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The maximum entropy principle (MEP) is one of the most prominent methods to investigate and model
complex systems. Despite its popularity, the standard form of the MEP can only generate Boltzmann-Gibbs
distributions, which are ill-suited for many scenarios of interest. As a principled approach to extend the reach
of the MEP, this paper revisits its foundations in information geometry and shows how the geometry of curved
statistical manifolds naturally leads to a generalization of the MEP based on the Rényi entropy. By establishing
a bridge between non-Euclidean geometry and the MEP, our proposal sets a solid foundation for the numerous
applications of the Rényi entropy, and enables a range of novel methods for complex systems analysis.
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I. INTRODUCTION

The progressive unveiling of the intricate connections that
exists between information theory and statistical mechanics
has allowed fundamental advances on our understanding of
complex systems [1]. One of the most important methods
resulting from those discoveries is the maximum entropy
principle (MEP), which unifies multiple results and proce-
dures under a single heuristic that operationalises Occam’s
razor [2,3]. From a pragmatic perspective, the MEP can be
understood as a modeling framework that is particularly well-
suited for building statistical descriptions of a broad class of
systems in contexts of incomplete knowledge [4]. The high
versatility of the MEP has allowed it to find applications
in a wide range scenarios, including the analysis of DNA
motifs of transcription factor binding sites [5], co-variations
in protein families and amino acid contact prediction [6,7],
diversity of antibody repertoires in the immune system [8,9],
coordinated firing patterns of neural populations [10–13],
collective behavior of bird flocks and mice [14–16], the abun-
dance and distribution of species in ecological niches [17,18],
and patterns of behavior in various complex human endeav-
ours [19,20].

The efficacy of the MEP rests on Shannon’s entropy, which
acts as as an estimate of “uncertainty” that guides the model-
ing procedure. Colloquially, the MEP generates the statistical
model that is less structured while being consistent with the
available knowledge, building on the available knowledge but
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nothing else. However, the functional form of the Shannon
entropy greatly restricts the range outputs that the MEP can
offer. In particular, standard applications of the MEP can
only generate Boltzmann-Gibbs distributions, which are un-
suitable to describe complex systems displaying long-range
correlations or other effects related to different types of statis-
tics [21–24]. This important limitation have triggered various
efforts to generalize the MEP by means of leveraging gen-
eralizations of Shannon’s entropy, resulting in a rich array
of proposals (see, e.g., Refs. [25–29]). However, we argue
that plugging a generalized entropy into the MEP framework
inevitably leads to an adhoc procedure whose value is funda-
mentally hindered by the heuristic nature of the MEP itself.

An alternative approach to extend the MEP is to consider
it not as a stand-alone principle, but as a consequence of
deeper mathematical laws. One route to do this—that we
follow in this paper—is to regard the MEP as a direct con-
sequence of the geometry of statistical manifolds [30, Sec.
III D]. In effect, by leveraging the structure of dual orthog-
onal projections allowed by the flat geometry associated with
the Kullback-Leibler divergence [31,32], the seminal work of
Amari established how the standard MEP naturally emerges
when considering hierarchical “foliations” of the manifold.
This perspective not only sets the MEP on a firm mathematical
bases, but further endows it with sophisticated tools from in-
formation geometry—which can be used, e.g., to disentangle
the relevance of interactions of different orders within the
system [33–35].

In this paper we show how the geometry of curved sta-
tistical manifolds naturally leads to an extension of the MEP
based on the Rényi entropy. In contrast to flat cases, the
geometrical structure of curved statistical manifolds disrupts
the standard construction of orthogonal projections based
on Legendre-dual coordinates, making the analysis of fo-
liations highly nontrivial. Nonetheless, by leveraging the
rich literature on curved statistical manifolds [32,36–40], the
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framework put forward in this paper reveals how the geometry
established by the Rényi divergence is suitable for establish-
ing hierarchical foliations that, in turn, lead to a generalization
of the MEP.

The results presented in this paper serve to emphasise the
special place that the Rényi entropy has among other gener-
alized entropies—at least from the perspective of the MEP.
Furthermore, it provides a solid mathematical foundation
for the plethora of existent applications based on the Rényi
entropy (see, e.g., Refs. [41–44]). Furthermore, the novel
connection established between information geometry and
this generalized MEP opens the door for fertile explorations
combining non-Euclidean geometry methods and statistical
analyses, which may lead to new insights and techniques to
further deepen our understanding of complex systems.

The rest of this article is structured as follows. First, Sec. II
provides a brief introduction to information geometry, empha-
sising concepts that are key to our proposal. Then, Sec. III
develops the analysis of foliations in curved statistical mani-
folds, and Sec. IV establishes its relationship with a maximum
Rényi entropy principle. Finally, Sec. V discusses the impli-
cations of our findings and summarises our main conclusions.

II. PRELIMINARIES

A. The dual structure of statistical manifolds

Our exposition is focused on statistical manifolds M,
whose elements are probability distributions pξ (x) with x ∈
χ and ξ ∈ Rd . The geometry of such statistical manifolds
is determined by two structures: A metric tensor gp, and a
torsion-free affine connection pair (∇,∇∗) that are dual with
respect to gp. Intuitively, gp defines norms and angles between
tangent vectors and, in turn, establishes curve length and the
shortest curves. Additionally, the affine connection establishes
contravariant derivatives of vector fields establishing the no-
tion of parallel transportation between neighboring tangent
spaces, which defines what is a straight curve.

Traditional Riemannian geometry is build on the assump-
tion that the shortest and the straightest curves coincide,
which led to the study of metric-compatible (Levi-Civita)
connections—pivotal to the development of the theory of
general relativity. However, modern approaches motivated in
information geometry [45] and gravitational theories [46,47]
consider more general cases, where the metric and connec-
tions are independent from one another. In such geometries,
the parallel transport operator � : TpM → TqM and its dual
�∗ [48] (induced by ∇ and ∇∗, respectively) might differ.
The departure of ∇ and ∇∗ from self-duality can be shown
to be proportional to Chentsov’s tensor, which allows for a
single degree of freedom traditionally denoted by α ∈ R [45].
Put simply, α captures the degree of asymmetry between
short and straight curves, with α = 0 corresponding to metric-
compatible connections where ∇ = ∇∗.

An important property of the geometry of a statistical
manifold (M, g,∇,∇∗) is its curvature, which can be of
two types: The (Riemann-Christoffel) metric curvature, or
the curvature associated to the connection. Both quantities
capture the distortion induced by parallel transport over closed
curves—the former with respect to the Levi-Civita connec-

tion, and the latter with respect to ∇ and ∇∗. In the sequel we
use the term “curvature” to refer exclusively to the latter type.

B. Establishing geometric structures via divergences

A convenient way to establish a geometry on a statisti-
cal manifold is via divergence maps [49]. Divergences are
smooth, distance-like mappings for the form D : M × M →
R, which satisfy D(p||q) � 0 and vanish only when p = q
[50]. We use the shorthand notation D[ξ ; ξ ′] := D(pξ ||qξ ′ )
when expressing D under a parametrization of M in terms
of coordinates ξ = (ξ 1, . . . , ξ n) [30]; divergences in this form
are often called “contrast functions” (see Ref. [51, Sec. 11]).

Let us see how one can naturally build a metric from a
contrast function [49, Sec. 4]. A metric g(ξ ) can be built from
the second-order expansion of the divergence D as

gi j (ξ ) = 〈∂ξ i , ∂ξ j 〉 = −∂ξ i,ξ ′ jD[ξ ; ξ ′]|ξ=ξ ′ , (1)

which is positive-definite due to the nonnegativity of D. This
construction leads to the Fisher’s metric, which is the unique
metric that emerges from a broad class of divergences [49,
Theorem 5], with this being this closely related Chentsov’s
theorem [52–55]. Analogously, connections (or equivalently
Christoffel symbols) emerge at the third-order expansion of
the divergence as follows:

�i jk (ξ ) = 〈∇∂
ξ i ∂ξ j , ∂ξ k 〉 = −∂i, j∂k′D[ξ ; ξ ′]|

ξ=ξ ′, (2a)

�∗
i jk (ξ ) = 〈∇∗

∂
ξ i
∂ξ j , ∂ξ k

〉 = −∂k∂i′, j′D[ξ ; ξ ′]|
ξ=ξ ′, (2b)

where the shorthand notation ∂ξ i = ∂i and ∂ξ ′i = ∂i′ has been
adopted for brevity. In summary, Fisher’s metric is insensible
the choice of divergence but the resulting connections are, and
therefore the effects of a particular D manifest only at third
order. Interestingly, this construction relating the metric and
connections with the second and third derivatives of a scalar
potential bears a striking resemblance to Kähler structures
on complex manifolds, which can be built through further
constraints and are applicable to a range of inference prob-
lems [56,57].

The approach of building geometries based on divergences
does not lack generality, as it has been shown that any geome-
try can be expressed by an appropriate divergence [58,59]. Of
the various types of divergences explored in the literature (cf.
Ref. [60] and references within), two classes are particularly
important: f divergences of the form

D f [ξ ; ξ ′] =
∫

χ

pξ (x) f

[
pξ (x)

qξ ′ (x)

]
dμ(x) (3)

for f (x) convex with f (1) = 0, and Bregman divergences of
the form

Dφ[ξ ; ξ ′] = (ξ − ξ ′)Dφ(ξ ′) − [φ(ξ ) − φ(ξ ′)] (4)

= ξη′ − φ(ξ ) − ψ (η′) (5)

for φ(ξ ) a concave function, [61] with Dφ =
(∂φ/∂ξ1, . . . , ∂φ/∂ξd ) denoting the gradient of φ,
ψ (η) = minξ [η · ξ − φ(ξ )] is the Fenchel-Legendre concave
conjugate of φ, and η is the dual coordinates of ξ such that

ξ = Dψ (η) and η = Dφ(ξ ). (6)
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Each of these types of divergences have important properties
from an information geometry perspective: f divergences are
monotonic with respect to coarse-grainings of the domain of
events χ, while Bregman divergences enable dual structures
that set the basis for orthogonal projections [62].

As mentioned above, the deviation of a given connection
∇ from its corresponding metric-compatible (i.e., Levi-Civita)
counterpart can be measured by αT , where T corresponds to
the invariant Amari-Chensov tensor [63,64] and α ∈ R is a
free parameter. The invariance of T implies that the value of
α entirely determines the connection, and the corresponding
geometry can be obtained from a divergence of the form

Dα (p||q) = 4

1 − α2

∫
χ

{
1 − p

1−α
2 q

1+α
2

}
dμ(x), (7)

which is known as α divergence. As important particular
cases, if α = 0, then Dα becomes the square of Hellinger’s
distance, and if α = 1, then it gives the well-known Kullback-
Leibler

DKL(p||q) =
∫

χ

p(x) log

[
p(x)

q(x)

]
dμ(x). (8)

It is worth noting that geometrical structures are invariant
under certain types of transformations. For example, consider
a divergence D̃ given by D̃[ξ ; ξ ′] := F (D[ξ ; ξ ′]), with F
a monotone and differentiable function satisfying F (0) = 0
[65]. Then, it can be shown using Eqs. (1) and (2) that the
metric and connections induced by D and D̃ are related as
follows:

g̃ = F ′(0) g, �̃ = F ′(0) �, �̃∗ = F ′(0) �∗. (9)

Therefore, D̃ gives rise to exactly the same geometrical struc-
ture when F ′(0) = 1, and a scaled version otherwise. More
general transformations between divergences and their corre-
sponding geometries are discussed in Sec. II D.

C. A Pythagorean relationship in curved spaces
via the Rényi divergence

The connection induced by the KL divergence and its nat-
ural coordinates is flat [i.e., �i jk (ξ ) = �∗

i jk (ξ ) = 0]. However,
this does not hold for α divergences when α �= 1, which retain
the same Fisher’s metric but induce a connection with constant
sectional curvature ω = (1 − α2)/4 over the whole manifold
[39, Theorem 7]. This results in a spherical (Sn) geometry for
α ∈ (0, 1) or a hyperbolic (Hn) geometry for α /∈ (0, 1).

A nonzero curvature affects the relationship between
geodesics [66]: If the “α-geodesic” joining p and q is orthog-
onal (with respect to the Fisher metric) to the one joining q
and from r, then

Dα (p||r) = Dα (p||q) + Dα (q||r)

− 1 − α2

4
Dα (p||q)Dα (q||r), (10)

resulting in a deviation from the standard “Pythagorean rela-
tionship” that is observed for the case of α = 1 [31]. However,
one can rewrite Eq. (10) as

1 − ωDα (p||r) = [1 − ωDα (p||q)][1 − ωDα (q||r)], (11)

which describes the relationship between angles on the sphere
or hyperbolic space—depending on the sign of ω [31]. Inter-
estingly, Eq. (11) suggests that a divergence of the form

Dγ (p||q) := 1

γ
log[1 + γ (1 + γ )Dα (p||q)] (12)

= 1

γ
log

∫
χ

p(x)γ+1q(x)−γ dμ(x), (13)

with α = −1 − 2γ would recover the “Pythagorean relation-
ship.” In fact, Dγ can be recognised as the well-known Rényi
divergence of order γ − 1 [39,45], noting that we follow
Ref. [67] in adopting a shifted indexing.

The Rényi divergence is an f divergence with f (x) = xγ

but it is not a Bregman divergence; however, one can recast
it as a “Bregman-like” divergence [39]. To see this, let us
consider p̃ξ ∈ M to be a deformed exponential family dis-
tribution of the form (see Appendix A)

p̃ξ (x) = [1 + γ ξh(x)]−
1
γ e−ϕγ (ξ ), (14)

where h(x) ∈ Rd is a vector of sufficient statistics of x and ϕγ

is a normalizing potential given by

ϕγ (ξ ) := − log
∫

χ

[1 + γ ξh(x)]−
1
γ dμ(x). (15)

Note that Eq. (14) gives a standard exponential family dis-
tribution when γ → 0. By defining Dγ [ξ ; ξ ′] := Dγ ( p̃ξ || p̃ξ ′ )
to be the corresponding contrast function of the Rényi diver-
gence, then one can show that [39, Theorem 13]

Dγ [ξ ; ξ ′] = 1

γ
log(1 + γ ξη′) − ϕγ (ξ ) − ψγ (η′), (16)

which resembles Eq. (5) but with the factor ξη replaced by a
logarithm. Above,

ψγ (η) := min
ξ

{log(1 + γ ξη) − ϕγ (ξ )} (17)

is a generalization of the Fenchel-Legendre transform of ϕγ ,
which has conjugate coordinates established by

η = 1

1 + γ ξDϕγ (ξ )
Dϕγ (ξ ), (18a)

ξ = 1

1 + γ ξDψγ (η)
Dψγ (η), (18b)

with Dϕ denoting the Euclidean gradient of ϕ. Finally, it is
worth noting that

Dϕγ (ξ ) = Eξ

{
h(X )

1 + γ ξh(X )

}
=: Eξ {Zξ (h)}, (19)

where X is a random variable that follows the distribution
pξ (x), h(X ) denotes the sufficient statistics of X , and Zξ (h)
is defined implicitly as the quantity within the curly brackets.
Hence these generalized Fenchel-Legendre dual coordinates
can be alternatively expressed as

η = 1

1 + γ ξEξ {Zξ (h)}Eξ {Zξ (h)}. (20)

For the case of γ = 0, Eq. (20) reduces to the well-known re-
lationship given by η = Eξ {h(X )} (see Appendix B for further
comments).
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D. Conformal-projective classes

Conformal transformations are operations over geo-
metric structures that are angle-preserving, amounting to
(pseudo)rotations and dilation of the points in the manifold.
Technically, a conformal transformation on M is defined as
an invertible map ω : M → M such that the induced metric
by the pull-back map ω∗ : Tω(p)M → TpM is related to the
original metric up to a scaling factor λ(p) : M → R such that

gp[ω∗(X ), ω∗(Y )] = λ[ω(p)]gω(p)(X,Y ) (21)

for all X,Y ∈ Tω(p)M. Correspondingly, two metrics g and g̃
are said to be conformally equivalent if they can be linked via
a conformal factor λ as in Eq. (21).

Due to their non-Riemannian geometry, geometric trans-
formations on statistical manifolds that are “structure-
preserving” are not fully specified by their effect on the
metric, but also need to characterize its effect on the
connections—which may diverge from metric-dependence
via Chentsov’s tensor. This characterization can be done by
relaying on the notion of projectively equivalence: Two con-
nections ∇ and ∇̃ are said to be projectively equivalent if there
exists a 1-form ν = ai(ξ )dξ i that satisfies

�k
i j (ξ ) = �̃k

i j (ξ ) + ai(ξ )δk
j + a j (ξ )δk

i , (22)

with δ
j
i the Kronecker δ [68].

A convenient way to put these notions together and build
conformal-projective transformations is by considering trans-
formations over divergences. Two divergences D and D̃ are
said to belong to the same conformal-projective class if two
conditions are met: (i) their induced metrics are conformally
equivalent, and (ii) their induced connections are projectively
equivalent. It can be shown that two divergences belong to the
same conformally projective class if and only if they satisfy

D̃[ξ ; ξ ′] = λ(ξ )D[ξ ; ξ ′], (23)

with λ being the conformal-projective factor [69].
Let us now study the relationship between the geometries

induced by Dγ , Dα, and DKL. By considering the inverse of
Eq. (12), one finds that the function

F (x) = eγ x − 1

(1 + γ )γ
, (24)

establishes the diffeomorphism F (Dγ [ξ ; ξ ′]) = Dα[ξ ; ξ ′],
which reveals that the Rényi divergence and α divergences
generate exactly the same geometry [as described by Eqs. (9)].
Building on this fact, and leveraging the Legendre-like form
of the Rényi entropy shown in Eq. (16), a direct calculation
shows that the action of F on Dγ can be expressed as a Breg-
man divergence Dφ scaled by a conformal-projective factor
[70, Theorem 1]:

F (Dγ [ξ ; ξ ′]) = κ (ξ )Dφ[ξ ; ξ ′]. (25)

Above, φ is a scalar potential given by φ(ξ ) = eγ ϕ0(ξ ) with
ϕ0(ξ ) as given in Eq. (15), and the conformal-projective factor
κ has the form

κ (ξ ) = − 1

γφ(ξ )
. (26)

FIG. 1. An schematic diagram depicting the three classes of ge-
ometrical structures that arise from their α-value. The curved (i.e.,
α �= ±1) geometries are characterized by the α- and Rényi’s diver-
gence, both of which are conformally projectively related to the KL
divergence—which in turn generates a flat geometry.

Moreover, please note that Dφ describes a dually flat ge-
ometry, belonging to the same equivalent class as the KL
divergence. Thus, these results together establishes that
Rényi’s Dγ , Dα, and DKL belong to the same conformal-
projective equivalence class (see Fig. 1).

To conclude, let us present a derivation of the functional
form of κ (ξ ) used in Eq. (25) following Ref. [70]. The metric
induced by Dγ [ξ ; ξ ′] is given by

g̃i j (ξ ) := −∂i, j′Dγ [ξ ; ξ ′]|
ξ=ξ ′ = κ (ξ )∂i jφ(ξ ), (27)

and hence g̃i j (ξ ) = κ (ξ )gi j (ξ ). Furthermore, its induced con-
nection and metric curvature can be found to be

�̃ k
i j (ξ ) = ∂iκ (ξ )

κ (ξ )
δk

j + ∂ jκ (ξ )

κ (ξ )
δk

i , (28a)

R̃ l
i jk (ξ ) = κ (ξ )

(
∂ jk

1

κ (ξ )
δl

i − ∂ik
1

κ (ξ )
δl

j

)
. (28b)

Hence, by introducing the 1-form ν = D log κ (ξ ), one can
identify the affine connection induced by �̃ k

i j (ξ ) as being
projectively flat. This 1-form—or equivalently, the conformal
factor κ (ξ )—can be derived from the Riemann curvature ten-
sor, which for spaces of constant sectional curvature takes the
form R l

i jk = K (g jkδ
l
i − gikδ

l
j ), with K ∈ R corresponding to

its scalar curvature. As mentioned in Sec. II C, the geometry
induced by the α divergence has curvature ω = (1 − α2)/4
throughout the whole manifold, and hence its Riemann tensor
can be rewritten as

R l
i jk = 1 + α

2

(
g̃ jkδ

l
i − g̃ikδ

l
j

)
, (29)

where a factor 1−α
2 = γ + 1 from ω has been absorbed by the

metric [71]. Moreover, using the fact that the Riemann tensor
is left unchanged by the conformal-projective transformation
(i.e., R̃ l

i jk = R l
i jk ), and recognizing that K = −γ , one can

use Eqs. (27), (28b), and (29) to show that

1

κ (ξ )
= −γφ(ξ ) +

∑
i

aiξ
i + b, (30)

for some ai, b ∈ R. Finally, as the linear terms can be ab-
sorbed in the definition of φ, Eq. (30) leads to the expression
for κ (ξ ) as shown above.
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III. ORTHOGONAL FOLIATIONS IN CURVED
STATISTICAL MANIFOLDS

This section presents the study of orthogonal foliations in
curved statistical manifolds. For simplicity of the exposition,
the rest of the paper focuses on multivariate distributions
of n binary random variables—i.e., distributions of the form
p(x) where x = (x1, . . . , xn) with xi ∈ {0, 1}, and hence
χ = {0, 1}n.

A. Orthogonal foliations on flat-projective spaces

Let us consider a parametrization ν of the manifold M.
Then, for a given pν ∈ M we define

M̃k{pν} := {qν ′ ∈ M|ν ′
i = νi ∀i = 1, . . . , k}, (31)

which establishes a nested structure on the manifold of the
form

{p} = M̃n{p} ⊂ M̃n−1{p} ⊂ · · · ⊂ M̃0{p} = M. (32)

The parametrization pν also induces a natural basis for the
cotangent space at each p ∈ M, which we denote by ∂νi ∈
T ∗

p M. To study the geometry of this basis, let us consider
the functional form of Dγ induced by ν, which is given by
Dγ [ν; ν ′] := Dγ (pν ||pν ′ ). Then, the inner product between
the basis elements ∂νi can be calculated as〈

∂νi , ∂ν ′
j

〉 = −∂νi,ν
′
j
Dγ [ν; ν ′]

∣∣
ν ′=ν

= g̃i j (ν). (33)

The properties of Dγ guarantees that g̃i j (ν) is positive-
definite, and hence it has a well-defined inverse for each ν

which we denote by ri j (ν) := [g−1(ν)]
i j

. By denoting as θ the
primal coordinates with respect to r, one can then define

Ẽk := {pθ ∈ M|θ j = θu
j , ∀ j > k}, (34)

where θu denote the θ coordinates of the uniform distribution
u. It is direct to verify that

{u} = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn = M. (35)

Interestingly, Ẽk grows with k while M̃k shrinks such that for
each k their combined dimensions sum up to n—being enough
to account for the dimensionality of M. Furthermore, due to
the fact that these complementary dimensions are orthogonal,
this implies that their intersection cannot be empty.

We summarize these ideas in the following definition.
Definition 1. For a given parametrization ν of M for

which Ẽk exists, the orthogonal foliation of M associated to
pν is the collection of sets {M̃k{pν}, Ẽk}.

Please note that the bases of TpM and T ∗
p M determined

by the generalized Fenchel-Legendre dual coordinates estab-
lished by Eqs. (18a) and (18b) are not orthogonal under the
inner product related to the scalar potential ϕ and its con-
jugate if γ > 0, as discussed in Appendix C. Therefore, the
standard relationship between geometric duality and Fenchel-
Legendre duality that holds for γ = 0 is broken in curved
statistical manifolds. Nonetheless, projective-flatness allows
for the metric induced by Dγ to be expressible in coor-
dinates where the bases are manifestly orthogonal up to a
conformal-projective factor, so that 〈∂ξi , ∂η j 〉 = κ (θ )δ j

i with
κ (θ ) as defined in Eq. (26). Then, θ and its Fenchel-Legendre

conjugate established by Eq. (6) define a set of conformal-
projective coordinates.

Crucially, orthogonal foliations satisfy a Pythagorean prop-
erty, as shown by the following lemma.

Lemma 1. Given an orthogonal foliation {M̃k{p}, Ẽk}, if
p ∈ M̃k{p}, r ∈ Ẽk , and q ∈ M̃k{p} ∩ Ẽk , then

Dγ (r||p) = Dγ (q||p) + Dγ (r||q). (36)

Proof. See Appendix C. �
It is important to note that while building orthogonal co-

ordinates is a relatively simple construction, these do not
necessarily generally guarantee a Pythagorean relationship.
As a matter of fact, although the equivalence between Rényi’s
and α divergences ensures that both divergences induce
the same geometry, only Rényi’s exhibits a correspondence
between orthogonality on the metric and a Pythagorean re-
lationship on the divergence (see Sec. II C). To illustrate
these ideas, let us consider a particular construction where
we take M̃k as the set of probabilities distributions with
fixed expectation values, denoted by η, and come up with
its orthogonal complement. From φ as the potential encoding
these change of coordinates, we define its conjugate potential
ψ̄ = minξ [ξη − φ(ξ )]. In this way, the primal coordinates ξ̄

orthogonal to η follow from D[ξη − φ(ξ )], that is,

ξ̄ i = Eξ {hi(x)} − 1

γ κ (ξ )
[D log κ (ξ )]i, (37)

where the first term in the right-hand side follows from ηi =
Eξ {hi(x)}. The primal coordinates ξ̄ i allows us to construct an
orthogonal complement to M̃k , and from Eq. (A1) one finds
that

Ēk (ck+ ) = {pξ̄ (x) ∈ M| ξ̄k+ = ck+}. (38)

B. Higher-order hierarchical decomposition

Using a orthogonal foliation, we now introduce the notion
of hierarchical decomposition on curved statistical manifolds.

Definition 2. The kth order γ projection of p ∈ M under
the orthogonal foliation {M̃k{p}, Ẽk} is

p̃(k) := arg minq∈Ẽk
Dγ (p ; q) = arg minq∈Ẽk

Dα (p ; q). (39)

Above, the minimum under Dγ and Dα is the same, as both
divergences are related by a monotonous function as shows by
Eq. (12). An useful property of the orthogonal foliation is that
it enables a useful characterization of p̃(k) for k > 0, as shown
in the next Lemma.

Lemma 2. The kth order γ projection of p ∈ M satisfies
{ p̃(k)} = Ẽk ∩ M̃k{p}.

Proof. Consider q ∈ Ẽk ∩ M̃k{p}. It is direct to verify that
p, q ∈ M̃k{p} and q, p̃(k) ∈ Ẽk . Then, Lemma 1 implies that

Dγ (p|| p̃(k) ) = Dγ (p||q) + Dγ (q|| p̃(k) ) � Dγ (p||q). (40)

Additionally, Eq. (39) and the fact that q ∈ Ẽk imply that
Dγ (p||q) � Dγ (p|| p̃(k) ), which together with Eq. (40) show
that Dγ (p|| p̃(k) ) = Dγ (p||q). This, combined again with
Eq. (40), implies in turn that Dγ (q|| p̃(k) ) = 0, which can only
be satisfied if q = p̃(k).

Following Ref. [30], let us consider the mixed coordinates
νk = (ηk− ; ξk+ ). Then, due to the duality of η and ξ , one can
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FIG. 2. (Left) Orthogonal foliation of manifold M. (Right) Pro-
jections onto E1 leaf (associated with α = 1) and its deformation Ẽ1

related to α �= ±1.

verify that p̃(k) satisfy the mixed coordinates ν̃k = (ηk− ; 0),
where ηk− are the constraints of order up to k of p. Interest-
ingly, note that u = Ẽ0(0) is equal to the uniform distribution
u for all p ∈ M and all γ .

With these definitions at hand, we can prove the following
result.

Theorem 1. For a given p ∈ M, the collection of the γ

projections p̃(n−1), . . . , u satisfy

Dγ (p||u) =
n∑

k=1

Dγ ( p̃(k)|| p̃(k−1)). (41)

Proof. Let us start noting that both p̃(n−1) and u belong
to Ẽn−1, while both p and p̃(n−1) belong to M̃n−1 due to
Lemma 2. Therefore, Lemma 1 implies that

Dγ (p||u) = Dγ (p|| p̃(n−1)) + Dγ ( p̃(n−1)||u). (42)

The rest of the proof can be done following a similar rationale
recursively on Dγ ( p̃(n−1)||u). �

To better understand the deformation of the layers induced
by γ , it is beneficial to consider the mean-field theory ap-
proach presented in Ref. [72]. Let us consider a classic Ising
model for which two layers suffice to describe the system, and
focus in its projection to E1. In [72] the m and e projections
denote the solution and naive approximations, respectively,
which are both orthogonal. Moreover, the α projection draws
the trajectory of solutions in between. In the current picture,
however, the submanifolds are deformed in such a way that
the α projection becomes orthogonal with α = ±1, which are
left as fixed points (see Fig. 2).

IV. GENERALIZING THE MAXIMUM
ENTROPY PRINCIPLE

A. Rényi’s entropy and related quantities

Consider a manifold of distributions whose support allows
a flat distribution. Then, the α negentropy of p is defined as

Nγ (p) := � − Hγ (p), (43)

with Hγ = � being the Rényi entropy of the uniform distribu-
tions, which corresponds to log |χ| for finite χ or log n in the
continuum, and

Hγ (p) = −1

γ
log

∫
χ

p(x; ξ )γ+1dμ(x) (44)

being the well-known Rényi entropy. This definition recovers
the standard Shannon entropy and negentropy in the case
γ = 0 [73].

Another quantity of interest is the γ total correlation, de-
fined as

TCγ (X n) =
n∑

i=0

Hγ (X i ) − Hγ (X n), (45)

where X n := (X1, . . . , Xn) is a random vector that distributes
according to pξ (X = x) with x = (x1, . . . , xn). This is a gen-
eralization of the well-known total correlation for Shannon’s
entropy (also known as multi-information [74]), which is a
generalization of Shannon’s mutual information for the case
of three or more variables [75]. In particular, if n = 2, then
the total correlation gives a Rényi’s mutual information.

B. A hierarchical decomposition of Rényi’s entropy

With a hierarchical decomposition p, p(n−1), . . . , u at hand,
we are now poised to address the problem of entropy decom-
position based on the relevance of each order.

Lemma 3. Consider a the γ projections of p ∈ M under
an orthogonal foliation {M̃k{p}, Ẽk} such that Ẽ0 = {u} with u
the uniform distribution. Then, the following holds for l < k:

Dγ ( p̃(k)|| p̃(l ) ) = Hγ ( p̃(l ) ) − Hγ ( p̃(k) ). (46)

Proof. A direct application of Eq. (41) shows that

Dγ ( p̃(k)||u) = Dγ ( p̃(k)|| p̃(l ) ) + Dγ ( p̃(l )||u). (47)

Then, the desired result follows from re-ordering the terms
and using the fact that Dγ (q||u) = � − Hγ (q) for any q ∈ M.

�
Corollary 1. For any multivariate distribution p,

Nγ (p) = Dγ (p||u), (48)

TCγ (X n) = Dγ

(
p

∣∣∣∣∣
∣∣∣∣∣

n∏
k=1

pXk

)
. (49)

Using this lemma, we can put forward our main result.
Theorem 2. Consider p ∈ M and an orthogonal foliation

{M̃k{p}, Ẽk} such that Ẽ0 = {u}. Then,

p̃(k) = arg maxq∈M̃k{p}Hγ (q). (50)

Additionally, the Rényi negentropy can be decomposed as

Nγ (p) =
N∑

k=1

�(k)Hγ (p), (51)

with �(k)Hγ (p) := Hγ ( p̃(k−1)) − Hγ ( p̃(k) ) > 0 quantifying
the relevance of the kth order constraints.

Proof. Because p̃(k) ∈ M̃k (see Lemma 2), thanks to
Lemma 1 any r ∈ M̃k satisfies

Dγ (r||u) = Dγ (r|| p̃(k) ) + Dγ ( p̃(k)||u). (52)

Therefore, Dγ (r||u) � Dγ ( p̃(k)||u) for all r ∈ M̃k , and hence
it follows that

p̃(k) = arg minq∈M̃k
Dγ (q||u) = arg maxq∈M̃k

Hγ (q). (53)
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Above, the first equality is due to the fact that p̃(k) ∈ M̃k , and
the second equality uses the fact that Dγ (q||u) = � − Hγ (q).

To prove Eq. (51), one can use Corollary 1 and Theorem 1
to show that

Nγ (p) = Dγ (p||u) =
N∑

k=1

Dγ ( p̃(k)|| p̃(k−1)). (54)

The desired result is then a consequence of Lemma 3. �
Above, �(k)Hγ (p) accounts for the relevance of the kth

order interactions. In particular, the first-order term accounts
for all the noninteractive part:

�(1)Hγ (p) =
N∑

j=1

Nγ (Xj ) =
N∑

j=1

[log n − Hγ (Xj )], (55)

with Nγ (Xj ) being the marginal negentropy of Xj . The re-
maining terms can be seen to be equal to

N∑
k=2

�(k)Hγ (p) = TCγ (p), (56)

showing that the TCγ captures all the correlated part of
the Rényi negentropy, following the relationship observed in
Shannon’s case for γ = 0 (as discussed in Ref. [75]).

C. Maximum Rényi entropy distributions over constraints
on average observables

Let us now consider a collection of observables h over a
system of n binary variables defined as

hi,k (x) =
k∏

j=1

xIk
i ( j), (57)

with hi,k being the ith observable of kth order, with Ik
i ( j) being

an appropriate assignment of indices. Then, one can define the
following coordinates:

ν i,k := E{hi,k (x)}. (58)

For example, ν i,1 are of the form E{xi} and ν j,2 of the form
E{xrxs}. Importantly, given that x1, . . . , xn are binary variable
then one can check that, once ν i,l for all i and l � k are fixed,
this in turn determines all the kth order marginals [76]. Cru-
cially, this implies that the parameters ν as a whole determine
a unique distribution pν (x), and hence ν is a valid parametriza-
tion of the corresponding statistical manifold [14,35].

Let us now consider the family of sets M̃k , as defined in
Eq. (31) associated to this parametrization. According to the
previous discussion, M̃k{p} is the set of all distributions for
x that are compatible with the kth order marginals. For deter-
mining the form of the corresponding kth order γ projection,
we use the following lemma.

Lemma 4. The solution of the optimisation problem

arg maxq∈MHγ (q) s.t. ν i,l = Eq{hi,l (x)} (59)

for all i and l � k gives a projection of the form

p̃(k)
θ (x) = e−zγ (θ )[1 + γ θh(x)]1/γ , (60)

with θ i,l = 0 for all l > k, and a normalisation factor given by
zγ (θ ) = 1

γ
log

∑
x[1 + γ θ · h(x)]1/γ .

Proof. Using Theorem 2, it is clear that p̃(k)
θ can be found

by solving the extreme values of a Lagrangean of the form

L(q, θ0, {θ j}) = Hγ (q) + θ0

(∑
i

qi − 1

)

+
∑

j

θ j

(∑
k

qkFj (xk ) − ν j

)
, (61)

where q is a discrete distribution and θ j are Lagrange multi-
pliers. The desired result follows from imposing ∂L/∂qi = 0
and ∂L/∂θ j = 0. �

Efficient numerical methods to estimate distributions of the
form specified by Eq. (60) will be developed in a separate
publication.

V. CONCLUSION

This paper shows how the non-Euclidean geometry of
curved statistical manifolds naturally leads to a MEP that
uses the Rényi entropy, generalizing the traditional MEP
framework based on Shannon’s—which take place on flat
manifolds. This generalization of the MEP has three important
consequences:

(1) It highlights special geometrical properties of the
Rényi entropy, which make it stand apart from other gener-
alized entropies.

(2) It provides a solid mathematical foundation for the
numerous applications of the Rényi entropy and divergence.

(3) It enables a range of novel methods of analysis for the
statistics of complex systems.

Rényi’s entropy and divergence represent one of many
routes by which the classic information-theoretic definitions
can be extended. One fundamental feature of the Rényi
divergence—that this work thoroughly exploits—is the cor-
respondence that it establishes between orthogonality with
respect to Fisher’s metric and a Pythagorean relationship in
the divergence (which does not hold in the geometry in-
duced by, e.g., the α divergence). This correspondence is the
key property that allows us to build hierarchical foliations,
despite the fact that in curved manifolds the link between
geometric and Fenchel-Legendre duality is generally broken.
It is relevant to highlight that the correspondence between
orthogonality and the Pythagorean relationship is not guar-
anteed by other divergences such as the α divergence, which
makes entropies such as Tsallis’ [77] not well suited to extend
the MEP—at least from an information geometry perspective
[78]. Considering that extensions of the Renyi entropy exist
(e.g., Ref. [79]), an interesting open question is to determine
the range of divergences that satisfy these properties.

These findings are in agreement with recent research that is
revealing special features of the Rényi entropy and divergence
in the context of statistical inference and learning. In particu-
lar, Refs. [80,81] show that the Rényi divergence can provide
bounds to the generalization error of supervised learning algo-
rithms. Also, Ref. [82] shows that the Rényi entropy belongs
to a class of functionals that are particularly well-suited for
inference and estimation. Put together, these findings suggest
that the Rényi entropy and divergence might be capable of

033216-7



PABLO A. MORALES AND FERNANDO E. ROSAS PHYSICAL REVIEW RESEARCH 3, 033216 (2021)

playing an important role in the development of future data
analysis and artificial intelligence frameworks.

This work opens the door to novel data-analyses ap-
proaches to study high-order interactions. While commonly
neglected, high-order statistics have recently been proven to
be instrumental in a wide range of phenomena at the heart
of complex systems, including the self-organising capabilities
of cellular automata [83], gene-to-gene information flow [84],
neural information processing [85], high-order brain func-
tions [86,87], and emergent phenomena [88,89]. However,
exhaustive modeling of high-order effects requires an ex-
ponential number of parameters; for that reason, practical
investigations need to rely on heuristic modeling methods
(see, e.g., Refs. [90,91]). In contrast, our framework allow
us to do projections while optimising the manifold’s curva-
ture to best match empirical statistics. Importantly, kth order
projections on curved spaces lead to distributions that cap-
ture statistical phenomena of order higher than k without
increasing the dimensionality of the parametric family. The
development of this line of research is part of our future work.

Another set of promising applications is found in con-
densed matter systems, where the Rényi entropy is often
introduced as a measure of the degree of quantum entan-
glement. In particular, the Rényi entropy results from an
heuristic generalization of the Von Neumann entropy, which
has important benefits in being (i) more suitable to numerical
simulations [92] and (ii) being easier to measure by experi-
ments [93]. In particular, the Rényi entropy has been shown
to be sensible to features of quantum systems such as cen-
tral charge [43], and knowledge of it at all orders encodes
the whole entanglement spectrum of a quantum state [94].
Moreover, in strongly coupled systems, Rényi entropies have
been essential for establishing a connection between quantum
entanglement and gravity [95,96]. More recently, the Rényi
mutual information has been taking a central role in the iden-
tification of phase transitions [43,44,97]. The mathematical
framework established in this work serves as a solid basis
for these investigations, and further allows the exploration
of novel application of information geometry tools in these
scenarios.

It is our hope that this contribution may serve to widen the
range of applicability of the MEP, while fostering theoretical
and practical investigations related to the properties of curved
statistical manifolds.
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APPENDIX A: DEFORMED EXPONENTIAL
FAMILY DISTRIBUTIONS

For completeness, this Appendix presents a derivation of
the functional form of p̃ξ as presented by Eq. (14) that follows
Ref. [39, Sec. 4.1]. For this, let us consider an “exponentially
flat” manifold [98], i.e., a manifold M with a parametrization

ξ such that all p ∈ M can be expressed as

pξ (x) = e−ξ ·h(x)+φ(ξ ), (A1)

where h(x) is a vector of sufficient statistics of x, and −φ(ξ )
is the cumulant generating function. Note that this “natural
parametrization” of M allows to express the corresponding
contrast function of the KL, DKL[ξ ; ξ ′] := DKL(pξ ||pξ ′ ), as a
Bregman divergence:

DKL[ξ ; ξ ′] = (ξ − ξ ′)η − φ(ξ ) + φ(ξ ′). (A2)

To find a “deformed” exponential distribution p̃ ∈ M, one
needs to find the natural parametrization of M that allows to
express the Rényi entropy as a Bregman-like divergence. For
this purpose, one can rewrite Eq. (A1) in its self-dual form to
find

log pξ (x) = −DKL[ξ : ξ ′] − ψ[h(x)], (A3)

with ψ the conjugate of φ, and h(x) plays the role of the dual
variable η′. Then, one can re-write Eq. (A3) replacing DKL

with Dγ , and use Eq. (16) to obtain

log p̃ξ (x) = −Dγ [ξ : ξ ′] − ψγ [h(x)] (A4)

= − 1

γ
log[1 + γ ξh(x)] + ϕγ (ξ ), (A5)

which leads to

p̃ξ (x) = [1 + γ ξh(x)]−
1
γ e−ϕγ (ξ ), (A6)

with a normalizing potential given by Eq. (15). Importantly,
one can show that [39, Theorem 13]

Dγ ( p̃ξ || p̃ξ ′ ) = Dγ [ξ ; ξ ′], (A7)

which confirms that the parametrization of M determined
by Eq. (14) is the natural (in the Bregman-like sense)
parametrization of the deformed geometry induced by Dγ .

APPENDIX B: ANALYSIS OF DEFORMED
EXPECTATION VALUES

The deformed expectation values given by Eq. (20) are
nontrivial to interpret, and their explicit dependence on ξ

makes numerical simulation challenging. However, exploring
some ranges of values of γ can help us to flesh out an inter-
pretation for η.

To this end, let us start by considering the Taylor series
expansion of the Zξ field given by

Zξ (h) = h(X )
∞∑

n=0

(−1)n[γ ξh(X )]n. (B1)

Small values of γ ensure convergence of the series. Now, one
may write its expectation value as

Eξ {Zi
ξ (h)}  Eξ {hi} − γ ξ jEξ {hih j}

+ γ 2ξ jξ kEξ {hih jhk}, (B2)

where we have retained up to second order corrections. Simi-
larly for η, one can find that

ηi  Eξ {hi} − ξ j (Eξ {hih j} + Eξ {h j}Eξ {hi})γ

+ ξ jξ k (Eξ {hih jhk} + Eξ {h jhk}Eξ {hi}
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+ Eξ {h j}Eξ {hkhi}
+ Eξ {h j}Eξ {hk}Eξ {hi})γ 2. (B3)

This implies that these Bregman-like dual coordinate gener-
ally deviates from the one obtained for γ = 0 through higher
orders moments, which becomes more prominent as one in-
creases the order of its γ expansion.

APPENDIX C: PYTHAGOREAN RELATION

This Appendix provides a proof for Lemma 1, which fol-
lows results presented in Ref. [39].

Proof. Let us consider a primal geodesic connecting p and
q with coordinates ξ and a dual geodesic connecting r and
q with coordinates η. The geodesics are then proportional to
ξ i

r − ξ i
q and ηp, j − ηq, j , respectively. Then, let us define

A =
∑

i

(
ξ i

r − ξ i
q

)
∂ξ i , (C1)

B =
∑

j

(ηp, j − ηq, j )∂η j , (C2)

and take a look of their inner product

〈A, B〉 =
〈∑

i

(
ξ i

r − ξ i
q

)
∂ξ i ,

∑
j

(
η j

q − η j
r

)
∂η j

〉
(C3)

=
∑
i, j

(
ξ i

r − ξ i
q

)
(ηp, j − ηq, j )

〈
∂ξ i , ∂η j

〉
. (C4)

In other words, we rely on the evaluation of Eq. (C4), which
requires that the inner product of the primal and dual bases
induced by the divergence Eq. (13), vanish. That is,

〈∂ξ i , ∂η j 〉 =
〈
∂ξ i ,

∑
m

∂η j ξ
m∂ξm

〉
(C5)

=
∑

m

∂η j ξ
m〈∂ξ i , ∂ξm〉, (C6)

whose intern product can be directly obtained from the diver-
gence as

g̃im(ξ ) = −∂i∂m′Dγ [ξ, ξ ′]|ξ ′=ξ (C7)

=
{

−∂ξ ′mη′
i

�(ξ, η′)
+

∑
l

γ η′
iξ

l

�(ξ, η′)2
∂ξ ′mη′

l

}∣∣∣∣∣
ξ ′=ξ

, (C8)

where we use the shorthand notation �(ξ, η′) := (1 + γ ξ ·
η′). Replacing this expression into Eq. (C6) yields

〈
∂ξ i , ∂η j

〉 = −1

�(ξ, η)
δ

j
i + α

�(ξ, η)2
ηiξ

j . (C9)

Using this in Eq. (C4), and adopting �q := �(ξq, ηq) for
brevity, one finds that

〈A, B〉 =
∑
i, j

(
ξ i

r − ξ i
q

)
(ηp, j − ηq, j )

(−1

�q
δ

j
i − α

�2
q

ηq,iξ
j

q

)
.

(C10)
Evaluating the sum, one finds that this expression is propor-
tional to

�q(ξr − ξq)(ηp − ηq) + αξq(ηp − ηq)ηq(ξr − ξq). (C11)

Finally, the Pythagorean relationship in Eq. (36) holds

⇐⇒ (1 + γ ξqηp)(1 + γ ξrηq)

= (1 + γ ξrηp)(1 + γ ξqηq) (C12)

⇐⇒ (ξr − ξq)(ηp − ηq)

= γ (ξqηp)(ξrηq) − γ (ξrηp)(ξqηq), (C13)

as it can be seen directly from its logarithmic dependence and
the Fenchel-Lengendre relation for the scalar potentials on
point q. Since the primal geodesic and its dual are orthogonal
at q, this Eq. (C11) must vanish resulting in Eq. (C13), hence
the Pythagorean relation holds.
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