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Understanding protein-complex assembly through grand canonical maximum entropy modeling
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Inside a cell, heterotypic proteins assemble in inhomogeneous, crowded systems where the abundance of these
proteins vary with cell types. While some protein complexes form putative structures that can be visualized with
imaging, there are far more protein complexes that are yet to be solved because of their dynamic associations with
one another. Nevertheless, it is possible to infer these protein complexes through a physical model. However, it is
often not clear to physicists what kind of data from biology is necessary for such a modeling endeavor. Here, we
aim to model these clusters of coarse-grained protein assemblies from multiple subunits through the constraints
of interactions among the subunits and the chemical potential of each subunit. We obtained the constraints
on the interactions among subunits from the known protein structures. We inferred the chemical potential that
dictates the particle number distribution of each protein subunit from the knowledge of protein abundance from
experimental data. Guided by the maximum entropy principle, we formulated an inverse statistical mechanical
method to infer the distribution of particle numbers from the data of protein abundance as chemical potentials
for a grand canonical multicomponent mixture. Using grand canonical Monte Carlo simulations, we captured a
distribution of high-order clusters in a protein complex of succinate dehydrogenase with four known subunits.
The complexity of hierarchical clusters varies with the relative protein abundance of each subunit in distinctive
cell types such as lung, heart, and brain. When the crowding content increases, we observed that crowding
stabilizes emergent clusters that do not exist in dilute conditions. We, therefore, proposed a testable hypothesis
that the hierarchical complexity of protein clusters on a molecular scale is a plausible biomarker of predicting
the phenotypes of a cell.

DOI: 10.1103/PhysRevResearch.3.033220

I. INTRODUCTION

Living cells can contain on the order of 104 [1] distinct
types of proteins and other macromolecules at a given time. In
this many-component mixture environment, macromolecules
like proteins fold, unfold, and assemble into complexes and
organize hierarchically into spatial networks [2–4]. In fact,
these unfathomably complex networks give rise to the emer-
gence of all biological functions and ultimately the properties
of life [2,3,5,6]. The specific arrangements of macromolecules
are thought to emerge from the vast amount of weak “quinary”
and entropic interactions [7–10]. Of these types of interac-
tions, the most intuitive conception of protein biophysics in
this crowded environment is that of volume exclusion [11–13]
exerted on a given protein by surrounding macromolecules,
so called the macromolecular crowding effects [14]. Pro-
teins interact weakly and form higher-order complexes [15]
through quinary interactions [16], where counteracting forces
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between favorable electrostatic interactions and unfavorable
solvation energies are provided by their metabolites [17].
Computer simulations have investigated the mechanism of
these molecules forming small clusters often under the con-
straint of a fixed number of particles N in a closed system [i.e.,
a canonical ensemble in Fig. 1(a)]. This does not allow for
particle fluctuations—a key free energy term. Nevertheless,
the physical mechanism of these complex assemblies and
organization in an open system where N varies is still unclear.

To resolve this issue, one may use semigrand canonical
ensembles (total N is constant, but particle number of specific
species fluctuates), which is especially important for study-
ing phase separation of multicomponent mixtures. However,
there remains the issue of setting the correct chemical po-
tentials for each particle species that produces the correct
stoichiometry or relative abundance [18,19]. Another way is
to identify the constraint of mean particle numbers through
a “chemical potential” in a grand canonical ensemble, thus
allowing the N to fluctuate [Fig. 1(b)]. However, it is chal-
lenging to establish constraints for chemical potentials for
proteins in a multicomponent mixture in an open system like
cytoplasm. Here, we formulate a method to solve the inverse
statistical mechanics problem of finding the correct chemical
potentials for a multicomponent mixture from the database of
protein abundance. Current high-throughput experiments such
as mass spectrometry quantify the protein abundance of a cell

2643-1564/2021/3(3)/033220(12) 033220-1 Published by the American Physical Society

https://orcid.org/0000-0003-4054-6545
https://orcid.org/0000-0001-9235-7661
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033220&domain=pdf&date_stamp=2021-09-07
https://doi.org/10.1103/PhysRevResearch.3.033220
https://creativecommons.org/licenses/by/4.0/


GASIC, SARKAR, AND CHEUNG PHYSICAL REVIEW RESEARCH 3, 033220 (2021)

FIG. 1. (a) Canonical ensemble: the system S is maintained at a constant temperature through energy exchange (red arrow) with heat
reservoir R. (b) Multicomponent grand canonical ensemble: the system S is maintained at constant temperature and chemical potentials {μα}
through energy (red arrow) and particle (blue arrows) exchanges with multiple particle reservoirs Rα . H is the Hamiltonian with the set of
positions and momenta � of the system or reservoir(s).

with high accuracy. It is often shown that the measurement of
protein abundance is indicative of the state of a cell [20–22].

There are several important reasons for using the grand
canonical ensemble to study biological many-component sys-
tems instead of using the canonical ensemble:

(1) The assemblies of these macromolecular complexes
are inherently finite-sized processes where the abundance of a
single protein species is experimentally measured in parts per
million. Despite that a cellular mixture is highly crowded with
biological molecules, the number of the individual species in
this many-component mixture is still far from the thermody-
namic limit. Without the correct ensemble, key free energy
contributions will be missed [23,24]. Frequently, finite-sized
corrections need to be used in canonical ensembles of protein
binding for this reason [25,26].

(2) In this paper, we do not study phase transitions;
however, our grand canonical method would be more ad-
vantageous in sampling various phases and mapping phase
diagrams than an analogous canonical method. The grand
canonical ensemble allows a single phase to occupy the entire
simulation volume and avoids the costly interfaces between
phases [27–29]. Also, with the grand canonical ensemble, it
may reveal metastable free energy basins that are unstable
phases in the corresponding canonical phase diagram [30].

(3) Information from the protein sequences provides a
way of understanding protein-protein interaction networks
[31,32], and chemical potential provides another source of
rich information which dictates the state of a cell. While abun-
dance may provide similar information, chemical potential
may be more useful because the latter extends these systems
into nonequilibrium or steady-state settings.

With the knowledge of protein abundance, we used grand
canonical Monte Carlo (GCMC) simulations and the principle
of maximum entropy to model the distinct features of protein
assemblies. We use the mitochondrial respiratory Complex
II, also called the succinate dehydrogenase (SDH) complex
[Fig. 2(a)] to establish our model. It is a tetraprotein com-
plex composed of four subunits SDHA, SDHB, SDHC, and
SDHD, and is well studied in a metabolic pathway that breaks

down carbohydrates and produces energy [33–36]. Its inte-
grative structure has also been constructed with constraints
from the interactome through cross-linking mass spectrometry
[37]. SDH is an integral membrane protein complex, where
SDHC and SDHD are intermembrane proteins, and is in both
the tricarboxylic acid cycle and aerobic respiration [35,36].
To perform its various functions, the SDH form heterodimers
and in some cases trimers before completely forming tetramer.
Many other proteins and small molecules regulate the assem-
bly and function of the SDH complex depending on the state
or type of cell. As such, different cell types contain different
abundances of each subunit [20–22].

With the constraints of interaction topology among sub-
units and the constraints of abundance in the multicomponent
mixture, we can integrate this information into protein

FIG. 2. (a) Crystal structure of succinate dehydrogenase (SDH)
complex (protein data bank ID: 1NEN) with subunits SDHA–SDHD
labeled A–D, respectively. (b) Interaction topology of the SDH
complex. Arrows indicate an interaction between the two subunits.
(c) Contact map of the SDH complex, where white represents no
interaction and gray represents an interaction between two of the
subunits.
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TABLE I. Protein abundance xexp
α in parts per million (ppm) and

relative abundance x̃exp
α (maximum of 1) for different mouse cell

types from PaxDB [39].

Abundance xexp
α (ppm) Relative abundance x̃exp

α

Type A B C D A B C D

Whole 196 77.9 16.1 8.65 0.66 0.26 0.05 0.03
Heart 2358 637 108 2.88 0.76 0.21 0.03 0.001
Brain 853 87.2 56.7 2.9 0.85 0.09 0.06 0.003
Lung 495 2229 30.1 2.95 0.18 0.81 0.01 0.001

assemblies with tunable topological properties and expand-
able cluster sizes. By varying the crowding content, emergent
clusters are formed where the transient complex exists at high
crowding but not in lower crowding content. We have applied
the Jaccard index to characterize the higher order of these
complexes and note that the emergent cluster for lung and
brain is prominent, and the representation of whole cell is not
adequate. This integrative model shows how complex matter
connects to the phenotype of a cell.

II. THEORETICAL MODEL AND METHODS

A. Abundance for SDH

The SDH complex from the Protein Data Bank (PDB)
reveals four subunits; interaction maps are shown in Figs. 2(b)
and 2(c). The stoichiometry of each subunit is the same in
an SDH complex [31]; however, the abundance of each unit
varies significantly among cell types [38]. To understand how
varying the abundances of the subunits affects the assembly
of the complex, we study four different cell types in Table
I. It shows these abundances in parts per million for each of
the subunits for whole (integrated average of all cell types
over the whole organism), heart, brain, and lung cell types
of a mouse from the Protein Abundances Across Organisms
Database (PaxDB) [39]. Table I also shows the relative abun-
dance between the four subunits among these four cell types.

B. Applying the principle of maximum entropy to the grand
canonical ensemble

Our approach is to infer a protein cluster model for the
probability distribution of particle numbers over system states
that are consistent with these experimental results with as
little bias as possible. Using the principle of maximum en-
tropy [40,41] is a way to best guess the distribution which
agrees with an average observable of the data. In our case,
the probability distribution we seek is of the set of particle
numbers Nα of species α (or subunit), which is consistent with
the experimentally derived protein abundance for α.

The distribution P({Nα}) is estimated by maximizing the
entropy:

S[P] = −
∑
{Nα}

P({Nα}) ln P({Nα}), (1)

with constraints. This will give an exponential distribution for
the energy landscape of the system that allows particle number

fluctuations, i.e., a grand canonical distribution [see Fig. 2(b)]:

P({Nα}) = Z ({Nα})

�({μα})
exp

(
1

kBT

M∑
α

μαNα

)
. (2)

Here, the Lagrange multipliers for the constraints, i.e., the
protein abundances, are chemical potentials μα times inverse
temperature (β = 1/kBT ). Here, Z ({Nα}) is the N-particle
canonical partition function of a M-component protein mix-
ture:

Z ({Nα}) =
N∏
i

∫
exp

[
−HN ({ri})

kBT

]
dri, (3)

where HN is the N-particle Hamiltonian and N = ∑M
α Nα .

The distribution in Eq. (2) is normalized by the grand canoni-
cal partition function:

�(μ) =
∞∑

N1=0

· · ·
∞∑

NM=0

[
M∏
α

exp
(μαNα

kBT

)]
Z ({Nα}). (4)

Additionally, this model does not require parameter tuning;
all parameters are completely determined by the experimental
data.

C. Parametrizing chemical potential using max entropy

There exists a unique set of chemical potential {μα} that
produces observable mean particle numbers 〈Nα〉 that are
consistent with the experimentally measured 〈Nα〉exp (from
PaxDB [39]), but finding them is a computationally difficult
inverse statistical mechanics problem.

To solve for the correct chemical potential μα for each
particle type α, we minimize the Kullback-Leibler (KL) di-
vergence between the “real” distribution Q and the model
distribution [Eq. (2)], defined as

DKL(Q ||P) =
∑
{Nα}

Q({Nα}) ln
Q({Nα})

P({Nα})
. (5)

The real distribution is the Boltzmann-like distribution
containing 〈Nα〉exp. The KL divergence becomes

DKL(Q ||P) = ln
�(μ)

�0
− 1

kBT

M∑
α

μα〈Nα〉exp, (6)

where �0 ≡ �(μ = 0) and μ ≡ {μα}.
The partition function ratio in the expression can be further

simplified using a cumulant expansion as

ln
�(μ)

�0
= ln

∑
{Nα}

∏N
i

∫
exp

(−HN
kBT

)
exp

(∑M
α μαNα

kBT

)
dri∑

{Nα}
∏N

i

∫
exp

(−HN
kBT

)
dri

(7)

= ln

〈
exp

(∑M
α μαNα

kBT

)〉
0

(8)

=
∞∑

ν=1

1

ν!

〈(
1

kBT

M∑
α

μαNα

)ν〉
c

, (9)
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Algorithm 1 Self-consistent algorithm

1: Set 〈Nα〉exp and HN for system

2: Initialize: performing simulations with {μα} = 0

3: Estimate 〈Nα〉 and Cαβ

4: while (error = ∑
α |〈Nα〉 − 〈Nα〉exp|/∑

α 〈Nα〉exp) >

tolerance value, do
5: Update: μ → μ− 1

β
C−1 · (〈N〉 − 〈N〉exp)

6: Repeat simulations with updated {μα}
7: Estimate new 〈Nα〉 and Cαβ

8: end while

where 〈. . .〉c signifies the cumulant. To the second order, the
cumulant expansion is

ln
�(μ)

�0
= 1

kBT

∑
α

μα〈Nα〉 + 1

2(kBT )2

×
∑
αβ

μαμβ (〈NαNβ〉 − 〈Nα〉〈Nβ〉). (10)

Plugging this back into the KL divergence in Eq. (6),

DKL = 1

kBT
μ · (〈N〉 − 〈N〉exp) + 1

2(kBT )2 μT · C · μ, (11)

where Cαβ = 〈NαNβ〉−〈Nα〉〈Nβ〉. The solution for μ that min-
imizes DKL (i.e., δDKL

δμ
= 0) is

μ = −kBT C−1 · (〈N〉 − 〈N〉exp). (12)

Since this is an approximate solution, when 〈Nα〉 �=
〈Nα〉exp, we use the following iterative self-consistent pro-
cedure to find more accurate values that eventually would
converge to reproduce the experimental measurements. The
algorithm is as follows in Algorithm 1.

Additionally, since PaxDB records protein abundance xexp
α

in units of part per million (ppm) and our simulation box size
is a small fraction of the size of a cell, we determine 〈Nα〉exp

from the relative abundance for a certain volume fraction φ

(≡ Nv
Vbox

, where v is the volume of the protein and Vbox is the
volume of the box). That is,

〈Nα〉exp ≡ xexp
α∑M

α xexp
α

φVbox

v
. (13)

D. Grand canonical Hamiltonian

To model protein assemblies in vivo, we will join as-
pects of both models used in chromosomes [42,43] and
molecule self-assembly modeling [44]. We used a structure-
based Hamiltonian, i.e., the model has attractive interactions
between proteins that are in contact in the crystal structure
[Fig. 2(a)], and there are volume exclusion interactions for
proteins not in contact. The N-particle Hamiltonian is a func-
tion of the particle positions {rα

i } of particle species α having

FIG. 3. Chemical potential as a function of total volume fraction
(φ) of a single-component fluid with Lennard-Jones (LJ) interactions
at various interaction strengths. HS is hard spheres.

the following form

HN
({

rα
i

}) =
M∑

α<β

Nα∑
i

Nβ∑
j

ULJ
(
rα

i , rβ
j

)
	

(

αβ − ∣∣rα

i − rβ
j

∣∣),
(14)

where our effective pairwise protein potential is the Lennard-
Jones (LJ) potential ULJ:

ULJ
(
rα

i , rβ
j

) = 4ε

[(
σαβ∣∣rα

i − rβ
j

∣∣
)12

−
(

σαβ∣∣rα
i − rβ

j

∣∣
)6]

. (15)

For simplicity, σαβ = σ . The term 
αβ in the Heaviside
function 	 is the cutoff value between particle species α and
β. Since our contact data are binary (probability of 1 or 0 of
being connected), we use


αβ =
{

2.5σ if α, β interact specifically
1σ otherwise . (16)

The interaction strength ε = 0.5 is used to ensure the sta-
bility of the system. To ensure a one-to-one correspondence
of μ to φ, we need to select the best interaction strength
ε. For ε � 0.8, certain values of μ correspond to multiple
φ values (see Fig. 3), which signify multiple phases. Thus,
a one-to-one correspondence of μ to φ reduces the chance
of having large fluctuation in energy and density from phase
transitions.

E. Monte Carlo simulation details

We conducted GCMC simulations on LAMMPS [45] using
a box size Vbox = 1000σ 3 for 120 000 GCMC steps, where
each GCMC step attempted 800 insertions or deletions and
800 translations per particle type. The mean energy and vari-
ance of particle number plateaus at ∼20 000 steps, and the
errors for the mean energy and variance of particle number
plateaus at ∼100 000 steps. Thus, 120 000 steps are sufficient
for data analysis. The number for insertions or deletions and
translations ensures that the autocorrelation time for energy
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and density is 1 GCMC step. The attempts in the GCMC steps
follow the metropolis criterion:

p
(
HN → H

′
N

) = min

[
1, exp

(
−H

′
N − HN

kBT

)]
,

for translation, and

p (N → N ′)

=
{min

[
1, V

(N+1) exp
(−HN+1−HN −μ

kBT

)]
for N ′ = N + 1

min
[
1, N

V exp
(−HN−1−HN +μ

kBT

)]
for N ′ = N − 1

,

for insertion and deletion of particles.

F. Jaccard index

We followed the analysis by Sardiu et al. [46,47], who
have used the Jaccard index J to analyze and predict core
components and modules in higher-order protein complexes.
The Jaccard index J measures similarity among sample sets.
Here, J is defined as the size of the intersection divided by the
size of the union of the sample sets. In our case, we have four
sample sets corresponding to the four subunits A, B, C and
D. Each set contains all the subunit pairs interacting with the
subunit corresponding to that set. For instance, the sample set
corresponding to A contains subunits pairs AA, AB, AC, and
AD, while the set corresponding to B contains AB, BB, BC,
and BD. We follow the number of contacts formed by a pair
of subunits α and β, nαβ , among the four subunits A, B, C,
and D. A pair of subunits α and β are considered interacting
(i.e., forming a pair) if their Euclidean distance is less than
a predefined cutoff value of 1.1σ . The Jaccard index J(α,β)
between subunits α and β is below:

J (α, β ) = nαβ∑
γ (n αγ + nβγ ) − nαβ

. (19)

We then calculated the time average of 〈J(α,β)〉 for each
cell type.

III. RESULTS

A. A self-consistent algorithm converges to chemical
potentials according to mean abundances of

multicomponent protein complex

In accordance with the principle of maximum entropy (dis-
cussed in Sec. II B), we inferred the set of chemical potentials
for each of the subunits of the SDH complex {μα} (where α

� A, B, C, and D corresponding to SDHA, SDHB, SDHC,
and SDHD, respectively), such that the mean particle num-
bers 〈Nα〉 match with the relative abundance from PaxDB in
Table I. We used our self-consistent algorithm (Algorithm 1)
to compute {μα} for each cell type at three different volume
fractions ϕ = 0.1, 0.2, and 0.3. These three volume fractions
represent the range in the fraction of macromolecular volumes
in a cellular volume where macromolecular crowding [14]
affects protein dynamics [12,48] and assemblies. On average,
the algorithm converges to {μα} of each system in under three
iterations.

As a demonstration of our self-consistent algorithm (Al-
gorithm 1), we present the evolution of the sets {μα} and

FIG. 4. (a) Values of μα and (b) 〈Nα〉, where α ≡ A–D
corresponding to subunits succinate dehydrogenase (SDH) SDHA–
SDHD, respectively, vs iterations of the self-consistent algorithm for
SDH complex of whole cell type at φ = 0.1. Dashed lines indicate
experimentally observed average particle numbers. (a, right axis)
Error vs iterations in gray.

{〈Nα〉} for the whole cell type at a volume fraction ϕ = 0.1.
Figure 4(a) shows {μα} changing with each iteration of the
algorithm, resulting in a 〈Nα〉 [Fig. 4(b)]. Starting with {μα}
= 0, the error [Fig. 4(a) right y axis] is large due to the
large deviations of 〈Nα〉 from 〈N〉exp [Fig. 4(b)]. By the third
iteration of Algorithm 1, {μα} results in a simulation that
captures the correct experimental particle mean 〈N〉exp values
for each subunit.

This algorithm converges to {μα} of the different cell types
(Table I) and different volume fractions in a similar fashion.
The values of the converged {μα} are shown in the next
section.

B. Cell type is distinguished by chemical potentials of subunits

Since each cell type has varying protein abundances for
each subunit of the SDH complex (as shown in Table I),
we hypothesized that the chemical potential will change to
capture the correct statistics accordingly. To show the effects
on the μα values when cell type varies, we calculate the μα
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FIG. 5. Chemical potential as a function of total volume frac-
tion (φ) using for various cell types: (a) heart, (b) brain, (c) lung,
and (d) whole. Solid lines are the analytical approximations from
Eq. (B1), and symbols (triangle: A, square: B, cross: C, and circle:
D) are values of μ calculated from the self-consistent algorithm
(Algorithm 1).

using Algorithm 1 for cell types whole, lung, heart, and brain
at φ = 0.1, 0.2, and 0.3. The converged μα values are shown
in Fig. 5 (presented as symbols) as a function of φ. The solid
line curves are analytical approximations (see Appendix A)
of Eq. (B1). The μα values calculated via Algorithm 1 match
well with the analytical results of Eq. (B1). This agreement
confirms that Algorithm 1 works correctly. The slight devia-
tions of the algorithm computed values from Eq. (B1) may be
due to the nonzero error of Algorithm 1 or that Eq. (B1) is not
an exact result.

Indeed, each cell type gives a unique set {μα} shown in
Fig. 5. These chemical potentials are the subunit free energy,
resulting in a unique landscape for each cell type. Since sub-
unit B interacts with all the other subunits (see Fig. 2), μB(φ)
will behave differently from the others. The general trends are
that μB is flat for all values of φ, while the chemical potentials
of the other subunits are monotonically increasing.

The cell type with chemical potential trends that is the
most strikingly different from the others is that of the lung
cell type in Fig. 5(c). In the lung cell type, the μB curve
(orange) monotonically increases unlike that of the other cell
types. Such an effect is due to the large relative abundance of
SDHB (x̃exp

B ) dominating in the lung cell type by a factor of
4.5 times the next largest relative abundance, which is SDHA.
In the other cases, x̃exp

A is at least 2.5 times larger than x̃exp
B (see

Table I for exact numbers).

C. The radial distribution of the contact hub

As the results from the previous section showed that μB(φ)
behaves differently from the other subunits, we focus our
attention to subunit B. To further understand the effect of
changing cell types, we extend our analysis to calculating
the radial distribution g(r) between subunit pairs B and itself

FIG. 6. Radial distribution function g(r) between all particles
(blue dash-dot, total), B and not B (orange dotted, B-!B), and B and
itself (black solid line, B-B) for various cell types at φ = 0.1: (a)
lung, (b) heart, (c) brain, and (d) whole. The graphs are smoothed
using mean over a window of three timeframes.

(gB−B), B and the other non-B subunits (gB−!B), and all pairs
(gtot) for φ = 0.1 and 0.3, shown in Figs. 6 and 7, respec-
tively.

At φ = 0.1 (Fig. 6), the radial distribution function of in-
terparticle distance r between any two pairs of subunits gtot (r)
resembles that of a gas or dilute liquid for all four cell types.
Its first peak at r ≈ 1.2σ is ∼1.5 times the average density of

FIG. 7. Radial distribution function g(r) between all particles
(blue dash-dot line, total), B and not B (orange dotted line, B-!B), and
B and itself (black solid line, B-B) for various cell types at φ = 0.3:
(a) lung, (b) heart, (c) brain, and (d) whole. The graphs are smoothed
using mean over a window of three timeframes.
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the system. The change in the first peak of the curves can be
thought of as a change in an “osmotic pressure” between two
particle types, which is dictated by both entropic and energetic
effects. Since B is the contact hub (all subunits interact with
B; see Fig. 2), the first peak of gB−!B(r) is ∼70% larger in
amplitude than that of gtot (r) regardless of the cell type. This
first peak amplitude increase is due to the preferred interaction
with subunit B rather with any other random particle of the
multicomponent mixture, whereas the first peak of the gB−B(r)
curve is only slightly less than that of gtot (r), resembling a
hard sphere (HS) gas.

At φ = 0.3 (Fig. 7), the radial distribution function plots
have emerged more pronounced peaks than those curves at
φ = 0.1 in Fig. 6. Here, a distinct second peak appears, char-
acterizing a higher-order structure. The first peak of gB−!B(r)
is ∼25% larger in amplitude than that of gtot (r) regardless
of the cell type. Again, this first peak amplitude increase is
due to the preferred interaction with subunit B. However, the
amplitude increases of the first peak of gB−!B(r) is less than
that of gtot (r) at φ = 0.1. This outcome is due to the more
prominent entropic forces at φ = 0.3 than at φ = 0.1.

Interestingly, unlike at φ = 0.1, at φ = 0.3, the gB−B(r)
curve differs between the cell types. For instance, the effect
of changing the cell type either increases the osmotic pressure
for lung in Fig. 7(c) or decreases it for brain in Fig. 7(b).
The highest first peak value for gB−B(r) is that of the lungs.
Here, B is closer to itself than in the other cell types due to the
relative increase in μB in Fig. 5. Even though subunit B does
have energetic self-interactions other than volume exclusion,
the growth in μB increases the entropic forces (or osmotic
pressure) between itself due to macromolecular crowding.
The lowest first peak value of gB−B(r) is that of the brain,
signifying a decrease in entropic interaction. Interestingly,
the second peak of gB−B(r) for the brain is the largest in
amplitude, signifying that the B subunits are assembling with
another subunit type in between. This points toward subunits
forming emergent higher-order assemblies under high macro-
molecular crowding content.

D. Higher-order assemblies built from pair-wise information

Because of crowding and the certain preferential interac-
tions between subunits, the mixture is highly inhomogeneous,
filling with particles in lumps and clusters. The variation in the
profile in g(r) signifies the presence of emergent clustering of
the subunits around B at high crowding content at φ = 0.3,
which does not exist at low crowding content at φ = 0.1.
Next, we gained more insight into the higher-order structure
of the assemblies by calculating the Jaccard index J using
Eq. (19). The use of J is a well-established computational-
topology algorithm to identify a new protein family or a gene
from the existing database by comparing similarities in their
interacting networks [49]. Sardiu et al. [46,47] have applied
this index to determine whether a protein belongs to a core of
protein networks in an interactome database as a justification
of forming physical assemblies. Here, we leveraged the Jac-
card index to further measure whether a subunit belongs to an
emergent cluster of heterotypic particles. If J(α, β) = 1, the
subunits α and β only associate with each other and no other
subunit. If J(α, β) = 0, the subunits α and β only associate

with other subunits, or they are not found in the system for the
specific time. Thus, Eq. (19) is the probability of subunits α

and β associating with each other, given that the two subunits
are not isolated and part of a complex assembly. Comparing
this with the contact matrix in Fig. 2(c), we can identify the
emergent properties of forming a cluster that stems from the
chemical potentials or macromolecular crowding instead of
specific protein-protein interactions. Since the heart cell type
has a similar g(r) profile as the whole cell type, we focused
this analysis on whole, brain, and lung cell types.

First, we examine the time average 〈J (α, β )〉 at a low
crowding content at φ = 0.1 in Figs. 8(a)–8(c). The J index
highest values are the A-B pair in whole, whereas in lung and
brain, it is in the self-interaction B-B and A-A, respectively.
Since there are no self-interactions of the subunits on the
contact matrix [Fig. 2(c)], these highest J values in lung and
brain are purely driven by the relative abundance and hence
chemical potentials. A representative snapshot with the largest
cluster highlight is shown in Figs. 8(d)–8(f). In these plots, A,
B, C and D subunit types are color coded as cyan, orange,
purple, and yellow, respectively. Furthermore, in comparison
with the whole cell type [Figs. 8(a)], the lung and brain J
matrices do not average to that of whole. The clusters formed
for the whole cell type resemble the structure in Fig. 2(b), but
the lung and brain have clusters of mainly B and A subunits,
respectively.

Beyond the diagonal of the J matrices, we also see non-
trivial off-diagonal variations in J values between the cell
types. The largest off-diagonal values for all cell types is the
J(A,B), which can be attributed to the fact that subunits A
and B have the two largest abundances (Table I) and chemical
potentials (Fig. 5) in all cell types. A key difference, though,
between lung and brain is the increase in the J(A,C), J(B,C),
and J(C,C) values for φ = 0.1 [Figs. 8(b) and 8(c)].

Next, we increase the crowding content from φ = 0.1 to
φ = 0.3. Similar trends on the J index persist at φ = 0.3 for
all cell types [Figs. 9(a)–9(c)]. However, the higher volume
fraction gives rise to emergent higher-order assemblies seen in
Figs. 9(d)–9(f). Again, in lung, J(B,B) has the maximal value
[Fig. 9(b)], and J(A,A) has the maximal value [Fig. 9(c)] in
brain. Since entropic forces are heightened by increasing N,
at φ = 0.3 [Figs. 9(b) and 9(c)], the maximum J value has
increased to 0.51 for lung and 0.57 for brain.

Lastly, comparing the J values between φ = 0.1 and φ =
0.3, the general shifts in all cell types are toward the subunit
pairs which have no attractive interaction [the pairs in white
in Fig. 2(c)] in the Hamiltonian [Eqs. (14) and (15)] and away
from the subunit pairs that do [the pairs in gray in Fig. 2(c)].
The increase in entropic interactions (i.e., depletion forces
from crowding), due to the increase in N, causes this shift.
Even though the main changes in relative abundance between
the cell types are of subunits A and B (Table I), the entropic
interactions affect the J values of all the subunits nontrivially.
At φ = 0.3, higher-order clusters emerge with distinct fea-
tures shown by the representative snapshots in Figs. 9(d)–9(f).
In lung, the dominant cluster with transient stability is com-
posed of subunit B [Fig. 9(e)]. As crowding content reduces,
such a cluster breaks down [Fig. 8(e)]. Such features permit
the development of hypotheses connecting the properties of
molecular assemblies to cell phenotypes.
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FIG. 8. J matrix for (a) whole, (b) lung, and (c) brain cell types for φ = 0.1. Panels (d)–(f) show snapshots from randomly selected
timeframes of the clusters for respective cell types. The largest clusters have been highlighted. Subunit types A–D are color coded as cyan,
orange, purple, and yellow, respectively. Contact cutoff is 1.1σ , and visualization of the system is obtained using OVITO [50].

FIG. 9. J matrix for (a) whole, (b) lung, and (c) brain cell types for φ = 0.3. Panels (d)–(f) show snapshots from randomly selected
timeframes of the clusters for respective cell types. The largest clusters have been highlighted. Subunit types A–D are color coded as cyan,
orange, purple, and yellow, respectively. Contact cutoff is 1.1 σ , and visualization of the system is obtained using OVITO [50].
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IV. DISCUSSION

A. Leverage protein abundance as a constraint on the particle
numbers by combining GCMC simulations with

max entropy inference

Protein assembly in the cell is thermodynamically gov-
erned by various enthalpic and entropic factors. In this paper,
we have allowed the particle number to fluctuate (i.e., the
grand canonical ensemble; see Fig. 1) as an additional free
energy contribution to understand the effects on protein as-
sembly. The difficulty in using the grand canonical ensemble
is that the chemical potentials for specific particle types are
unknown. To avoid this problem, previous efforts in studying
protein or synthetic particle assembly have either defined the
chemical potentials as known [28–30,44,51,52] or used sem-
igrand canonical ensembles [53], where particle types may
vary in particle number with the total N fixed.

In this paper, we have leveraged the protein abundance
attained from PaxDb [39] as a constraint to solve for the
chemical potential of a protein type in an open, crowded
environment with the tools of inverse statistical mechanics
[54], GCMC simulations, and the maximum entropy prin-
ciple [40,41]. The grand canonical ensemble allows particle
numbers to fluctuate by placing particle reservoirs with fixed
chemical potentials of each particle type in contact with the
multicomponent system (Fig. 1).

By using the grand canonical ensemble, the fixed particle
number is switched for a fixed chemical potential, trading one
unknown for another. Analytically calculating the chemical
potential is possible for simple systems such as HSs; however,
this becomes increasingly difficult or impossible with varying
protein-protein interactions, polydisperse mixture, or flexible
polymers. To our knowledge, this approach is the only method
that will approximate the correct chemical potentials, given
the particle number distribution. Our self-consistent algorithm
(Algorithm 1) has proven to be a useful way to calculate the
chemical potentials of the particles in a multicomponent mix-
ture from protein abundance. In principle, our method may be
used for more complex systems such as a mixture differing
particle shapes or macromolecules (or polymers) instead of
simple spheres with the same radius.

B. GCMC allows for the investigation of emergent complex
formation in crowded media

Here, in this paper, the use of the grand canonical ensemble
allows variation in particle number which in turn allows the
possibility of having different chemical potentials for different
cell types. This difference in chemical potential and varia-
tion in the number of particles in the simulation leads to the
formation of emergent, higher-order complex structures. This
feature is different from the simulation approaches based on
a conventional canonical ensemble where the total particle
number in a simulation box is fixed [18,19]. Previous inverse
design studies have learned interaction potentials using ra-
dial distribution function g(r) in a canonical ensemble. The
interactions of the protein complex in a canonical ensemble
become the main driving force that guides the formation of
the complex structure.

By increasing the volume fraction of the system, the en-
tropically favored assembly increases as well. Increasing the
volume fraction (or crowding) of the system and keeping other
physical properties constant will only change the entropy
since the crowding effect or depletion force is an entropic
effect [11,12,55]. In doing so, specific protein-protein entropic
forces or “osmotic pressures” are created and varied by the
level of crowding [12,48]. This osmotic pressure can be seen
with the radial distribution function g(r) since the integral
of g(r) gives the corrections to the ideal gas pressure in
Figs. 6 and 7, dictated by a combination of entropic forces
such as macromolecular crowding and specific interactions.
Interestingly, even at low crowding content (Fig. 6) the g(r)
between subunits B and not B subunits (i.e., B and !B) shows
deviations from the total system regardless of the cell type
by comparing with the contact map in Fig. 2, which signifies
specific protein-protein osmotic pressure that is controlled
by the chemical potentials in a crowded environment where
particle numbers are allowed to fluctuate.

Because of differences in abundance and interactions
among subunits, the mixture is highly inhomogeneous with
small lumps and clusters. This emergence of new cluster for-
mation in a grand canonical ensemble is heightened when the
crowding content increases to φ = 0.3 in Figs. 9(d)–9(f) from
0.1 in Figs. 8(d)–8(f). We show that, particularly for the lung,
where the abundance of subunit B is much higher than those
for other cell types, the emergent complex with lumps of B
subunits is most significant at φ = 0.3, while other cell types
do not show prominent lumps of B subunits.

C. Our investigations allow development of hypotheses
connecting the high-order protein complexes

with the cell phenotype

Cell types may have the same gene sequences, but the cell
state will differ in protein abundance [56]. As the mixture with
heterotypic particles is inhomogeneous, it is challenging to
characterize the lumps or clusters in the system, as densities
of heterotypic particles alone is not sufficient to address their
association with one another in space. In this paper, we use
the Jaccard index to elucidate the higher-order complex struc-
tures from particle interactions. This measurement is key to
uncover the topology of these complex structures, reflecting
the differences in cell type.

From the J matrices (Figs. 8 and 9), we have seen that
the whole cell type does not resemble the specialized cell
types (lung and brain). These distinct behaviors between the
cell types may be the reason why proteins that are similar in
structure and sequence form different complexes. For exam-
ple, SDH forms trimers of the complex in E. coli [33] but is
only a single monomer in the porcine heart [34]. Our method
may be used to study the various cell phenotypes leading
from the higher-order complex assembly that is dictated from
protein abundance or the chemical potentials of the protein
species. The unique state or phenotype is connected to the
unique chemical potential landscape (Fig. 5), which gives rise
to emergent molecular topologies of higher-order complexes,
depending on the crowding content.
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V. CONCLUSIONS

We have developed a self-consistent algorithm, in accor-
dance with the principle of maximum entropy, that calculates
the chemical potentials that produce experimentally observed
mean particle numbers. With this method and the GCMC
simulations, we have gained insight into the mechanism and
underlying principles of hierarchical assembly of macro-
molecular complexes, with emergent features varying with the
crowding content.

Our method is a framework to connect the growing pro-
teomic (or other “-omic”) information [20,57] to physical
models. We attained the protein abundance from PaxDb [39];
however, any other methods for extracting the experimentally
observed relative abundance can be used. To establish this
method of finding the correct chemical potentials given the
cell type, we used the simplest protein-protein interactions in
our structure-based Hamiltonian (Sec. II D) that contributes to
the quinary interactions in the formation of higher-order pro-
tein complexes. Many studies have focused on understanding
the protein-protein interaction networks [31,32,58], and here,
we bring attention to the importance of the chemical potential
for protein complex assembly in the spatial arrangement of
proteins in quinary complexes. Since the state of the cell may
change both the interaction between proteins and chemical po-
tentials, understanding the relationship between both aspects
will be an important future work. Our method lays the foun-
dation to create physical models that are bioinformatically
consistent.
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APPENDIX A: SINGLE-COMPONENT FLUID
INTERACTION STRENGTH ANALYSIS

We chose ε = 0.5 for the LJ potential interaction strength
because, > 0.8, certain values of the chemical potential cor-
responded to multiple volume fractions, which signified mul-
tiple phases (shown in Fig. 3). Thus, a one-to-one correspon-
dence of chemical potential to volume fraction reduces the
chance of having large fluctuation in energy and/or density.

APPENDIX B: ANALYTICAL APPROXIMATION OF μ FOR
MULTICOMPONENT MIXTURES

In Fig. 5, we compared the calculated chemical potential
from our self-consistent algorithm with an analytical approx-
imation of μ. Here, we derive the equations used for those
curves. In an ideal gas, μ = kBT lnφ. However, at nondilute
conditions such as the crowded cell,

μ

kBT
= lnφ +

∞∑
k=2

B(k)φk−1,

where, B(k) is the kth virial coefficient. For multicomponent
mixture, the second coefficient between particles α and β can
be calculated by

B(2)
αβ = −2π

∫
r2
αβ[e−βULJ (rαβ ) − 1]drαβ.

For higher-order terms, the integrals become increasingly
more complex. Since the repulsive terms become more dom-
inant as φ → 1, we can assume the potential of HSs and
ignore the attractive terms:

μα

kBT
= ln[φα (1 − lnxα )]

+
∑

j

B(2)
αβφα + B(3)

HSφ
2 + B(4)

HSφ
3 + O(φ4), (B1)

where φα ≡ φx̃exp
α , and B(k)

HS is the HS virial coefficient found
from the lookup table [59].
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