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We consider a model of quantum computation we call “varying Z” (VZ), defined by applying controllable
Z-diagonal Hamiltonians in the presence of a uniform and constant external X field, and prove that it is universal,
even in one dimension. Universality is demonstrated by construction of a universal gate set with O(1) depth
overhead. We then use this construction to describe a circuit whose output distribution cannot be classically
simulated unless the polynomial hierarchy collapses, with the goal of providing a low-resource method of
demonstrating quantum supremacy. The VZ model can achieve quantum supremacy in O(n) depth in one
dimension, equivalent to the random circuit sampling models despite a higher degree of homogeneity: it requires
no individually addressed X control.

DOI: 10.1103/PhysRevResearch.3.033207

I. INTRODUCTION

In the current era of noisy intermediate scale quantum com-
puters [1], quantum architectures are limited by connectivity,
gate fidelity, and various other sources of errors that limit
both circuit depth and width. In response, various models of
quantum computation have been developed that are designed
to be relatively easy to implement on existing hardware. The
strength of these models is then confirmed by demonstrat-
ing their ability to achieve universality [2–6] or quantum
supremacy [7–17]. Universality is a stronger attribute, as it
implies the ability to reproduce the quantum supremacy re-
sults of other models.

In this spirit, here we propose a model of quantum compu-
tation that is computationally universal even when restricted
to a one-dimensional (1D) chain of qubits with only nearest-
neighbor interactions and a limited degree of control. This
“varying-Z” (VZ) model is defined by applying a series of
Z-diagonal (i.e., diagonal in the computational basis) Hamil-
tonians in the presence of a constant and homogeneous X
field. By homogeneous, we mean that the X field is qubit-
permutation invariant, requiring no individually addressed
control. We consider the VZ model both on a general graph
and in 1D. The latter is theoretically motivated by the question
of the quantum computational power of 1D systems [6,18] and
experiments with 1D systems, such as chains of fluxonium
qubits [19], and chains of transmons which were used in
a prequel to Google’s quantum supremacy work [20]. The
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general VZ model is physically motivated by physical systems
subject to always-on transverse fields, such as superconduct-
ing flux-qubit architectures [21–24] which experience a small
but always-on X field in a quantum annealing context [25].

The outline of this paper is as follows: In Sec. II we review
the previous results on the universality and supremacy of 1D
models. In Sec. III we define our model and in Sec. IV we
demonstrate universality by reconstructing a universal gate
set. In Sec. V we apply this universality result to generate
distributions capable of demonstrating quantum supremacy,
and in Sec. VI we close with concluding remarks. Additional
technical details are provided in the Appendices.

II. BACKGROUND: UNIVERSALITY AND SUPREMACY
VIA 1D MODELS

Universal quantum computation is, informally, the ability
to solve any problem that can be solved by any quantum
computer or, more formally, the ability to approximate any
unitary transformation to arbitrary accuracy in polynomial
runtime [2,3]. Quantum supremacy is, also informally, the
ability of a quantum computer to solve problems with a su-
perpolynomial speedup relative to any classical computer [7].
More formally, quantum supremacy is the ability to sample
from a probability distribution that cannot be efficiently ap-
proximated to arbitrary accuracy by any classical computer
with access to randomness unless the polynomial hierarchy
collapses, which is believed to be unlikely [11,12]. A number
of problems exist that are solvable in polynomial time by uni-
versal quantum computers but conjectured to be impossible
for classical computers to solve without a superpolynomial
slowdown, so a quantum computer’s universality implies its
quantum supremacy [8,10]. A brief further discussion of the
complexity basis of supremacy is provided in Appendix A.
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TABLE I. Table of various 1D models of universal quantum computation. Models are compared in terms of their requirements needed
to reproduce the output distribution of a 1D quantum circuit of n logical qubits and depth d , to within total variation distance ε. Control
requirement refers to the qubit-addressed control needed for each model. Homogeneous quantum circuits refer to quantum circuits in which
every gate applied is translation invariant across all qubits, while full quantum circuits refer to circuits where gates may vary by qubit. The
universality and supremacy columns give the runtime required for universality and supremacy, respectively. The models are ordered by runtime
requirement.

Control Physical Universality Supremacy
Model requirement qubits runtime scaling runtime scaling Reference

QAOA Initial state O[n log(n)] O(n5d5ε−4) O(n10ε−4) [5]
Homogeneous quantum circuits 4n + 2 O(nd ) O(n2) [6]
VZ model Z interactions n O(d ) O(n) This work
Full quantum circuits X, Z interactions n d O(n) [14,15]

In recent years a number of complementary models of
quantum computation have been proposed, with a variety of
dimensionality, circuit depth, and homogeneity requirements
needed to achieve universality. Here we restrict to considering
models that are universal in 1D, and compare the models on
their requirements needed to reproduce a depth-d universal
gate set (UGS) based quantum circuit, as summarized in Ta-
ble I. Let us now explain the gain achieved by the VZ model,
by contrasting it with the other models featured in this table.

It is known that 1D gate-based quantum circuits can
achieve quantum supremacy in O(n) depth [14,15], so we can
use 1D quantum circuits as a reference point to compare the
runtime requirements of other universal models in achieving
quantum supremacy. One such model is the quantum approx-
imate optimization algorithm (QAOA) [26] (briefly reviewed
in Appendix B) equipped with broadcast quantum cellular au-
tomata [27], that was shown to be universal [5,28]. QAOA in
1D consists of a chain of qubits which undergo evolution that
alternates between a homogeneous X field and a potentially
inhomogeneous Z-diagonal Hamiltonian. Cellular automata
require addressed control of a single qubit, the control unit,
which they use to break translational symmetry and reproduce
local gates on other qubits in the chain. Using QAOA with
cellular automata to reproduce the output distribution of a
given 1D depth-d quantum circuit to within total variation
(Kolmogorov) distance ε requires a runtime of O(n5d5ε−4)
in the worst case, as shown in Appendix C.

The QAOA model requires only a fixed Z-diagonal Hamil-
tonian repeated with different evolution times. Alternatively,
if one is capable of implementing each desired gate as an
alternating sequence of homogeneous nearest-neighbor entan-
gling gates and homogeneous local rotations, using boundary
conditions of the underlying architecture to introduce spatial
control, universality can be achieved in depth O(nd ) via the
model of Ref. [6]. This model can reproduce the target circuit
exactly in the absence of noise, so the time cost is independent
of ε. Compared with QAOA, this model works by applying a
set of more general yet still homogeneous quantum gates.

Resourcewise, the 1D VZ model defined here can be
thought of as a midpoint between the homogenous circuit
model of Ref. [6] and general 1D quantum circuits, in that it
only requires individually addressed control of the Z interac-
tions. Likewise, the asymptotic depth requirement of O(d ) to
achieve universality is between that of Ref. [6] and the original
UGS-based universal quantum circuit being simulated.

While our primary concern is with universality of the VZ
model, in Sec. V we also provide an example of a problem
conjectured to be outside the complexity class SampBPP,
which could be used to demonstrate quantum supremacy in
a practical setting, e.g., using trapped ions or flux qubits.

III. VARYING-Z MODEL

We will analyze the VZ model from the perspective of gate
layers, rather than individual gates.

Definition 1 (Gate layer). A gate layer is a depth-1 oper-
ation, equivalent to a set of gates acting on disjoint sets of
qubits applied in parallel in the circuit model.

The VZ model reproduces a gate layer from a circuit in
the gate model by using a series of applied layers: gate layers
corresponding to the application of a single time-independent
Hamiltonian, which are natural to the VZ model. We use the
term effective layer to refer to the gate layer of the circuit
model which is being reproduced from a set of applied layers.
In the VZ model all n qubits are initially prepared in the |+〉⊗n

state and then acted upon by a series of applied unitary layers.
These unitaries are generated by a series of Hamiltonians
composed of two terms: a Z-diagonal term Hz

l which varies
by applied layer l , and a homogeneous, layer-independent X
field Hx. Each applied layer l is applied for time tl . Note that
l plays the role of a discrete time index. We take the Z Hamil-
tonians to be two-local between neighboring qubits located
on the vertices i ∈ V of some underlying graph (V, E ), and
with interactions along the edges (i, j) ∈ E that are uniform
in magnitude but can be turned on or off by edge. The lth
Hamiltonian may be written as

Hl = Hz
l + Hx, (1a)

Hx = a
∑
i∈V

Xi, (1b)

Hz
l = bl

∑
(i, j)∈E

wl,i jZiZ j + cl

∑
i∈V

vl,iZi, (1c)

where wl,i j ∈ {0, 1} and vl,i ∈ {0, 1}, respectively, switch the
interactions and local fields on or off for the lth applied layer.
We fix a > 0 throughout the circuit, and allow bl and cl to
vary by layer but not by qubit. The total number of qubits is
n = |V|.
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Definition 2 (Varying-Z model). Starting from the initial
state |+〉 ≡ |+〉⊗n, apply each Hamiltonian Hl [Eq. (1)] for
corresponding time tl , measure all the qubits in the Z basis,
and sample the final state.

The output probability distribution is given by

P(s) =
∣∣∣∣∣〈s|

∏
l

e−itl Hl |+〉
∣∣∣∣∣
2

, (2)

where s ∈ {0, 1}n.1

Our main result is the following:
Theorem 1. The VZ model can simulate an arbitrary

depth-d quantum circuit generated by a UGS G to arbitrary
accuracy in depth O(d|G|) on the same underlying graph.

Notably, any circuit generated by a size O(1) UGS, e.g.,
the Clifford+T gate set, may be simulated by the VZ model
in depth O(d ). Given the universality of 1D quantum circuits
with this set of gates, we have the following immediate con-
sequence:

Corollary 1. The 1D VZ model is quantum computation-
ally universal.

The restrictions given here on the parameters a, bl , cl , and tl
are the most restrictive for which we prove constant overhead
universality. Additional spatial or temporal control would not
improve runtime scaling with respect to system size, as it
is already asymptotically optimal. In other words, replacing
X -field control with a constant, always-on transverse field
Hx is sufficient for low overhead universality, as long as the
Z-diagonal Hamiltonian can be updated between successive
applied gate layers. This is clearly a significant simplification
in terms of control requirements over the standard UGS ap-
proach.

Note that the initial state |+〉 is the ground state of −Hx, so
it can be prepared by turning on this Hamiltonian and waiting
for the system to relax into its ground state. It can also be
prepared starting from the |0〉⊗n state and applying the global
Hadamard gate W ⊗n, which is compatible with the VZ model
since it requires no inhomogeneity of the X field.

We remark that the VZ model resembles QAOA [26] to
some extent. The main differences are the fact that in the VZ
model the X field is always on (whereas in QAOA one alter-
nates between Hz

l and Hx), and that in VZ model we assume
that the b and c coefficients are l dependent, whereas in QAOA
they may vary by qubit but not by l (see also Appendix B).

Proof outline of Theorem 1. Two-qubit gates are universal
for quantum computation [3], and an arbitrary two-qubit gate
can be produced with a constant number of single-qubit uni-
taries and ZZ gates [i.e., gates generated by ZiZ j interaction
terms in the Hamiltonian, as in Eq. (1c)] [30,31]. Thus, in
order to reproduce an arbitrary quantum circuit, it is sufficient
to demonstrate the ability to generate arbitrary single-qubit
unitaries and ZZ gates. We will first demonstrate the ability

1Note that the assumption of “rectangular” pulses implied by
writing e−itl Hl is, of course, experimentally unrealistic due to finite-
bandwidth constraints. A realistic pulse will have finite rise and fall
times, but as long as the integrated pulse profile equates to tl Hl ∀ l ,
standard experimental pulse shaping methods can be used to reduce
any associated systematic errors [29].

to reproduce layers corresponding to arbitrary single-qubit
unitaries (Lemma 1) and then corresponding to ZZ gates with
arbitrary real coupling constants (Lemma 2). The technical
challenge in proving these results is to deal with the fact the
X field is always on.

Each type of effective gate layer GL can be implemented
using lmax(L) ∈ O(1) applied layers of the VZ model, corre-
sponding to the decomposition

GL =
lmax(L)∏

l=1

e−itl (Hx+Hz
l ). (3)

As each effective layer can apply gates across all qubits in
parallel, we will then analyze the decomposition of an arbi-
trary circuit into layers based on its UGS, and conclude that
the circuit can be implemented in the VZ model with depth
overhead proportional to the number of unique gates present
within a single gate layer.

IV. PROOF OF UNIVERSALITY OF THE VZ MODEL

In this section we provide a detailed proof of Theorem 1.

A. Single-qubit gate layers

Consider an effective gate layer GL corresponding to
identical instances gi, i ∈ V , of an arbitrary single-qubit
unitary g, applied to a subset of all qubits. Let g ap-
ply a rotation by some angle γ about some axis �r =
[sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )] of the Bloch sphere.
This layer may then be decomposed as

GL =
⊗

i

(gi )
vi = e−i γ

2

∑
i vi�r·�σi , vi ∈ {0, 1} (4)

for �σi = (Xi,Yi, Zi ), and vi = 1 iff unitary gi is applied to qubit
i. How would we implement GL using just the components of
the VZ model? It would appear that a simple Euler angle con-
struction should suffice, but we explain in Appendix D why
this approach fails. Instead, the following lemma provides the
answer:

Lemma 1. The VZ model can implement an arbitrary ef-
fective single-qubit gate layer GL [Eq. (4)] in three applied
layers.

Proof. We will show that GL may be decomposed into a
product of three applied unitary layers as

GL = V ⊗n
n⊗

i=1

Ui (V †)⊗n =
⊗
i∈V

ViUiV
†

i , (5)

with

Ui = e−it (aXi+cviZi ), (6a)

Vi = e−it ′(aXi+c′Zi ). (6b)

V † may be implemented modulo π , and does not require
changing the X -field strength a (we suppress the i subscript
where convenient). The resulting effective and applied layers
are depicted in Fig. 1.

Intuitively, we would like Ui to implement a Bloch sphere
rotation by γ for qubits i with vi = 1 and by 0 otherwise, up
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FIG. 1. (a) Example effective single-qubit gate layer GL in 1D,
with a gate g acting on only the first qubit. (b) Implementation as
applied layers in the VZ model. The time t is chosen to make the net
effect on qubits {2, . . . , n} the identity gate.

to equivalence modulo 2π . V and V † effectively rotate the
rotational axis of Ui to point along the Bloch vector �r.

Ui applies a rotation of magnitude 2
√

a2 + (cvi )2t , so we
can construct the desired Ui by solving for c and t such that

2at = 2π, vi = 0, (7a)

2
√

a2 + c2t = 2π + γ , vi = 1. (7b)

The offset by 2π ensures the system of equations is solv-
able for nonzero t and real c. As it can be factored out as

e−i( 2π+γ

2 )�r·�σ = e−iπ�r·�σ e−i γ

2 �r·�σ = −e−i γ

2 �r·�σ (8)

for unit vector �r, this offset’s only effect on the dynamics is
an overall phase. This system of equations is solved by t =
π/a, c = (a/2π )

√
(2π + γ )2 − (2π )2 (recall that in the VZ

model a is given and fixed). For qubits with vi = 0, this choice
amounts to Ui = e−iπXi and thus no net rotation. For qubits
with vi = 1 the resulting action of Ui is

U = e−it (aX+cZ ) (9a)

= e−i( 2π+γ

2 )[sin(α)X+cos(α)Z], (9b)

where α = cos−1( c√
a2+c2 ) [Fig. 2(a)]. Thus, the axis of rota-

tion makes an angle α with the Z axis.

When solving for V we can ignore the vi = 0 case, as
VV † = I . We choose c′, t ′ in Eq. (6b) for V to implement a
rotation [Fig. 2(b)]:

V = e−it ′(aX+c′Z ) (10a)

= e−i α′
2 [sin(ψ )X+cos(ψ )Z] (10b)

in order to effectively rotate the sin(α)X + cos(α)Z axis into
the desired axis �r [Fig. 2(c)]. The necessary α′ and ψ are
solved for in Appendix E. They are

ψ = tan−1

(
cos(α) − cos(θ )

sin(θ ) cos(φ) − sin(α)

)
, (11a)

α′ = sin−1

(
sin(θ ) sin(φ)

sin(ψ − α)

)
, (11b)

where we take ψ ∈ [0, π ] and α′ ∈ [π
2 , 3π

2 ]. From here it is
straightforward to solve for c′, t ′.

The resulting values of c, t , c′, t ′ in Eq. (6) are

t = π

a
, (12a)

c = a

2π

√
(2π + γ )2 − (2π )2, (12b)

t ′ = α′ sin(ψ )

2a
, (12c)

c′ = a cot(ψ ) (12d)

for ψ and α′ in Eq. (11). Substituting these values into Eq. (5)
yields the desired GL. �

We note that in the case that φ = 0, Eq. (11) reduces to
ψ = (θ + α)/2 and α′ = π . This case creates the T gate when
(θ, γ ) = (0, π

4 ) and Hadamard gate when (θ, γ ) = ( π
4 , π ) so

it is in fact sufficient to construct a universal set of single-qubit
gates. However, representing an arbitrary unitary in terms of
a finite-size UGS introduces a small but nonzero source of
error and increased depth requirement [32]. By representing
an arbitrary single-qubit unitary rather than a finite number
of specific unitaries, the VZ model may avoid both of these
setbacks.

FIG. 2. (a) Ui depicted by its rotational axis in the X -Z plane of the Bloch sphere. Here c is picked to make the magnitude of rotation
2π + γ for qubits with vi = 1, which results in the rotational axis making an angle α with the |0〉 state. (b) The unitary V has t ′ and c′ such
that the magnitude of rotation is α′ and the axis makes an angle ψ with the |0〉 state for all qubits. (c) The net result of all three rotations VUiV †

is that the rotational axis of Ui (dashed orange) is rotated by V (blue) to point along �r (solid orange) with spherical coordinates (θ, φ). The net
rotation is of magnitude 2π + γ about the axis �r.
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B. ZZ-coupling layers

Now consider an effective two-qubit coupling layer GL

corresponding to ZZ-coupling gates gi j = e−iCZiZ j with an
arbitrary real coupling constant C > 0, and acting on some
but not all pairs of qubits connected by edges in E . Such a
layer decomposes as

GL =
∏

(i, j)∈E
(gi j )

wi j , wi j ∈ {0, 1} (13a)

= e−iC
∑

(i, j)∈E wi j ZiZ j , (13b)

where wi j = w ji = 1 iff qubit i couples to qubit j and 0 oth-
erwise. Again the question arises, how would we implement
GL using just the components of the VZ model?

The restriction of Definition 1 to disjoint gates means that
each qubit experiences at most a single two-qubit gate and
no >2-qubit gates in a single time step (though we relax this
restriction below, in Sec. IV D). In this case each qubit couples
to at most one of its neighbors at a time:∑

j

wi j =
∑

i

wi j ∈ {0, 1}, (14a)

wi j = 0 for (i, j) /∈ E . (14b)

Then we have the following lemma:
Lemma 2. The VZ model can implement a two-qubit cou-

pling gate layer GL [Eq. (13)] in at most six applied layers.
Proof. We show that this may be implemented in the VZ

model using either three or six applied layers depending on
whether there exist uncoupled qubits. Let S ⊂ V be the set of
uncoupled qubits, i.e., qubits i for which wi j = 0 ∀ j, and set
XS = ∑

i∈S Xi. The implementation takes the form

GL = e−i γ

2 XS e−it ′Hx
Ue−it ′Hx

(15)

for

U = e−it (Hx+b
∑

(i, j)∈E wi j ZiZ j ) (16)

and e−i γ

2 XS an auxiliary single-qubit unitary layer, as defined
in the previous subsection. This e−i γ

2 XS cancels out the X
rotation that uncoupled qubits in S experience while coupled
qubits are being acted upon; in the case that all qubits are
coupled it reduces to the identity. The decomposition into
applied layers is depicted in Fig. 3.

As shown in Appendix F, for any C ∈ [0, π ] the pairwise
coupling condition allows us to pick parameters b and t such
that the action of U becomes

e−it (Hx+b
∑

i j wi j ZiZ j ) (17a)

= e−iatXS e−iβXS e−iC
∑

i j wi j ZiZ j e−iβXS , (17b)

up to an overall phase, for XS = ∑
i/∈S Xi. The required b and

t and resulting β are solved for in Appendix F.
The effect of β can be undone by a uniform X rotation

for time at ′ = π − β before and after the coupling layer. This
gives

e−it ′Hx
e−it (Hx+b

∑
i j wi j ZiZ j )e−it ′Hx

(18a)

= e−i(at−2β )XS e−iCwi j ZiZ j . (18b)

In the case that |S| = 0 we have XS = 0, and the result is
pure ZZ coupling of the desired magnitude C. In the case that

FIG. 3. (a) Example effective two-qubit gate layer GL with a gate
g acting on only the first two qubits. (b) Its implementation as applied
layers in the VZ model. Here V = e−iat ′X is applied both before and
after the coupling interaction, as in Eq. (15).

some qubits are uncoupled, the extra rotation on those qubits
can be undone with an auxiliary inhomogeneous X rotation by
angle γ = 4β − 2at . In this case we have

e−i γ

2 XS e−it ′Hx
e−it (Hx+b

∑
i j wi j ZiZ j )e−it ′Hx

(19a)

= e−iC
∑

i j wi j ZiZ j . (19b)

In either case, by picking parameters

t s.t. sinc(C + kπ ) = sinc[
√

4a2t2 + (C + kπ )2], (20a)

b = (C + kπ )t−1, (20b)

t ′ = (π − β )a−1, (20c)

γ = 4β − 2at, (20d)

where b, k, t , and β are solved for in Appendix F, the effective
coupling layer is implemented in at most six applied layers.�

If the coupling layer is preceded or succeeded by single-
qubit unitary or ZZ-coupling layers acting nontrivially on the
exact same set of qubits, the required depth can be further
reduced. If the temporally adjacent layer is of single-qubit
unitaries, the coupling layer’s required e−it ′Hx

evolution may
be absorbed into the single-qubit unitary layer, and thus be-
come effectively free, as long as the auxiliary e−i γ

2 XS has
γ tuned to compensate. Furthermore, if multiple effective
ZZ-coupling layers share a set S of uncoupled qubits, their
auxiliary X rotations will commute with all the ZZ couplings,
and thus can be combined into a single auxiliary unitary. Both
of these methods may be used to implement SWAP gates more
efficiently, as is done in Sec. V.

It is also worth mentioning that an effective layer of disjoint
e−i π

8 Z⊗Z gates may be implemented in at most six applied lay-
ers, and one of disjoint CZ gates e−i π

4 Z1Z2 e−i π
4 (Z1+Z2 ) in at most

eight by absorbing one of the e−it ′Hx
rotations into the single-

qubit effective layer. Either case is sufficient for universality
in combination with arbitrary single-qubit gates. Universality
can also be achieved using just C = π

4 , but the ability of the
VZ model to apply arbitrary (real) couplings reduces depth
requirements and allows exact, rather than approximate, im-
plementation of a wider range of potential UGSs.
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FIG. 4. (a) An example of a single effective layer L of an ar-
bitrary 1D circuit. The circuit is composed of gates gl of the UGS
G, which act on at most two neighboring qubits. (b) The layer L
implemented as three effective sublayers. Each sublayer l can be
written as a tensor product of gl or the identity across all qubits,
allowing it to be implemented in the VZ model in constant depth
using the methods of this section.

C. Depth requirements

Naively, a depth-d quantum circuit on some graph could
be implemented in the VZ model on the same graph in O(nd )
layers without parallelization, simply by viewing each gate as
its own effective layer. While this is sufficient for universality,
we can reduce the required depth by a factor of up to n using
parallelization in terms of a UGS, leading to Theorem 1.

Proof of Theorem 1. Say that a circuit has depth d when
written in terms of disjoint gates from a UGS G, and that
G is composed of gates that act only on nearest-neighbor
qubits in some underlying architecture described by a graph
(V, E ). We can assume that G is composed of single-qubit
unitaries and two-qubit ZZ coupling, as any two-qubit gate
can be decomposed into O(1) gates of this form [30]. Then
each effective layer of the original circuit can be viewed as at
most |G| individual effective sublayers, where each sublayer
requires instances of only a single type g ∈ G of nonidentity
gate (Fig. 4).

After sublayer decomposition, each effective sublayer cor-
responds either to a single-qubit unitary or ZZ coupling on
monogamously paired qubits, so it is of a form that can be
implemented in the VZ model in O(1) applied layers. An
arbitrary quantum circuit of depth d can then be represented
in the VZ model in depth O(d|G|) on the same graph. �

For example to reproduce the effect of G =
{W, T, e−i π

8 Z⊗Z}, effective sublayers of W and T gates
may each be implemented in three applied layers while
e−i π

8 Z⊗Z requires up to six, so each effective layer of the
original circuit requires at most 12 applied layers of the VZ
model to implement on the same graph.

By extending the 1D implementation of arbitrary instan-
taneous quantum polynomial-time (IQP) circuits used in
Ref. [14] to more general circuits, one sees that 1D quantum
circuits are universal with O(n) -depth overhead. Thus, the
1D VZ model is capable of representing any depth-d quantum
circuit expressed in terms of UGS G on an arbitrary graph, in
depth O(nd|G|). Note that this O(n) factor does not show up
in Table I, as there the target circuit is already taken to be 1D.

The 1D case is also interesting in its own right: it is
known that 1D O(n)-depth universal quantum circuits anti-
concentrate [33] and can generate distributions that cannot be
efficiently classically simulated [14]. In Sec. V, we provide
a circuit distribution that demonstrates this, and analyze the
depth overhead required to implement it in the VZ model.

D. Generalization from disjoint gates to commuting gates

We may also extend the results above to a more general
notion of gate layer, in which we weaken the Definition 1
requirement from gates being disjoint to merely commuting.
That is, multiple commuting gates may act on the same qubit
within a single layer. This notion of depth is the sense in which
an IQP circuit is instantaneous [34].

As the decomposition in Eq. (17) required pairwise cou-
pling, this new definition of gate layer introduces overhead
proportional to the maximum degree � of the underlying
qubit graph (V, E ) in the worst case. After applying the sub-
layer decomposition of the previous subsection, consider an
effective sublayer corresponding to a two-qubit coupling gate
g. Within the sublayer, g can act on an individual qubit i once
for each neighbor that qubit has. In order to restore pairwise
coupling, we must further decompose into an effective sub-
layer for each application of g on i (Fig. 5). The application
of a single two-qubit coupling gate layer may require as many
effective sublayers as the minimum edge coloring of the un-
derlying graph. By Vizing’s theorem [35], this can be upper
bounded by � + 1. In case the graph is a grid-based lattice of
dimension D, this simply becomes the number of sublattices
of paired qubits, which is � = 2D.

With this notion of depth, a depth-d quantum circuit re-
quires a depth-O(d|G|�) VZ model implementation on the
same graph. In the case of a D-dimensional integer lattice ZD,
this becomes O(d|G|D). Interestingly, as a fully connected
graph has � = n − 1, this notion of depth gives the 1D and
same graph VZ models the same asymptotic depth scaling in
the worst case.

V. DEMONSTRATING QUANTUM SUPREMACY

A. Homogeneous X field

In this section we apply the previous results towards
demonstration of quantum supremacy.

Corollary 2. Given certain standard complexity theoretic
assumptions, executing an O(n)-depth 1D VZ model circuit
can generate samples from a distribution that cannot be ap-
proximately simulated in poly(n) time by a classical computer
in the worst case.

The proof follows from Theorem 1 and the distribution
generated in Refs. [8,14], in which it is shown that no classical
computer can efficiently sample from a distribution approxi-
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FIG. 5. (a) An example of an effective coupling sublayer L of
a 1D circuit, in which the coupling gate g is applied across all
qubits, rather than restricted to pairwise coupling. (b) The sublayer L
implemented as two effective coupling sublayers, each with pairwise
coupling.

mating the one in question unless the polynomial hierarchy
collapses, which is believed to not be the case (detailed in
Appendix A). Here we describe the distribution and account
for the exact overhead introduced from generating it in the
VZ , rather than gate-based, model of quantum computation.
This distribution was proposed in Ref. [8] and is the output
distribution of an IQP model with long-range interactions:

PIQP(s) = 〈s|W ⊗ne−iCz |+〉, (21)

where

Cz = wi jZiZ j + viZi, wi j, vi ∈ {
1
8 kπ

}7

k=0, (22)

with wi j and vi chosen uniformly at random from their do-
mains and s a string in the Z basis.

FIG. 7. (a) The first two layers of an example circuit with ar-
bitrarily chosen wi j and vi. Z-diagonal gates are denoted by their
degree of rotation. (b) The same two layers rewritten as effective
sublayers which can be implemented in the VZ model. For example,
the gate corresponding to v2 = 5π

8 in (a) is decomposed into π

2 and π

8
gates in (b), with the π

8 gate shifted so that it is executed in parallel
with the other π

8 gate from (a) to form a sublayer.

In the VZ model we can generate the distribution of
Eq. (21) using a modified version of the circuit design of
Ref. [14], as is depicted in Fig. 6. The depth overhead of
implementing this circuit in the VZ model is affected by
choice of UGS. Rather than implementing each term in CZ as
an independent single-qubit or coupling gate [Fig. 7(a)], we
break each layer of single-qubit and coupling gates into three
effective sublayers by using the binary decomposition

vi = 4π

8
ai + 2π

8
bi + π

8
ci, ai, bi, ci ∈ {0, 1} (23)

and implementing each a, b, c as its own sublayer. Each
ZZ-coupling layer is decomposed into three sublayers with
an equivalent decomposition on wi j [Fig. 7(b)]. A SWAP gate
may be implemented by decomposition into a product of
Hadamard gates and single-qubit and two-qubit Z-diagonal
gates (Fig. 8).

Using the methods of Sec. III, each sublayer of Fig. 7(b)
corresponding to a single-qubit gate can be implemented
in three applied layers, and thus the set of all single-qubit
gates requires nine applied layers using the decomposition of
Eq. (23). Similarly, each coupling layer requires 18 applied

FIG. 6. The n = 4 case of a 1D O(n)-depth circuit capable of generating the distribution in Eq. (21) via alternating layers of ZZ coupling
and SWAP gates. It is equivalent to that of Ref. [14], but composed of Hadamard gates (W ), SWAP gates, and Z-diagonal gates of the form eiviZi

and eiwi j ZiZ j , denoted by their degree of rotation vi or wi j . In this design qubits effectively act as particles moving past each other in 1D, and
after n layers each qubit has a chance to interact with each other qubit once. As Z-diagonal gates commute, multiple interactions between any
pair of qubits can be implemented as a single interaction. Thus, this 1D depth-O(n) circuit is sufficient to implement the circuit implied by
Eq. (21).
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FIG. 8. The SWAP gate represented as (a) a product of CNOT gates, (b) Hadamard (W ) and CZ gates, and (c) Hadamard, e−i π
4 Z , and e−i π

4 Z⊗Z

rotation gates. The latter may be implemented in the VZ model using the methods of Sec. III.

layers, or 18n in total between the n ZZ-coupling layers.
In implementation of the SWAP layer [Fig. 8(c)], we com-
bine adjacent single-qubit unitary layers acting nontrivially
on the same qubits. The result is that a SWAP gate requires
only five effective single-qubit unitary layers, or 15 applied
layers. We further combine the e−it ′Hx

rotations needed for
coupling layers into the adjacent single-qubit unitary layers;
all but one e−it ′Hx

rotation can be absorbed this way. All the
auxiliary e−i γ

2 XS rotations can be combined, so the set of three
effective ZZ-coupling layers requires only four applied layers
to implement if every qubit is coupled (|S| = 0), or seven
otherwise. In total, each of the n effective SWAP layers requires
either 19 or 22 applied layers, depending on whether the SWAP

gates span every qubit or not. When n is even, half of the
SWAP layers act on all qubits, but for odd n every layer has
uncoupled qubits, so in general the total overhead for the SWAP

gate layers is at most 22n. Summing the 18n applied layers for
ZZ coupling, 22n applied layers for SWAP gates, nine applied
layers for single-qubit gates, and final all-qubit Hadamard, the
entire circuit can be implemented in 40n + 10 applied layers.

These calculations assume a noiseless computation model.
The presence of noise can reduce the fidelity of the output dis-
tribution of a circuit to the point that it no longer demonstrates
quantum supremacy (see, e.g., Ref. [17] for a discussion of
this in the context of random circuit sampling). However, in
the case that each output bit has O(1) chance of error (due
to measurement error, depolarizing noise, etc), for the dis-
tribution discussed here even a classical repetition code with
O[ln(n)] repetitions is sufficient to regain the fidelity needed
to demonstrate supremacy [34]. The universality of the VZ
model allows it to perform this repetition code efficiently, in
contrast to nonuniversal methods of demonstrating quantum
supremacy, which are not necessarily able to correct for the
effects of decoherence.

B. Alternating X field

In this section we consider a slight modification of the
VZ model in which the X field can be turned off for half
the qubits at a time, either those of even or odd index. This
modification reduces the depth required to apply the SWAP

gate while still being easier to implement than the fully in-
homogeneous circuit model, and thus reduces the total depth
required to demonstrate quantum supremacy. We still use
the homogeneous X -field method for implementing the ZZ-
coupling layers. For even n, in each SWAP layer the SWAP

gates alternate between acting pairwise on one sublattice such
that they cover all of the qubits, and acting pairwise on the
other sublattice such that there are two unaffected qubits at the
boundaries of the qubit chain. For odd n every sublattice acted
on by SWAP gates has a single unaffected qubit. Cases with
unaffected qubits require more layers to cancel the X rotations
these boundary qubits experience while the other qubits are
being swapped, as discussed below.

In the alternating X -field method, instead of implementing
the SWAP gate as three CNOT gates as in Fig. 8(a), we use
different building blocks: ZZ-coupling layers with nonzero X
fields on either only the even or only the odd qubits, as shown
in Fig. 9. In Appendix G we show that in this construction
a SWAP gate layer spanning all qubits can be implemented in
seven applied layers. In the case of unswapped qubits, these
qubits experience a different net X rotation depending on
whether they are of even or odd qubit index. As there are
at most two values of unwanted X rotation after the SWAP

layer, these can be undone in at most two single-qubit effective
layers, or six applied layers. This brings the total number
of applied layers to implement a single effective SWAP layer
to seven if every qubit is swapped, 10 if there is a single
unswapped qubit, or at most 13 otherwise.

For even n the model alternates between SWAP layers with
zero and two unswapped qubits, so the set of all SWAP layers
requires 7 n

2 + 13 n
2 = 10n applied layers. For odd n, every

SWAP layer has a single unswapped qubit, so the SWAP layers

Alternating

Homogeneous ...

...
FIG. 9. Homogeneous vs alternating pattern of X fields. Blue

lines represent ZZ couplings, which form a sublattice. Gray circles
represent nonzero X field, while white circles have no X field.
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require a total of 10n applied layers, the same as in the even
n case. Including 18n applied layers of ZZ-coupling gates
and 10 of single-qubit gates and Hadamards, the total num-
ber of applied layers required to reach supremacy becomes
28n + 10. This shows a cost reduction from 40n + 10 (in the
case of a fully homogeneous X field) to 28n + 10 (in the case
of an alternating X -field model).

VI. CONCLUSIONS

Minimalism is both a sound engineering design principle
and a desirable feature of theoretical models. By minimalism
we mean a reduction in the consumption of some or more
precious resources, or the reliance on a small set of assump-
tions. This work is an attempt to be minimalistic about the
resources and assumptions underlying both implementations
and models of universal quantum computation and quantum
supremacy. From a practical perspective, spatially homoge-
neous or global control can be a significant advantage over
individualized or local control since the latter typically in-
volves additional control wires or lasers, each of which is
another source of noise and decoherence. From a theoretical
perspective, it is interesting to investigate the computational
power of fully or partially translationally invariant models in
low dimensions.

In accordance with this perspective we have studied here
the power of a minimalistic model that assumes spatially
homogeneous X -field control but spatially inhomogeneous
Z-field control [Eq. (1)]. We have shown that this “VZ model”
can be used to demonstrate quantum supremacy even in 1D,
and is furthermore universal for quantum computation. The
overhead required to implement the circuit model with a stan-
dard universal gate set using the 1D VZ model is constant
in system size and is significantly lower than the universal
version of QAOA (see Table I). We are unaware of any model
of quantum computation with a higher degree of homogeneity
that achieves the same asymptotic depth scaling as the VZ
model.

Perhaps the most immediate application of the VZ model
would be a demonstration of quantum supremacy in the IQP
setting, which we have shown here can be implemented in
at most 40n + 10 layers of control pulses, for a circuit of
width n. This model may be the next to be used for a quantum
supremacy demonstration, now that this has been done using
random circuit sampling [16] and boson sampling [36]. Such
a demonstration within the VZ model would be particularly
viable using flux qubits [22–24], where leaving a constant
and homogeneous X field on while locally controlling only Z
fields and interactions is both simpler and less prone to noise
than also controlling the X field.
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APPENDIX A: COMPLEXITY BASIS OF QUANTUM
SUPREMACY

We begin with some terminology. A decision problem is a
problem where, given an input string, a computer is asked to
answer yes or no. A sampling problem is a problem where
a computer is asked to sample strings from some distribu-
tion, either exactly or approximately to within some error
bound. Bounded-error probabilistic polynomial-time (BPP)
is the computational complexity class of decision problems
that a classical computer, with access to true randomness, can
solve with an error probability less than 1

3 for all instances in
time polynomial in input size. It can be viewed as the class of
decision problems that it is realistic for a classical computer
to solve. Bounded-error quantum polynomial-time (BQP) is
the equivalent class for quantum computers. The correspond-
ing classes of approximate and exact sampling problems are
SampBPP and ExactSampBPP for classical computers and
SampBQP and ExactSampBQP for quantum.

It is widely believed that ExactSampBQP �= Exact-
SampBPP, due to a hypothetical tool called postselection [37].
Postselection is the ability to select from only samples that
fit some criteria, effectively selecting the results of random-
ness after all computation is done. The classes of decision
problems associated with BPP and BQP when the computer
has access to postselection are referred to as PostBPP and
PostBQP. PostBPP is known to be within the third level of the
polynomial hierarchy, a hierarchy of classes of decision prob-
lems representing a generalization of the P vs NP distinction.
However, it is known by Toda’s and Aaronson’s theorems that
the entire polynomial hierarchy has a polynomial-time reduc-
tion to PostBQP, i.e., that given the ability to efficiently solve
any individual problem in PostBQP, one could efficiently
solve every problem in the polynomial hierarchy [11,37,38]. If
ExactSampBQP=ExactSampBPP, then PostBQP=PostBPP,
and the entire polynomial hierarchy would be contained
within its third level, a situation referred to as collapse of the
polynomial hierarchy. This is conjectured to not happen for
the same reason it is believed that P �= NP.

Verifying that one has solved a problem in ExactSampBQP
requires knowing the distribution one’s quantum device is
sampling from. Because in reality the number of samples one
can take is always finite, this distribution cannot be perfectly
calculated. Instead we must address approximate sampling
problems (in the class SampBQP) and either show or con-
jecture that those are as hard as the corresponding problems
in ExactSampBQP. Verifying that what one can realistically
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sample is still computationally hard often relies on anticon-
centration of the output distribution [13,34]: the outcome
probabilities must be sufficiently spread across all possible
outcomes of measurements, so that there is a nonvanishing
signal-to-noise ratio for at least a constant fraction of all
possible outcomes.

APPENDIX B: QAOA VS THE VZ MODEL

In QAOA [26] one considers a Hamiltonian of the form

H (t ) = a(t )HX + d (t )HZ , (B1a)

HX =
∑
i∈V

Xi, (B1b)

HZ =
∑

(i, j)∈E
bi jZiZ j +

∑
i∈V

ciZi, (B1c)

for n qubits occupying the vertices V of a graph G = {V, E}.
The parameters bi j and ci are controllable longitudinal local
field and coupling constants, respectively, and a(t ) and d (t )
are time-dependent control functions. Note that Hl [Eq. (1)] is
an instance of H (t ), for each fixed l and t .

The level-p QAOA produces an approximation C∗
p to the

optimal value of the classical cost function represented by HZ :

U (β, γ ) = e−iβHX
e−iγ HZ

, (B2a)

|ψ (γ,β)〉 =
(

p∏
k=1

U (βk, γk )

)
|+〉, (B2b)

C∗
p = min

γ,β
〈ψ (γ,β)|HZ |ψ (γ,β)〉, (B2c)

where γ = (γ1, . . . , γp), β = (β1, . . . , βp) are the angles that
parametrize the circuit. Various heuristic methods for choos-
ing these angles have been considered, and for small values of
p = O(1) the optimization can be done exactly [39].

The VZ model (Definition 2) differs from QAOA in that the
alternating sequence of unitaries always includes HX , unlike
the QAOA sequence given in Eq. (B2a). It also differs in that
in QAOA the HZ Hamiltonian is fixed, while in the VZ model
we assume that the b, c, w, and v coefficients in Eq. (1) are
controllable from layer to layer, which would be equivalent to
making b and c time dependent in Eq. (B1c).

APPENDIX C: DEPTH SCALING OF QAOA
UNIVERSALITY

Here we analyze the required depth of the QAOA model
used in Ref. [5] to reproduce the output of a 1D circuit to
within a given total variation distance ε. This model of QAOA
uses coirrationality of terms in a Z-diagonal Hamiltonian HZ

to reproduce a translationally invariant gate layer U composed
of a tensor product of one to two qubit gates across all qubits.
The evolution time needed to reproduce a specific gate layer
such that

‖e−itHZ − U‖ � ε′ (C1)

is t ∈ O(ε′−4), where ‖ · ‖ is the operator norm.
The cellular automata method applies individually ad-

dressed gates by using SWAP gates to effectively walk a certain

qubit, dubbed the control unit, across the chain until it is
adjacent to a qubit being acted on [27], then performs con-
trolled gates. It thus requires O(n) depth to implement a single
gate. Assuming the ability to parallelize, a 1D circuit of depth
d with O(nd ) gates will then require O(nd )-depth cellular
automata to reproduce. In the QAOA implementation this
becomes O(ndε′−4), but we would like to bound runtime in
terms of total variation distance ε of the output distribution,
not operator norm error ε′ of each individual gate layer.

Define an nd-layer cellular automata protocol as the ap-
plication of a series of gates {Ul}nd

l=1 to some initial state ρ0,
with ρl the state of the system after application of Ul . Let
the implementation of this gate in QAOA be composed of
gate layers U ′

l = Ul + δl for gate error δl with ‖δl‖ < ε′, and
resulting states ρ ′

l . We can bound the trace distance ‖ρ ′
l − ρl‖1

between the ideal and QAOA implementations of the circuit
in terms of that of ‖ρ ′

l−1 − ρl−1‖1 as

‖ρ ′
l − ρl‖1 = ‖U ′

l ρ
′
l−1U

′†
l − Ulρl−1U

†
l ‖1 (C2a)

= ‖U ′
l (ρ ′

l−1 − ρl−1)U ′†
l + U ′

l ρl−1U
′†
l

−Ulρl−1U
†
l ‖1 (C2b)

� ‖ρ ′
l−1 − ρl−1‖1 + ‖U ′

l ρl−1U
′†
l

−Ulρl−1U
†
l ‖1 (C2c)

by using the triangle inequality and unitary invariance of the
trace norm. Using submultiplicativity and the fact ‖ρl−1‖1 =
1, we can further bound the right-hand side:

‖U ′
l ρl−1U

′†
l − Ulρl−1U

†
l ‖1 (C3a)

= ‖(Ul + δl )ρl−1(Ul + δl )
† − Ulρl−1U

†
l ‖1 (C3b)

� ‖ρl−1δ
†
l ‖1 + ‖δlρl−1‖1 + ‖δlρl−1δ

†
l ‖1 (C3c)

� 2‖δl‖‖ρl−1‖1 + ‖δl‖2‖ρl−1‖1 (C3d)

� 2ε′ + ε′2, (C3e)

where we used ‖A†‖ = ‖A‖ and ‖AB‖1 � ‖A‖‖B‖1 for any
pair of operators A and B [40,41]. Summarizing, we have

‖ρ ′
l − ρl‖1 − ‖ρ ′

l−1 − ρl−1‖1 � 2ε′ + ε′2, ∀ l . (C4)

For a circuit of nd gate layers, the total variation distance
between the output distributions of the ideal and QAOA im-
plementations can then be bounded as∑

s

|P′(s) − P(s)| � ‖ρ ′
nd − ρnd‖1 (C5a)

� 2ndε′ + ndε′2, (C5b)

where s represents a bit string, the first inequality comes
from bounding the total variation distance by the trace-norm
distance,2 and the second by recursively applying Eq. (C4)
and using the fact that ρ ′

0 = ρ0.

2
∑

s |P′(s) − P(s)| � Tr|ρ ′ − ρ|, where P(s) = Tr(|s〉〈s|ρ ), with
ρ = C|0〉〈0|C†, and the inequality follows since the trace-norm dis-
tance is the maximum of 1

2

∑
s |Tr[Es(ρ ′ − ρ )]| over all possible

generalized measurements Es, which includes the projective mea-
surement |s〉〈s| [42].
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Suppose we wish to approximate a circuit to total varia-
tion distance O(ε). Then assuming the worst case bound in
Eq. (C5), we must have ε′ = O( ε

nd ). In this case the total
runtime of the QAOA circuit is O(ndε′−4) = O(n5d5ε−4).
Note that in Eq. (C1) we used the operator norm rather than
the trace norm as in Ref. [5]. The reason is that the trace norm
is extensive in the Hilbert space dimension, meaning that in
the worst case it is 2n+1 times larger than the operator norm
for the difference between two unitaries as in Eq. (C1). Had
we used the trace norm, then, since the first n in Eq. (C5b)
would have been modified by the same factor, we would have
found the runtime to be larger by the fourth power of the same
factor than if we use the operator norm.

APPENDIX D: FAILURE OF THE EULER ANGLES
CONSTRUCTION TO GENERATE SINGLE-QUBIT GATES

IN THE VZ MODEL

We can define su(2) generators in the VZ model:

X̃ = cos(α)X + sin(α)Z , Z̃ = − sin(α)X + cos(α)Z.

(D1)
It is simple to check that this pair satisfies the su(2) commu-
tation relations along with Y (e.g., [Z̃, X̃ ] = 2iY , etc.). From
here we can construct any SU(2) single-qubit gate using the
standard Euler angles construction:

g(φ, θ, ψ ) = U z(φ)U x(θ )U z(ψ ) (D2a)

=
[

cos(θ )e−i(ψ+φ) −i sin(θ )e−i(φ−ψ )

−i sin(θ )ei(φ−ψ ) cos(θ )ei(ψ+φ)

]
,

(D2b)

where the angles take values within the intervals θ ∈ [0, π/2],
φ ∈ [0, π ], ψ ∈ [0, 2π ] (mod π ), and where U x(ϕ) =
exp(−iϕX̃ ) and U z(ϕ) = exp(−iϕZ̃ ). This approach is cer-
tainly feasible for an applied layer in which all qubits undergo
the same single-qubit gate. However, it fails when at least one
qubit (but not all) in an applied layer is idle, since in the Euler
angle construction the only way to generate the identity gate
is to choose the angles as

{θ = 0, ψ = 2π − φ} mod π. (D3)

The problem is that fixing θ = 0 restricts the ability to gen-
erate an arbitrary single-qubit gate on the nonidle qubits,
i.e., suppose that the applied layer includes one idle and an-
other nonidle qubit requiring the pure X̃ rotation g2(0, θ, 0) =
g(φ, θ, 2π − φ) with θ > 0. It is not possible to implement
both gates without restricting generality within the same time
interval (applied layer) since this limits the allowed values
of θ . Namely, for a layer of duration t , on the one hand we
would need t cos α = kπ and t sin α = kπ for the idle qubit
(using θ = kπ with integer k instead of θ = 0), but on the
other hand we would also need t cos α = θ and t sin α = θ

for the nonidle qubit, thus forcing θ to be a multiple of π .

APPENDIX E: PROOF OF EQ. (11)

In this Appendix our goal is to show that we can decom-
pose a desired arbitrary single-qubit rotation

g = e−i γ ′
2 �r·�σ , (E1)

where �r = [sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )], as g =
VUV †, where

U = e−i γ ′
2 [cos(α)Z+sin(α)X ], (E2a)

V = e−i α′
2 [cos(ψ )Z+sin(ψ )X ]. (E2b)

Our second goal is to derive the values of α′ and ψ given in
Eq. (11). In Eq. (9a) we take γ ′ = 2π + γ . However, the re-
sults of this proof do not depend on specific choice of γ ′, aside
from implicit dependence hidden in α or other parameters.

Defining the adjoint group action as Adg(B) ≡ gBg−1 and
using the fact that

AdA(eB) = eABA†
(E3)

for any unitary A and operator B, and that

AdeiθY/2 (Z ) = cos(θ )Z + sin(θ )X, (E4)

and similar identities obtained by cycling X , Y , and Z , we may
rewrite

U = AdeiαY/2

(
e−i γ ′

2 Z
)
, (E5a)

V = AdeiψY/2

(
e−i α′

2 Z
)
. (E5b)

Then setting u = α − ψ , we see that

VUV † = AdeiψY/2

(
Ade−iα′Z/2

[
Adei(α−ψ )Y/2

(
e−i γ ′

2 Z
)])

(E6a)

= AdeiψY/2

(
Ade−iα′Z/2

(
e−i γ ′

2 (cos(u)Z+sin(u)X )
))

(E6b)

= AdeiψY/2 e−i γ ′
2 {cos(u)Z+sin(u)[cos(α′ )X−sin(α′ )Y ]} (E6c)

= e−i γ ′
2 (vxX+vyY +vzZ ), (E6d)

where in the final line

vx = cos(u) sin(ψ ) + sin(u) cos(α′) cos(ψ ), (E7a)

vy = − sin(u) sin(α′), (E7b)

vz = cos(u) cos(ψ ) − sin(u) cos(α′) sin(ψ ). (E7c)

Using the representation of the desired gate g as in
Eq. (E1), this gives a system of three equations: vx = rx,

sin(θ ) cos(φ) = cos(u) sin(ψ ) + sin(u) cos(α′) cos(ψ )

(E8a)

= sin(α) + sin(u) cos(ψ )[cos(α′) − 1]; (E8b)

vy = ry,

sin(θ ) sin(φ) = − sin(u) sin(α′)′; (E9)

and vz = rz,

cos(θ ) = cos(u) cos(ψ ) − sin(u) cos(α′) sin(ψ ) (E10a)

= cos(α) − sin(u) sin(ψ )[cos(α′) − 1]. (E10b)

The existence of a solution of these three equations for α,
α′, and ψ proves that g can be written as VUV † as claimed.

Equation (E9) immediately reduces to

sin(α′) = − sin(θ ) sin(φ)

sin(u)
, (E11)
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while Eqs. (E8) and (E10) can be combined into

tan(ψ ) = cos(α) − cos(θ )

sin(θ ) cos(φ) − sin(α)
. (E12)

Thus, we have the values of α′ and ψ given in Eq. (11), up to
a choice of the range of tan−1 and sin−1.

APPENDIX F: TWO-QUBIT COUPLING DECOMPOSITION

In this Appendix we derive the decomposition given in
Eq. (17), and solve for the necessary t , b, and β in terms of
C. The decomposition in Appendix F 1 relies on an auxiliary
decomposition, which is derived in Appendix F 2.

1. Deriving Eq. (17)

Pairwise coupling [Eq. (14)] allows use of the following
two-qubit decomposition between qubits i and j, derived in
Appendix F 2:

e−it[a(Xi+Xj )+bZiZ j ] (F1a)

= e−iβ(Xi+Xj )e−iD1XiXj e−iD2YiYj e−iD3ZiZ j e−iβ(Xi+Xj ) (F1b)

with

D1 = 0, (F2a)

D2 = 1

2
(bt − ω), (F2b)

D3 = 1

2
(bt + ω), (F2c)

ω = sin−1

(
b√

4a2 + b2
sin(t

√
4a2 + b2)

)
, (F2d)

β = s

4
cos−1(cos(t

√
4a2 + b2) sec(ω)) + π

2
, (F2e)

where s = sign[a sin(
√

4a2 + b2t )] and we pick ω ∈ [−π
2 , π

2 ]
and β ∈ [0, π ]. Uncoupled qubits have wi j = 0 ∀ j, and sim-
ply experience e−iatX , as shown in Fig. 3.

We restrict to the pure ZZ coupling of Eq. (13) between
qubits i and j by requiring that D2 = 0 [to cancel the unde-
sired YiYj term in Eq. (F1b)], and thus that

bt = ω = D3 ≡ D. (F3)

For coupled pairs, we take b �= 0 and solve for t in terms of
D. Namely, substituting Eq. (F3) into (F2d) we obtain

sinc(D) = sinc(
√

4a2t2 + D2), (F4)

where sinc(x) ≡ sin(x)/x.
Achieving the desired magnitude of coupling in Eq. (13)

up to an overall phase requires that D = C mod π . For every
value of C ∈ [0, π ], there exists a k ∈ {0, 1, 2, 3} such that the
equation

sinc[
√

x2 + (C + kπ )2] = sinc(C + kπ ) (F5)

has a solution for some real x [where x = 2at in Eq. (F4)].
This equation is transcendental and cannot be solved analyti-
cally. However, for a given pair of (C, k), numerical methods
can approximately solve Eq. (F5) in the domain x > 0 or
determine that no solution exists. We checked the solvability
of Eq. (F5) for C ∈ [0, π ] and k = 0, 1, 2, 3 to determine the

FIG. 10. Values of C and k for which Eq. (F5) can be solved for
x > 0. Color is included for visibility. For each value of C, at least
one value of k leads to a solution.

minimum range of k needed to make Eq. (F5) solvable for
all C. The results of this numerical determination are plotted
in Fig. 10, from which one can see that k ∈ {0, 1, 2, 3} is
sufficient. As a result, for any C ∈ [0, π ], we can pick this
value of k and corresponding numerical solution t , and set
b = Dt−1 = (C + kπ )t−1.

2. Auxiliary decomposition Eq. (F1)

The form of the decomposition in Eq. (F1) is motivated by
Ref. [43]; any U ∈ SU(4) can be decomposed as

U = k1e−i[D1(X⊗X )+D2(Y ⊗Y )+D3(Z⊗Z )]k2, (F6)

where k1, k2 ∈ SU(2) ⊗ SU(2) and D1, D2, D3 ∈ R. To write
Ui j = e−it[a(Xi+Xj )+bZiZ j ] in this form we first diagonalize hi j =
a(Xi + Xj ) + bZiZ j and obtain its eigenvalues (ei) and eigen-
states (|ei〉). Then we can obtain Ui j as

∑
i e−itei |ei〉〈ei|. If we

decompose Ui j in the Pauli basis, we can show that it has the
following form:

Ui j = P00I + P01Xj + P10Xi + P11XiXj

+ P22YiYj + P33ZiZ j, (F7)

with other terms equal to zero. From this form we see that we
do not need to consider the most general form of a single-qubit
gate for k1 and k2. Instead we start from the following ansatz,
which we will show to be sufficient:

e−iβ(Xi+Xj )e−iD1XiXj e−iD2YiYj e−iD3ZiZ j e−iβ(Xi+Xj ). (F8)

With this ansatz, the problem becomes solving the following
equality:

e−it[a(Xi+Xj )+bZiZ j ] (F9a)

= e−iβ(Xi+Xj )e−iD1XiXj e−iD2YiYj e−iD3ZiZ j e−iβ(Xi+Xj ). (F9b)

This requires solving 16 coupled equations, each for one ele-
ment of a 4 × 4 matrix. To simplify the task we represent both
sides of Eq. (F9) in the “magic basis” defined in Ref. [44] as
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|φ1〉 = 1√
2

(|00〉 + |11〉), |φ2〉 = i√
2

(|00〉 − |11〉),

(F10a)

|φ3〉 = 1√
2

(|01〉 − |10〉), |φ4〉 = i√
2

(|01〉 + |10〉).

(F10b)

In this basis both matrices are sparse, and can be equated
term by term to solve for the given parameters. Also,
the nonlocal part of the right-hand side of Eq. (F9b),
e−iD1XiXj e−iD2YiYj e−iD3ZiZ j , is diagonal in the magic basis. The
following matrix changes the basis from the computational
basis to the magic basis:

Q = 1√
2

⎡
⎢⎣

1 i 0 0
0 0 1 i
0 0 −1 i
1 −i 0 0

⎤
⎥⎦. (F11)

Using Q we can write any matrix U ∈ SU(4) in the magic
basis as

Umag =
∑
i, j

(Q†UQ) ji|φ j〉〈φi|. (F12)

The ansatz defined in Eq. (F9b) takes the following form in
this basis: ⎡

⎢⎣
u11 0 0 u14

0 u22 0 0
0 0 u33 0

u41 0 0 u44

⎤
⎥⎦, (F13)

where

u11 = 1
2 e−i(D1+D2+D3 )[e2iD3 (cos(4β ) − 1]

+ e2iD2 [cos(4β ) + 1)], (F14a)

u14 = e−iD1 sin(4β ) cos(D2 − D3), (F14b)

u22 = ei(D1−D2−D3 ), (F14c)

u33 = ei(D1+D2+D3 ), (F14d)

u41 = −e−iD1 sin(4β ) cos(D2 − D3), (F14e)

u44 = 1
2 e−i(D1+D2+D3 )[e2iD2 (cos(4β ) − 1]

+ e2iD3 [cos(4β ) + 1)]. (F14f)

The unitary defined in Eq. (F9a) takes the same form as
shown in Eq. (F13) in the magic basis, such that

u11 = cos(t
√

4a2 + b2) − ib sin(t
√

4a2 + b2)√
4a2 + b2

, (F15a)

u14 = 2a sin(t
√

4a2 + b2)√
4a2 + b2

, (F15b)

u22 = e−ibt , (F15c)

u33 = eibt , (F15d)

u41 = −2a sin(t
√

4a2 + b2)√
4a2 + b2

, (F15e)

u44 = cos(t
√

4a2 + b2) + ib sin
(
t
√

4a2 + b2
)

√
4a2 + b2

. (F15f)

Equating Eqs. (F14) and (F15) line by line, we obtain Eq. (F2).

APPENDIX G: IMPLEMENTING SWAP WITH THE
ALTERNATING X -FIELD MODEL

In this Appendix we show in detail how we can implement
the SWAP gate in seven layers using the alternating X -field
method. In this method, instead of implementing the SWAP

gate as three CNOT gates as in Fig. 8(a), we use different
building blocks: ZZ-coupling layers with nonzero X fields on
either only the even or only the odd qubits, as shown in Fig. 9.
First we start from one of these coupling layers with X fields
on only the even qubits. We can write the action of this layer
as

U =
∏

i=odd

e−it (aXi+1+bZiZi+1 ) (G1)

for appropriately chosen b. Consider just the two-qubit gate
acting on the first and second qubits; it has the following
block-diagonal structure:

U12 = e−it (aX2+bZ1Z2 ) =
[
U1 0
0 U2

]
, (G2)

where 0 is the 2 × 2 zero matrix, and we can further decom-
pose

U1 = eiαY e−iγ X e−iαY , (G3a)

U2 = e−iαY e−iγ X eiαY , (G3b)

where

α = 1

2
cos−1

(
a√

a2 + b2

)
, (G4a)

γ = t
√

a2 + b2. (G4b)

If we set b = a and t = π

2
√

2a
, then U1 = −iW , and U †

1 U2 =
Ỹ , where Ỹ = ZX = [ 0 1

−1 0]. Thus, for this choice of b
and t ,

U12 = −i(I ⊗ W )CỸ12, (G5)

where CỸ12 is the controlled Ỹ gate. Similar to the ZZ-
coupling gates (recall the discussion in Sec. IV B), this
operation leads to a net X rotation on uncoupled qubits which
still experience an X field, which then must be undone by an
extra single-qubit unitary following the SWAP layer.

Defining the above building block U12, the total circuit
required for a SWAP gate will be

C = U12W1W2U21U12W2 (G6a)

= i(W2CỸ12)W1W2(W1CỸ21)(W2CỸ12)W2. (G6b)

The product of W1W2 needs just one effective single-qubit gate
layer in total, and any effect on uncoupled qubits can be in-
corporated into the extra single-qubit unitary e−iγ XS on these
qubits following the SWAP layer. Since the last W2 requires
three single-qubit gate layers, the total number of required
layers for implementing the above decomposition is seven.

Defining ˜̄Y = −Ỹ = XZ and using the equality W2CỸ12 =
C ˜̄Y12W2, we can simplify the above expression as below:

C = iW2CỸ12W1W2W1CỸ21W2CỸ12W2 (G7a)

= iC ˜̄Y12W2W1W2W1CỸ21C ˜̄Y12W2W2 (G7b)
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= iC ˜̄Y12CỸ21C ˜̄Y12 (G7c)

= iCX12CZ12CZ21CX21CX12CZ12 (G7d)

= iCX12CX21CX12CZ12 (G7e)

= iSWAP12CZ12 (G7f)

= iCZ21SWAP12. (G7g)

This is the required SWAP gate up to CZ21. This unwanted CZ21

can be written as a product of single-qubit Z-diagonal gates
and ZZ couplings, and can in fact be incorporated into the
existing single-qubit and coupling gates already in the overall
circuit, simply by shifting the values of w12, v1, and v2 by
π
4 . These vi and wi j parameters are chosen from a uniform
distribution over the full range of multiples of π

8 mod π , so
the shift by π

4 does not affect the distribution. This makes the
CZ gate effectively free to include.
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