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Entropy production of a closed Hamiltonian system via the detailed fluctuation relation
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We revisit the problem of emergent irreversibility in a closed Hamiltonian system in light of the detailed
fluctuation relation by invoking an imperfect Loschmidt demon that performs a time-reversal operation with a
finite precision. The imperfect time reversal can be utilized to evaluate entropy production à la Kolmogorov and
Sinai in a manner consistent with the fluctuation theorem with absolute irreversibility.
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I. INTRODUCTION

Understanding emergent irreversibility in macrophysics
from reversible microphysics has been the holy grail in
statistical physics. Boltzmann studied the kinetic theory of
gases to show the H-theorem [1]. However, his proof re-
lies on the molecular chaos assumption, and therefore it has
remained elusive why macroscopic irreversibility emerges
from reversible microscopic dynamics as epitomized by the
Loschmidt irreversibility paradox [2–4]. In the mid-20th cen-
tury, researchers revisited the issues of how entropy should be
defined and why irreversibility emerges in chaotic dynamical
systems [5,6]. In a related context, the Kolmogorov-Sinai
theory introduces a minimal accessible length scale to coarse-
grain phase space and evaluates scale-invariant emergent
irreversibility in terms of the Kolmogorov-Sinai entropy [5,6].
Meanwhile, the fluctuation theorem allows a quantitative es-
timate of far-from-equilibrium irreversibility [7,8], where the
scale separation is implicit due to the assumption of a built-in
equilibration mechanism. Indeed, initial [9,10] or continu-
ous [11,12] contact of a system with an ideal heat bath is
assumed in the derivation of the standard fluctuation theo-
rem. One is naturally led to ask whether the key idea of the
Kolmogorov-Sinai theory can justify the built-in assumption
of the fluctuation theorem, thereby allowing one to evaluate
emergent irreversibility and entropy production in a closed
Hamiltonian system.

In this paper, we investigate how irreversibility emerges in
a closed chaotic Hamiltonian system by incorporating a min-
imal accessible length scale à la Kolmogorov and Sinai. We
utilize a unified framework of the fluctuation theorem [8,13]
and evaluate an entropy production by constructing a scale-
dependent dual process with an imperfect Loschmidt demon,
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which executes the time-reversal operation with a finite pre-
cision. The crucial observation here is that while the value of
entropy production itself depends on the precision, its growth
rate does not and agrees with the scale-invariant Kolmogorov-
Sinai entropy. In a spirit similar to the Kolmogorov-Sinai
theory, we introduce a nonzero coarse-graining length scale in
phase space to extract scale-invariant intrinsic irreversibility in
chaotic dynamics. Thus the imperfect Loschmidt demon nat-
urally integrates the key idea of the Kolmogorov-Sinai theory
with fluctuation theorems to evaluate emergent irreversibility
of a closed Hamiltonian system.

In Sec. II, we define an entropy production via the detailed
fluctuation relation by invoking the time-reversal process by
the imperfect Loschmidt demon. In Sec. III, we consider the
Bunimovich billiard as a prototypical example and demon-
strate that the entropy production exhibits time evolution
analogous to the Kolmogorov-Sinai entropy. In Sec. IV, we
conclude the paper. In Appendix A, we elaborate on the details
and precision of numerical simulations. In Appendix B, we
discuss our conjecture that the growth rate of the entropy
production coincides with the Kolmogorov-Sinai entropy for
a generic closed chaotic Hamiltonian system.

II. ENTROPY PRODUCTION VIA THE DETAILED
FLUCTUATION RELATION

We quantify irreversibility on the basis of a variant of the
finite-time fluctuation theorem [9–12]. We follow Refs. [8,13]
to consider a dual version of the original nonequilibrium pro-
cess and compare the probabilities of the original and dual
processes to define a formal entropy production σ by the
detailed fluctuation relation

σ = − ln
P̃[�]

P[�]
, (1)

where � and P represent a path in phase space and the path
probability, respectively, and the tilde indicates that the pro-
cess is dual. In the standard formulation, the physical meaning
of the entropy production can be given if we assume that
the system is either continuously attached to a heat bath or
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FIG. 1. Schematic illustration of a time-reversal (TR) test by an
imperfect Loschmidt demon and the Bunimovich billiard. (a) Pro-
tocol of the TR test. An initial state ρ0 undergoes time evolution
(TE) over time T to reach a final state ρT . The Loschmidt demon
conducts the TR operation T with a nonzero resolution l to produce
the coarse-grained state ρ̃ l

T , which then evolves during time T to
arrive at the final state ρ̃ l

0. By comparing it with ρ0, one can evaluate
the Rényi-0 divergence D0 which gives the lower bound for the
average entropy production. See the text for details. (b) Geometry
of the Bunimovich stadium. A single particle ballistically moves and
elastically bounces on the boundary.

initially equilibrated with it (and virtually attached to it at the
end as explained in Ref. [9]). We note that, if we formally
apply the fluctuation theorem to a Hamiltonian system with
no heat bath by setting the dual process to the time-reversal
one that starts from the final state of the forward process, we
obtain a trivial result with vanishing entropy production.

We here consider a nonequilibrium process in a closed
Hamiltonian system. Let dE be the dimension of phase space.
The system starts from the initial state ρ0 and evolves over
time T into the final state ρT [see Fig. 1(a)]. Then, the
Loschmidt demon performs the time-reversal test [14,15]. We
assume that the demon perturbs the final state ρT by introduc-
ing a nonzero spatial resolution l into the state Cl [ρT ], where
Cl [ρ] denotes the convolution of ρ with the dE-dimensional
isotropic Gaussian with the standard deviation l . Thus the
initial state of the time-reversed process is ρ̃ l

T = T Cl [ρT ],
where T represents the velocity reversal. Then, the demon lets
the system evolve over time T to reach the final state ρ̃ l

0. Our
protocol is reminiscent of the Loschmidt echo [16], which is
used to characterize decoherence in classically chaotic quan-
tum systems. The crucial distinction is that the state ρT is
perturbed in our protocol, whereas the backward Hamiltonian
is perturbed in the Loschmidt echo.

When the system is chaotic, the final state of the backward
process ρ̃ l

0 deviates more from the initial state of the forward
process ρ0 as the evolution time T becomes longer. Although
this qualitative behavior is not surprising due to chaoticity,
we can exploit the behavior to quantitatively define entropy
production via the detailed fluctuation relation as detailed
below.

We consider the dual dynamics as the above-mentioned
imperfect time-reversal process ρ̃ l

T → ρ̃ l
0 and define an

entropy production by Eq. (1). Since the dynamics is de-
terministic, the path probability is determined only by
the initial phase-space point γ0 and therefore we obtain
σ = − ln[T ρ̃ l

0(γ0)/ρ0(γ0)]. Note that the ensemble average
〈σ 〉 is not the thermodynamic entropy production but an
information-theoretic measure known as the Kullback-Leibler
divergence or the Rényi-1 divergence [17]: D1(ρ0||T ρ̃ l

0) :=

〈ln[ρ0(γ )/T ρ̃ l
0(γ )]〉 := ∫

ρ0(γ ) ln[ρ0(γ )/T ρ̃ l
0(γ )]dγ . Since

D1(ρ0||T ρ̃ l
0) = D1(ρT ||T ρ̃ l

T ), it gives a (quasi)distance be-
tween the final state ρT and the state T ρ̃ l

T = Cl [ρT ] that one
observes with accuracy l .

As is usual in the standard framework of fluctuation the-
orems, entropy production σ represents irreversibility of the
forward process alone rather than the reversal operation or
the backward process. Therefore the entropy production dis-
cussed here does not involve irreversibility that is caused by
the imperfect Loschmidt demon but represents irreversibility
generated in the forward isolated process. Moreover, as we
demonstrate later, the scale l only parametrically changes the
value of entropy production but does not change its growth
rate. Thus the growth rate represents scale-invariant intrinsic
irreversibility of the forward isolated dynamics. We stress
that this length scale must be introduced in any realistic ex-
periments or numerical simulations to be consistent with the
measurement accuracy or the numerical precision, since struc-
tures originally below the resolution limit grow to be observed
by chaotic exponential expansion after a certain time. Thus the
external perturbation due to the imperfect Loschmidt demon
should be considered as a technical tool to extract intrinsic
irreversibility in a controlled manner.

Notably, entropy production (1) does not always satisfy
the conventional integral fluctuation theorem, i.e., 〈e−σ 〉 �= 1.
This is because σ is divergent when the initial phase-space
point γ0 is outside the support of ρ0 as σ = − ln[T ρ̃ l

0(γ0)/0].
This phenomenon with divergent entropy production should
be distinguished from ordinary irreversibility due to its singu-
lar nature and is referred to as absolute irreversibility [18]. In
the presence of absolute irreversibility, the integral fluctuation
theorem should be modified [18] as

〈e−σ 〉 = 1 − λ, (2)

where λ is the fraction of the singular part of ρ̃ l
0 with respect

to ρ0 in the measure-theoretic sense (see, e.g., Ref. [19]).
In this case, since λ = ∫

ρ(γ )=0 T ρ̃ l
0(γ )dγ , we have 1 − λ =

e−D0 , where D0 is an information-theoretic measure called
the Rényi-0 divergence which is defined as D0(ρ||Cl [ρ]) :=
− ln

∫
ρ(γ )>0 Cl [ρ](γ )dγ [17]. By applying the Jensen inequal-

ity to Eq. (2), we obtain

〈σ 〉 = D1(ρT ||Cl [ρT ]) � − ln(1 − λ) = D0(ρT ||Cl [ρT ]). (3)

We note that the magnitude relation between D0 and D1 is well
established in information theory [17].

The absolute irreversibility discussed in Ref. [18] orig-
inates from a built-in thermalization mechanism or mea-
surement in the forward process. In particular, the reversal
operation to derive the Jarzynski-type work relation con-
sists of thermal equilibration at the final parameter value
of the forward process and velocity reversal. Here, absolute
irreversibility originates directly from the assumed equilibra-
tion and is not emergent. In contrast, absolute irreversibility
discussed in this paper dynamically arises from nonzero pre-
cision with no assumption on any thermalization mechanism.
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FIG. 2. Time-reversal test by an imperfect Loschmidt demon. The state starting from a small region undergoes time evolution over time T
and then traces the time-reversed path after coarse graining. The RGB values of colors correspond to the slightly different three-dimensional
positions in the initial cubic state. The vertical axis corresponds to the direction of the velocity θ as indicated in Fig. 1. When the evolution time
T is 20, T ρ̃ l

0 is almost identical to the initial state ρ0. However, as T increases further, T ρ̃ l
0 deviates dramatically from ρ0 as measured by an

increase in the Rényi-0 divergence between them. Although ρT and T ρ̃ l
T appear identical, they actually differ for large T , and this difference

can efficiently be evaluated from the difference between ρ0 and T ρ̃ l
0. Thus the time-reversal test permits evaluation of D0(ρT ||T ρ̃ l

T ), which
would otherwise be extremely challenging to calculate. See Appendix A for details of numerical simulations.

III. BUNIMOVICH BILLIARD AS A PROTOTYPICAL
EXAMPLE

As a prototypical example, we consider an elastic billiard
in the Bunimovich stadium [20] [see Fig. 1(b)]. The phase
space of the Bunimovich billiard can be represented as a
three-dimensional space (dE = 3) due to the conservation of
energy; a point in the stadium is characterized by the Cartesian
coordinates (x and y) and the direction of the velocity (θ ).

We use the Monte Carlo method to numerically evaluate
entropy production. First of all, we sample a phase-space point
γ0 from the probability distribution function at an initial time
ρ0, which is prepared to be a uniform distribution in a small
cube. Then, we let it evolve over time T to obtain γT , where
the ensemble of these points is the final state ρT . An imperfect
Loschmidt demon adds to γT a Gaussian noise with the stan-
dard deviation l to obtain γ ′

T and inverts its velocity γ̃T = T γ ′
T

to form an ensemble ρ̃ l
T = T Cl [ρT ]. Finally, the demon lets

every phase-space point in this ensemble evolve over time T
to reach the point γ̃0 belonging to the corresponding ensemble
ρ̃ l

0. We note that D0 is far more numerically tractable than
D1 and that the evaluation of D0/1 is not feasible at the final
time because ρT has an extremely complex support with an
exponentially stretched boundary.

When l is small, the difference between ρT and T ρ̃ l
T can-

not be discerned (see Fig. 2). However, after the reversed
time evolution, the difference between ρ0 and T ρ̃ l

0 becomes
significant. For T = 20, the state T ρ̃ l

0 returns to the initial
state almost completely. However, as T increases further, T ρ̃ l

0
deviates from the initial state ρ0 and expands over the entire
phase space due to chaoticity of the system, resulting in a
larger value of D0.

Figure 3(a) plots the Rényi-0 divergence D0 as a function
of l and T . For intermediate values of l and T , we find that
D0 lies on a tilted plane. To understand this behavior, we
examine the box-counting dimension d , which is a key fractal
dimension for the final state ρT . Then, the Rényi-0 divergence
is evaluated as

D0(ρT ||Cl [ρT ]) = dC ln(l/l0), (4)

where l0 is the minimal length scale of ρT and we define the
complement of the box-counting dimension with respect to
the embedding dimension as the codimension: dC := dE − d .
See Appendix B for details. Here, we assume that l is larger
than l0 but sufficiently smaller than the system size. Conse-
quently, we can extract the dimension of ρT by observing the
behaviors of the Rényi-0 divergence against the variations of
the length scale l . By substituting l0 � we−�T into Eq. (4),
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FIG. 3. Numerically calculated Rényi-0 divergence. (a) Rényi-0
divergence D0 against the minimal length scale l and the evolution
time T . A linear dependence of D0 on ln l in an intermediate length
scale vindicates Eq. (4). (b) Derivative of the Rényi-0 divergence D0

with respect to ln l . The red plateau with a constant value demon-
strates that Eq. (4) is applicable to the transient region with a fixed
length scale. The height of the plateau is dC = 1, which indicates
d = 2. See Appendix A for details of numerical simulations.

we obtain

D0 � dC ln l + dC�T + const. (5)

To see the l dependence more clearly, Fig. 3(b) gives the
derivative of D0 with respect to ln l . The plateau at the height
dC = 1 indicates that ρT has the dimension of d = 2. As a
result, the proportionality constant for T gives �, which coin-
cides with the Kolmogorov-Sinai entropy hKS of this system,
as the Pesin formula [21] states that the Kolmogorov-Sinai
entropy is equal to the sum of the positive Lyapunov expo-
nents. We expect that the same linear growth, hKST , is generic
for a closed chaotic Hamiltonian system as discussed in
Appendix B. A similar growth in an intermediate time regime
was found for a coarse-grained Shannon entropy in chaotic

conservative maps [22]. We also note that in an open volume-
preserving system the growth rate of the coarse-grained en-
tropy production converges to a similar positive constant in the
limit of infinite system size and infinite precision [6,23]. See
Appendix A for a discussion on numerical accuracy.

In Fig. 4(a), we numerically calculate the probability dis-
tribution function of σ and verify the fluctuation theorem
with absolute irreversibility in Fig. 4(b). Figures 4(c) and 4(d)
compare 〈σ 〉 with the Rényi-0 divergence D0 = − ln(1 − λ)
in logarithmic and linear scales, respectively. We see that 〈σ 〉
is bounded from below by D0.

Moreover, we can see that three different temporal regions
exist. Initially, D0 exponentially increases as e�T , where �

is a positive Lyapunov exponent [see Fig. 4(c)]. Then, in an
intermediate regime, D0 grows linearly in time with a pro-
portionality constant hKS as shown in Fig. 4(d) [see Eq. (5)].
Finally, D0 gets saturated at a value determined by the ratio of
the initial-state volume to the entire phase-space volume. We
note that the behaviors in these three regimes are analogous to
those for the coarse-grained Shannon entropy [22].

We can delay the occurrence of this finite-size effect to a
later time by reducing the initial volume as shown in Fig. 4(e).
The linear growth in the transient time scale is reminiscent of
the constant entropy production in steady states of dissipative
systems. As discussed in Appendix B, we expect that a generic
chaotic closed Hamiltonian system exhibits a transient linear
growth of entropy with a rate equal to the Kolmogorov-Sinai
entropy until finite-size effects enter in significantly.

IV. CONCLUSION

We have demonstrated that we can evaluate emerging en-
tropy production of the nonequilibrium dynamics of a closed

FIG. 4. Entropy production and fluctuation theorem with absolute irreversibility. (a) Time evolution of the probability distribution function
(PDF) of entropy production σ in Eq. (1). The PDF shifts with time toward larger σ , indicating that stronger irreversibility should occur in
the time-reversal test for longer T . (b) Verification of the fluctuation theorem with absolute irreversibility in Eq. (2). The exponential average
of entropy production 〈e−σ 〉 calculated from the PDF of σ and the value of absolute irreversibility λ are plotted against time. An excellent
agreement between them indicates the validity of the fluctuation theorem with absolute irreversibility. The dashed line indicates the saturated
value due to a finite-size effect. (c) Bound of the second-law-like inequality (3) shown in the logarithmic scale. The red dashed line represents
an exponential growth in time. (d) Same data as in (c) in the linear scale. The red dashed line shows the linear growth in Eq. (5), which emerges
after the exponential growth. Inset: Difference between 〈σ 〉 and D0, which is non-negative according to Eq. (3). (e) Saturation and finite-size
effects. By reducing the initial phase-space volume (from bottom to top), we can increase the saturated value due to the finite-size effect. See
Appendix A for details of numerical simulations.

033224-4



ENTROPY PRODUCTION OF A CLOSED HAMILTONIAN … PHYSICAL REVIEW RESEARCH 3, 033224 (2021)

Hamiltonian system by invoking the Kolmogorov-Sinai the-
ory with the assistance of an imperfect Loschmidt demon.
By identifying the process performed by the demon as a dual
process for the detailed fluctuation relation, we have evaluated
entropy production σ and shown that it satisfies the fluctuation
theorem with absolute irreversibility. The Rényi divergence
tells us the difference between ρT and T ρ̃ l

T = Cl [ρT ], where
the latter is the state the demon actually observes due to
precision l . We find that the Rényi divergence grows linearly
in the quasisteady state in accordance with the growth rate
of the Kolmogorov-Sinai entropy. It would be interesting to
investigate how this information-theoretic irreversibility can
be related to the thermodynamic irreversibility. An extension
to a quantum regime should merit further study because the
length scale set by the Planck constant h̄ should provide the
fundamental cutoff in addition to l and we expect an interest-
ing interplay between them.
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APPENDIX A: DETAILS AND PRECISION OF
NUMERICAL SIMULATIONS

1. Details of numerical simulations

Throughout our numerical simulations, the geometry of
the stadium is set to R = 1 and L = 1 [see Fig. 1(a)], and
the velocity of the billiard is set to unity. The initial state
ρ0 is prepared to be a uniform distribution over the cube
with the linear dimension of w and the least-valued vertex
(x0, y0, θ0) = (0.5, 0.5, π/4).

In Fig. 2, we set w = 0.01 and l = e−15.
In Fig. 3(a), we set w = 0.01 and calculate the Rényi-0

divergence D0 by the Monte Carlo method as described in the
main text, where we increase the length scale l from e−20 to 1
by the multiplication of e0.2 and varying T from 0 to 70 with
an increment of 2. For each pair of l and T , we sample 109

events from a low-discrepancy sequence generated by the ad-
ditive recurrence. Although the numerical precision decreases
as the value of D0 increases, the relative statistical error can
be estimated to be at most 2%. In Fig. 3(b), we calculate
dD0/d ln l by locally applying the least-squares fitting to D0

with respect to ln l .
In Fig. 4(a), we calculate the probability distribution of en-

tropy production by setting w = 0.1 and l = e−10. To evaluate
the entropy production, we should calculate the probability
distribution ρ̃ l

0 in the support of ρ0. To this aim, we divide
the support of ρ0 into 83 subcubes. In each subcube, we gen-
erate 224 ∼ 2 × 107 samples as the initial state and perform
the time-reversal test. The total sampling number is therefore
233 ∼ 9 × 109. By accumulating the events that terminate in

each subcube, we numerically evaluate the probability distri-
bution ρ̃ l

0. We increase T from 0 to 70 by an increment of
2. As T increases, the statistical error increases because ρ̃ l

0
diffuses and the number of events that return to each subcube
decreases. Nevertheless, the relative statistical errors are at
most 5%. From the probability distribution of the empirical
entropy production in Fig. 4(a), the data in Figs. 4(b)–4(d) are
calculated. In Fig. 4(e), we set l = e−3w and decrease w from
e−1 to e−5 by the multiplication of e−1. For each w and T , the
Rényi-0 divergence D0 is evaluated from 109 samples.

2. Chaos and numerical precision

In this section, we argue that the double-precision arith-
metics is enough to simulate our chaotic system under the
present parameters. To numerically examine the effect of a
finite precision, we conduct a time-reversal test with no noise.
Let 10−p be the relative precision of the floating number that
we use in our simulations. The largest error originates from
the error in the stable direction at the final state. When the
velocity is reversed, the direction becomes unstable, and the
error grows exponentially as e�T . Therefore the typical error
is expected to be

ε � 10−pe�T � 100.2T −p, (A1)

where we use � = 0.46 for the Bunimovich billiard with our
parameters. We numerically confirm this estimate by varying
the precision of floating numbers as shown in Fig. 5, which
shows that the reliability condition for our numerical simula-
tion is w 	 ε � 100.2T −p. Therefore, for w = 0.01 and the
double precision (p = 16), the reliability is guaranteed for
T � 70, which covers the range of Fig. 3.

FIG. 5. Errors due to the numerical precision in the time-reversal
test with no added noise. (a) Dependence of the median of the
distances dm on the numerical precision p, where 10−p is the relative
precision of the floating number. By conducting the time-reversal test
with no noise, we obtain the distribution of the Euclidean distance be-
tween the initial state and the pulled-back state in phase space, from
which we calculate their median. The numerical precision is varied
with the evolution time held fixed at T = 40. (b) Dependence of the
median of the distances dm on the evolution time T . The evolution
time is varied with the numerical precision fixed at p = 16, i.e., the
double precision. The red dashed line in each panel represents the
estimate of errors given by Eq. (A1). The unit of time is determined
by the ratio of the extension of the stadium (R and L) to the velocity
of the billiard, both of which are set to unity.
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APPENDIX B: CONJECTURE FOR A GENERIC CLOSED
CHAOTIC HAMILTONIAN SYSTEM

1. Rényi-0 divergence and fractal theory

In the main text, the box-counting dimension d is deter-
mined from the scaling law of the Rényi-0 divergence:

D0
(
ρ‖Cl [ρ]

) = dC ln(l/l0),

dC = dE − d,
(B1)

where dE is the dimension of the embedding space and l0 is
the smallest length scale. Since the box-counting dimension
is one of the fractal dimensions, we invoke fractal theory to
conduct quantitative analyses. From a viewpoint of rigorous
mathematics, fractals should have an infinitesimal structure
(l0 → 0). However, from a viewpoint of physics, any fractal
generated by a finite number of operations should have a
nonzero (albeit extremely small) l0. We refer to fractals with
an infinitesimal structure as mathematical fractals and those
with a nonzero minimal length scale as physical fractals. In
this section, we prove Eq. (B1) for physical fractals on the
basis of some natural assumptions.

First, we review how the fractal dimensions are mathe-
matically defined. Let S be a subset in the dE-dimensional
Euclidean space. For a fixed a > 0, we consider a hypercu-
bic lattice with spacing a, which partitions the space into
dE-dimensional hypercubes (or “boxes”) of volume adE . We
denote by N (a) the number of boxes that have a nonzero over-
lap with S. The box-counting dimension dbox is then defined
as

dbox = − lim
a→+0

ln N (a)

ln a
. (B2)

Given the probability distribution π supported on S, it is
possible to obtain generalized fractal dimensions [24] includ-
ing the correlation dimension. For this purpose, we cover the
fractal S with N (a) boxes, which are labeled with integers
from 1 to N (a). Let πi(a) be the probability with which a
sample taken from π belongs to the ith box. The correlation
dimension dcor is then defined as

dcor = lim
a→+0

ln C(a)

ln a
, (B3)

where

C(a) =
N (a)∑
i=1

[πi(a)]2. (B4)

Although dbox = dcor does not hold in general, it does in many
practical cases. For instance, we may assume π to be uniform
in the sense that the relation

πi(a) = 1

N (a)
+ o

(
1

N (a)

)
[i = 1, . . . , N (a)] (B5)

holds for all a > 0. In this case, we obtain C(a) = 1/N (a) +
o(1/N (a)), and the two fractal dimensions coincide with each
other. As we discuss later, the assumption of uniformity is
consistent with the time-reversal test discussed in the main
text. Henceforth, we assume that π has a unique fractal di-
mension d = dbox = dcor.

It is also known that the function C(a) in Eq. (B3) can be
replaced by the integral:

C′(a) =
∫∫

exp

(
− ‖γ ′ − γ ‖2

2a2

)
π (dγ )π (dγ ′). (B6)

Both C(a) and C′(a) roughly estimate the probability that two
samples γ and γ ′, which are independently chosen from π ,
fall within the distance of a.

Now, we consider a physical fractal that reduces to a math-
ematical fractal S as long as we consider a length scale larger
than l0. We define S′ to be the union of N (l0) boxes covering
S. The length scale l0 characterizes the smallest structure in
the physical fractal, with which S′ can be considered to be the
same as the mathematical fractal S.

Furthermore, we consider a uniform probability distribu-
tion over S′. We note that the uniformity of the distribution
also holds for the final state ρT in the time-reversal test,
since the initial state is uniform and the dynamics is volume
preserving. The probability density function ρ can be written
as

ρ(γ ) = 1S′ (γ )

ldE
0 N (l0)

, (B7)

where 1S′ is the indicator function of S′, which returns 1 for
γ ∈ S′ and 0 for γ /∈ S′.

The Rényi-0 divergence D0(ρ‖Cl [ρ]) can be computed as

D0
(
ρ
∥∥Cl [ρ]

) = − ln
∫

ρ(γ )>0
Cl [ρ](γ )dγ = − ln

∫
Cl [ρ](γ )1S′ (γ )dγ (B8)

= − ln
∫∫

1(√
2π l

)dE
exp

(
− ‖γ ′ − γ ‖2

2l2

)
ρ(γ ′)1S′ (γ )dγ dγ ′. (B9)

We further use (B7) to obtain

D0
(
ρ
∥∥Cl [ρ]

) = − ln
∫∫

ldE
0 N (l0)(√

2π l
)dE

exp

(
− ‖γ ′ − γ ‖2

2a2

)
ρ(γ )ρ(γ ′)dγ dγ ′ (B10)

= dE ln

(√
2π

l

l0

)
− ln N (l0) − ln

∫∫
exp

(
− ‖γ ′ − γ ‖2

2l2

)
ρ(γ )ρ(γ ′)dγ dγ ′. (B11)
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The integral in (B11) coincides with C′(l ) if we replace the
measure ρ(γ )dγ by π (dγ ). This replacement is justified
when l is sufficiently larger than l0, because the difference
between ρ(γ )dγ and π (dγ ) enters in significantly only over a
length scale below l0. Therefore, for 1 	 l 	 l0, the Rényi-0
divergence is evaluated as

D0
(
ρ
∥∥Cl [ρ]

) ≈ dE ln

(√
2π

l

l0

)
− ln N (l0) − ln C′(l )

(B12)

≈ dE ln(l/l0) + dbox ln l0 − dcor ln l. (B13)

Here, the approximations ln N (l0) ≈ −dbox ln l0 and
ln C′(l ) ≈ ln C(l ) ≈ dcor ln l follow from the definition of
the fractal dimensions (B2) and (B3). We obtain the desired
relation (B1) by substituting d = dbox = dcor into (B13).

2. Time evolution of the Rényi-0 divergence in a Hamiltonian
system with a generic dimension

We here consider a generic isolated time-reversal-invariant
chaotic Hamiltonian system and argue that the Rényi-
0 divergence shows a linear growth reminiscent of the
Kolmogorov-Sinai theory.

Let M be the phase space of the Hamiltonian system.
Under the constraint of energy conservation, M has the dimen-
sion of dE = 2dS − 1, with dS being the spatial dimension,
and can therefore be represented by some local coordinates
(x1, . . . , x2dS−1). In addition, we assume that the support S0

of the initial state ρ0 be sufficiently small. We require that
the spread of S0 is comparable in every direction, barring the
possibility in which the dimension in one particular direction
is much larger than that in any other direction. We exclude the
case in which the extent of S0 in one direction is by far larger
than that in the other directions. Cubes and spheres satisfy this
condition.

Following the procedure of the time-reversal test, we sam-
ple a phase-space point γ0 from the initial state ρ0, which
evolves into γT = �T (γ0), according to the time evolution
�T : M → M over time T . We may use different local co-
ordinates to represent γ0 and γT as dE vectors; we describe
them as γ0 = (x1, . . . , x2dS−1) and γT = (x′

1, . . . , x′
2d−1).

The behavior of the time evolution �T near γ0 is linearly
approximated as

�T (γ0 + δγ ) ≈ γT + JT · δγ (‖δγ‖ → 0), (B14)

where JT = JT (γ0) is a (2dS − 1) × (2dS − 1) matrix defined
as

[JT (γ0)] j,k = ∂x′
j

∂xk
. (B15)

The singular values M1 � · · · � M2dS−1 of the matrix JT

can be obtained as the eigenvalues of (Jt
T JT )1/2, where t de-

notes transposition. By appropriately changing the coordinate
systems (x1, . . . , x2dS−1) and (x′

1, . . . , x′
2dS−1), we may regard

JT as a diagonal matrix with diagonal entries M1, . . . , M2dS−1,
where (B14) can be rewritten as

�T
(
x1 + δx1, . . . , x2dS−1 + δx2dS−1

)
≈ (

x′
1 + M1δx1, . . . , x′

2dS−1 + M2dS−1δx2dS−1
)
. (B16)

That is, the jth component is rescaled by Mj through the time
evolution.

As T goes to infinity, the singular values Mj = Mj (γ0, T )
are governed by the Lyapunov exponents �1 � · · · � �2dS−1

as

Mj (γ0, T ) ∼ e� j T . (B17)

According to Oseledets’s theorem [25], in a volume-
preserving dynamical system, the limit

L = lim
T →∞

(Jt
T JT )1/2T (B18)

exists for almost all γ0. The eigenvalues of L = L(γ0) are
independent of the initial state γ0, and the logarithms thereof
give the Lyapunov exponents.

We may choose the coordinate system (x1, . . . , x2dS−1)
such that L becomes diagonal, with which the linear approxi-
mation (B16) holds for Mj ∼ e� j T . Although the coordinate
system (x1, . . . , x2dS−1) is determined locally on γ0, these
local coordinates can be integrated to form one coordinate
system [26]. In this coordinate system, the approximation in
(B16) is consistent with the degree of convergence of the limit
(B18).

We also note that a similar analysis on the backward
time evolution �−1

T = �−T leads to the reversed Lyapunov
exponents −�2dS−1 � · · · � −�1. The time-reversal invari-
ance of the Hamiltonian system requires � j = −�2dS− j , and
therefore the spectrum of Lyapunov exponents satisfies the
following conditions:

−|�1| � · · · � −|�dS−1| � |�dS | � |�dS−1| � · · · � |�1|
(B19)

and �dS = 0.
Let us now consider the time-reversal test, where γT

is perturbed into γ ′
T = (x′

1 + δx′
1, . . . , x′

2dS−1 + δx′
2dS−1). The

disturbances δx′
1, . . . , δx′

2dS−1 are independently subject to
Gaussian distributions of zero mean and the standard devi-
ation l . Let the spread of S0, which constitutes the support
of the initial state, be w in every direction. To estimate the
Rényi-0 divergence, we roughly approximate S0 by a hyper-
rectangular region as

S0 ∼ {(
y1, . . . , y2dS−1

)∣∣a j � y j � b j
}
. (B20)

Here, the interval [aj, b j] contains x j , and its width b j − a j is
comparable to w. With the linear approximation in (B16), the
support ST of the time-evolved state ρT assumes the form of

ST ∼ {(
y′

1, . . . , y′
2dS−1

)∣∣Mjaj � y′
j � Mjbj

}
. (B21)

Therefore the probability of γ ′
T lying in ST can be estimated

as

P[ρT (γ ′
T ) > 0 | γ0]

≈
2dS−1∏

j=1

1√
2π l

∫ Mj b j

Mj a j

exp

[
− (y′

j − x′
j )

2

2l2

]
dy′

j . (B22)

The behavior of integrals in (B22) depends on the ratio
Mjw/l . If Mjw/l � 1, this integral becomes of the order of
unity, since the interval [Mjaj, Mjbj] contains a significant
part of the Gaussian peak. When Mjw/l � 1, the integral
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FIG. 6. Schematic illustration of a coordinate in phase space.
While the blue and red points are located far from each other in this
coordinate representation, they are close to each other in the physical
phase space.

contains only a small fraction of the Gaussian peak and there-
fore remains of the order of Mjw/l . From these observations,
we obtain

1√
2π l

∫ Mj b j

Mj a j

exp

[
− (y′

j − x′
j )

2

2l2

]
dy′

j ∼ min{1, Mjw/l}.
(B23)

Therefore the conditional probability in (B21) is estimated to
be

P[ρT (γ ′
T ) > 0 | γ0] ∼

2d−1∏
j=1

min{1, Mjw/l} (B24)

= (w/l )αM1 · · · Mα, (B25)

where we denote by α the greatest integer that satisfies the
scale separation Mαw/l � 1. Although this criterion for the

scale separation may be somewhat ambiguous for finite T , the
ambiguity disappears as T goes to infinity.

Now we employ the Lyapunov estimates in (B17) to obtain

P[ρT (γ ′
T ) > 0 | γ0] ∼ (w/l )α exp[(�1 + · · · + �α )T ].

(B26)
With sufficiently large T , the condition for the scale separation
of α is independent of the initial state γ0 and can be written as

�α <
1

T
ln

l

w
< �α+1. (B27)

Therefore we may remove the condition on γ0 from the prob-
ability and finally obtain

D0 = − ln P[ρT (γ ′
T ) > 0] (B28)

≈ α ln l − α ln w − (�1 + · · · + �α )T . (B29)

Hence we have a linear relation between D0 and ln l (and
also T ) in the regime of Eq. (B27). In particular, when T
tends to infinity, the middle term of inequality (B27) becomes
zero, and therefore α is the number of negative Lyapunov
exponents. When l < w, this number is generally dS − 1 in
a time-reversal-invariant system with Lyapunov exponents
(B19), unless some exponents other than �d happen to be
zero. Then, Eq. (B29) reduces to

D0 ≈ (dS − 1) ln(l/w) + hT, (B30)

where h is the sum of the positive Lyapunov exponents and
coincides with the Kolmogorov-Sinai entropy according to the
Pesin formula.

The linear relation (B29) breaks down for extremely large
T such that the Poincaré recurrence occurs. In the argu-
ment given in this section, the long-time evolution affects
the mapping from the phase space to the coordinate system
(x1, . . . , x2dS−1). Although the perturbed state γ ′

T appears dif-
ferent from the unperturbed state γT in the coordinate space,
it is possible that they are close in physical phase space as
illustrated in Fig. 6. In this case, we wrongly judge that γ ′

T
is not in the support of ρT since it is located far from γT in
the coordinate space and make an incorrect approximation of
D0. This type of error can emerge when the spread of ST is at
least larger than the system size, but numerical results show
that Eq. (B29) holds beyond this time scale.
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