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Identifying and harnessing dynamical phase transitions for quantum-enhanced sensing
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We use the quantum Fisher information (QFI) to diagnose a dynamical phase transition (DPT) in a closed
quantum system, which is usually defined in terms of nonanalytic behavior of a time-averaged order parameter.
Employing the Lipkin-Meshkov-Glick model as an illustrative example, we find that the DPT correlates with
a peak in the QFI that can be explained by a generic connection to an underlying excited-state quantum phase
transition that also enables us to relate the scaling of the QFI with the behavior of the order parameter. Motivated
by the QFI as a quantifier of metrologically useful correlations and entanglement, we also present a robust
interferometric protocol that can enable DPTs as a platform for quantum-enhanced sensing.
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I. INTRODUCTION

The isolation and control of quantum systems at the single-
particle level in atomic, molecular, and optical platforms has
driven a surge of experimental interest in studying nonequi-
librium phenomena. As a consequence, it has become clear
that nonequilibrium quantum systems that feature coherence,
entanglement, and correlations can be important platforms for
next-generation quantum technologies [1,2].

From a fundamental perspective, dynamical phase tran-
sitions (DPTs) [3–14] are being pursued in an effort to
develop a framework to understand and classify nonequilib-
rium quantum matter. Here, we focus on DPTs in a closed
system, defined as a critical point separating distinct dynam-
ical behaviors (phases) that emerge after a quench of system
parameters [15–24], sometimes referred to as DPT-I. Analo-
gous to equilibrium phase transitions, DPTs are characterized
by a time-averaged order parameter that distinguishes dynam-
ical phases and features nonanalytic behavior at the critical
point. A distinct formalism of dynamical quantum phase tran-
sitions (DQPTs or DPT-II) also exists [3,7,9,25–27], but we
do not consider those here. An important current question
is to understand the role of entanglement and coherence in
DPTs [8,28–30] and how these might be harnessed for quan-
tum science applications.

In this manuscript, we theoretically demonstrate that the
quantum Fisher information (QFI) [31], which quantifies
metrologically useful entanglement and correlations in a
quantum state [32–34], can be used to characterize DPTs
via an underlying connection to excited-state quantum phase
transition (EQPTs) [12,28]. Our method shares analogies with
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studies of the fidelity susceptibility [35–37] for ground-state
quantum phase transitions (QPTs), but is distinguished by the
addition of time as a relevant variable. We employ a numerical
study of the dynamical phase diagram of the paradigmatic
Lipkin-Meshkov-Glick (LMG) model to illustrate our ar-
guments, and we use a semianalytic model to establish a
quantitative connection between the scaling of the QFI and
the order parameter. Furthermore, we demonstrate that these
quantum signatures of the DPT can also be accessed through
a related many-body echo combined with simple global mea-
surements. This latter result, in particular, opens a realistic
path for the harnessing of DPTs for quantum-enhanced sens-
ing [38].

II. SIGNATURES OF DYNAMICAL PHASE TRANSITIONS
IN THE QUANTUM FISHER INFORMATION

To outline our arguments most generally, consider a many-
body Hamiltonian describing a closed system,

Ĥ (λ) = Ĥ0 + λĤ1, (1)

where [Ĥ0, Ĥ1] �= 0, and λ is a tunable parameter. The
evolution of an initial state |ψ0〉 under Ĥ (λ) is given by
|ψ (λ, t )〉 = e−iĤ (λ)t |ψ0〉, and a time-averaged order param-
eter Ō = 1

T

∫ T
0 〈Ô(t )〉 dt distinguishes ordered (Ō �= 0) and

disordered (Ō = 0) dynamical phases. A DPT is signaled by
nonanalytic behavior in Ō at a critical point λcr separating the
phases [21–24].

We propose to characterize the DPT by probing how the
state |ψ (λ, t )〉 abruptly changes as the system is quenched
through λcr. This mirrors uses of the fidelity susceptibility to
quantify an abrupt change in the ground-state wave function at
an equilibrium transition [35–37,39–41]. We similarly define
the QFI as the susceptibility [31,34,42],

FQ(λ, t ) = −4
∂2F (λ, δλ, t )

∂ (δλ)2

∣∣∣∣
δλ→0

, (2)
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where F (λ, δλ, t ) = |〈ψ (λ, t )|ψ (λ + δλ, t )〉| is the overlap
between two dynamical states that differ by a perturba-
tion δλ to the driving parameter, equivalent to a Loschmidt
echo (LE) [43–45] F (λ, δλ, t ) ≡ |〈ψ0|eiĤ (λ)t e−iĤ (λ+δλ)t |ψ0〉|.
About the critical point, λ ≈ λcr, we expect F to abruptly
decrease as the dynamical states lie in distinct phases and
become rapidly orthogonal, and we predict that the DPT is
signaled by a corresponding sharp peak in the QFI. This sig-
nature complements the time-averaged order parameter and,
similar to an equilibrium fidelity susceptibility, has the capac-
ity to carry more information about the system as it is based
on a state overlap [46]. Moreover, the QFI could potentially
provide a robust, agnostic probe of more sophisticated DPTs
without requiring any a priori knowledge of, e.g., the appro-
priate order parameter for the transition.

This use of the LE for DPTs is distinct from DQPTs,
wherein the LE arises as a return fidelity, 〈ψ0|e−iĤ (λ)t |ψ0〉,
that relates to nonanalyticities at a critical time rather than
parameter. Moreover, our LE compares states related by a
small perturbation to the Hamiltonian, whereas the survival
fidelity is defined relative to a stationary state |ψ0〉 and can be
highly nonperturbative.

III. LMG MODEL

We demonstrate the validity of our prediction using the
LMG model [47,48] as a paradigmatic example of a DPT [49].
Our choice is motivated by the collective nature of the model,
which describes an ensemble of N mutually interacting spin-
1/2 particles subject to transverse and longitudinal fields, as
this facilitates a tractable analysis of the dynamics across
a range of parameter regimes and system sizes. Moreover,
the LMG model has been studied in the context of trapped
ions [7,8], cavity-QED [13], and cold atoms [50–53]. It is
defined by the Hamiltonian [13]

ĤLMG = −χ

N
Ŝ2

z − �Ŝx − ωŜz, (3)

where Ŝα = ∑N
i=1 σ̂α,i/2 with α = x, y, z are collective spin

operators and σα,i are Pauli matrices for the ith spin-1/2
particle. The Hamiltonian conserves the total spin, Ŝ2 = Ŝ2

x +
Ŝ2

y + Ŝ2
z , and we focus on the maximally collective sector, i.e.,

states with 〈Ŝ2〉 = N (N/2 + 1)/2.
The dynamical phase diagram in the classical limit (N →

∞) is shown in Fig. 1(a) for an initial state of all spins
polarized along −ẑ. A pair of dynamical phases are defined in
terms of a time-averaged order parameter S̄z and most easily
described in the limit ω = 0: For � 	 χ , interactions force
the spins to remain closely aligned to −ẑ and S̄z �= 0, while
for � 
 χ the dynamics is dominated by single-particle Rabi
flopping of each spin-1/2 about the +x̂-axis and thus S̄z = 0.
A critical point separates the phases at �cr/χ = 1/2. Similar
analysis holds for ω �= 0, although the DPT smoothes out
to a crossover for ω/χ � −1/8 [13]. The dynamical phase
diagram is symmetric for � → −� in this case.

In Figs. 1(b)–1(f) we use an efficient Chebyshev expan-
sion algorithm to integrate the dynamics of a system with
N = 103 [54] and investigate the DPT using the QFI. We
consider independent perturbations of the longitudinal δωŜz

[FQ,z(�,ω, t )] and transverse δ�Ŝx [FQ,x (�,ω, t )] fields, and

FIG. 1. (a) Classical dynamical phase diagram using the time-
averaged order parameter S̄z. In the ordered phase, S̄z �= 0, while in
the disordered phase, S̄z = 0. The initial state is all spins polarized
along −z. (b) Time evolution of QFI FQ,x as a function of �/χ and
fixed ω/χ = 0 [initial state as per (a) with N = 103]. (c),(d) Dynam-
ical phase diagram computed with FQ,x and FQ,z at fixed χt = 103

[other parameters as per (b)]. (e) Phase boundary �cr (ω) computed
with S̄z (solid line) compared to �∗(ω) determined from peak values
of FQ,x (orange dots) and FQ,z (blue dots) in (c),(d). (f) Same as (e)
but for fixed ω/χ = 0 and varying the tipping angle θ (relative to +z)
of the initial spin state with fixed azimuthal angle φ = 0.2π . These
initial states break the symmetry � → −� of the phase diagram, and
so we plot critical points for both positive and negative transverse
field strength. Insets of (e) and (f) show scaling of �∗ with N for
ω = 0 and θ = 0.9π , respectively.

we use an equivalent initial state |ψ0〉 = |(−N/2)z〉, where
Ŝz|mz〉 = mz|mz〉. Panel (b) shows typical dynamical behavior
of FQ,x/Nt2 as �/χ is varied and ω/χ = 0. The normaliza-
tion is chosen to absorb the expected long-time growth of
FQ,x ∝ t2. Around the critical point �cr/χ = 1/2 we observe
a pronounced increase in the QFI in both transient and long-
time (χt 
 1) regimes, such that FQ,x/Nt2 
 1. Within the
transient time regime, the FQ/Nt2 shows multiple peaks for
several medium values of χt that are determined numerically.
The QFI also distinguishes the ordered phase, FQ,x/Nt2 → 0,
from the disordered phase, FQ,x/Nt2 ≈ 1.

Panels (c) and (d) show our key result: The DPT as a
function of � and ω is identified by demonstrable peaks in
the QFI at long times χt 
 1. The change of the transition
to a crossover for ω/χ < −1/8 is also indicated clearly by a
broadened and diminishing peak of the QFI. Panel (e) shows
that the critical value �∗, determined from the peak positions
of FQ,x or FQ,z, agrees excellently with �cr determined from
S̄z in the N → ∞ limit, up to finite-size effects (see the inset).

Similarly, panel (f) demonstrates that the QFI reproduces
the signature dependence of the DPT on the initial state [13].
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FIG. 2. (a) Scaling exponent of FQ(�∗) at fixed ω/χ = 10−4. We
fit FQ(�∗) ∼ aNb across a window of N ∈ [100, 2000] for different
initial states parametrized by θ and φ = 0. Data from numerical
integration of the dynamics to χt = 103 (lines) are compared to
the analytic expression F sec

Q [Eq. (4)] for transverse (blue data) and
longitudinal (orange data) perturbations. Inset: Scaling exponent for
the complete range of initial polarized states in the southern hemi-
sphere (results are symmetric about the equator) obtained from F sec

Q .
(b),(c) Snn

x,z as a function of eigenenergy Enn, obtained by numerical
diagonalization of Ĥ at � = �∗ and ω = 10−4 for N = 103. Shaded
background indicates the distribution |cn|2 of the initial state in the
eigenbasis [also indicated as red highlights on Snn

x,z to show relevant
contributions of Snn

x,z in Eq. (4)].

We compare �∗ and �cr as a function of the initial state
|ψ0〉 = |θ, φ〉, where θ is the tipping angle of the collective
spin with respect to ẑ on the collective Bloch sphere, and we
fix the azimuthal angle φ = 0.2π . For these initial states, the
phase diagram is no longer symmetric for � → −�, so we
plot both relevant values of the critical transverse field (fixing
ω/χ = 0).

IV. CRITICAL SCALING OF THE QFI

The scaling of the QFI with system size is important for
identifying how any generated correlations and entanglement
can be useful for quantum sensing. Specifically, the QFI pro-
vides a lower bound for the accuracy for which the driving
parameter δλ can be determined, �λ � 1/

√
FQ(λ, t ) [31].

The standard quantum limit, e.g., the sensitivity that can be
attained with quasiclassical uncorrelated states, sets a bound
(�λ)2

SQL � 1/(Nt2) or equivalently F cl
Q,(x,z) � Nt2 [55,56].

Supralinear scaling of the QFI with N near the critical point
would indicate potential uses for DPTs in quantum-enhanced
sensing.

We empirically fit the maximum of FQ over � for fixed
ω/χ = 10−4 and χt 
 1, i.e., FQ(�∗) = aNb. A finite ω is
chosen to purposely break a parity symmetry of the Hamil-
tonian [57]. Figure 2(a) shows the exponent b as a function
of the tipping angle θ of the initial state with fixed φ =

0. Excluding a region near the equator (θ ≈ π/2), we ob-
serve approximately constant values of b ≈ 1.5 and 1.75 for
FQ,x and FQ,z, respectively, indicating the presence of metro-
logically useful correlations and entanglement for sub-SQL
sensing, e.g., (�λ)2 = FQ < (�λ)2

SQL for large N , and which
cannot be captured by mean-field theory.

To understand the scaling of the QFI, we consider the
generic Hamiltonian Ĥ = Ĥ0 + λĤ1 and use an approxi-
mate analytic expression for the long-time secular contribu-
tion [34],

F sec
Q (λ, t ) ≈ 4t2

[∑
n

|cn|2
(
Hnn

1

)2−
(∑

n

|cn|2Hnn
1

)2]
. (4)

Here, |n〉 are the eigenstates of Ĥ , cn = 〈n|ψ0〉 is the pro-
jection of the initial state into the eigenbasis, and Hnn

1 =
〈n|Ĥ1|n〉. Equation (4) is valid when the spectrum of Ĥ is
nondegenerate or in the case in which the degenerate eigen-
states occupy different sectors of a symmetry that leaves Ĥ1

invariant. Numerical evaluation of Eq. (4) for the LMG model
(Ĥ1 = Ŝz or Ŝx) agrees well with our numerical simulations
of the dynamics for θ away from the equatorial plane. Note
that we chose a small ω/χ = 10−4 to ensure the spectrum is
nondegenerate for the case of F sec

Q,z , although this is not crucial
to our results. A minor disagreement between F sec

Q,z and FQ,z,
and similarly for F sec

Q,x and FQ,x near the equator, is due to
corrections from transient terms ignored in Eq. (4).

Equation (4) gives a simple interpretation for the long-time
QFI: A peak in the QFI is a result of enhanced fluctuations
in Hnn

1 attributable to either a sharp change in the proper-
ties of the eigenstates or the projection of the initial state
into the eigenbasis, both of which can be correlated with the
emergence of a DPT [58,59]. For many systems [12,28,60],
including the LMG model [59], the DPT is triggered by the
former effect due to an EQPT, which leads to nonanalytic
features in Snn

x and Snn
z [57,61], as shown in Figs. 2(b) and 2(c)

for a representative calculation with N = 1000. A sharp cusp
(kink) is observed in Snn

x (Snn
z ) at a critical energy Ecr/N =

−�/2 for �/χ < 1. This is precisely the average energy of
the initial state, E0 = 〈ψ0|Ĥ |ψ0〉, as �/χ (or also ω/χ in
general) is tuned through the DPT at �cr/χ ≈ 1/2. Thus, the
nonanalytic behavior of the DPT already corresponds closely
with that of Snn

z via the relation S̄z ≡ ∑
n |cn|2Snn

z at long
times [59].

By examining the projection of the initial state (cn) for
� ≈ �cr in Figs. 2(b) and 2(c), we conclude that the dis-
tribution of relevant Snn

x (Snn
z ) in Eq. (4) straddles the cusp

(kink) and leads to the sudden increase of the QFI at the
DPT. Moreover, Eq. (4) combined with (i) the approxima-
tion Snn

x,z/N ≈ Ax,z + Bx,z(E/N − Ecr/N )γx,z near E ≈ Ecr [62]
and (ii) the approximation that the energy fluctuation of
an initial coherent spin state typically scales as �E ∼ √

N
after projection into the eigenstates of Ĥ , allows us to qual-
itatively predict the scaling of the QFI as FQ/t2 ∼ N2−γx,z .
From numerical diagonalization of the LMG Hamiltonian,
we obtain γx � 0.495 ± 0.005 and γz � 0.25 ± 0.02, which is
consistent with the approximate scaling of FQ,x/t2 ∼ N1.5 and
FQ,z/t2 ∼ N1.75. The scaling of FQ,z is intimately related to
the scaling of the order parameter S̄z ∼ (� − �cr )γz [through
the approximation (i)] for a finite-size system [63]. Thus the
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QFI, which is a detailed measure of how rapidly the dynamical
state changes across the DPT, is intuitively governed by the
sharpness of the DPT in terms of the time-averaged order
parameter.

Our analysis further supports that the QFI correctly diag-
noses the DPT. For N → ∞, the relative energy fluctuations
�E/E of the initial state vanish and F sec

Q,z (F sec
Q,x ) will have large

contributions from Snn
z (Snn

x ) at E0 → E−
cr (E0 → E+

cr ) [consis-
tent with observations in Fig. 1(e) that show �∗ computed
from the QFI approaching �cr from below (above)].

We note that while we understand the connection between
the QFI and DPT as being facilitated by the EQPT, it should be
distinguished from the latter as being a nonequilibrium result.
For example, while EQPTs also feature a divergent fidelity
susceptibility (and thus associated QFI), this is a property
of eigenstates of an equilibrium system. In contrast, Eq. (4)
would give a QFI of zero for an eigenstate of the system,
as it is specifically the fluctuations of the initial state (i.e.,
distribution across the eigenstates) that drive the large QFI
and, moreover, are inextricably related to the scaling we ob-
serve. Furthermore, directly harnessing the QFI of an EQPT
for quantum sensing would entail the tandem challenges of
controllably preparing an excited state of a many-body system
and adiabatically tuning system parameters through a phase
boundary. The latter inevitably becomes difficult with increas-
ing system size as the required timescales diverge as a result
of the vanishing energy gap.

V. PRACTICAL IMPLEMENTATION AND APPLICATION
TO METROLOGY

The QFI can be measured by implementing a LE se-
quence that also serves as an optimal metrological protocol
to characterize δλ [64,65]. Inspecting the formal defini-
tion of the QFI, given in Eq. (A1), it is clear that the
state overlap 〈ψλ+δλ|ψλ〉 = 〈ψ0|eiĤ (λ+δλ)t e−iĤ (λ)t |ψ0〉 can be
obtained as follows: (i) prepare |ψ0〉, (ii) evolve forward
with the unperturbed Hamiltonian Ĥ (λ) = Ĥ0 + λĤ1 for time
t , (iii) evolve “backward” with the perturbed Hamiltonian
−Ĥ (λ + δλ) = −Ĥ0 − λĤ1 − δλĤ1 for time t , and (iv) ob-
tain F by measuring the overlap |〈ψ0|ψ f 〉|2, where |ψ f 〉 ≡
eiĤ (λ+δλ)t e−iĤ (λ)t |ψ0〉. The capability to invert the sign of a
Hamiltonian has been demonstrated or proposed in a range
of AMO quantum simulators [66–70].

We note that the above protocol assumes temporal con-
trol over both λ and δλ. This is a reasonable approach if
the goal of the protocol is simply to characterize the QFI
and thus the DPT. However, this assumption is not suitable
from the perspective of using the DPT for metrology, where
the perturbation δλ is intrinsically unknown. As a result,
it is also reasonable for us to focus on the most general
scenario in which one does not have temporal control of
δλ. Thus, we consider an alternative, but entirely equiva-
lent, echo sequence where the perturbation is always present
[Fig. 3(a)]: (i) prepare |ψ0〉, (ii) evolve with Ĥ (λ + δλ/2) =
Ĥ (λ) + δλĤ1/2 for time t , (iii) evolve with −Ĥ (λ − δλ/2) =
−Ĥ (λ) + δλĤ1/2 for time t , and (iv) measure the overlap
|〈ψ0|ψ f 〉|2, where |ψ f 〉 ≡ eiĤ (λ+δλ/2)t e−iĤ (λ−δλ/2)t |ψ0〉, to ob-
tain F . This adapted protocol only requires that the sign of the

FIG. 3. (a) Schematic of echo protocol to obtain QFI/estimate
the classical parameter λ. Typical Wigner functions [72] Wψ (r, φ)
of the initial (|ψ0〉), intermediate [|ψ (t )〉], and final (|ψ f 〉) states
for χt = 12 and δω/χ = 2 × 10−3 are shown. We plot with polar
coordinates r = (1 + 2Sz/N )1/4 and φ = atan(Sy/Sx ). (b) Evolution
of the inverse sensitivity (�ω)−2

Ŝy
for �/χ = 1/2, ω/χ = 0, and a

range of decoherence rates �/χ . The blue solid, orange dashed,
green dot-dashed, and red dotted lines correspond to �/χ = 0, 10−3,
10−2, and 10−1, respectively. We also include the QFI FQ,z for the
same parameters and �/χ = 0. (c) Maximum of the normalized
inverse sensitivity maxt [(�ω)−2

Ŝy
/(Nt2)] optimized over time, as a

function of ω/χ and other parameters as per (b). We also plot the
maximum of the normalized QFI, maxt [FQ,z/(Nt2)], as an indicator
of the DPT. In both (b) and (c), the gray-shaded region indicates
the regime bounded by the normalized SQL, (�ω)−2

SQL/Nt2 = 1. All
calculations are for N = 100.

control parameter λ and Ĥ0 can be varied, while the perturba-
tion δλ is identically present in both periods of evolution.

Our protocol is relevant for estimating the small per-
turbation δλ when one separately assumes that λ is well
characterized and independently calibrated to suitably good
precision. This is well motivated by the fact that while δλ and
λ contribute to the Hamiltonian via the term Ĥ1, they may be
generated by different physical effects. For example, in the
case of the LMG model, Ĥ1 = Ŝz corresponds to an energy
splitting in an ensemble of two-level systems, which could be
generated via distinct physical mechanisms such that there is
some well-controlled part λ and some unknown perturbation
δλ due to stray external fields. This is no different from an
assumption widely used in different metrological scenarios in
which one tunes a sensor to work at an optimal point [e.g.,
using a phase offset in an SU(2) or SU(1,1) interferometer].

In addition, one could also envision δλ as not being gen-
erated by a separate effect, but instead as some intrinsic
uncertainty on top of the control parameter λ due to technical
noise. In this case, the operation of “flipping the sign” of λ by
turning some external control knob would be imperfect and
actually realized as λ + δλ/2 → −λ + δ/2 [71], which fol-
lows our proposed echo sequence. Our sensing protocol could
then be used to estimate the magnitude of this uncertainty δλ.

While F is important to compute the QFI, it is also an
optimal signal to infer δλ [65]. Nevertheless, while measuring
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the final-state overlap can be simplified by the fact that DPTs
are typically studied with simple uncorrelated initial states,
technical challenges, such as the detection resolution required
to adequately discriminate states, can still pose a practical
hurdle for many platforms.

We can overcome this problem by noting that for a simple
(e.g., Gaussian) initial state, we expect the final state after the
echo to be distinguishable by relatively simple and robust ob-
servables such as mean spin projection or occupation [69,73–
75]. Specifically, using the quantum Cramer-Rao bound, mea-
surement of an observable M̂ leads to a lower bound for the
QFI, (�λ)−2

M̂
= |∂δλ〈M̂〉|2/var(M̂ ) � FQ [31,64], which can

be made arbitrarily tight for a judiciously chosen observable.
For the LMG model, and assuming an initial state with all
spins orientated along −ẑ, the final state |ψ f 〉 after the echo
[see the Wψ (r, φ) [72] in Fig. 3(a)] approximates a weakly dis-
placed coherent spin state and so is distinguishable from |ψ0〉
by measurement of M̂ = Ŝy for either choice of perturbation.

In Fig. 3(b) we compare (�ω)−2
Ŝy

to the QFI for a pertur-

bation δω and a moderate system size N = 100 (pertinent
for, e.g., trapped ion quantum simulators [8,76] and tailored
to our later discussion of decoherence). We observe that Ŝy

is sufficient to qualitatively replicate the transient features
and long-time growth ∝ t2 of the QFI. In panel (c) we plot
the maximum of (�λ)−2

Ŝy
/Nt2 as a function of ω/χ and

demonstrate that it qualitatively reproduces the peak in the
transient maximum of FQ,z/Nt2 near ω ≈ 0, which identifies
the DPT. In fact, near the DPT we find (��)−2

Ŝy
/t2 ∼ N1.4 and

(�ω)−2
Ŝy

/t2 ∼ N1.78, closely following the scaling of the QFI.

Combined with the observation that (�ω)2
Ŝy

< (�ω)2
SQL =

1/(Nt2) near the DPT, our results suggest that DPTs could
be realistically harnessed for quantum-enhanced sensing by
combining dynamical echoes with simple collective measure-
ment observables.

We also probe the robustness of our results to typical
sources of single-particle decoherence. Using the permutation
symmetry of the LMG Hamiltonian, we are able to effi-
ciently simulate the dynamics of N = 100 qubits subject to
single-particle dephasing at rate � [77]. For weak decoherence
�/χ � 10−2 (within reach of, e.g., current state-of-the-art
trapped ion quantum simulators [76]), strong signatures of the
DPT remain in (�ω)−2

Ŝy
, even though we become limited to

transient timescales. Moreover, the sub-SQL sensitivity near
the DPT remains robust in the same regimes.

VI. CONCLUSION

We have theoretically demonstrated that the QFI can be
used to diagnose DPTs. While we establish a semiquantita-
tive understanding of the QFI via an underlying connection
to EQPTs, our analysis demonstrates it is an intrinsically
nonequilibrium effect. Despite our focus on the LMG model,
our results can be widely applicable, and it will be inter-
esting to apply our analysis to a broader range of known
DPTs [12,28,60,78]. Moreover, our interferometric protocol
combining dynamical echoes and measurement of simple
observables demonstrates that DPTs could be a promising
path for sub-SQL sensing in nonequilibrium many-body sys-
tems [79–82], and one that sidesteps typical challenges, such
as divergent timescales, associated with quantum sensors
based on equilibrium QPTs.
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APPENDIX A: QUANTUM FISHER INFORMATION

In this Appendix, we give several useful expressions for
the QFI in the context of general Hamiltonian dynamics. Our
discussion includes relevant details connecting the scaling
of the QFI to features of the energy spectrum, and we also
provide illustrative proof of the upper bound of the QFI for
uncorrelated spin states.

1. Exact expression for QFI and secular contributions

We study the QFI defined as the susceptibility with re-
spect to a small perturbation δλ of the Hamiltonian Ĥ =
Ĥ0 + λĤ1 [31,34,42,83],

FQ(λ, t ) = −4
∂2F (λ, δλ, t )

∂ (δλ)2

∣∣∣∣
δλ→0

, (A1)

where F (λ, δλ, t ) = |〈ψ (λ, t )|ψ (λ + δλ, t )〉|. Using the
identities

F (λ, δλ, t ) =
√

〈ψ (λ, t )|ψ (λ + δλ, t )〉〈ψ (λ + δλ, t )|ψ (λ, t )〉, F (λ, δλ = 0, t ) = 1, (A2)

and the chain rule alternatively, we can reexpress the QFI as [1]

FQ(λ, t ) = 4

(〈
dψ (t, λ + δλ)

dδλ

∣∣∣∣dψ (t, λ + δλ)

dδλ

〉
−

∣∣∣∣ d〈ψ (t, λ)|ψ (t, λ + δλ)〉
dδλ

∣∣∣∣
2)∣∣∣∣

δλ=0

, (A3)

which, after invoking the identity [34]

exp[iĤ (λ)t]
d

dλ
exp[−iĤ (λ)t]

= −i
∫ t

0
dt ′ exp[iĤ (λ)t ′]

dĤ

dλ
exp[−iĤ (λ)t ′], (A4)

leads to an expression for the QFI in terms of the variance of

a time-averaged generator (Ĥ1)t = 1
t

∫ t
0 Ĥ1(t ′)dt ′ [34,56],

FQ(λ, t ) = 4t2[〈(Ĥ1)
2

t 〉 − |〈(Ĥ1)t 〉|2]. (A5)
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It is possible to extract a useful expression for the long-time
secular behavior of the QFI by evaluating the expectations in
Eq. (A5) using an expansion of the initial state |ψ0〉 of the
system over the eigenbasis |n〉 of Ĥ . Specifically, we plug
|ψ0〉 = ∑

n cn|n〉 with cn ≡ 〈n|ψ0〉 into Eq. (A5) to find

FQ(λ, t )

= t2

[∑
n,k,m

c∗
ncme

i�nmt
2 Hnk

1 Hkm
1 sinc

(
�nkt

2

)

× sinc

(
�kmt

2

)
−

∣∣∣∣∣
∑
n,m

c∗
ncmHnm

1 e
i�nmt

2 sinc

(
�nmt

2

)∣∣∣∣∣
2]

,

(A6)

where �nm = Enn − Emm for Enn = 〈n|Ĥ |n〉.
In the limit of t → ∞, the sinc function enforces that only

terms with �nk = �km = 0 survive in Eq. (A6), leading to

lim
t→∞ FQ(λ, t )

= 4t2

[ ∑
Em=En=Ek

c∗
mcnHmk

1 Hkn
1 −

( ∑
Em=En

c∗
mcnHmn

1

)2]
.

(A7)

Assuming the spectrum of Ĥ is nondegenerate (see the dis-
cussion below), Eq. (A7) can be reduced to a single sum,

F sec
Q (λ, t ) ≈ 4t2

[∑
n

|cn|2
∣∣Hnn

1

∣∣2 −
(∑

n

|cn|2Hnn
1

)2]
,

(A8)

in which we have neglected all the subleading order terms due
to finite time. As a result, an obvious but important condition
for the validity of Eq. (A8) is thus that the coefficient of
the t2 term is nonvanishing, such that at sufficiently long
times we can justifiably ignore those transient contributions
of Eq. (A7).

The validity of Eq. (A8) does extend to the case in which
Ĥ possesses a degenerate spectrum if the degenerate states oc-
cupy different sectors of a symmetry that leaves Ĥ1 invariant.
Considering the LMG model illustrates this statement clearly:
Degenerate pairs of eigenstates occur in the case ω = 0 in
the self-trapped phase due to the fact that the Hamiltonian
possesses a parity symmetry generated by the spin-flip op-
erator P̂ = �N

i=1σ̂x,i. We denote the nth pair of degenerate
eigenstates by |+, n〉 and |−, n〉, where the “±” labels the
eigenvalues of P̂. For FQ,x we have that [P̂, Ŝx] commute
and so the degenerate terms in Eq. (A7) vanish and only the
terms with 〈±, n|Ŝx|±, n〉 survive and lead to Eq. (A8). On
the other hand, for FQ,z one should instead consider eigen-
states that mix parity, (|+, n〉 ± |−, n〉)/

√
2, and for which the

symmetric/antisymmetric combination are uncoupled by Ŝz

and thus Eq. (A8) again applies. So that we can consider only
a single basis when discussing Eq. (A8), we include a small
ω/χ = 10−4 to break the degeneracy when discussing results
for ω → 0. We have confirmed using numerical calculations
that the results obtained with ω/χ = 10−4 for Eq. (A8) match
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FIG. 4. FQ,x/z/Nt2 obtained using numerical time propagation
and the diagonal ensemble formula in Eq. (A8). (a)/(b) The t2

scaling of FQ,x/z for ω = 10−4 and �/χ = 0.5 (0.45) (red dotted
line), 0.55 (0.5) (orange solid line), and 0.6 (0.55) (blue dashed line).
(c)/(d) The FQ,x/z/Nt2 evaluated with N = 1000, tχ = 1000, and
ω/χ = 10−4. The red dashed lines and black dots in (c) and (d) cor-
respond to the diagonal ensemble results and the time propagation
results, respectively. The squares in (c) and (d) mark the three �

values shown in (a) and (b) with the same color coding, respectively.

excellently with those of a full numerical computation of FQ,z

for arbitrarily small ω, and the special point ω = 0 does not
change any of our qualitative conclusions.

Panels (a) and (b) of Fig. 4 show typical time-traces of
the normalized QFI FQ,x/(Nt2) and FQ,z/(Nt2) for an initial
state with all spins polarized along −ẑ. In the long-time limit,
FQ,x/(Nt2) approaches a constant for all parameters, consis-
tent with the form of Eq. (A8). On the other hand, we find
that FQ,z does not demonstrate t2 scaling for certain parameter
regimes. For example, in the limit of large � 
 χ,ω the
Hamiltonian is dominated by the contribution of the transverse
field, Ĥ ≈ −�Ŝx, and we expect the energy eigenbasis to
be close to the eigenstates of Ŝx. Hence, to leading order
the diagonal matrix elements Snn

z vanish for all n. As shown
in Fig. 4(b), we only observe FQ,z ∝ t2 when � � �cr [red
dotted and orange solid lines in Fig. 4(b)]. For � 
 �cr [blue
dashed line in Fig. 4(b)], the behavior of FQ,z is dominated by
transient corrections ignored in Eq. (A8) at the timescales we
can probe.

Consistent with this discussion, Eq. (A8) captures the
dynamical phase diagram at long times in almost perfect
agreement with FQ,x (obtained via numerical calculation of
the full dynamics). Conversely, while Eq. (A8) does not com-
pletely match FQ,z at long times for � � �cr, it nevertheless
still captures the signatures of the DPT in FQ,z. In both cases,
we find that the scaling of the QFI with system size near
the DPT, � ≈ �cr, is well captured. Specifically, by directly
computing Eq. (A8) in a window of N ∈ [100, 2000] we ob-
tain F sec

Q,x ∼ N1.5 and F sec
Q,x ∼ N1.75, which closely agree with

results obtained from FQ,x and FQ,z for the same system sizes.
Insight can also be gained into the short-

time behavior of Eq. (A5). Using the Taylor

033199-6



IDENTIFYING AND HARNESSING DYNAMICAL PHASE … PHYSICAL REVIEW RESEARCH 3, 033199 (2021)

1 10 100
t�

1

10

F
Q
,x
(�

*
)/
N
t2

1 10 100
t�

0.1

1

10

100

F
Q
,z
(�

*
)/
N
t2

0 200 400 600 800 1000
N

8

10

12

t x*
�

0 200 400 600 800 1000
N

12

14

16

t z*
�

(a) (b)

(c) (d)

I II III I II III

FIG. 5. The time trace of FQ,x/z(�∗)/Nt2 (a)/(b) obtained using
numerical time propagation and the corresponding critical time t∗

x/z

(c)/(d) for various system sizes N . An initial spin coherent state
pointing to the south pole on the Bloch sphere and ω/χ = 10−4 are
used for the time evolution. In (a)/(b) the red solid, orange dotted,
green dashed, black dot-dashed, and blue double-dot-dashed lines
correspond to N = 100, 300, 500, 700, and 900, respectively. The
colored regions marked by I, II, and III in (a)/(b) approximately
distinguish the short-, medium-, and long-time dynamical regimes.

expansion

(Ĥ1)t ≈ Ĥ1 + it

2
[Ĥ, Ĥ1] (A9)

with Ĥ1 = Ŝx and Ŝz for perturbations along � and ω, respec-
tively, the leading-order behavior of the QFI in the short-time
limit is most generally

lim
t→0

FQ,x/z = 4t2〈[�Ŝx/z(0)]2〉. (A10)

Thus, for an initial state of θ = π we have FQ,x = Nt2

to leading order in time, which is consistent with the re-
sults of Fig. 5(a) at short times (marked as Region I)
where FQ,x (�∗)/Nt2 ≈ 1. In contrast, when considering FQ,x

for the same initial state, the relevant fluctuations vanish,
〈[�Ŝz(0)]2〉 = 0, and so we must retain higher-order contribu-
tions in t . Specifically, the leading-order behavior of the QFI
scales as t4 and is generated by the commutator it[Ŝz, Ĥ ]/2 =
−�Ŝyt/2 in Eq. (A9). Then, we obtain FQ,z = �2Nt4/4,
which is again in good agreement with the short-time results
of Fig. 5(b) (see Region I). In particular, FQ,z(�∗)/Nt2 col-
lapses for the range of N considered and shows a power-law
dependence on t .

An intermediate regime separating the long- and short-time
limits (labeled as Region II in Fig. 5) also exists, wherein
FQ,x/z(�∗)/Nt2 shows transient oscillations that depend inti-
mately on the structure of the spectrum and the initial state.
Moreover, we identify a critical time t∗

x/z where the QFI
FQ,x/z(�∗)/Nt2 tends to a maximum value, corresponding to
the first peak in Region II. Figures 5(c) and 5(d) show this
critical time t∗

x/z as a function of the system size N . We observe
that t∗

x/z exhibits only a relatively weak dependence on N and
that t∗

x,zχ ∼ O(10) in both cases for N ∈ [100, 1000].
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FIG. 6. The fits of (a) Sx (E ) and (b) Sz(E ) normalized by N/2
in the diagonal ensemble near the critical point. The red solid lines
correspond to a fit using the formula given in Eq. (A12). The rele-
vant fitted parameters are γx = 0.495 ± 0.005 and γz = 0.25 ± 0.02,
respectively. Calculations are for N = 500, �/χ = 0.5, and ω/χ =
10−4, but we also check for robustness with N . Points within one
standard deviation of the total energy for an initial state with θ = π

and the same Hamiltonian parameters are used to perform the fitting
(see the text).

2. Approximate model for scaling with system size

The scaling of the QFI can be directly traced to the emer-
gence of a nonanalyticity in the energy spectrum of the LMG
model. Here, we present a supporting calculation for this
discussion.

Consider Eq. (A8) in the limit of large N such that one can
make a continuum approximation Hnn

1 → H1(E ) for E ≡ Enn.
Then, by recognizing that the QFI according to Eq. (A8) is
proportional to the characteristic variance of H1(E ), we argue
that for an initial state with well-defined mean energy E and
energy fluctuations �E 	 E , the QFI can be approximated as

FQ = 4t2

∣∣∣∣∂H1(E )

∂E

∣∣∣∣
2

�E2. (A11)

In the case of the LMG model, the divergence of the QFI
arises due to a sharp cusp in Sx(E ) or kink in Sz(E ) at a critical
energy Ecr = N�/2 [see Figs. 2(b) and 2(c) in the main text].
Near the critical energy, we find that both observables are well
described by [62]

Sx/z(E )

N
= Ax,z + Bx,z

(E

N
− Ecr

N

)γx,z

, (A12)

where we have used that the energy E and Sx/z(E ) are exten-
sive observables and thus can be normalized to remove any
dependence of Ax,z, Bx,z, and γx,z on system size N . Substi-
tuting Eq. (A12) into Eq. (A11), evaluating the derivative at
E = Ecr ± �E , and using that �E ∼ √

N for a coherent spin
state, we obtain

F sec
Q,x/z ∼ 4t2γx,zBx,zN

2−γx,z . (A13)

We then numerically diagonalize the Hamiltonian for a large
system (N = 500) and fit Sx/z(E ) using Eq. (A12) near Ecr

to obtain γx = 0.495 ± 0.005 and γz = 0.25 ± 0.02, respec-
tively, where the uncertainties reflect rms error in our fit. To
be concrete, we fit Sx/z(E ) in the energy window of [Ecr,
Ecr + n�E ] and [Ecr − n�E , Ecr], where n is a constant that
we tuned through n = (1, . . . , 5) to confirm that the estimated
scaling parameters γx,z are stable. Example fits are shown in
Fig. 6.
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As commented in the main text, for the case of the LMG
model, the sharp features in Sx,z(E ) are related to a known
excited-state quantum phase transition (although these are
typically fundamentally distinct phenomena [28]). Thus, we
highlight that in fact we expect that the divergence of Sz(E )
near Ecr is logarithmic in the thermodynamic limit, identical to
the order parameter S̄z. However, our numerical calculations
are limited to system sizes where finite-size contributions will
dominate, and it is not possible to distinguish signatures of the
logarithmic divergence.

3. Bounds on the QFI

The standard quantum limit for sensing can be recast in
terms of the QFI as F cl

Q � Nt2. This bound is conventionally
obtained by considering only quasiclassical initial states that
feature no quantum correlations or entanglement and are then
subject to evolution under only the driving term of ĤLMG, e.g.,
�Ŝx or ωŜz [55,56]. Restricting to spin-1/2 systems, coherent
spin states satisfy the former condition, and a straightforward
calculation demonstrates that for a suitable choice of the tip-
ping (θ ) and azimuthal (φ) angles, they saturate F cl

Q � Nt2,
where N is the number of spin-1/2 particles.

In the main text, we demonstrate that the interplay of in-
teractions ∝ Ŝ2

z with the driving terms enables one to surpass
the SQL near a DPT. Here, we emphasize that this result is
a consequence of strong correlations and entanglement in the
dynamically generated quantum states, rather than the non-
linearity of the dynamics at the classical level, by explicitly
proving that the QFI remains bounded FQ � Nt2 in the mean-
field limit.

Our proof is based upon the form of the QFI given in

Eq. (A5), FQ(λ, t ) = 4t2〈[�(Ĥ1)t ]
2〉. For evolution under any

generic Hamiltonian (e.g., Ĥ = Ĥ0 + λĤ1) we can expand
Ĥ1(t ) in terms of products of single-body operators ĥα

j ,

Ĥ1(t ) =
∑
i,α

aα
i (t )ĥα

i +
∑

i, j,α,β

bαβ
i j (t )ĥα

i ĥβ
j + · · · , (A14)

where the index j runs over all particles (sites), and α is the
set of single-body operators for each particle. For example,
ĥα

j = σ̂ α
j /2 with α ∈ (x, y, z) for an ensemble of N spin-1/2

particles indexed by j = 1, . . . , N .
Plugging Eq. (A14) into the definition of FQ(λ, t )

[Eq. (A5)], we obtain

FQ = 4t2

⎡
⎣ ∑

i,α

(
aα

i

)2
Var

(
ĥα

i

) +
∑

i �= j,α,β

aα
i,αaα

j,βCov
(
ĥα

i , ĥβ
j

)

+
∑

i, j,k,α,β,γ

aα
i bβγ

jk Cov
(
ĥα

i , ĥβ
j ĥγ

k

) + · · ·
⎤
⎦, (A15)

where Var(Ô) = 〈Ô2〉 − 〈Ô〉2 and Cov(Ô, Ô′) = 〈ÔÔ′〉 −
〈Ô〉〈Ô′〉 correspond to the variance and covariance, respec-
tively. In fact, Eq. (A15) is equivalent to expanding the QFI
with respect to system size N since the first, second, and third
terms inside the square bracket typically scale as N , N2, and
N3, respectively, which is related to the nature of effective
one-, two-, and three-body interactions.

For an uncorrelated initial state, e.g., |ψo〉 ≡ |�sp〉⊗N ,
where |�sp〉 is some single-particle state, the second term∑

i �= j aα
i aβ

j Cov(ĥα
i , ĥβ

j ) vanishes. However, the third term

Cov(ĥα
i , ĥβ

j ĥγ

k ) can still have nonzero contributions (e.g., for
i = j, i = k, or j = k). Nevertheless, if we combine an uncor-
related initial state with the assumption that the Hamiltonian is
single-body, i.e., can be decomposed as Ĥ ≡ ∑

j,α Hα
j ĥα

j , then

only the linear terms in Eq. (A14) survive [e.g., bβγ

jk (t ) = 0
strictly].

Consequently, FQ = 4t2 ∑
i,α (aα

i )2Var(ĥα
i ). In general, the

coefficients and the single-particle variance are bounded by∑
α (aα

i )2 � 1 and Var(ĥα
i ) � �h2

max/4, where �hmax is the
difference between the largest and smallest eigenvalues of ĥ.
This leads to FQ � Nt2�hmax [56]. For a spin-1/2 system,
we have ĥα

i = σα
i /2 and thus �hmax = 1, leading to the result

FQ � Nt2.
This discussion is illustrated by using the specific exam-

ple of the LMG model. We assume an initial (uncorrelated)
coherent spin state of N spin-1/2 particles and consider the
dynamics generated by the mean-field Hamiltonian

ĤMF = a(t )Ŝx + b(t )Ŝy + c(t )Ŝz, (A16)

with (time-dependent) coefficients (a, b, c) =
[−�, 0,−2〈Sz(t )〉/N − ω]. Rigorously, ĤMF is the effective
Hamiltonian consistent with the equations of motion obtained
from ĤLMG and invoking a mean-field approximation.

We then compute the QFI for a generic single-body pertur-

bation, FQ,α = 4t2〈[�(Ŝα )t ]
2〉. Formally,

Ŝα (t ) = T exp

(
i
∫ t

0
ĤMF(t ′)dt ′

)
Ŝα

× T exp

(
−i

∫ t

0
ĤMF(t ′)dt ′

)
, (A17)

where T is the usual time-ordering operator. However, the
form of ĤMF means that Eq. (A17) can always be expressed
as a simple sum over collective spin operators

Ŝα (t ) = Aα (t )Ŝx + Bα (t )Ŝy + Cα (t )Ŝz, (A18)

where Aα (t ), Bα (t ), and Cα (t ) are real numbers that satisfy

A2
α (t ) + B2

α (t ) + C2
α (t ) = 1. (A19)

Using Eq. (A18), we can thus express the time-average

(Ŝα )t as ∫ t

0
dt ′Ŝα (t ′) = Nα (nα · Ŝ), (A20)

where the normalization factor Nα is

N 2
α =

[(∫ t

0
dt ′Aα (t ′)

)2

+
(∫ t

0
dt ′Bα (t ′)

)2

+
(∫ t

0
dt ′Cα (t ′)

)2
]

�
(∫ t

0
dt ′

)(∫ t

0

[
A2

α (t ′) + B2
α (t ′) + C2

α (t ′)
]
dt ′

)

= t2. (A21)
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Here, nα is a unit vector aligned along the axis of the perturba-
tion Ŝα , and we have used the Cauchy-Schwarz inequality to
obtain the penultimate line. Plugging Eq. (A20) into Eq. (A5),
we finally obtain

FQ = N 2
α [〈(nα · Ŝ)2〉 − 〈nα · Ŝ〉2]

= N 2
α [1 − (nα · nψ )2]N

� Nt2, (A22)

where the average is taken with respect to an arbitrary coher-
ent spin state polarized in the direction of the unit vector nψ .
This result emphasizes that the nonlinear dynamics demon-
strated by the classical model are not sufficient to generate
the large QFI we observe in the full quantum dynamics, and
instead this arises because of complex features that are gen-
erated in the quantum noise [see, e.g., Fig. 3(a) of the main
text].

APPENDIX B: NUMERICAL METHODS

1. Closed system

We numerically simulate the dynamics of the closed sys-
tem governed by the Hamiltonian ĤLMG [Eq. (3) of the main
text] using an efficient Chebyshev scheme. In this method,
an arbitrary time-evolved state, |ψ (t )〉 = Û (t )|ψ0〉, where
Û (t ) = e−iĤLMGt , is obtained by expanding the time propagator
into a superposition of Chebyshev polynomials φn for a single
time step [54]:

Û (t ) ≈ e−i(Emax−Emin )t/2
Ncut∑
n=0

an(t )φn(−iĤnorm ). (B1)

Here, we have introduced the normalized Hamiltonian,

Ĥnorm = Ĥ − (Emax + Emin)/2

Emax − Emin
, (B2)

and the expansion coefficients an(t ) are given by

an(t ) =
{

2Jn
( (Emax−Emin )t

2

)
for n > 0,

J0
( (Emax−Emin )t

2

)
for n = 0,

(B3)

where Jn is the nth Bessel function. The free parameters
Emin and Emax are chosen such that the spectrum of Ĥ is ap-
propriately encompassed by the energy window [Emin, Emax].
Throughout the manuscript, we choose Emax = N (χ + |ω|)
and Emin = −N (χ + |ω|).

To efficiently construct the complex Chebyshev poly-
nomial φn(−iĤnorm ) = (−i)nTn(Ĥnorm ), where Tn(x) is the
Chebyshev polynomial of the first kind, we use the recursion
relation

φn+1(−iĤnorm ) = −2iĤnormφn(−iĤnorm ) + φn−1(−iĤnorm ),
(B4)

with the initial condition φ0 = 1 and φ1 = −iĤnorm.
The Chebyshev expansion is expected to converge expo-

nentially with increasing Ncut provided the Ncut is not less
than (Emax − Emin)t/2. To safely satisfy this requirement, we
also choose Ncut to exceed this theoretical value by 30%.
We check convergence by computing the normalization of
the wave function |〈ψ (t )|ψ (t )〉|2 and ensure that it deviates
from unity by less than 10−10 for all runs. Importantly, this

deviation is much smaller than any perturbation to the wave
function introduced by δ� or δω when computing the QFI.

2. Open system with decoherence

The dynamics of the LMG model in the presence of
single-particle decoherence can be efficiently simulated by
exploiting the permutation symmetry of the model, combined
with the fact that the initial states we probe are fully col-
lective [i.e., 〈Ŝ2〉 = N

2 ( N
2 + 1) for our chosen initial states].

In general, the dynamics of the open system are described
by a master equation for the density matrix ρ̂ of the spin
ensemble [84],

d ρ̂

dt
= −i[Ĥ, ρ̂] + �

4

N∑
j=1

(
σ̂ z

j ρ̂σ̂ z
j − ρ̂

)
, (B5)

where Ĥ is the LMG Hamiltonian [see Eq. (3) of the main
text]. To efficiently solve Eq. (B5), we exploit the permutation
symmetry of both the Hamiltonian and dissipative terms to
reduce the scaling of the problem from 4N to O(N3). This
enables us to exactly (up to numerical precision) compute
the dissipative dynamics of systems up to N ∼ O(100) with
relative ease, enabling meaningful comparisons with current
state-of-the-art AMO quantum simulators. A full analysis and
discussion of this method can be found in Refs. [77,85] and
citations therein.

In Fig. 7, we compare the behavior of the time-averaged
order parameter S̄z and scaled inverse sensitivity (�ω)−2

Ŝy
/Nt2

across a range of longitudinal field strengths ω/χ and deco-
herence rates �/χ . We observe that S̄z is relatively robust to �,
as the primary effect of dephasing is to damp out oscillations
in the disordered phase, consistent with recent experimental
observations [13]. The sensitivity is more noticeably de-
graded by decoherence, particularly beyond short timescales
(γ t 	 1). Nevertheless, we observe that the transient peak
of (�ω)−2

Ŝy
/Nt2 is preserved, albeit shifted toward earlier

timescales and gradually smeared out around the transition.
For large �/χ ∼ 0.1, we observe that the peak becomes
systematically shifted away from the ideal DPT at ω/χ = 0
(consistent with the behavior of S̄z), but it remains clearly
centered near ω/χ = 0 for weaker decoherence. This last
comparison is not unexpected, as the most noticeable features
of the DPT in the QFI arise for χt � 10, and thus the naive
requirement γ t 	 1 for decoherence to be perturbative trans-
lates to the condition γ /χ 	 0.1 for the QFI to display robust
transient signatures.

Calculations for a perturbation of the transverse field
yield similar results. As shown in Fig. 8, we again observe
that the final state after the echo is well distinguished by
measurements of Ŝy. Panel (a) illustrates the Wigner dis-
tribution Wψ (r, φ) [72], which shows qualitatively similar
features to Fig. 3 of the main text, although the final state
is instead typically displaced along the +y direction. Simi-
larly, the inverse sensitivity tracks the dynamics of the QFI
[panel (b)]. However, we also note that in this case we
always find that the maximum (transient) sensitivity is at
least as good as the SQL [panel (c)], maxt [(��)−2

Ŝy
/Nt2] �

1, as for χt → 0 the perturbation results merely in a rota-
tion of a simple coherent spin state, which is precisely the
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FIG. 7. (a) Time-averaged order parameter S̄z and (b),(c) scaled inverse sensitivities (�ω)−2
Ŝy

/Nt2 and (��)−2
Ŝy

/Nt2 as a function of time and

longitudinal/transverse field strengths ω/χ and �/χ including decoherence at rate �/χ (indicated in the panels). Calculations are performed
using an efficient exact numerical solution of the master equation (see the text) with parameters N = 100 and �/χ = 1/2. Note the z-value of
panel (h) is multiplied by a factor of 10 to make it visible.

FIG. 8. (a) Typical Wigner functions [72] Wψ (r, φ) of the initial
(|ψ0〉), intermediate [|ψ (t )〉], and final (|ψ f 〉) states for χt = 8,
ω = 0, and δ�/χ = 7 × 10−3. We plot with polar coordinates r =
(1 + 2Sz/N )1/4 and φ = atan(Sy/Sx ). (b) Normalized inverse sensi-
tivity (��)−2

Ŝy
/(Nt2) for the same parameters as (a) (�/χ = 0.556).

The blue solid, orange dashed, green dot-dashed, and red dotted
lines correspond to �/χ = 0, 10−3, 10−2, and 10−1, respectively.
For comparison, we also plot the normalize QFI FQ,x/(Nt2), and
we indicate the sensitivity regime bounded by the normalized SQL,
(�ω)−2

SQL/Nt2 = 1, by gray shading. (c) Maximum of the normalized
inverse sensitivity, maxt [(�ω)−2

Ŝy
/Nt2], as a function of transverse

field �/χ for a range of decoherence rates �/χ [same color coding
as (b)]. We again indicate maxt [FQ,x/Nt2] and the SQL. All data are
for N = 100 with an initial state of all spins aligned along −ẑ.

operational definition of the SQL. Nevertheless, a pronounced
peak of maxt [(��)−2

Ŝy
/Nt2] still reflects the underlying

DPT for weak decoherence, while the dynamical phases
are still delineated by maxt [(��)−2

Ŝy
/Nt2] = 1 (ordered) and

maxt [(��)−2
Ŝy

/Nt2] > 1 (disordered), respectively. A com-

plete examination of the inverse sensitivity (��)−2
Ŝy

for varied

� and χt is also shown in Fig. 7.

3. Scaling of the sensitivity with system size

To verify a robust correspondence between the QFI and
the sensitivities obtained via the echo, (��)Ŝy

and (�ω)Ŝy
,

we compute the scaling of both quantities as a function
of system size. At a fixed long time χt = 103, we fit the
computed inverse sensitivity to the function aNb and ob-
tain (��)−2

Ŝy
∼ N1.4 and (�ω)−2

Ŝy
∼ N1.78 across a window of

N ∈ [100, 2000]. These results closely follow the scaling of
the QFI obtained via integrating the full quantum dynamics,
FQ,x ∼ N1.5 and FQ,z ∼ N1.78, extracted with the same proce-
dure. We note that (�ω)−2

Ŝy
has the same system size scaling

compared to FQ,z but with a smaller prefactor. As for (��)−2
Ŝy

,

both the prefactor and the system size scaling are less than
those for FQ,x.

APPENDIX C: CLASSICAL DYNAMICAL PHASE
DIAGRAM

The dynamical phase diagram of the LMG model can
be solved analytically in the classical (N → ∞) limit (see,
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FIG. 9. The 2D plot of the effective potential Veff (Sz )/χ 2N2 as
functions of (a) � and Sz for θ = π , φ = 0, and ω = 0; (b) ω and Sz

for θ = π , φ = 0, and � = 0.5χ ; (c) θ and Sz for φ = 0, �/χ = 0.5,
and ω = 0; and (d) φ and Sz for θ = 0.3π , �/χ = 0.5, and ω = 0.

e.g., Refs. [13,28,49]). Briefly, the classical limit is equiv-
alent to solving the equations of motion for expectation
values 〈Ŝx,y,z〉 under a mean-field approximation wherein
all higher-order correlations are expressed as the product
of single-body terms, e.g., 〈Ô1Ô2〉 = 〈Ô1〉〈Ô1〉. Assum-
ing an initial state where all the spins are fully polar-
ized along an arbitrary axis, i.e., S ≡ (〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉) =
( N

2 sin(θ )cos(φ), N
2 sin(θ )sin(φ), N

2 cos(θ )), the dynamics of
the mean-field observable Sz(t ) = 〈Ŝz(t )〉 can be reduced to
an equivalent model of a classical particle in a potential,
described by the differential equation

1

2

(
dSz(t )

dt

)2

+ Veff (Sz ) = 0. (C1)

Here, the effective potential Veff is

Veff (Sz ) = 1

2

(
E + χ

N
S2

z + ωSz

)2
+ �2S2

z

2
− �2N2

8
, (C2)

and the total energy

E = −N

2

[χ

2
cos2(θ ) + � sin(θ ) cos(φ) + ω cos(θ )

]
(C3)

is a conserved quantity.
Figure 9 shows various cuts of Veff (Sz )/χ2N2 for selected

parameter combinations of θ , φ, �/χ , and ω/χ . For all the
cases shown in Fig. 9, a transition from a double well to a
single well can be seen. In the double-well regime, a local
potential barrier exists between the two wells, which supports
a local maximum at S∗

z . The relation of the total mechanical
energy of the initial state in comparison to the magnitude
of the potential barrier controls the dynamical phase: The
ordered phase corresponds to the case in which the particle is
confined to a single well, whereas the disordered phase corre-
sponds to the case in which the particle has sufficient energy
to traverse the barrier and oscillate between both wells. For
an initial state with Sz �= 0, the transition between different
dynamical phases can be obtained as the condition for which
the classical turning point of the particle coincides with S∗

z ,
i.e., Veff (S∗

z ) = 0.
In general, obtaining an analytic solution for the phase

boundary is nontrivial, due to the quartic nature of Veff (Sz ).
However, analytical expressions can be obtained in two spe-
cial cases. First, for ω = 0 the local maximum occurs at S∗

z =
0 due to a parity symmetry of the model (i.e., the dynamics is
unchanged upon the transformation Sz → −Sz and Sx → Sx),
enabling a straightforward solution of the critical transverse
field [28],

�cr = ± 0.5 cos2(θ )

1 ∓ sin(θ ) cos(φ)
. (C4)

Second, for θ = π or θ = 0 the dependence on the azimuthal
angle φ is eliminated and we obtain an expression for the crit-
ical transverse field as a function of the longitudinal field [13],

�cr = χ

2

[
2

(
1 − ω

χ

)(
1 + 2ω

χ

)

−3

2

(
8ω

χ
+ 1

)
+ 1

2

(
1 + 8ω

χ

)3/2]1/2

. (C5)
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