38–43 Surface states
[28],[29] [112] 12–23, 35 Bulk subbands

crystallographic directions, respectively. The model hosts two
pairs of Weyl nodes at k = (0, 0,±kw) with the energy Ew =
C0 − C1M0/M1 and kw = √|M0/M1|. We take the parameters
for Cd3As2 as C0 = −0.0145 eV, C1 = 10.59 eVÅ2, C2 =
11.5 eVÅ2, M0 = 0.0205 eV, M1 = −18.77 eVÅ2, M2 =
−13.5 eVÅ2, A = 0.889 eVÅ [36]. The samples of Cd3As2

are usually cleaved or grown along the [110] [37], [001] [30],
or [112] directions [24,29]. To obtain the dispersion of the
Dirac semimetal slab along an arbitrary growth direction, we
rotate the y axis to the y′ axis through the rotation matrix [6]⎛
⎝k′

x
k′

y
k′

z

⎞
⎠ =

⎛
⎝ cos α sin α 0

− cos θ sin α cos θ cos α sin θ

sin θ sin α − sin θ cos α cos θ

⎞
⎠
⎛
⎝kx

ky

kz

⎞
⎠.

(2)

FIG. 1. The [001]-direction slab of the Dirac semimetal. (a) The
helical edge states on the side surfaces in the (x′, y′, z′) coordinates.
The arrows denote the directions of propagation, and the red and blue
colors distinguish opposite spin polarizations. (b) The confinement-
induced energy gap �E (red solid line) and the spin Chern number
Cs (green dashed line) as functions of the slab thickness L. (c) The
Hall conductance σH (blue dots) and σ

↑,↓
H (blue and green lines) as

functions of the magnetic field 1/B for L = 100 nm. The red line
correspond to σ

↑
H + σ

↓
H . (d) σH as a function of L and 1/B. The Fermi

energy EF is at the Weyl node Ew.

The [110], [112], and [001] directions correspond to (θ, α) =
(0,−π/4), (arctan

√
2,−π/4), and (π/2,−π/4), respec-

tively. We include a magnetic field always normal to the
cleave surface B = (0, B, 0). The Zeeman term has the form
HZeeman = μB

2 (σ · B) ⊗ 1
2 [gs(σ0 + σz ) + gp(σ0 − σz )], where

μB is the Bohr magneton, gs = 18.6 and gp = 2 are the g
factors [38].

The Hall conductance for a slab of thickness L can be found
as σH = σL, where the Hall conductivity can be found from
the Kubo formula [39]

σ = e2h̄

iVeff

∑
δ′ �=δ

〈	δ|vx|	δ′ 〉〈	δ′ |vz|	δ〉[ f (Eδ ) − f (Eδ′ )]

(Eδ − Eδ′ )(Eδ − Eδ′ + i
)
, (3)

where e is the elementary charge, h̄ is the reduced Planck
constant, Veff is the volume of the slab, |	δ〉 is the eigenstate
of energy Eδ for H in the y′-direction magnetic field and open
boundaries at y′ = ±L/2, vx and vz are the velocity operators,
f (x) is the Fermi distribution.

III. SLABS GROWN ALONG DIFFERENT DIRECTIONS

A. [001] slab

For a Cd3As2 slab grown along the [001] direction, the
bulk spectrum is quantized into discrete gapped subbands
(see Appendix A) because of the quantum confinement effect
[40–42]. The spectrum opens a gap, which decays with in-
creasing L (probably with an oscillation as well). The effective
Hamiltonian Hnn for each subband n(= 1, 2, . . .) is equivalent
to a quantum spin Hall insulator [43–45] characterized by
the spin Chern number [46–48] Cn

s = (C↑
n − C↓

n )/2, where
C↑,↓

n = ± 1
2 [sgn(M0 + M1n2π2/L2) − sgn(M2)] [46] are the

valence-band Chern numbers of the spin-up and spin-down
blocks of the nth subband (see Appendix B). Each Chern
number C↑/↓

n represents a chiral edge state circulating around
the side surfaces [Fig. 1(a)]. The total spin Chern number
Cs = ∑

n Cn
s is equal to the number of pairs of helical edge

states. As shown in Fig. 1(b), the oscillatory decay of the
band gap with increasing L is always accompanied by the
variation of the spin Chern number Cs at each dip. In the
Dirac semimetal Na3Bi, a topological phase transition to the
quantum spin Hall state has been observed [49].

However, the spin Chern number is not measurable because
the measurable Hall conductance is associated with the to-
tal Chern number σH = e2

h

∑
n,s=↑,↓ Cs

n, which is zero in the
absence of the magnetic field because of time-reversal sym-
metry. A magnetic field can break time-reversal symmetry as
well as the balance between C↑

n and C↓
n , leading to measurable

Hall conductance σH whose magnitude increases with increas-
ing magnetic field, as shown in Figs. 1(c) and 1(d). We also
plot the Hall conductance σ

↑,↓
H for the spin-up and spin-down

blocks of the Hamiltonian [Fig. 1(c)], which confirms that
the nonzero quantum Hall conductance is originated from the
field-induced imbalance between counterpropagating chiral
edge states. Also, Fig. 1(d) shows that the Hall conductance
approaches zero for thinner slabs because of the mixing of
counterpropagating chiral edge states. This mechanism due to
the splitting of helical edge states was previously ignored and
could benefit further experimental explorations.
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FIG. 2. The [110]-direction slab of the Dirac semimetal, which
consists of a Weyl semimetal and its time reversal. (a) The real-space
correspondence of Fermi-arc surface states (red for top and blue for
bottom) of the Weyl semimetal described by the upper block of H
in Eq. (1), for a slab with open boundary condition along the y′

direction. Ew marks the Weyl-node energy. (b) The projection of the
Fermi arc on the kx′ -kz′ plane. S is the area of the Fermi loop. (c) The
area S of the Fermi surface of the Fermi-arc surface states in the
(kx′ , y′, kz′ ) plane as a function of the slab thickness L. (d) The Hall
conductance σH as a function of L and magnetic field 1/B. The Fermi
energy EF is at the Weyl node Ew.

B. [110] slab

In contrast to the above [001] case, for a semimetal slab
grown along the [110] and equivalent [100] or [011] direction,
there exists a 3D quantum Hall effect [6,13] arising from
the Fermi-arc surface states [31,33]. On each of the top and
bottom surfaces of a Weyl semimetal, there are topologically
protected surface states, which can be regarded as half of a
2D electron gas. Their open Fermi surfaces are dubbed as
the Fermi arcs. The 2D Fermi-arc surface states on opposite
surfaces can be connected through the bulk states to form a
complete 2D electron gas with a 3D spatial distribution and
closed Fermi surface [Figs. 2(a) to 2(c), red for top and blue
for bottom surfaces], to support a “3D” quantum Hall effect
[6]. A Dirac semimetal can be regarded as two time-reversed
Weyl semimetals to host two copies of the Fermi-arc quantum
Hall effect. In addition, in a Dirac semimetal, the Fermi-arc
surface states and their time-reversal partners on a single
surface can form a 2D electron gas [50], to support a quantum
Hall effect as well. For both cases, the Hall conductance
plateaus are supposed to decrease with increasing magnetic
field, much like those in conventional 2D electron gases [1],
where the magnetic field presses the occupation of electrons
to lower Landau levels, as shown in Fig. 2(d) for different slab
thickness L.

Moreover, Fig. 2(d) shows that the width of the quantized
plateaus is stable for thicker slabs (L > 50 nm), while show

FIG. 3. The [112]-direction slab of the Dirac semimetal. (a) The
area of the Fermi surface S (solid) and spin Chern number Cs (dotted)
as functions of the thickness L. (b) The Hall conductance σH as a
function of L and magnetic field 1/B. (c) Schematic of where the
Fermi energy EF and Weyl modes Ew are in the bulk spectrum of the
Dirac semimetal. (d)–(f) σH as a function of (d) (EF − Ew, 1/B) and
(e,f) (L, 1/B), respectively. Here we take (d) L = 50 nm, (e) EF −
Ew = 5 meV, and (f) EF − Ew = −5 meV.

obvious variations for ultrathin slabs (L < 20 nm) with de-
creasing thickness. This can be understood using Figs. 2(b)
and 2(c), where the area of the Fermi loop S converges to
a constant for thick slabs, but decreases exponentially with
decreasing L due to the hybridization of the opposite surfaces
in ultrathin slabs. According to the Lifshitz-Onsager relation,
S determines the plateau width of the Hall conductance, which
explains the quantized pattern in Fig. 2(d). Moreover, in Dirac
semimetals EF shifts away from Ew as the Zeeman effect splits
Ew (see Appendix C), leading to a systematic shift of the Hall
plateaus with increasing thickness [Fig. 2(d)].

C. [112] slab

The slabs along the [112] direction inherits the properties
of both the confinement-induced helical edge states in the
[001] slab and Fermi-arc surface states in the [110] slab.
Figure 3(b) shows the Hall conductance of the slab along
the [112] direction as a function of 1/B for different L. For
weak magnetic fields [1/B > 0.4(1/T)], the oscillation pat-
tern of the quantized Hall conductance is similar to that of the
[110] slab, that is, the Hall plateaus decrease with increasing
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FIG. 4. The dependence on θ , the angle between the line con-
necting the Dirac nodes and kx′ -kz′ plane. (a) Illustration of θ . (b) The
area of the Fermi surface of the Fermi-arc surface states S (solid)
and spin Chern number Cs (dotted) as functions of θ . (c,d) The
Hall conductance σH as a function of (θ, 1/B) and (EF − Ew, 1/B),
respectively. The dashed line corresponds to the slab grown along the
[112] direction. Here we take (c) EF − Ew = 0 and (d) B = 5 T.

magnetic field, which indicates the quantized conductance is
mainly originated from the Fermi-arc surface states. Com-
pared to the [110] slab, the width of the plateaus is larger
because of the smaller area enclosed by the Fermi arc S
[Fig. 3(a)]. For strong magnetic fields [1/B < 0.4(1/T)], the
Hall conductance increases with increasing magnetic field,
similar to that in the [001] slab, indicating that it is mainly
contributed to by the imbalance of the helical edge states.

Above, the Fermi energy is assumed to cross the Weyl
nodes, i.e., EF = Ew [see Fig. 3(c) for the definitions of EF

and Ew]. Figure 3(d) shows σH in the (EF − Ew, 1/B) plane
with L = 50 nm. For the Fermi energies far away from the
Weyl nodes, the quantum Hall effect originates from the
confinement-induced bulk subbands [Figs. 3(e) and 3(f)], and
the Hall conductance monotonically decreases with increas-
ing magnetic field for different thickness and Fermi energies,
different from the non-monotonic dependence when EF = Ew

or small EF − Ew.

D. Angle dependence

Figure 4(a) illustrates the dependence on θ , the angle be-
tween the line connecting the Dirac nodes and the kx′-kz′ plane.
For example, the Dirac nodes are located on the kx′-kz′ plane
when θ = 0 [Figs. 2(a) and 2(b)]. Figure 4(b) shows that S
decreases and Cs increases with increasing θ , indicating the
competition between the Fermi-arc surface states and side-
surface helical edge states. Figure 4(c) shows σH as a function
of θ and 1/B for L = 100 nm. For θ = 0 ([110] direction) and
θ = π/2 ([001] direction), the quantized conductance is only
contributed by the Fermi-arc surface states and imbalanced

FIG. 5. (a) Schematic illustration of the 3D device with a elec-
trode attached on the left boundary, and the right lead is scanned by
the STM tip as a 1D normal lead. (b) Schematic illustration of the 3D
device with six electrodes on the top surface. (c1)–(c3) The spectra
for the three different cases that possess the quantized Hall conduc-
tance. Here the blue dashed lines label the Fermi energy. (d1)–(d3)
and (e1)–(e3) correspond to the numerically calculated two-terminal
conductance σ12 and the surface Hall conductance σx′z′ by using the
devices shown in (a) and (b), respectively.

helical edge states, respectively. For other θ , the quantized
Hall conductance originates from both the Fermi-arc surface
states and the helical edge states. Furthermore, σH as a func-
tion of (EF − Ew, θ ) [Fig. 4(d)] shows that the quantum Hall
effect may be due to the confinement-induced bulk subbands,
giving another origin for the experimentally observed quan-
tum Hall effect in Cd3As2 [28,29]. In experiments, it may be
difficult to distinguish whether the thickness-dependent con-
ductance plateaus are consequences of the bulk subbands or
the Fermi-arc surface states. The nonmonotonic dependence
of σH on the magnetic field may play another significant role
to detect the side-surface helical edge states or Fermi-arc 3D
quantum Hall effect in a [112] Dirac semimetal slab.

IV. EXPERIMENTAL PROPOSALS

Above, we showed that the Hall plateaus can be attributed
to the Fermi-arc surface states, confinement-induced bulk
subbands, and helical side-surface edge states. It may be
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challenging to distinguish them in a standard Hall-bar device.
We propose that the Fermi-arc quantum Hall effect can be
identified through the transport setups shown in Figs. 5(a)
and 5(b). As shown in Figs. 5(c1) to 5(c3), we consider the
quantum Hall effect originated by three mechanisms: the Weyl
orbit, bulk subbands, and the side surface states.

For the two-terminal device [Fig. 5(a)], the two-terminal
conductance σ12 shows maximum values near the top and
bottom surfaces for the case of the Weyl orbit [Fig. 5(d1)],
and shows maximum values in the central region for the cases
of the confinement-induced subbands or the side surface states
[Figs. 5(d2) and 5(d3)]. This phenomenon can be explained by
calculating the wave-function distribution of the edge states
between the Landau levels (see Appendix D).

We also calculate the surface Hall conductance by using
the device shown in Fig. 5(b). For the case of the Weyl orbit
[Fig. 5(e1)], the surface Hall conductance σx′z′ is quantized
and stable with increasing film thickness Ly′ . While for the
rest of the cases, σx′z′ is not quantized, and shows obvious
fluctuations. Moreover, the quantum Hall effect induced by
the bulk subbands and the helical edge states can be identified
by measuring the nonlocal bulk transport [51,52]. Therefore,
the devices can be used to identify the originations of the
observed quantum Hall effect in experiments.

ACKNOWLEDGMENTS

We thank Hua Jiang, Donghui Xu, and Bin Zhou for
helpful discussions. This work was supported by the
National Natural Science Foundation of China (Grants
No. 11925402 and No. 11974249), the National Basic
Research Program of China (Grant No. 2015CB921102), the
Strategic Priority Research Program of Chinese Academy
of Sciences (Grant No. XDB28000000), the Natural
Science Foundation of Shanghai (Grant No. 19ZR1437300),
Guangdong province (Grants No. 2020KCXTD001 and No.
2016ZT06D348), Shenzhen High-level Special Fund (Grants
No. G02206304 and No. G02206404), and the Science,
Technology and Innovation Commission of Shenzhen
Municipality (Grants No. ZDSYS20170303165926217,
No. JCYJ20170412152620376, and No. KYT-
DPT20181011104202253). R.C. acknowledges support
from the project funded by the China Postdoctoral Science
Foundation (Grant No. 2019M661678) and the SUSTech
Presidential Postdoctoral Fellowship. The numerical
calculations were supported by Center for Computational
Science and Engineering of SUSTech.

APPENDIX A: MODEL AND SPECTRUM

1. Dirac semimetal slab with open boundary condition along the y′ direction

To obtain the Hamiltonian of the Dirac semimetal slab along an arbitrary growth direction, we include the new wave vector
(k′

x, k′
y, k′

z ) through the rotation transformation in Eq. (2). We consider the open boundary condition along the y′ direction with the
thickness L. In this case, k′

x and k′
z are still good quantum numbers while k′

y should be replaced by k′
y = −i∂y′ . The Hamiltonian

H (k′
x,−i∂y′ , k′

z ) has the following form:

H = X1 + X2∂y′ + X3∂
2
y′ , (A1)

where

X1 = ε′(k′) +

⎛
⎜⎜⎝

M ′(k′) Aeiα (k′
x − ik′

z sin θ ) 0 0
Ae−iα (k′

x + ik′
z sin θ ) −M ′(k′) 0 0

0 0 M ′(k′) −Ae−iα (k′
x + ik′

z sin θ )
0 0 −Aeiα (k′

x − ik′
z sin θ ) −M ′(k′)

⎞
⎟⎟⎠, (A2)

X2 = −ikz(C1 − C2) sin 2θ +

⎛
⎜⎜⎝

Z1 Aeiα cos θ 0 0
−Ae−iα cos θ −Z1 0 0

0 0 Z1 Ae−iα cos θ

0 0 −Aeiα cos θ −Z1

⎞
⎟⎟⎠, (A3)

X3 = −C1 sin2 θ − C2 cos2 θ +

⎛
⎜⎝

Z2 0 0 0
0 −Z2 0 0
0 0 Z2 0
0 0 0 −Z2

⎞
⎟⎠, (A4)

with

ε′(k′) = C0 + C1k′2
z cos2 θ + C2

(
k′2

x + k′2
z sin2 θ

)
, (A5)

M ′(k′) = M0 + M1k′2
z cos2 θ + M2

(
k′2

x + k′2
z sin2 θ

)
, (A6)

Z1 = −ik′
z(M1 − M2) sin 2θ, (A7)

Z2 = −M1 sin2 θ − M2 cos2 θ. (A8)
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FIG. 6. Numerically calculated spectrum of the Dirac semimetal slab with open boundary condition along the y′ direction at k′
x = 0. The

blue dashed lines label the Fermi level EF = Ew. In (a), (b), and (c), y′ correspond to [110], [001], and [112]-directions, respectively.

Using the basis

|ϕn(y′)〉 =
√

2

L
sin

[
nπ

L

(
y′ + L

2

)]
, (A9)

with n = 1, 2, 3, . . ., the matrix elements are

Hmn = 〈ϕm|H |ϕn〉 =
{

X1 − n2π2

L2 X3, m = n,

− 2[−1+(−1)n+m]nm
L(n2−m2 ) X2, m �= n.

(A10)

From the above Hamiltonian, we can obtain the eigenenergy (shown in Fig. 6) Eδ and the corresponding eigenvector Cδ,sn,
where s = 1, 2, 3, 4 labels the spin and orbit subspaces of H in Eq. (A1). The wave function of the energy Eδ is given by
	δ,k′

x
(y′) = ∑

sn Cδ,sn|ϕn(y′)〉. The energy dispersions of Fig. 6 are calculated numerically through the above matrix elements.

2. Dirac semimetal slab with open boundary conditions along the y′ and z′ directions

Now we consider open boundary conditions along the y′ and z′ directions with the thickness L and the width W . In this case,
k′

x is a good quantum number while k′
y and k′

z should be replaced by k′
y = −i∂y′ and k′

z = −i∂z′ , respectively. The Hamiltonian
H (k′

x,−i∂y′ ,−i∂z′ ) has the following form:

H = Y1 + Y2∂y′∂z′ + Y3∂y′ + Y4∂z′ + Y5∂
2
y′ + Y6∂

2
z′ , (A11)

where

Y1 = C0 + C2k′2
x +

⎛
⎜⎜⎝

M0 + M2k′2
x Aeiαk′

x 0 0
Ae−iαk′

x −M0 − M2k′2
x 0 0

0 0 M0 + M2k′2
x −Ae−iαk′

x
0 0 −Aeiαk′

x −M0 − M2k′2
x

⎞
⎟⎟⎠, (A12)

Y2 =

⎛
⎜⎝

U−+−+ sin 2θ 0 0 0
0 U−++− sin 2θ 0 0
0 0 U−+−+ sin 2θ 0
0 0 0 U−++− sin 2θ

⎞
⎟⎠, (A13)

Y3 =

⎛
⎜⎜⎝

0 Aeiα cos θ 0 0
−Ae−iα cos θ 0 0 0

0 0 0 Ae−iα cos θ

0 0 −Aeiα cos θ 0

⎞
⎟⎟⎠, (A14)

Y4 =

⎛
⎜⎜⎝

0 −Aeiα sin θ 0 0
Ae−iα sin θ 0 0 0

0 0 0 −Ae−iα sin θ

0 0 Aeiα sin θ 0

⎞
⎟⎟⎠, (A15)

Y5 = 1

2

⎛
⎜⎝

U−−−− + U+−+− cos 2θ 0 0 0
0 U−−++ + U+−−+ cos 2θ 0 0
0 0 U−−−− + U+−+− cos 2θ 0
0 0 0 U−−++ + U+−−+ cos 2θ

⎞
⎟⎠, (A16)
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FIG. 7. Numerically calculated spectrum of the Dirac semimetal slab with open boundary conditions along y′ and z′ directions. The blue
dashed lines label the Fermi level EF = Ew. In (a), (b), and (c), y′ correspond to [110], [001], and [112]-directions, respectively.

Y6 = 1

2

⎛
⎜⎝

U−−−− + U−+−+ cos 2θ 0 0 0
0 U−−++ + U−++− cos 2θ 0 0
0 0 U−−−− + U−+−+ cos 2θ 0
0 0 0 U−−++ + U−++− cos 2θ

⎞
⎟⎠, (A17)

with

U±±±± = ±C1 ± C2 ± M1 ± M2. (A18)

For a Dirac semimetal slab with the width W and the thickness L, we use the bases |ϕ j (y′), ψl (z′)〉 = |ϕ j (y′)〉 ⊗ |ψl (z′)〉 with

ϕ j (y
′) =

√
2

L
sin

[
jπ

L

(
y′ + L

2

)]
, j = 1, 2, 3, . . . ,

ψl (z
′) =

√
2

W
sin

[
lπ

W

(
z′ + W

2

)]
, l = 1, 2, 3, . . . .

(A19)

Then the matrix elements are given by

〈ϕm, ψl |H (k′
x,−i∂y′ ,−i∂z′ )|ϕn, ψ j〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y1 − (m2π2Y5
L2 + j2π2Y6

W 2

)
m = n, j = l,

2[−1+(−1) j+l ]l jY4

W (l2− j2 ) m = n, j �= l,
2[−1+(−1)m+n]mnY3

L(n2−m2 ) m �= n, j = l,
4[−1+(−1)m+n][−1+(−1) j+l ]mnl jY2

LW (n2−m2 )(l2− j2 ) m �= n, j �= l.

(A20)

From the above Hamiltonian, we plot the spectrum of a Dirac semimetal slab with open boundary conditions along y′ and z′
directions in Fig. 7. The spectrum shows no gap for the [110] case due to the Fermi arcs. For the [001] case, the helical edge
states on the side surfaces characterized by the nonzero spin Chern number can be clearly discerned in the band gap. For the
[112] case, though the band gap closes, there are still helical states crossing the Fermi level.

3. Dirac semimetal slab with open boundary conditions along the y′ and z′ directions under magnetic fields

Now a uniform magnetic field B′ = (0, By′ , 0) is applied along the y′ direction. We choose the Landau gauge A′ = (By′z′, 0, 0).
In the presence of the magnetic field, the wave vector should be replaced with the Peierls transformation

k′ →
(

k′
x − tz′

�2
y′

,−i∂y′ ,−i∂z′

)
(A21)

with �y′ = √
h̄/|eBy′ | and t = sgn(eBy′ ). In this case, the magnetic field components along the previous [100], [010], and [001]

axes are given by ⎡
⎣B[100]

B[010]

B[001]

⎤
⎦ =

⎡
⎣cos α − cos θ sin α sin θ sin α

sin α cos θ cos α − sin θ cos α

0 sin θ cos θ

⎤
⎦
⎡
⎣ 0

By′

0

⎤
⎦, (A22)
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FIG. 8. Numerically calculated spectrum of the Dirac semimetal slab with open boundary conditions along the y′ and z′ directions with B =
5 T. The blue dashed lines label the Fermi level EF = Ew. In (a), (b), and (c), y′ correspond to [110], [001], and [112]-directions, respectively.

and the Zeeman term is

HZeeman = μB

2
(σxB[100] + σyB[010] + |σzB[001]) ⊗

[
gs 0
0 gp

]
(A23)

= μBBy′

2

⎛
⎜⎜⎝

gs sin θ 0 −igse−iα cos θ 0
0 gp sin θ 0 −igpe−iα cos θ

igseiα cos θ 0 −gs sin θ 0
0 igpeiα cos θ 0 −gp sin θ

⎞
⎟⎟⎠. (A24)

In the presence of the magnetic field, the Hamiltonian

Ht = H

(
k′

x − tz′

�2
y′

,−i∂y′ ,−i∂z′

)
+ HZeeman, (A25)

has the following form:

Ht = Y ′
1 + Y2∂y′∂z′ + Y3∂y′ + Y4∂z′ + Y5∂

2
y′ + Y6∂

2
z′ + Y7z′ + Y8z′2, (A26)

where

Y ′
1 = Y1 + HZeeman, (A27)

Y7 = − t

�2
y′

⎛
⎜⎜⎝

2(C2 + M2)k′
x Aeiα 0 0

Ae−iα 2(C2 − M2)k′
x 0 0

0 0 2(C2 + M2)k′
x −Ae−iα

0 0 −Aeiα 2(C2 − M2)k′
x

⎞
⎟⎟⎠, (A28)

Y8 = 1

�4
y′

⎛
⎜⎝

C2 + M2 0 0 0
0 C2 − M2 0 0
0 0 C2 + M2 0
0 0 0 C2 − M2

⎞
⎟⎠. (A29)

In the basis of |ϕ j (y), ψl (z)〉 = |ϕ j (y)〉 ⊗ |ψl (z)〉 [Eq. (A19)], the matrix elements are given by

〈ϕm, ψl |Ht (k
′
x,−i∂y′ ,−i∂z′ )|ϕn, ψ j〉 (A30)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y ′
1 − (m2π2Y5

L2 + j2π2Y6

W 2

)+ W 2

12

(
1 − 6

j2π2

)
Y8 m = n, j = l,

2l j{[−1+(−1) j+l](i2− j2 )π2Y4+2[−1+(−1) j+l]W 2Y7+2[1+(−1) j+l]W 3Y8}
W (l2− j2 )2

π2
m = n, j �= l,

2[−1+(−1)m+n]mnY3
L(n2−m2 ) m �= n, j = l,

4[−1+(−1)m+n][−1+(−1) j+l]mnl jY2

LW (n2−m2 )(l2− j2 ) m �= n, j �= l.

(A31)

From the above Hamiltonian, we plot the spectrum of a Dirac semimetal slab with open boundary conditions along the y′ and z′
directions in Fig. 8. For the slab along [001] or [112] direction, the helical edge states are robust against the magnetic field, and
contribute to the quantized Hall conductivity.
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APPENDIX B: SPIN CHERN NUMBER

1. Spin Chern number for the slab grown along the [001] direction

For the slab grown along the [001] direction (α = −π/4, θ = π/2), it is found X2 = 0. The Hamiltonian of the Dirac
semimetal slab from Eq. (A10) has the form

H =

⎛
⎜⎜⎜⎜⎝
H11 0 0 0 · · ·

0 H22 0 0 · · ·
0 0 H33 0 · · ·
0 0 0 H44 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (B1)

which can be regarded as a superposition of different blocks. Each block is equivalent to a Bernevig-Hughes-Zhang (BHZ)
model Hamiltonian describing a 2D topological insulator, whose topological invariant can be defined by using the spin Chern
number as

Cs
eff(n) = C↑

eff(n) − C↓
eff(n)

2
, (B2)

where

C↑,↓
eff (n) = ± sgn(M0 + M1n2π2/L2) − sgn(M2)

2
, (B3)

are the valence-band Chern numbers of the spin-up and spin-down blocks of the nth block.

2. Spin Chern number for the slab grown along the [112] direction

For the slab is along the [112] direction (α = −π/4, θ = arctan
√

2), each subband of the Hamiltonian obtained through the
quantum well approximation couple together because X2 �= 0. Therefore, we adopt the tight-binding approximation to discretize
the Hamiltonian H (k′

x, k′
y, k′

z ) into a quasi-two-dimensional model having the form

H tb(k′
x, k′

y) =
∑

i

h0c†
i ci + Tyc†

i ci+1 + T †
y c†

i ci−1, (B4)

where

h0 = ε′′(k′) +

⎛
⎜⎜⎝

M ′′(k′) Aeiα (k′
x − ik′

z sin θ ) 0 0
Ae−iα (k′

x + ik′
z sin θ ) −M ′′(k′) 0 0

0 0 M ′′(k′) −Ae−iα (k′
x + ik′

z sin θ )
0 0 −Aeiα (k′

x − ik′
z sin θ ) −M ′′(k′)

⎞
⎟⎟⎠, (B5)

Ty = 1

2

⎛
⎜⎜⎝

U−−−− + U+−+−R Aeiα cos θ 0 0
−Ae−iα cos θ U−−++ + U+−−+R 0 0

0 0 U−−−− + U+−+−R Ae−iα cos θ

0 0 −Aeiα cos θ U−−++ + U+−−+R

⎞
⎟⎟⎠, (B6)

with

ε′′(k′) = C0 + C1
(
2 sin2 θ + k′2

z cos2 θ
)+ C2

(
2 cos2 θ + k′2

x + k′2
z sin2 θ

)
, (B7)

M ′′(k′) = M0 + M1
(
2 sin2 θ + k′2

z cos2 θ
)+ M2

(
2 cos2 θ + k′2

x + k′2
z sin2 θ

)
, (B8)

R = cos 2θ − ik′
z sin 2θ. (B9)

From the above Hamiltonian, one can calculate the spin Chern number of the occupied valence bands.

APPENDIX C: HALL CONDUCTANCE OF A DIRAC SEMIMETAL SLAB UNDER MAGNETIC FIELD

By introducing the ladder operators

a = �y′√
2

[
k′

x − ty′z′

�2
y′

− tyi(−i∂z′ )

]
, (C1)

a† = �y′√
2

[
k′

x − ty′z′

�2
y′

+ tyi(−i∂z′ )

]
. (C2)
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The Hamiltonian Ht in Eq. (A25) can be written as

Ht = T1 + T2∂y′ + T3∂
2
y′ , (C3)

where

T1 = T 0
1 + T a

1 a + T a†

1 a† + T aa†

1 aa† + T a†a
1 a†a + T a2

1 a2 + T a†2

1 a†2, (C4)

T2 = T 0
2 + T a

2 a + T a†

2 a†, (C5)

T3 = T 0
3 , (C6)

with

T 0
1 = C0 +

⎛
⎜⎝

M0 0 0 0
0 −M0 0 0
0 0 M0 0
0 0 0 −M0

⎞
⎟⎠+ HZeeman, (C7)

T a
1 = 1√

2�y′ty′

⎛
⎜⎜⎝

0 Aeiα (ty + sin θ ) 0 0
Ae−iα (ty − sin θ ) 0 0 0

0 0 0 Ae−iα (−ty + sin θ )
0 0 −Aeiα (ty + sin θ ) 0

⎞
⎟⎟⎠, (C8)

T a†

1 = 1√
2�y′ty′

⎛
⎜⎜⎝

0 Aeiα (ty − sin θ ) 0 0
Ae−iα (ty + sin θ ) 0 0 0

0 0 0 −Ae−iα (ty + sin θ )
0 0 −Aeiα (ty − sin θ ) 0

⎞
⎟⎟⎠, (C9)

T aa†

1 = 1

4�2
y′

⎛
⎜⎝

U ′
++++ + U+−+− cos 2θ 0 0 0

0 U ′
++−− + U+−−+ cos 2θ 0 0

0 0 U ′
++++ + U+−+− cos 2θ 0

0 0 0 U ′
++−− + U+−−+ cos 2θ

⎞
⎟⎠,

(C10)

T a†a
1 = 1

4�2
y′

⎛
⎜⎝

U ′
++++ + U+−+− cos 2θ 0 0 0

0 U ′
++−− + U+−−+ cos 2θ 0 0

0 0 U ′
++++ + U+−+− cos 2θ 0

0 0 0 U ′
++−− + U+−−+ cos 2θ

⎞
⎟⎠,

(C11)

T a2

1 = T a†2

1 =

⎛
⎜⎜⎝

2U−+−+ cos2 θ 0 0 0
0 2U−++− cos2 θ 0 0
0 0 2U−+−+ cos2 θ 0
0 0 0 2U−++− cos2 θ

⎞
⎟⎟⎠, (C12)

T 0
2 =

⎛
⎜⎜⎝

0 Aeiα cos θ 0 0
−Ae−iα cos θ 0 0 0

0 0 0 Ae−iα cos θ

0 0 −Aeiα cos θ 0

⎞
⎟⎟⎠, (C13)

T a
2 = 1√

2�y′ty′

⎛
⎜⎝

U+−+− sin 2θ 0 0 0
0 U+−−+ sin 2θ 0 0
0 0 U+−+− sin 2θ 0
0 0 0 U+−−+ sin 2θ

⎞
⎟⎠, (C14)

T a†

2 = 1√
2�y′ty′

⎛
⎜⎝

U−+−+ sin 2θ 0 0 0
0 U−++− sin 2θ 0 0
0 0 U−+−+ sin 2θ 0
0 0 0 U−++− sin 2θ

⎞
⎟⎠, (C15)

T 0
3 = 1

2

⎛
⎜⎝

U−−−− + U+−+− cos 2θ 0 0 0
0 U−−++ + U+−−+ cos 2θ 0 0
0 0 U−−−− + U+−+− cos 2θ 0
0 0 0 U−−++ + U+−−+ cos 2θ

⎞
⎟⎠, (C16)
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and U ′
±±±± = ±C1 ± 3C2 ± M1 ± 3M2. In the basis of |ϕn, ν〉 = |ϕn(y′)〉 ⊗ |ν〉, where |ν〉 is the harmonic oscillator eigenfunc-

tion given by

〈z|ν〉 = φν (z) = 1√
π1/22νν!�y′

exp

[
− (z − z0)2

2�2
y′

]
Hν

(
z − z0

�y′

)
, (C17)

and Hν is the Hermite polynomial and the guiding center z0 = tkx�
2
y′ . With the basis, the matrix elements of the Hamiltonian in

the magnetic field are found as

Hmn,ν ′ν
t = 〈ν ′, ϕm|Ht |ϕn, ν〉 =

{
〈ν ′|T1|ν〉 − n2π2

L2 〈ν ′|T3|ν〉, m = n,

− 2[−1+(−1)n+m]nm
L(n2−m2 ) 〈ν ′|T2|ν〉, m �= n.

(C18)

Because

a|ν〉 = √
ν|ν − 1〉, (C19)

a†|ν〉 = √
ν + 1|ν + 1〉, (C20)

then 〈ν ′|T1,2,3|ν〉 can be obtained through the following relationships:

〈ν ′|a|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 . . .

1 0 0 0 0 . . .

0
√

2 0 0 0 . . .

0 0
√

3 0 0 . . .

0 0 0
√

4 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 〈ν ′|a†|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . .

0 0
√

2 0 0 . . .

0 0 0
√

3 0 . . .

0 0 0 0
√

4 . . .

0 0 0 0 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C21)

〈ν ′|aa†|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . .

0 2 0 0 0 . . .

0 0 3 0 0 . . .

0 0 0 4 0 . . .

0 0 0 0 5 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 〈ν ′|a†a|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 . . .

0 1 0 0 0 . . .

0 0 2 0 0 . . .

0 0 0 3 0 . . .

0 0 0 0 4 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C22)

〈ν ′|a2|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 . . .

0 0 0 0 0 . . .√
2 0 0 0 0 . . .

0
√

6 0 0 0 . . .

0 0
√

12 0 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 〈ν ′|a†2|ν〉 →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

2 0 0 . . .

0 0 0
√

6 0 . . .

0 0 0 0
√

12 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C23)

From the above Hamiltonian, we can obtain the energy of the Landau level Eδ , and the wave function is given by

|	δ〉 =
∑
snν

Cδ,snν |n, ν〉, (C24)

Here s = 1, 2, 3, 4 describes the spin and orbit subspace.
Now we calculate the Hall conductivity defined by σH = jx′/Ez′ , where the current jx′ is applied along the x′ direction and

the induced electric field Ez′ is along the z′ direction. The velocity operators given by

vmn
x = 1

h̄
〈m|vx|n〉 = 1

h̄
∂Hmn/∂k′

x (C25)

= 1

h̄

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

2k′
x(C2 + M2) Aeiα 0 0

Ae−iα 2k′
x(C2 − M2) 0 0

0 0 2k′
x(C2 + M2) −Ae−iα

0 0 −Aeiα 2k′
x(C2 − M2)

⎞
⎟⎟⎟⎠, m = n,

0, m �= n,

(C26)
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vmn
z = 1

h̄
〈m|vz|n〉 = 1

h̄
∂Hmn/∂k′

z (C27)

= 1

h̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

K1k′
z −iAeiα sin θ 0 0

iAe−iα sin θ K2k′
z 0 0

0 0 K1k′
z −iAe−iα sin θ

0 0 iAeiα sin θ K2k′
z

⎞
⎟⎟⎠, m = n,

2i[−1+(−1)m+n]mn sin 2θ

L(m2−n2 )

⎛
⎜⎝

U+−+− 0 0 0
0 U+−−+ 0 0
0 0 U+−+− 0
0 0 0 U+−−+

⎞
⎟⎠, m �= n,

(C28)

with K1 = (U++++ + U+−+− cos 2θ ) and K2 = (U++−− + U+−−+ cos 2θ ). When the magnetic field is introduced, the velocity
operator becomes vx,z(k′

x, k′
z ) → vx,z(k′

x − tz′
�2

y′
,−i∂z′ ). The matrix elements of the velocity operators are

〈	δ|vx|	δ′ 〉 = 1

h̄

∑
mnνν ′

〈ν ′|C†
δ,mν ′v

mn
x Cδ′,nν |ν〉, (C29)

〈	δ′ |vz|	δ〉 = 1

h̄

∑
mnνν ′

〈ν ′|C†
δ′,mν ′v

mn
z Cδ,nν |ν〉, (C30)

where vmn
x is a 4 × 4 matrix given in Eqs. (C26) and (C28) and

Cδ′,nν =

⎛
⎜⎜⎜⎝

C1
δ′,nν

C2
δ′,nν

C3
δ′,nν

C4
δ′,nν

⎞
⎟⎟⎟⎠, (C31)

is a 4 × 1 vector. With the help of ladder operators, we have

C†
δ,mνv

mn
x Cδ′,nν = Sδδ′mnν ′ν

x + Sδδ′mnν ′ν
x,a a + Sδδ′mnν ′ν

x,a† a†, (C32)

C†
δ′,mνv

mn
z Cδ,nν = Sδ′δmnν ′ν

z + Sδ′δmnν ′ν
z,a a + Sδ′δmnν ′ν

z,a† a†. (C33)

Then

〈	δ|vx|	δ′ 〉 = 1

h̄

∑
mnνν ′

Sδδ′mnν ′ν
x δν ′ν + Sδδ′mnν ′ν

x,a

√
νδν ′ν−1 + Sδδ′mnν ′ν

x,a†

√
ν + 1δν ′ν+1, (C34)

〈	δ|vz|	δ′ 〉 = 1

h̄

∑
mnνν ′

Sδδ′mnν ′
z δν ′ν + Sδδ′mnν ′

z,a

√
νδν ′ν−1 + Sδδ′mnν ′

z,a†

√
ν + 1δν ′ν+1. (C35)

Take the velocities in Eqs. (C26) and (C28) into Eqs. (C29) and (C30), we have

vδδ′
x =

∑
mnνν ′

Sδδ′mnν ′ν
x δν ′ν = δmnδν ′νA

[
e−iα

(
C2∗

δ,mν ′C1
δ′,nν − C3∗

δ,mν ′C4
δ′,nν

)+ eiα
(
C1∗

δ,mν ′C2
δ′,nν − C4∗

δ,mν ′C3
δ′,nν

)]
, (C36)

vδδ′
x,a =

∑
mnνν ′

Sδδ′mnν ′ν
x,a

√
νδν ′ν−1 (C37)

= δmnδν ′ν−1

√
2ν

�y′

[
(C2 + M2)

(
C1∗

δ,mν ′C1
δ′,nν + C3∗

δ,mν ′C3
δ′,nν

)+ (C2 − M2)
(
C2∗

δ,mν ′C2
δ′,nν + C4∗

δ,mν ′C4
δ′,nν

)]
,

vδδ′
x,a† =

∑
mnνν ′

Sδδ′mnν ′ν
x,a†

√
ν + 1δν ′ν+1 (C38)

= δmnδν ′ν+1

√
2(ν + 1)

�y′

[
(C2 + M2)

(
C1∗

δ,mν ′C1
δ′,nν + C3∗

δ,mν ′C3
δ′,nν

)+ (C2 − M2)
(
C2∗

δ,mν ′C2
δ′,nν + C4∗

δ,mν ′C4
δ′,nν

)]
,

vδδ′
z =

∑
mnνν ′

Sδδ′mnν ′
z δν ′ν = δmnδν ′ν iA

[
e−iα

(
C2∗

δ,mν ′C1
δ′,nν − C3∗

δ,mν ′C4
δ′,nν

)+ eiα
(
C4∗

δ,mν ′C3
δ′,nν − C1∗

δ,mν ′C2
δ′,nν

)]

+
∑
m �=n

δν ′ν
2i[−1 + (−1)m+n]mn sin 2θ

L(m2 − n2)

[
U+−+−C1∗

δ,mν ′C1
δ′,nν + U+−−+C2∗

δ,mν ′C2
δ′,nν

+U+−+−C3∗
δ,mν ′C3

δ′,nν + U+−−+C4∗
δ,mν ′C4

δ′,nν

]
, (C39)
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vδδ′
z,a =

∑
mnνν ′

Sδδ′mnν ′ν
x,a

√
νδν ′ν−1

= δmnδν ′ν−1
i
√

ν√
2�y′ty′

[
(U++++ + U+−+− cos 2θ )C1∗

δ,mν ′C1
δ′,nν + (U++−− + U+−−+ cos 2θ )C2∗

δ,mν ′C2
δ′,nν

+ (U++++ + U+−+− cos 2θ )C3∗
δ,mν ′C3

δ′,nν + (U++−− + U+−−+ cos 2θ )C4∗
δ,mν ′C4

δ′,nν

〉
, (C40)

vδδ′
z,a† =

∑
mnνν ′

Sδδ′mnν ′
z,a†

√
ν + 1δν ′ν+1

= −δmnδν ′ν+1
i
√

ν + 1√
2�y′ty′

[
(C2 + M2)

(
C1∗

δ,mν ′C1
δ′,nν + C3∗

δ,mν ′C3
δ′,nν

)+ (C2 − M2)
(
C2∗

δ,mν ′C2
δ′,nν + C4∗

δ,mν ′C4
δ′,nν

)]
+ (U++++ + U+−+− cos 2θ )C3∗

δ,mν ′C3
δ′,nν + (U++−− + U+−−+ cos 2θ )C4∗

δ,mν ′C4
δ′,nν

〉
. (C41)

Further we can define v̄δδ′
x = h̄�y′√

2
〈	δ|vx|	δ′ 〉 and v̄δδ′

z = h̄�y′
ity′

√
2
〈	δ|vz|	δ′ 〉, which satisfy v̄δ′δ

x = (v̄δδ′
x )∗ and v̄δδ′

z = −(v̄δ′δ
z )∗. Using

the Kubo formula, the Hall conductivity at zero temperature reduces to

σH = t
e2

h

4

L�4
B

∑
Eδ<EF
E
δ′ >EF

Re
(
v̄δδ′

x v̄δ′δ
z

)
(Eδ − Eδ′ )2 + 
2

. (C42)

Then, we can define 2D sheet conductivity σ s
H = σHL.

Moreover, in numerical calculations, the matrix operations are much faster than the for loop. Therefore, in the following
contents, we describe the numerical method calculating the conductance. For example, we use a model with two states below
the chemical potential, and three states above the chemical potential. We limit the basis n = 1, 2, 3 and ν = 0, 1, 2. Then, we
can define the eight matrices

C1,2,3,4
δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ1,10 C1,2,3,4

δ2,10

C1,2,3,4
δ1,11 C1,2,3,4

δ2,11

C1,2,3,4
δ1,12 C1,2,3,4

δ2,12

C1,2,3,4
δ1,20 C1,2,3,4

δ2,20

C1,2,3,4
δ1,21 C1,2,3,4

δ2,21

C1,2,3,4
δ1,22 C1,2,3,4

δ2,22

C1,2,3,4
δ1,30 C1,2,3,4

δ2,30

C1,2,3,4
δ1,31 C1,2,3,4

δ2,31

C1,2,3,4
δ1,32 C1,2,3,4

δ2,32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C1,2,3,4
δ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ′

1,10 C1,2,3,4
δ′

2,10 C1,2,3,4
δ′

3,10

C1,2,3,4
δ′

1,11 C1,2,3,4
δ′

2,11 C1,2,3,4
δ′

3,11

C1,2,3,4
δ′

1,12 C1,2,3,4
δ′

2,12 C1,2,3,4
δ′

3,12

C1,2,3,4
δ′

1,20 C1,2,3,4
δ′

2,20 C1,2,3,4
δ′

3,20

C1,2,3,4
δ′

1,21 C1,2,3,4
δ′

2,21 C1,2,3,4
δ′

3,21

C1,2,3,4
δ′

1,22 C1,2,3,4
δ′

2,22 C1,2,3,4
δ′

3,22

C1,2,3,4
δ′

1,30 C1,2,3,4
δ′

2,30 C1,2,3,4
δ′

3,30

C1,2,3,4
δ′

1,31 C1,2,3,4
δ′

2,31 C1,2,3,4
δ′

3,31

C1,2,3,4
δ′

1,32 C1,2,3,4
δ′

2,32 C1,2,3,4
δ′

3,32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C43)

The velocity matrices can be obtained by

[vx] =
(

v
δ1δ

′
1

x v
δ1δ

′
2

x v
δ1δ

′
3

x

v
δ2δ

′
1

x v
δ2δ

′
2

x v
δ2δ

′
3

x

)
= A

[
e−iα

(
C2†

δ C1
δ′ − C3†

δ C4
δ′
)+ eiα

(
C1†

δ C2
δ′ − C4†

δ C3
δ′
)]

, (C44)

[vz] =
(

v
δ1δ

′
1

z v
δ1δ

′
2

z v
δ1δ

′
3

z

v
δ2δ

′
1

z v
δ2δ

′
2

z v
δ2δ

′
3

z

)
= iA

[
e−iα

(
C2†

δ C1
δ′ − C3†

δ C4
δ′
)+ eiα

(
C4†

δ C3
δ′ − C1†

δ C2
δ′
)]

+ [
U+−+−C1†

δ,mν ′RC1
δ′,nν + U+−−+C2†

δ,mν ′RC2
δ′,nν + U+−+−C3†

δ,mν ′RC3
δ′,nν + U+−−+C4†

δ,mν ′RC4
δ′,nν

]
, (C45)

where R is a 9 × 9 matrix with its element is

Rmn =
{

0, m = n,
2i[−1+(−1)m+n]mn sin 2θ

L(m2−n2 ) I3 m �= n.
(C46)
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Now define

C1,2,3,4
δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ1,10 C1,2,3,4

δ2,10

C1,2,3,4
δ1,11 C1,2,3,4

δ2,11

C1,2,3,4
δ1,12 C1,2,3,4

δ2,12

C1,2,3,4
δ1,20 C1,2,3,4

δ2,20

C1,2,3,4
δ1,21 C1,2,3,4

δ2,21

C1,2,3,4
δ1,22 C1,2,3,4

δ2,22

C1,2,3,4
δ1,30 C1,2,3,4

δ2,30

C1,2,3,4
δ1,31 C1,2,3,4

δ2,31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C1,2,3,4
δ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ′

1,11 C1,2,3,4
δ′

2,11 C1,2,3,4
δ′

3,11

C1,2,3,4
δ′

1,12 C1,2,3,4
δ′

2,12 C1,2,3,4
δ′

3,12

C1,2,3,4
δ′

1,20 C1,2,3,4
δ′

2,20 C1,2,3,4
δ′

3,20

C1,2,3,4
δ′

1,21 C1,2,3,4
δ′

2,21 C1,2,3,4
δ′

3,21

C1,2,3,4
δ′

1,22 C1,2,3,4
δ′

2,22 C1,2,3,4
δ′

3,22

C1,2,3,4
δ′

1,30 C1,2,3,4
δ′

2,30 C1,2,3,4
δ′

3,30

C1,2,3,4
δ′

1,31 C1,2,3,4
δ′

2,31 C1,2,3,4
δ′

3,31

C1,2,3,4
δ′

1,32 C1,2,3,4
δ′

2,32 C1,2,3,4
δ′

3,32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C47)

Then

[vx,a] =
√

2

�y′

[
(C2 + M2)

(
C1†

δ VC1
δ′ + C3†

δ VC3
δ′
)+ (C2 − M2)

(
C2†

δ VC2
δ′ + C4†

δ VC4
δ′
)]

, (C48)

[vz,a] = i√
2�y′ty′

[
(U++++ + U+−+− cos 2θ )C1†

δ VC1
δ′ + (U++−− + U+−−+ cos 2θ )C2†

δ VC2
δ′

+ (U++++ + U+−+− cos 2θ )C3†
δ VC3

δ′ + (U++−− + U+−−+ cos 2θ )C4†
δ VC4

δ′
]
, (C49)

where V is a diagonal matrix having the form

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 √
2

0
1 √

2
0

1 √
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C50)

We continue to define

C1,2,3,4
δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ1,11 C1,2,3,4

δ2,11

C1,2,3,4
δ1,12 C1,2,3,4

δ2,12

C1,2,3,4
δ1,20 C1,2,3,4

δ2,20

C1,2,3,4
δ1,21 C1,2,3,4

δ2,21

C1,2,3,4
δ1,22 C1,2,3,4

δ2,22

C1,2,3,4
δ1,30 C1,2,3,4

δ2,30

C1,2,3,4
δ1,31 C1,2,3,4

δ2,31

C1,2,3,4
δ1,32 C1,2,3,4

δ2,32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C1,2,3,4
δ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,2,3,4
δ′

1,10 C1,2,3,4
δ′

2,10 C1,2,3,4
δ′

3,10

C1,2,3,4
δ′

1,11 C1,2,3,4
δ′

2,11 C1,2,3,4
δ′

3,11

C1,2,3,4
δ′

1,12 C1,2,3,4
δ′

2,12 C1,2,3,4
δ′

3,12

C1,2,3,4
δ′

1,20 C1,2,3,4
δ′

2,20 C1,2,3,4
δ′

3,20

C1,2,3,4
δ′

1,21 C1,2,3,4
δ′

2,21 C1,2,3,4
δ′

3,21

C1,2,3,4
δ′

1,22 C1,2,3,4
δ′

2,22 C1,2,3,4
δ′

3,22

C1,2,3,4
δ′

1,30 C1,2,3,4
δ′

2,30 C1,2,3,4
δ′

3,30

C1,2,3,4
δ′

1,31 C1,2,3,4
δ′

2,31 C1,2,3,4
δ′

3,31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C51)

Then

[vx,a† ] =
√

2

�y′

[
(C2 + M2)

(
C1†

δ VC1
δ′ + C3†

δ VC3
δ′
)+ (C2 − M2)

(
C2†

δ VC2
δ′ + C4†

δ VC4
δ′
)]

, (C52)

[vz,a† ] = − i√
2�y′ty′

[
(U++++ + U+−+− cos 2θ )C1†

δ VC1
δ′ + (U++−− + U+−−+ cos 2θ )C2†

δ VC2
δ′

+ (U++++ + U+−+− cos 2θ )C3†
δ VC3

δ′ + (U++−− + U+−−+ cos 2θ )C4†
δ VC4

δ′
]
. (C53)

Therefore, the total velocity matrix is given by

[vx] = [vx] + [vx,a] + [vx,a† ], (C54)

[vz] = [vz] + [vz,a] + [vz,a† ]. (C55)
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FIG. 9. The Hall conductance σH as a function of (a) the inverse of magnetic field 1/B at different tilting angles of the magnetic field,
(b) disorder strength U at different magnetic field strengths, and (c) the inverse of magnetic field 1/B at different temperatures. In (b), the error
bars show the standard deviation averaged over 200 samples. The thicknesses of the [001]-direction slabs are 100 nm.

We define the energy-dependent matrix as

[E ] =
((

Eδ1 − Eδ′
1

)2 + 
2
(
Eδ1 − Eδ′

2

)2 + 
2
(
Eδ1 − Eδ′

3

)2 + 
2(
Eδ2 − Eδ′

1

)2 + 
2
(
Eδ2 − Eδ′

2

)2 + 
2
(
Eδ2 − Eδ′

3

)2 + 
2

)
. (C56)

Finally, the total Hall conductivity at zero temperature is given by

σH = ty′
e2

h

4

L�4
y′

∑
l j

[vx]l j[vz]∗l j

[E ]l j
. (C57)

Figure 9(a) shows the Hall conductance σH as a function of 1/B at different tilting angles of the magnetic field η, where we
consider both the orbital effect (Landau levels) and Zeeman effect of a tilted magnetic field B = (0, By, Bz = By tan η). Using
the Landau gauge, the vector potential of the magnetic field A = (Byz − Bzy, 0, 0), where B = ∇ × A. Figure 9(a) shows that
the Hall conductance plateaus originated from the Zeeman splitting mechanism of the helical edge states are robust against the
change in the magnetic field direction, except that the positions of the conductance plateaus are shifted.

Figure 9(b) shows the Hall conductance σH as a function of disorder strength U at different magnetic field strengths. The
disorder-averaged Hall conductance is obtained by numerically calculated the transport in a four-terminal device by using the
Landauer-Büttiker formula [53–55] and the recursive Green’s function method [56,57]. We adopt the Anderson-type disorder
by considering random on-site energies fluctuating in the energy interval [−U,U ], where U is the disorder strength. With
increasing disorder strength, the conductance remains quantized until the disorder strength U exceeds 100 meV, which is much
larger compared to the confinement effect induced gap (about 5 meV). Therefore, we show that Hall plateaus are robust against
weak disorder.

Figure 9(c) shows the Hall conductance σH as a function of 1/B at different temperatures. The Hall plateaus are robust at low
temperatures accessible to experiments, but show a tendency of being destroyed at higher temperatures. We treat the temperature
effect as the broadening of the Fermi surface. At higher temperatures, other effects such as inelastic scattering induced by
phonons need to be considered as well and could be studied in the future.

In Fig. 10, we plot σH as a function of 1/B with different Fermi levels for the [110]-direction slab of the Dirac semimetal.
For the case without the Zeeman effect, σH is always an even number due to the spin degeneration. The shift of the plateaus for
different thicknesses obeys the modified Lifshitz-Onsager relation [31,33]. No shift occurs for EF = 0. Therefore, we conclude
that the phase shift for EF = 0 originates from the Zeeman effect. While for EF �= 0, the phase shift is contributed simultaneously
by the Zeeman effect and the Weyl orbit.

APPENDIX D: TRANSPORT

We will investigate the transport properties of the system by using the Landauer-Büttiker-Fisher-Lee formula [53–55] and
the recursive Green’s function method [56,57]. The linear conductance can be obtained by the transmission coefficient Tpq

from the terminal p to terminal q, where Tpq = Tr[
pGr
qGa] is the transmission coefficient. The linewidth function 
p(μ) =
i[�r

p − �a
p] with �r/a

p is the retarded/advanced self-energy at the terminal p, and the Green’s functions Gr/a are calculated from
Gr = (Ga)† = [E f I − HC −∑

p �r
p]−1, where E f is the Fermi energy and HC is the Hamiltonian matrix of the central scattering

region.
We adopt a cubic lattice as the central scattering device with the side length Lx,y,z, and semi-infinite square lattice as the leads

connected to the device. The Hamiltonian for the semi-infinite lead is HL = ∑
iα μLc†

iαciα +∑
〈iα, jα〉 tc†

iαc jα , where μL is the
chemical potential of the leads. In modeling the leads, we only consider the nearest-neighbor hopping of the lattice.
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FIG. 10. The Hall conductance σH as a function of the inverse of magnetic field 1/B with the Fermi energy (a,d) EF = −0.004 eV, (b,e)
EF = 0, and (c,f) EF = 0.001 eV. The thicknesses of the [110]-direction slabs are 80 (red), 90 (blue), and 100 nm (yellow), respectively. The
Zeeman terms are excluded and included in the upper and lower panels, respectively.

Because of time-reversal symmetry, a Dirac semimetal can be regarded as a Weyl semimetal and its time reversal. On the
other hand, as the calculation for the transport is computationally very demanding, we will numerically calculate the transport
of Weyl semimetal. We also find that the transport of Dirac semimetals shows similar properties to the case of Weyl semimetals.

1. Weyl semimetals

We will consider the following Hamiltonian [6,13]:

H0 = D1k2
y + D2

(
k2

x + k2
z

)+ A(kxσx + kyσy) + M
(
k2
w − k2

)
σz, (D1)

which hosts two Weyl nodes at (0, 0,±kw ) with energy Ew = D2k2
w. To obtain the dispersion of the Weyl semimetal slab along

an arbitrary growth direction, we rotate the y axis to the y′ axis through the rotation matrix in Eq. (2). The [010], and [001]
directions correspond to (α, θ ) = (0, 0) and (π/2, 0), respectively. We choose A = (By′z, 0, 0) , the corresponding magnetic
field is B = (0, By′ , 0). The wave vector should be replaced with the Peierls transformation

k = (kx′ , ky′ , kz′ ) → k′ + e
h̄

A =
(

kx′ + e

h̄
By′z′,−i∂y′ ,−i∂z′

)
,

=
(

kx′ + z′

�2
y′

,−i∂y′ ,−i∂z′

)
, (D2)

with �y′ = √
h̄/|eBy′ |. After the Fourier transformation, we obtain the tight-bing model in the real space

H =
∑

ix′ ,iy′ ,iy′

h0c†
ix′ ,iy′ ,iz′

cix′ ,iy′ ,iz′ + Ax′c†
ix′ ,iy′ ,iz′

cix′+1,iy′ ,iz′ + Ay′c†
ix′ ,iy′ ,iz′

cix′ ,iy′+1,iz′ + Az′c†
ix′ ,iy′ ,iz′

cix′ ,iy′ ,iz′+1
+ H.c. (D3)

Here, the parameters are

h0 = (2D1 + 4D2)σ0 + (k2
w − 6)Mσz,

Ax′ = −D2σ0 − iAσx/2 + Mσz,

Ay′ = −D1σ0 − iAσy/2 + Mσz,

Az′ = −D2σ0 + Mσz,

(D4)
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FIG. 11. (a)–(c) Energy spectra of Weyl-semimetal films with open boundary conditions along the y′ and z′ directions and periodic
boundary condition along the x′ direction. Here, the sizes in the y′ and z′ directions are taken as Ly′ = 20ay′ and Lz′ = 40az′ . The red curves
are the bulk bands and the blue dashed curves label the Fermi levels. The parameters are (a) (α, θ ) = (0, 0), M = 5, A = 50, D2 = 4, D1 = 1,
By = 1/10, and kw = 1.5 [13]; (b) (π/2, 0), M = 5, A = 1, By = 1/10 and D1 = D2 = kw = 0; and (c) (π/2, 0), M = 5, A = 1, D1 = D2,
By = 0, and kw = 0.25. (d)–(f) The wave function distributions along the y′ direction. The red and blue dot lines correspond the red and blue
points shown in (a)–(c). Here we define |	(kx′ , y′)|2 = ∑

z′ |ψ (kx′ , y′, z′)|2.

and

h0 = (2D1 + 4D2)σ0 + (k2
w − 6)Mσz,

Ax′ = −D2σ0 − iAσx/2 + Mσz,

Ay′ = −D2σ0 + Mσz,

Az′ = −D1σ0 − iAσy/2 + Mσz,

(D5)

for the [010] and [001] directions, respectively. When the magnetic field is introduced, according to the Peierls substitution, we
replace

c†
ix′ ,iy′ ,iz′

cix′ +dx′ ,iy′ ,iz′ → 2πdax′az′By′ iz′

�0
, (D6)

where dx′ = ±1, ax′,y′,z′ = 1 are the lattice constants, and �0 = h/e is the magnetic flux quantum.
As shown in Fig. 11, to make a comparative study, we study the spectra and wave-function distributions of three different

systems hosting the quantized Hall conductance: (i) the Landau levels in Fig. 11(a) originate from the Weyl orbit, and the
wave-function distributions [Fig. 11(d)] are mainly located at the top and bottom surfaces along the y′ direction, (ii) the Landau
levels in Fig. 11(b) originate from confinement induced bulk subbands, and the wave-function distributions [Fig. 11(e)] are
mainly located at the central region along the y′ direction, (iii) the states in Fig. 11(c) originate from the side surface states,
which are mainly located on the boundary on the x′-z′ plane, and at the central region along the y′ direction [Fig. 11(f)].

2. Dirac semimetals

In Sec. IV, we show that the thickness dependent conductance plateaus of Dirac semimetals can be attributed to various
reasons. A Dirac semimetal can be regarded as a Weyl semimetal and its time reversal. Therefore, the above derivations for
Weyl semimetals also apply to Dirac semimetals. Here, we propose that the signatures of the quantum Hall effect induced
by the Weyl orbit are the surface Hall conductance plateaus by using the device shown in the main text. The quantized Hall
conductance induced by the mixing of the Weyl orbit can also be identified by using same device. Furthermore, the quantized
Hall conductance induced by the side surface states can be identified by measuring the nonlocal resistance [51].
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