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Order-N orbital-free density-functional calculations with machine learning of functional derivatives
for semiconductors and metals
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Orbital-free density-functional theory (OFDFT) offers a challenging way of electronic-structure calculations
scaled as O(N ) computation for system size N . We here develop a scheme of the OFDFT calculations based on
the accurate and transferrable kinetic-energy density-functional (KEDF), which is created in an unprecedented
way using appropriately constructed neural network (NN). We show that our OFDFT scheme reproduces the
electron density obtained in the state-of-the-art DFT calculations and then provides accurate structural properties
of 24 different systems, ranging from atoms, molecules, metals, semiconductors, and an ionic material. The
accuracy and the transferability of our KEDF is achieved by our NN training system in which the kinetic-energy
functional derivative (KEFD) at each real-space grid point is used. The choice of the KEFD as a set of training
data is essentially important, because first it appears directly in the Euler equation, which one should solve, and
second, its learning assists in reproducing the physical quantity expressed as the first derivative of the total energy.
More generally, the present development of KEDF T [ρ] is in the line of systematic expansion in terms of the
functional derivatives δ�1 T/δρ�1 through progressive increase of �1. The present numerical success demonstrates
the validity of this approach. The computational cost of the present OFDFT scheme indeed shows the O(N )
scaling, as is evidenced by the computations of the semiconductor SiC used in power electronics.
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I. INTRODUCTION

Density functional theory (DFT) [1] proves that the
ground-state total energy E of an interacting electron sys-
tem is a unique universal functional G[ρ] of the electron
density ρ(r) plus the electrostatic energy Vext[ρ] under the
external potential vext (r), opening a possibility to compute
physical properties of real materials by solving an Euler
equation δE [ρ]/δρ(r) = μ, where μ is the Lagrange mul-
tiplier that enforces density normalization. Various attempts
have been made by introducing virtual noninteracting elec-
tron systems, in which the electron densities are identical
to those in corresponding real materials, and then decom-
posing G to the kinetic energy of the noninteracting system
Ts[ρ], the classical electron-electron interaction energy EH[ρ],
and the remaining exchange-correlation energy Exc[ρ] [2]. In
this scheme, Ts is expressed as a sum of the kinetic-energy
contribution from each orbital φi(r) (Kohn-Sham orbital)
as

Ts[ρ] = 1

2

∑
i

∫
|∇φi(r)|2dr, (1)
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and thus the original Euler equation in DFT

δTs[ρ]

δρ(r)
+ vext (r) + δEH[ρ]

δρ(r)
+ δExc[ρ]

δρ(r)
= μ (2)

becomes a set of Schrödinger-like equations (Kohn-Sham
equations), which in turn determine φi self-consistently.

A number of works adopting this Kohn-Sham (KS) scheme
(KSDFT) has been applied to a various materials and achieved
unprecedented success [3,4], depending on the level of the
approximation to the exchange-correlation functional (Jacob’s
ladder) [5]. However, solving the Kohn-Sham equations for all
the occupied orbitals in the system is a computational burden
scaling with the system size N as O(N3), thus restricting the
applicability of DFT. The scheme with lower-order scaling is
highly demanded in materials science and also in advancing
DFT. One of the solutions in a legitimate way is the orbital-
free density-functional theory (OFDFT) in which Ts[ρ] is
expressed as a functional of ρ, the kinetic-energy density-
functional (KEDF), and the Euler equation Eq. (2) remains
as a single equation for ρ, thus OFDFT being expected to be
O(N ) scheme.

Such OFDFT approach free from the orbitals is in the heart
of the original DFT [1] and was initiated much before DFT,
being known as Thomas-Fermi (TF) theory for the homoge-
neous electron gas [6,7] and von Weizsäcker (vW) gradient
expression [8]. Based on these approaches, the kinetic-energy
functional Ts is generally written as

Ts[ρ] =
∫

τTF(r)F [ρ]dr, (3)
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where τTF(r) is the kinetic energy density in the TF approx-
imation, τTF = (3/10)(3π2)2/3ρ5/3, and F is so called the
enhancement factor.

There have been a lot of efforts to develop the enhance-
ment factor [9,10] either in a semilocal [11–14] or a nonlocal
form [15–22] to reproduce the KS kinetic energy T KS as
accurate as possible. Among the various semilocal forms,
recent two functionals, PGSLβ (Pauli-Gaussian second or-
der and Laplacian with a parameter β) [12,13] and LKT
(Luo-Karasiev-Trickey) [14], reproduce experimental struc-
tural properties successfully within the error of less than a
few percent for the lattice constants and of about ten percent
for the bulk moduli. Semilocal KEDFs have been usually
developed in the form of the generalized gradient approxi-
mation (GGA) and satisfy some of the exact conditions for
(a) the small limit of the density gradient in the gradient
expansion (GE), (b) the large limit of the density gradient in
GE, (c) the positivity of Pauli potential [23], and (d) the linear
response function in the homogeneous density limit, namely
being equal to the Lindhard function [24]. PGSLβ satisfies the
first three conditions (a)–(c). The parameter β is fitted so as to
minimize the mean absolute relative errors of physical quanti-
ties such as the cell volume, the bulk modulus, the total energy
at the equilibrium volume, and the electron density, with re-
spect to the corresponding values obtained in the KS scheme,
leading to the value of β = 0.25 [12,13]. LKT satisfies the
conditions (b) and (c), and is left with a single parameter “a”.
The allowable range of “a” is determined by the condition
(c) for atomic densities generated by pseudopotentials. The
obtained range is 0.0 � a � 1.3 and the value of a = 1.3 is
typically used [14]. Karasiev et al. [25] proposed another
semilocal parameter-free KEDF that satisfies the conditions
(a)–(c). However, The bulk moduli from this functional are
around 50% higher than the reference KS values. Hence, we
will not include the results by this functional in our benchmark
in the present paper.

Inclusion of the nonlocal effects in the enhancement factor
indeed improves the performance of KEDF [18,19,22,26,27].
The nonlocal functional typically reproduces the structural
properties within the error of less than 1% for the lattice
constants and 10% for the bulk moduli [27]. Nonlocal KEDFs
such as WGC (Wang-Govind-Carter) [19] and related non-
local KEDFs [15–18,20,21] were constructed to satisfy the
conditions (a), (b), and (d). HC (Huang-Carter) [22] func-
tional improves the performance of WGC and its relatives
in semiconductors by using two parameters adjusted to re-
produce bulk moduli, equilibrium volumes, and equilibrium
energies by KSDFT. EvW-WGC (enhanced von Weizsäcker
Wang-Govind-Carter) [26] functional is an another exten-
sion of WGC, which is a linear combination of vW, TF,
and WGC, where a system-dependent parameter determines
the portions of each KEDFs. EvW-WGC is more accurate
than HC if an optimally adjusted parameter is used. MGP
(Mi-Genova-Pavanello) [27] functional uses a unique way of
imposing the condition (d), namely the functional integra-
tion of the inverse of the Lindhard function in homogeneous
density limit. In spite of the better performance generally
observed, the nonlocal scheme requires the heavier compu-
tational cost, which scales as O(N log N ) and, if possible,

the true O(N ) scheme enabled by the semilocal scheme is
desired.

In this paper, to establish an alternative scheme that follows
strictly the O(N ) scaling, we propose a new enhancement
factor in KEDF by neural-network (NN) machine learning.
Without resorting to the reproducibility of the structural prop-
erties of target materials, we focus on reproducing the electron
density, which is the quantity of basics in DFT. We show
that our NN, which is trained only with the electron density
in diamond generates a KEDF and successfully reproduces
structural properties of a variety of materials, thus demon-
strating the potential of the machine learning for further
developments of the density functional.

Coming back to the DFT itself, the energy as a functional
of the electron density, KEDF in the present case, is primary.
Its functional derivative defines the Euler equation and, on
the other hand, provides the physical properties related to the
first-order derivative of the total energy. The higher derivatives
are obviously important to describe the linear and nonlinear
responses of materials. It is thus desirable to construct KEDF
as well as its functional derivatives by term-by-term con-
formation of the kinetic-energy functional-derivative (KEFD)
δ�1 T/δρ�1 to the KS derivative through progressive increase
of �1. This is combined with the variational optimization of
KEDF as a functional of both ρ and its spatial derivatives
d�2ρ/dr�2 with increasing �2. This systematic approach was
formidable in the past but now may be practical using the
machine learning. We here demonstrate a success of our first
attempt with �1 = 1 and �2 = 2.

The organization of the present paper is as follows. In
Sec. II, we explain the way of constructing our NN KEDFs.
Computational details are also explained. The obtained NN-
KEDFs are applied to 24 systems, which include 7 atoms,
6 diatomic molecules, and 11 solids ranging from metals,
semiconductors to an ionic solid in Sec. III. The accuracy of
our NN KEDFs is assessed in detail and discussed. In Sec. III,
we also demonstrate the O(N ) computational time scaling of
our orbital-free implementation achieved for the system with
thousands of atoms. We summarize our findings in Sec. IV.

II. METHODS

A. Neural network for developing kinetic-energy density
functional

The neural network (NN) in general consists of an input
layer, multiple hidden layers, and an output layer. Each of
those layers with an index l (l = 0, . . . , N ) is composed of
neurons with indices k (k = 0, . . . , Dl ), where N − 1 is the
number of hidden layers and Dl is the number of neurons in
the lth layer (Fig. 1). The output from the jth neuron in the
lth layer (1 � l � N − 1) is generally written as

z(l )
j = σ (l )(a(l )

j ) = σ (l )

(
Dl−1∑
k=0

W (l )
jk z(l−1)

k

)
, (4)

where σ (l ) is the activation function with the variable a(l )
j

being
∑Dl−1

k=0 W (l )
jk z(l−1)

k . In our notation, the inputs are z(0)
j

( j = 1, 2) and the output is z(N )
1 . The parameters trained in

the NN, W (l )
jk (1 � l � N, 1 � j � Dl , 0 � k � Dl−1), are
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FIG. 1. Schematic structure of the NN with two hidden layers
(N = 3).

called weights. For each layer, by using additional inputs
z(l )

0 ≡ 1, W (l )
j0 works as the bias parameter.

In order to develop our NN KEDF, we seek for the
enhancement factor F NN as a functional of dimensionless
quantities derived from the gradient and Laplacian of the elec-
tron density, i.e., s2 and q, (namely, up to �2 = 2) where s =
|∇ρ|/[2(3π2)1/3ρ4/3] and q = ∇2ρ/[4(3π2)2/3ρ5/3]. The
KEDF with this enhancement factor

T NN[ρ] =
∫

τTF(r)F NN(s2, q;W )dr (5)

satisfies the uniform scaling condition [28]. Here, the generic
notation W ≡ {W i; i = 1 . . . nW } represents the set of weight
parameters in the NN, { W (l )

jk } in Eq. (4). Figure 1 shows
the schematic structure of the NN with two inputs s2 and q.
The output is the enhancement factor F NN(s2, q) introduced in
Eq. (5). The inputs and outputs are of course spatial dependent
and thus the functions of the real-space position r.

The explicit formula of the enhancement factor in the
present NN KEDF is, e.g., for Dl = D and N = 4 (see sub-
section II C for determination of the structure of our present
NN),

F NN(s2, q)

=
D∑

i=0

W (4)
1i σ

(
D∑

j=0

W (3)
i j σ

(
D∑

k=0

W (2)
jk σ

(
2∑

l=0

W (1)
kl z(0)

l

)))
,

(6)

where (z(0)
1 , z(0)

2 ) = (s2, q). In the present paper we adopt
the activation function defined as the exponential linear unit
(ELU) [29]

σ
(
a(l )

j

) =
{

a(l )
j , if a(l )

j > 0

exp
(
a(l )

j

) − 1, if a(l )
j � 0

(7)

for each layer (1 � l � N − 1) and an identity function for an
output layer (l = N).

We adopt the enhancement factor F NN(s2, q) as the output
variable z(N )

1 . However, F NN(s2, q) is not directly learned as
the training data. Instead, the KEFD with �1 = 1 from the KS
scheme, δT KS/δρ, is used as the training data since we adopt
the cost function defined in terms of the KEFD [Eq. (8) below]

is used as a criterion of the performance of our NN in the
present paper.

B. Density-functional computation scheme

Actual density-functional (DFT) computations in the con-
struction of our NN and its validation have been performed
by our real-space code RSDFT [30–32], which is highly
optimized for the massively parallel architecture. In RS-
DFT scheme, all the quantities are computed on grid points
in real space and the converged results are obtained by
reducing the grid spacing systematically. Thanks to the real-
space treatments, the scheme is essentially free from Fourier
Transform, which releases heavy communication burden in
the massively-parallel architecture of computers. For the
exchange-correlation functional, we use generalized gradient
approximation by Perdew, Burke, and Ernzerhof (PBE) [33].

In usual first-principles DFT calculations, orbital-
dependent nonlocal pseudopotentials (NLPSs) are used
to simulate nuclei and core electrons in real materials [34,35].
Yet in the OFDFT scheme, the orbitals are unavailable so that
we need to construct ab initio local ionic pseudopotentials
(LIPSs) to simulate nuclei and core electrons. We have newly
generated such LIPSs following the scheme by Carter and
collaborators [22,36–38]. Our scheme to generate LIPS
consists of (i) the generation of the electron density of the
target element in KSDFT scheme, (ii) obtaining the effective
potential from the above density by solving the inverse
problem with the Kadantsev-Stott method [39], and (iii)
proper skeletonizing of the effective potential (Appendix A
for details). It should be emphasized that our construction
scheme is totally free from adjustable parameters. We have
generated LIPSs for 7 elements, Li, C, Na, Al, Si, Cl,
and Cu. The validity and transferability of the obtained
LIPSs are evidenced by the electron densities and the
structural properties of 8 various materials, bcc-Li, fcc-Al,
fcc-Cu, bcc-Na, NaCl, ds-Si, ds-C, and zincblende(3C)-SiC
(Appendix A).

C. Training of neural network toward kinetic-energy
functional derivative

In order to develop the KEDF by our NN that best repro-
duces the KS-KEDF T KS[ρ] within the framework of �1 = 1,
we minimize during the training process the cost function for
KEFD,

L = 1

Nt

Nt∑
n=1

1

2

[
δT NN(rn)

δρ
− δT KS(rn)

δρ

]2

, (8)

which is the mean-squared error between the kinetic-energy
functional derivative (KEFD) δT NN/δρ obtained by our NN
and KEFD δT KS/δρ from the KS orbitals {φi(r)}. Here, Nt is
the total number of the training data at the real space position
rn. The analytical expressions of KEFDs are given by (see
Appendix B for the derivation)

δT NN

δρ
= c0ρ

2/3

[
5

3
F NN − 8

3
s2 ∂F NN

∂ (s2)
− 5

3
q
∂F NN

∂q

]

− 3

20
∇ ·

[
∂F NN

∂ (s2)

∇ρ

ρ

]
+ 3

40
∇2

(
∂F NN

∂q

)
, (9)
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with c0 = 3(3π2)2/3/10, and

δT KS[ρKS]

δρ

= 1

ρKS

∑
i

fi

[
−1

2
φ∗

i ∇2φi + (εHOKS − εi )|φi(r)|2
]
,

(10)

where εHOKS is the highest-occupied KS eigenvalue, and εi

and fi are the KS eigenvalue and occupation number of the ith
KS orbital, and ρKS = ∑

i fi|φi|2, respectively [23]. Instead
of directly learning F NN(s2, q) from the training data, we
minimize the cost function Eq. (8) between KEFDs because
we observe that the functional derivative is poorly reproduced
when KEDF is trained [40] and this training fails to optimize
the electron density in some cases. This problem in the func-
tional derivative leading to the erroneous solution of Euler
equation is also reported in the previous efforts to develop
KEDF with machine learning [41–47], where the training set
is the KEDF itself. As the training and test sets in the deep
learning, we adopt the kinetic-energy functional derivative
(KEFD) at each real-space grid point. It is noteworthy that the
KEFD, [δT [ρ]/δρ](r), appears directly in the Euler equation
Eq. (2) and thus assures accuracy of the solution of the Euler
equation, which is crucial to reproduce the target electron
density ρ(r).

The training set consists of the KEFD at 13 824 real-space
grid points obtained for diamond. For efficient training, we
adopt the stochastic natural gradient descent (SNGD), which
is a mini-batch training based on natural gradient method [48].
In SNGD, we randomly select Nb training data, then update
the ith weight W i at t th epoch as

W i(t + 1) = W i(t ) − η

nW∑
k=1

[Gik + ν(t )tr(G)δik]−1 ∂L

∂W k
,

(11)

where G is a metric tensor defined by

Gik = 1

Nb

Nb∑
p=1

∂

∂W i

[
δT NN(rp)

δρ

]
∂

∂W k

[
δT NN(rp)

δρ

]
. (12)

Here the learning rate η is fixed at η = 0.1, and nW is the total
number of the NN weight parameters, { W k }. To achieve ef-
ficient convergence in Eq. (11), we blend the natural gradient
and the ordinary gradient by introducing a weighted diagonal
matrix ν(t )tr(G)δ jk , where the scheduling ν(t ) = ν0/(1 + bt )
with b = 0.01 is employed during the epochs being decreased
from ν0 = 10−5. The determination of those training parame-
ters is explained in Appendix C.

The calculations of ∂L/∂W and Eq. (12) are performed by
the backpropagation [49,50]. The algorithm of the backpropa-
gation in the present paper is briefly explained in Appendix D.
The training data set was divided into 90% for the training and
10% for the validation.

We have examined the dependence of the accuracy of the
obtained δT NN/δρ on the structure of our NN, namely the
number of hidden layers and the number of neurons in each
layer. The accuracy is assessed by the deviation from the

TABLE I. Accuracy of our KEDF δT NN/δρ depending on the
NN structures, i.e., the number of hidden layers and the number of
neurons per layer. The deviation from δT KS/δρ is represented in
terms of the root mean square error (RMSE) in Ha (atomic unit of
energy).

# of hidden # of neurons # of weight
layers of per layer parameters RMSE

1 5 21 0.356
1 10 41 0.310
1 15 61 0.302
1 20 81 0.306
2 5 51 0.304
2 10 151 0.311
3 5 81 0.296

training set {δT KS/δρ} at grid points in the real space. The
13 824 grid points in a unit cell of diamond are chosen to
construct the training set. Table I shows the root mean square
error (RMSE) of δT NN/δρ from δT KS/δρ obtained in sev-
eral NNs. Hereafter we abbreviate the atomic unit of energy
(Hartree) as Ha. From this examination, we have adopted the
NN with three hidden layers and five neurons in each layer in
the present paper. The actual weight parameters W of our NN
is available upon request. The trend that the RMSE decrease
with increasing the number of weight parameters observed in
Table I is indicative of further improvement of our NN for
better KEDF in future.

D. Augmentation of the enhancement factor

The enhancement factor in the present paper is further aug-
mented by requiring rigorous limits for s → 0 and s → ∞:
When s → 0, it should be the second-order gradient expan-
sion [51] as 1 + (5/27)s2, whereas when s → ∞ it should be

FIG. 2. Contour color map of the enhancement factor NN KEDF
F̃ NN(s2, q) plotted as a function of s and q within a typical range
of s and q (0 � s � 2.0 , −0.5 � q � 5.0). The abscissa is the re-
duced density gradient s and the ordinate is the reduced Laplacian of
density q.
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FIG. 3. s-Dependence of the enhancement factors at q = 0
within a typical range of s (0 � s � 2.0). The abscissa is the reduced
density gradient s and the enhancement factor F (s2, q = 0). vW,
GE2, and NN denote the enhancement factors of the vW KEDF [8],
the second-order gradient expansion [51], and F̃ NN [the present paper
Eq. (14)], respectively.

equal to the vW KEDF [8], F → (5/3)s2. A form that satisfies
those limits within the first order of q2 is

F (0)(s2, q) = 5
3 s2 + e−αs2 + βq2, (13)

with α being 40/27.
Here, β was previously adjusted to reproduce structural

properties of target materials [12,13]. Instead, we here de-
termine β so that the second functional derivative of KEDF
derived from Eq. (13) in the small-s limit reproduces the
Lindhard function [24]. We have found that β = 0.382 well
satisfies this homogeneous-limit condition (for the fitting pro-
cedure, see Appendix E).

FIG. 4. s-Dependence of the enhancement factors at q = 4
within a typical range of s (0 � s � 2.0). The abscissa is the reduced
density gradient s and the enhancement factor F (s2, q = 4). vW,
GE2, and NN denote the enhancement factors of the vW KEDF [8],
the second-order gradient expansion [51], and F̃ NN [the present paper
Eq. (14)], respectively.

FIG. 5. (a) SCF electron density in ds-Si along [111] direction
obtained by different approximations to KEDF. The horizontal axis
is the distance d from a Si atom along [111]. Si atoms are located
at the positions depicted by the vertical dashed line, and the left and
right ends. (b) Difference of densities with respect to the KS density
[black-solid line in (a)]. The 0 value on the ordinate is indicated by a
horizontal black solid line.

Then we finally propose our enhancement factor,

F̃ NN(s2, q) = X (q)F (0)(s2, q) + [1 − X (q)]F NN(s2, q),

(14)

where X (q) = exp(−Aq4) is an interpolation function be-
tween the small-q and large-q subsystems. This is to enhance
the accuracy especially for large q obtained by the flexibility
of the NN, following the concept of subsystem functionals in
DFT [52–55]. Our final KEDF T̃ NN is given by Eq. (5) with
F NN being replaced by F̃ NN.

The parameter A can be optimized by minimizing the cost
function L by expanding the metric tensor Gjk to (nW + 1) ×
(nW + 1) dimensions by adding the components related to
∂[δT̃ NN(rp)/δρ]/∂A. The optimized A, however, shows multi-
minima structure with nearly flat dependence of L on A in the
range 10 < A < 32, causing uncertainty in the optimization.
Then we additionally minimize the difference between the
electron density from our KEDF and the KS electron density,
which more reliably settles A at 31.62 (see Appendix F for
details).
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TABLE II. RMSE of SCF density in 10−2 × bohr−3 with respect to the KS density in the periodic systems obtained by 5 different KEDFs.
The right end column (“ratio”) indicates the ratio of RMSE averaged over all the systems to the averaged RMSE obtained by NN KEDF.

diamond graphene ds-Si fcc-Si β-tin Si 3C-SiC bcc-Li fcc-Al fcc-Cu bcc-Na NaCl ratio

NN 1.1450 0.6467 0.3580 0.1242 0.2370 0.6180 4.1915 0.0971 8.4183 2.8791 2.1998 1
NN[bare] 0.9370 0.4807 0.3050 0.0889 0.2120 0.6110 2.1484 0.0800 8.7775 1.6449 1.2761 0.777
PGSL0.25 1.2850 0.7097 0.4350 0.1583 0.2580 0.7140 5.3014 0.1205 11.193 4.1229 3.4720 1.255
LKT 1.6760 0.6665 0.5110 0.1113 0.3120 0.9630 5.5690 0.1130 12.866 4.3014 3.7826 1.357
TF(1/5)vW 2.0560 0.3151 0.5500 0.5755 0.4850 1.2010 5.7562 0.3488 25.770 5.0822 3.1791 2.153

III. RESULTS AND DISCUSSION

A. Behavior of NN kinetic-energy density functional

Figure 2 shows our NN enhancement factor F̃ NN(s2, q),
Eq. (14), for a typical range of s and q. It is clear that the NN
enhancement factor is continuous in (s2, q)-plane, indicating
that F̃ NN smoothly connects F NN, Eq. (6), and the limiting
form F (0), Eq. (13). To compare F̃ NN, F (0), F vW = (5/3)s2

(the vW KEDF [8]), and also the second-order gradient expan-
sion F GE2 = 1 + (5/27)s2 [51]), we plotted the s-dependence
of these enhancement factors for two fixed values of q, namely
q = 0 and q = 4 as the typical large q value in most systems,
in Figs. 3 and 4. At q = 0, F̃ NN recovers the limiting form F (0)

as expected. The behavior of F̃ NN is substantially different
from the limiting form F (0) at q = 4, which is ascribed to the
form of NN KEDF, Eq. (6), and relevant to its accuracy.

B. Accuracy of NN KEDF

1. Electron densities

We assess the accuracy of KEDFs with the self-consistent-
field (SCF) density obtained by minimizing the total energy
with the developed KEDF. One way is the direct minimiza-
tion with iterative techniques [56–59]. The other way is to
solve the Euler equation Eq. (2) by the matrix diagonalization,
which we adopt in this paper. By introducing vW KEDF [8],
TvW[ρ], which satisfies δTvW/δρ = −(∇2√ρ )/(2

√
ρ), the

Euler equation becomes a Schrödinger-type equation for√
ρ [60]. However, it is recognized that the diagonalization

of such Schrödinger-type equation suffers from ill con-
vergence [61]. We have found that this difficulty can be
circumvented in all KEDFs we considered by introducing a
parameter λ and by performing the rearranged diagonaliza-
tion scheme. Previously, this sort of rearrangement has been
applied to the TF(λ)vW functional with λ = 1/5 or 1/9 [62].
We first express KEDF as the sum of scaled vW functional

and the rest part:

Ts[ρ] = λTvW[ρ] + Tr[ρ]. (15)

Then Eq. (2) becomes[
−∇2

2
+ 1

λ

(
δTr[ρ]

δρ
(r) + vKS([ρ]; r)

)]√
ρ(r) = μ

λ

√
ρ(r),

(16)

where vKS = vext + δEH/δρ + δExc/δρ is the usual KS po-
tential. In our scheme, we have found that λ = 10 leads to
a satisfactory convergence in the SCF calculations. Note that
any choice of λ offers the same correct SCF solution, if it
converges.

Figure 5 shows calculated SCF electron density obtained
by our NN KEDF. For comparison, the computed densities
using the KEDFs in the past, i.e., PGSL0.25 [12] defined
by Eq. (13) with β = 0.25, LKT [14], and the conventional
TF(1/5)vW (TF(λ)vW KEDF with λ = 1/5) [63] are also
shown. Figure 5(a) is the electron density along [111] di-
rection in diamond-structured (ds)-Si and Fig. 5(b) shows
its difference from the KS density. The obtained electron
density shows overall superiority of our NN KEDFs against
PGSL0.25 and TF(1/5)vW most clearly visible at the nuclear
site (d = 4.47 bohr). When compared with LKT, NN tends
to be more accurate in the bonding region (0 < d < 4.47
bohr). We have also calculated the electron densities with
our NN KEDF of other 23 systems (10 solids, 6 diatomic
molecules, and 7 atoms), and found that the obtained densities
satisfactorily reproduce the corresponding KS densities (see
Supplemental Material [64] for details). It is noteworthy that
our NN KEDF obtained by the training data of only ds-C
shows high transferability for various systems.

The superiority of our NN KEDF in reproducing the
KS densities is quantified by the RMSE of the SCF den-
sity ρscf with respect to the KS density ρKS for all the
24 systems examined in the present paper. Table II shows

TABLE III. RMSE of SCF density in 10−2 × bohr−3 with respect to the KS density in atoms. The right column (“ratio”) indicates the ratio
of RMSE to NN averaged over all systems.

Li C Na Al Si Cl Cu ratio

NN 1.1155 0.1469 1.2508 0.0271 0.0481 0.2943 2.2284 1
NN[bare] 0.7003 0.1253 0.9795 0.2322 0.0415 0.2250 2.7214 1.9544
PGSL0.25 1.6069 0.3482 1.7854 0.2686 0.1527 0.4664 4.4330 3.2613
LKT 2.1197 0.2540 1.6340 0.0532 0.0776 0.4145 5.0251 1.7393
TF(1/5)vW 1.3733 0.1315 1.2050 0.0329 0.0635 0.2832 1.3952 1.0302
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TABLE IV. RMSE of SCF density in 10−2 × bohr−3 with respect
to the KS density in diatomic molecules. The right column (“ratio”)
indicates the ratio of RMSE to NN averaged over all systems.

Li2 C2 Na2 Al2 Si2 Cl2 ratio

NN 0.7036 0.3545 1.4726 0.2066 0.1000 0.5534 1
NN[bare] 0.4036 0.2258 1.3239 0.2137 0.1047 0.4204 0.8250
PGSL0.25 0.6932 0.3919 1.6260 0.1882 0.2661 0.5130 1.2823
LKT 0.7616 0.6422 2.4138 0.1548 0.2108 0.7267 1.4505
TF( 1

5 )vW 0.4342 0.7200 3.8073 0.1618 0.2019 0.4080 1.4620

the RMSE for periodic systems, including semiconductors,
metals, and an ionic material with some of their polytypes:
diamond, graphene, ds-Si, face-centered-cubic(fcc)-Si, β-tin
Si, zincblende(3C)-SiC, body-centered-cubic (bcc)-Li, fcc-
Al, fcc-Cu, bcc-Na, and NaCl. For comparison, the results
obtained with the KEDFs in the past are also shown. We also
present the results by the uninterpolated NN enhancement
factor F NN [i.e., A → ∞ in Eq. (14)] (labelled as NN[bare])
trained by the same scheme as NN. The overall good perfor-
mance of NN is demonstrated by the RMSE for each material.
The RMSE averaged over all 11 materials (the right end col-
umn “ratio” in Table II) clearly shows the superiority of the
present NN KEDF to other KEDFs in the past.

The RMSE of the SCF density has been also computed for
13 isolated systems, Li, C, Na, Al, Si, Cl, and Cu atoms, and
Li2, C2, Na2, Al2, Si2, and Cl2 molecules, and then averaged
over all the atoms and molecules, as shown in Table III and IV.
The same RMSE “ratio” indicates that NN and TF(1/5)vW
are most accurate in atoms, whereas NN and NN[bare] are most
accurate in molecules.

These results indicate that we have succeeded to construct
NN KEDFs that outperform previous ones without resorting
to system-dependent parameters. The electron density cal-
culated with NN[bare] shows better performance than NN in
some cases. However, physical quantities shown below indi-
cate the limitation of NN[bare]. The present NN up to �1 = 1
makes the agreement with KS at the first-order derivative of

T , while the density is a quantity related at the first-order
level ρ(r) = −δE [ρ]/δμ(r) where μ(r) is the local chemical
potential. Hence the success in reproducing the KS density is
intrinsic to the present scheme.

The NN adopted in the present paper produces the mini-
mum value of the cost function Lmin = 3.519 × 10−2 Ha2. We
have examined other NNs, which produce the cost function of
Lmin < L � 1.8Lmin Ha2. We have confirmed that the obtained
RMSE of the electron density with such NN increases less
than 1% at most.

2. Structural properties

To further examine the validity of our OFDFT scheme
with the NN KEDF, we have calculated structural properties
and energetics for test systems: the lattice constants a0, bulk
moduli B0, and cohesive energies Ecoh of 11 solids, and the
bond lengths r0 of 6 molecules.

Tables V and VI show the lattice constants and bulk moduli
for 11 solids along with the corresponding values obtained
using other KEDFs in the past. We compare the relative errors
with respect to the KS values (numbers in the parentheses
in Tables V and VI). Our NN KEDF provides the smallest
relative errors in 10 cases (a0 for β-tin Si, fcc-Al, fcc-Cu,
graphene; B0 for diamond, fcc-Si, β-tin Si, fcc-Al, fcc-Cu,
NaCl), whereas the number of the cases with the smallest
errors are 6 for LKT and 5 for PGSL0.25. The overall quan-
titative index of the superiority is evaluated as the mean
absolute relative errors (MAREs) with respect to the KS val-
ues for those quantities. The NN KEDF clearly shows the
minimum MAREs for both a0 and B0 (Table VI), indicating
its superior performance. For all structural properties, NN[bare]

produces larger MAREs than the NN functional. This indi-
cates the importance of augmenting the enhancement factor
and the validity of concept of the subsystem DFT [52]. It
is noteworthy that our NN KEDF functional is trained by a
part of the data in diamond and reproduces KSDFT results
reasonably for the structural properties of a variety of mate-
rials including metals and ionic crystals with no adjustable
parameters, where the machine learning parameters are

TABLE V. Comparison of equilibrium lattice constant (a0) in Å and bulk moduli (B0) in GPa obtained by NN and NN[bare] with those
obtained by different approximations to KEDF. Numbers in the parentheses are the relative errors in % with respect to the KS values. In β-tin
Si, the ratio of another lattice constant c0 to a0 (c0/a0) is also listed. Some values are left as blanks because the total energy monotonically
decreases with respect to the volume expansion.

diamond ds-Si fcc-Si β-tin Si 3C-SiC bcc-Li fcc-Al

a0 B0 a0 B0 a0 B0 a0 c0/a0 B0 a0 B0 a0 B0 a0 B0

NN 3.428 411 5.367 85.4 3.642 143 4.673 0.529 165 3.092 157 3.479 15.5 4.118 79.1

(−2.53) (25.7) (−0.46) (−14.6) (−0.22) (5.93) (0.17) (−1.67) (5.10) (2.28) (−36.2) (−0.83) (4.03) (1.68) (2.06)

NN[bare] 3.130 867 5.187 83.5 3.529 149 − − − 2.904 253 3.329 18.9 3.841 129

(−11.0) (165) (−3.80) (−16.5) (−3.32) (10.4) (−3.94) (2.85) (−5.10) (26.8) (−5.16) (66.5)

PGSL0.25 3.430 433 5.384 93.4 3.702 118 4.744 0.529 137 3.073 217 3.496 15.5 4.197 67.4

(−2.47) (32.4) (−0.15) (−6.6) (1.42) (−13.0) (1.69) (−1.67) (−12.7) (1.65) (−11.8) (−0.33) (3.78) (3.62) (−13.0)

LKT 3.343 578 5.336 104 3.644 161 4.643 0.532 186 3.066 227 3.492 15.3 4.144 86.0

(−4.95) (76.8) (−1.04) (4.00) (−0.16) (19.5) (−0.47) (−1.12) (18.5) (1.42) (−7.72) (−0.46) (2.52) (2.32) (10.9)

TF(1/5)vW 5.708 39.6 3.847 54.0 − 3.353 63.2 3.384 16.4 4.243 44.0

(5.86) (−60.4) (5.40) (−60.0) (10.9) (−74.3) (−3.54) (10.1) (4.76) (−43.2)

KSDFT 3.517 327 5.392 100 3.650 135 4.665 0.538 157 3.023 246 3.508 14.9 4.050 77.5
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TABLE VI. Comparison of equilibrium lattice constant (a0) in Å and bulk moduli (B0) in GPa obtained by NN and NN[bare] with different
approximations to KEDF. Numbers in the parentheses are the relative errors in % with respect to the KS values. Mean absolute relative errors
(%) with respect to the KS values averaged over the systems including the ones in Table V are also listed as MARE.

fcc-Cu bcc-Na NaCl graphene MARE

a0 B0 a0 B0 a0 B0 a0 a0 B0

NN 3.730 169 4.227 7.98 5.678 27.7 2.448
(2.33) (6.96) (−0.91) (3.50) (3.61) (6.94) (0.29) 1.39 11.1

NN[bare] 3.887 228 4.045 9.73 5.187 32.4 2.377
(6.64) (44.3) (−5.18) (26.2) (−5.35) (25.1) (−2.62) 4.74 38.4

PGSL0.25 3.795 138 4.250 8.00 5.595 22.9 2.433
(4.12) (−12.4) (−0.38) (3.75) (2.10) (−11.5) (−0.32) 1.66 12.1

LKT 3.762 175 4.245 7.91 5.596 23.8 2.402
(3.21) (10.7) (−0.50) (2.61) (2.12) (−8.20) (−1.59) 1.66 14.5

TF(1/5)vW 3.799 88.4 4.116 8.49 6.056 6.75 2.593
(4.21) (−44.1) (−3.51) (10.1) (10.5) (−73.9) (6.24) 6.10 47.0

KSDFT 3.645 158 4.266 7.71 5.480 25.9 2.441

determined uniquely in an ab initio fashion after minimizing
the cost function.

Table VII shows the bond lengths of 6 molecules. The
MAREs with respect to the KS values show that NN KEDF
performs overall better than other KEDFs. However, the ob-
tained MAREs of the bond lengths of the molecules are
certainly larger than the MAREs of the lattice constants of
the solids. This is presumably due to the fact that we have
trained our NN using the data of the solid, diamond-structured
carbon. This demonstrates the difficulty to develop the KEDF
quantitatively valid for both localized and delocalized sys-
tems. Table VIII shows the calculated cohesive energies (Ecoh)
for 11 solids. The chemical trend obtained in the KS scheme
is reproduced by our NN KEDF. However, the quantitative
reproduction of the KS values is not satisfactory. In fact, all
the KEDFs including those in the past provide MAREs of
the cohesive energy larger than 20% (the right-end column).
Among them, the NN KEDF keeps the smallest MAREs.

The lattice constant and the bulk modulus are obtained
by the behavior of the total energy E as a function of the
volume V around its minimum point: a0 is obtained as the
zero point of δE/δV and B0 requires the second derivative
δ2E/δV 2. In our OFDFT with the NN KEDF with �1 = 1,

the first derivative of E with respect to the density is trained.
Hence the high reproducibility of a0 may be intrinsic in the
present scheme, while it is natural that the MAREs for B0 are
worse than those for a0. Along this line, the machine learning
up to �1 = 2 is desired for physical quantities associated with
the second derivative of E such as B0. Since B0 calculated with
�1 = 1 already shows fair agreements with that by KS-DFT
and experiments, the higher-order machine learning has po-
tential to provide us with systematically more accurate KEDF.

C. Order-N DFT computations

Finally, we have analyzed the computational time of
both KSDFT and OFDFT in order to demonstrate our
O(N ) scheme. We decompose the computational time for
a single SCF iteration (tSCF) as tSCF = t1 + t2 + t3 + tothers,
where t1 is the time for the subspace diagonalization (SD),
conjugate-gradient minimization (CG) and Gram-Schmidt
(GS) orthonormalization, t2 for updating density and calcu-
lating the total energy, t3 for the mixing procedure to obtain
the new input potential, and tothers for other procedures such
as MPI gathering and broadcasting eigenvectors. The test
systems are 4H-SiC supercells with sizes of 576, 1024, 1600,

TABLE VII. Comparison of the equilibrium bond length (r0) in Å for molecules. Numbers in the bottom parentheses are the relative errors
in % with respect to the KS values. Mean absolute relative errors in % with respect to the KS values are also listed as MARE.

Li2 C2 Na2 Al2 Si2 Cl2 MARE

NN 3.118 1.425 2.913 2.608 2.325 1.966
(8.04) (18.5) (−5.56) (−4.32) (5.26) (5.20) 7.81

NN[bare] 2.332 1.414 2.995 2.886 2.243 1.964
(−19.2) (17.6) (−2.90) (5.90) (1.54) (3.54) 8.45

PGSL0.25 2.970 1.388 3.369 2.815 2.497 1.966
(2.91) (15.4) (9.23) (3.31) (13.0) (3.62) 7.92

LKT 2.846 1.391 3.211 3.153 1.974 1.777
(−1.37) (15.7) (4.12) (15.7) (−10.6) (−6.32) 8.96

TF(1/5)vW 3.011 1.489 3.042 2.505 2.582 2.020
(4.33) (23.9) (−1.37) (−8.09) (16.9) (6.49) 10.2

KSDFT 2.886 1.203 3.084 2.725 2.209 1.897
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TABLE VIII. Comparison of cohesive energies (Ecoh) for solids in Ha. Numbers in the parentheses are the relative errors in % with respect
to the KS values. The mean absolute relative errors (MAREs) in % with respect to the KS values are also listed.

diamond graphene ds-Si fcc-Si β-tin Si 3C-SiC bcc-Li fcc-Al fcc-Cu bcc-Na NaCl MARE

NN −0.3544 −0.3038 −0.3714 −0.2036 −0.3710 −0.3445 −0.0668 −0.1258 −0.1073 −0.0443 −0.3068
(22.1) (40.2) (14.8) (8.55) (15.2) (32.2) (7.1) (19.1) (16.6) (21.0) (22.9) 20.0

NN[bare] −0.3517 −0.2332 −0.3731 −0.2416 −0.4186 −0.3341 −0.0926 −0.5550 −0.1786 −0.0692 −0.4944
(22.7) (54.1) (14.4) (8.50) (4.38) (34.3) (48.4) (425) (94.0) (89.0) (98.1) 81.2

PGSL0.25 −1.2546 −0.7595 −0.7839 −0.4581 −0.8854 −1.0818 −0.2079 −0.6102 −0.2471 −0.0992 −0.6907
(176) (49.6) (79.8) (106) (102) (113) (233) (477) (168) (171) (177) 168

LKT −1.1272 −0.5836 −0.6768 −0.4422 −0.8340 −0.9147 −0.2134 −0.2770 −0.1856 −0.0771 −0.5235
(148) (14.9) (55.2) (98.6) (90.5) (79.9) (242) (162) (102) (111) (110) 110

TF(1/5)vW −0.3860 −0.1877 −0.3634 −0.2187 −0.4148 −0.4257 −0.0664 −0.1369 −0.1158 −0.0499 −0.3484
(15.2) (137) (16.7) (1.77) (5.25) (16.3) (6.51) (29.5) (25.8) (36.3) (39.6) 30.0

KSDFT −0.4551 −0.5077 −0.4361 −0.2226 −0.4377 −0.5084 −0.0624 −0.1057 −0.0921 −0.0366 −0.2496

2400, and 4704 atoms. Only gamma point is sampled for the
Brillouin zone integration in KSDFT. The grid-spacing is cho-
sen as 0.39 Å. We use 36 eigenvectors for the diagonalization
of Eq. (16).

Figure 6(a) shows the results. The predominant compu-
tational time during a single SCF iteration in KSDFT is t1,
whereas it is t2 or t3 in OFDFT. The latter scales with O(N1.2)
in our numerical confirmation. The overall computational
time in our OFDFT scheme and in our KS-scheme using
RSDFT code [30–32], which may be the fastest available
code, is shown in Fig. 6(b), indicating that the present OFDFT
scheme has now achieved essentially the O(N ) scaling.

Several O(N ) density-functional calculations have been
proposed and developed in the past. One primitive way is to
introduce localized-orbital basis sets to express Kohn-Sham

FIG. 6. Computational time of KSDFT and OFDFT. Comparison
of (a) t1, t2, and t3; and (b) tSCF. The test system is 4H-SiC supercell
with the number of atoms of 576–4704. In both (a) and (b), data
points obtained by KSDFT and OFDFT are plotted in red and blue
colors, respectively. Each set of data points has been fitted by ANβ

with parameters A and β, where N is the number of atoms, and the
fitted results are plotted as black solid lines. In (a), these fittings scale
as O(Nβ ) where β = 2.4, 1.9, 1.2, 1.2, 0.5 from the top line to the
bottom line. t1, t2, and t3 are plotted as circles, squares, and triangles,
respectively.

equations and then truncate the overlap of localized orbitals in
the actual computations [65,66]. This is obviously not based
on a legitimate principle but relies on the incompleteness of
the basis set practically. Another scheme is based on the “near-
sightedness principle” [67] of many-electron systems, which
states that principal quantities to describe physical properties
are essentially local. One of such quantities may be the density
matrix and the O(N ) scheme with the density matrix has been
developed [68]. Yet in the actual computations, one need to
truncate the density matrix in real space, which is actually
a system dependent procedure. On the other hand, OFDFT
does not require such system-dependent procedure once the
suitable kinetic-energy functional is developed. In this sense,
OFDFT has a potential to become the most legitimate and
practical O(N ) scheme, which is applicable to a broad range
of materials on the equal footing.

IV. CONCLUSION

We have developed a scheme of the orbital-free density-
functional-theory (OFDFT) calculations based on the accurate
and transferrable kinetic-energy density functional (KEDF),
which is created in an unprecedented way using appropriately
constructed neural network (NN). Our OFDFT scheme has
reproduced the electron density obtained in the state-of-the-art
DFT calculations and then provided accurate structural prop-
erties of 24 different systems, ranging from atoms, molecules,
metals, semiconductors, and an ionic material. The accuracy
and the transferability of our KEDF have been achieved by
our NN training system in which the kinetic-energy functional
derivative (KEFD) at each real-space grid point in diamond-
structured carbon is used as the training data. The choice
of the KEFD as the training data is essential in the follow-
ing sense: First, it appears directly in the Euler equation,
which one should solve and it allows us a transparent and
intuitive understanding, where the density and its derivatives
are the primary and fundamental quantities in the spirit of
DFT. Second, its leaning assists in reproducing the physical
quantity expressed as the first derivative of the total energy.
More generally, the present development of KEDF T [ρ] is
in the line of systematic expansion in terms of the functional
derivatives δ�1 T/δρ�1 through progressive increase of �1. The
present numerical success has demonstrated the validity of
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this approach with the detailed results for case of �1 = 1.
The computational cost of the present OFDFT scheme for
the system size N has indeed shown the scaling of O(N )
inherent to OFDFT, as is evidenced by the computations of
SiC consisting of thousands of Si and C atoms, which are
important in developing power-electronics devices.
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APPENDIX A: CONSTRUCTION OF AB INITIO LOCAL
IONIC PSEUDOPOTENTIALS

In this Appendix, we explain our scheme to generate ab
initio local ionic pseudopotentials (LIPSs), its application to
7 elements, lithium, carbon, sodium, aluminum, silicon, chlo-
rine, and copper, and the validity and the transferability of the
generated NLPSs.

Local pseudopotentials combined with OFDFT are de-
veloped in the pioneering paper by Carter and her col-
laborators [22,36–38]. They are called “bulk-derived local
pseudopotential” (BLPS) since the potentials contain parame-
ters, which are optimized to reproduce structural properties of
target bulk materials: The parameters are (1) the value of the
non-Coulombic part of the BLPS in reciprocal space at G = 0
and (2) the cutoff radius rc beyond which the Coulombic tail
is imposed on the BLPS in real space. In the construction of
BLPS, the KSDFT calculations with NLPS are first performed
to obtain the bulk modulus B0, equilibrium volumes V0, and
also the energy ordering of various phases. Then the above
parameters in BLPS are adjusted to reproduce those structural
characteristics obtained by the KSDFT calculations. Such fit-
ting is also improved by minimizing the difference between
forces obtained by the BLPS with OFDFT and those by an
NLPS with KSDFT [38]. Currently, these BLPSs are available
for Al, As, Ga, In, Li, Mg, P, Sb, Si [69]. After the appropriate
fitting, the bulk properties calculated from the BLPSs are in
good agreement with those by NLPSs [37].

In spite of relatively good performance of BLPSs, the
above mentioned fitting process is manual and cumber-
some. The iterative improvement of the BLPS is unavoidable
until required target properties can be obtained within
acceptably small errors. Furthermore, the previous procedure

to solve KS equation inversely and obtain the effective po-
tential [22,36,37] using the Wang-Parr method [70] or the
Wu-Yang method [71] require good initial guess for the ef-
fective potential.

In our paper, we aim to eliminate the fitting parameters and
to circumvent the iterative fitting procedure. In our approach,
the LIPS can be treated solely in reciprocal space and thus
there is no need to perform Fourier-Bessel transform, which
requires elaborate interpolation in reciprocal space.

The first step is to find an effective potential Veff (r) that
reproduces a target electron density generated by the KSDFT
calculations using NLPSs. Among many ways to invert the KS
equation, we adopt the Kadantsev-Stott method [39] based on
the Haydock-Foulkes variational principle [72], which does
not require a particularly good initial guess for the local pseu-
dopotential. In this method, a functional ϒ[Veff (r)] is defined
as

ϒ[Veff (r)] = −
∑
i:occ

εi[Veff (r)] +
∫

Veff (r)ρtarget (r)dr, (A1)

where εi are eigenvalues corresponding to the KS orbitals {φi},
and ρtarget (r) is the target electron density obtained by the
KSDFT calculation with NLPSs, which is to be reproduced
here. The Haydock-Foulkes variational principle ensures that
the true effective potential corresponding to the target density
satisfies the stationary condition δϒ[Veff ]/δVeff = 0.

In the kth iteration of the minimization of ϒ[V ], the KS
equation is solved inversely using the V (k−1)

eff (r) in the previ-
ous iteration to obtain the density ρ (k)(r). We note that the
functional derivative of ϒ satisfies an identity δϒ[V ]/δV =
−ρ(r) + ρtarget (r). Hence in the kth iteration, V (k)

eff (r) is ex-
plored along a line defined by

V (k)
eff (r) = V (k−1)

eff (r) − α1
δϒ[V ]

δV

∣∣∣∣
ρ=ρ (k)

, (A2)

and α1 is determined by the line search. We iteratively con-
tinue this process until σ ,

σ =
√

1

�

∫
�

|ρ (k)(r) − ρtarget (r)|2dr, (A3)

becomes less than the preset value. We have implemented this
variational minimization method in the RSDFT code [30–32].

In actual computations, we first generate the target bulk
electron densities by solving the KS equations using NLPSs.
We then invert the KS equation using these target bulk elec-
tron densities to obtain the local effective potentials Veff (r)
for these targets using the Kadantsev-Stott method explained
above. The settings of k-point grids and real-space grid spac-
ing used in the inversion are the same as those used in
generating the target bulk electron densities.

Next, the Hartree potential VH(r) and exchange-correlation
potential Vxc(r) among valence electrons are subtracted from
Veff (r) to extract the local ionic potential for the bulk:

V ion
bulk (r) = Veff (r) − VH(r) − Vxc(r). (A4)

We then convert V ion
bulk (r) into the atom-centered local ionic

pseudopotential in reciprocal space Ṽ ion
loc (G) as follows. First,
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TABLE IX. Parameters of local ionic pseudopotentials for Li, C, Na, Al, Si, Cl, and Cu.

ccore
1 αcore

1 αcore
2 rc C1 C2 C3 C4 C5

Li 1.0000 3.1250 0.4000 −3.12247 −5.29585 1.29259 −0.0299128 0
C 1.0000 1.4635 0.5845 8.4107 −13.007 4.8809 −0.6743 0.02793
Na 1.0000 1.1619 0.6560 −3.85643 −8.09377 2.90894 −0.190011 0
Al 1.0000 0.5732 0.9340 3.22841 −1.4132 0.147102 −0.00494713 0
Si 1.6054 2.1600 0.8600 0.7999 9.0231 −3.7692 0.5453 −0.02952 0
Cl 1.0000 1.3171 0.616128 5.29287 −2.12203 0.169072 −0.014369 0
Cu 1.0000 1.5097 0.5755 −2.58512 −17.0765 5.29496 −0.31904 0

V ion
bulk (r) is Fourier-transformed into reciprocal space as

V ion
bulk (G) = 1

�

∫
�

V ion
bulk (r)eiG·rdr, (A5)

where � is the unit cell volume. Then using the structure
factor S(G) of the target bulk material, we obtain the Fourier
transformed atom-centered ionic pseudopotential:

V ion(G) = V ion
bulk (G)

S(G)
. (A6)

Finally, by spherically averaging V ion(G), we obtain the
atom-centered local ionic pseudopotential in reciprocal space,
Ṽ ion

loc (G):

Ṽ ion
loc (G) = 1

NG

∑
|Gi|=G

V ion(Gi ), (A7)

where NG is the number of G vectors with the length being G.
The procedure to construct Ṽ ion

loc (G) explained above ensures
that the resulting Ṽ ion

loc has the proper Coulombic tail due to the
nucleus and core electrons in real space. Hence we fit Ṽ ion

loc (G)
numerically obtained above to the form,

Ṽ ion
loc (G) = 4π

�

∫ ∞

0
r2 j0(Gr)Ṽ ion

loc (r)dr

= − 4πZ

�G2

2∑
i=1

ccore
i exp

[
− G2

4αcore
i

]
+

√
(2π )3

�
rc

3 exp

[
− (Grc)2

2

]
{C1 + C2[3 − (Grc)2] + C3[15 − 10(Grc)2 + (Grc)4]

+C4[105 − 105(Grc)2 + 21(Grc)4 − (Grc)6] + C5[945 − 1260(Grc)2 + 378(Grc)4 − 36(Grc)6 + (Grc)8]}, (A8)

which corresponds to the Fourier-inversed-transform,

Ṽ ion
loc (r) = −Z

r

2∑
i=1

ccore
i erf

[(
αcore

i

)1/2
r
]

+ exp

[
−1

2

( r

rc

)2
] 5∑

n=1

Cn

( r

rc

)2n−2
, (A9)

where ccore
1 + ccore

2 = 1 [35,73].
The KSDFT calculations to obtain the target bulk densities

were performed using the RSDFT code [30–32]. We adopted
the generalized gradient approximation of Perdew, Burke, and
Ernzerhof [33] for the exchange-correlation functional. We
used Troullier-Martins (TM) NLPSs [74,75]. As target den-
sities, we chose the densities of ds-Si, ds-C, bcc-Li, bcc-Na,
fcc-Al, fcc-Cu, and NaCl with the lattice constants of 5.466 Å,
3.560 Å, 3.430 Å, 4.212 Å, 4.051 Å, 3.634 Å, and 5.694 Å,
respectively, all of which are equilibrium values within the
KSDFT scheme using NLPSs. The k-point sampling grids
were taken to be 4 × 4 × 4 in all calculations. The real-space
grid spacing was 0.190 Å for Si, 0.178 Å for C, 0.172 Å for
Li, 0.211 Å for Na, 0.169 Å for Al, 0.151 Å for Cu, and 0.190
Å for NaCl.

The convergence criteria of the KS inversion was set to be
σ < 3.5 × 10−4 bohr−3 for Li, σ < 1.0 × 10−3 bohr−3 for C,

σ < 2.0 × 10−5 bohr−3 for Na, σ < 1.0 × 10−5 bohr−3 for
Al, σ < 1.0 × 10−4 bohr−3 for Si, σ < 3.0 × 10−5 bohr−3 for
NaCl, and σ < 8.5 × 10−3 bohr−3 for Cu. We minimized the
functional ϒ[Veff (r)] via the conjugate gradient (CG) method.
The obtained parameters for Li, C, Na, Al, Si, Cl, and Cu
LIPSs are shown in Table IX.

We now assess the quality of our LIPSs. We compare the
electron densities of bcc-Li, fcc-Al, fcc-Cu, bcc-Na, NaCl, ds-
Si, ds-C, and zincblende(3C)-SiC calculated with the NLPS
and our LIPS. We denote the density obtained by the NLPS as
ρNLPS and that by our LIPS as ρLIPS. Figures 7, 8, and 9 show
the electron densities of the target materials along selected
directions: bcc-Li along [100], fcc-Al along [100], fcc-Cu
along [100], bcc-Na along [100], NaCl along [111], ds-Si
along [111], ds-C along [111], and SiC along [111]. For Al
and Si, the data from BLPS is also available. Hence we plot
the density obtained by the BLPS, labeled as ρBLPS in Figs. 7
and 9. Figures 7, 8, and 9 clearly show that the electron density
obtained by our LIPS well reproduces the density by NLPS.
The density by BLPS also seems to be good enough. For Al
[Fig. 7(b)] and Si [Fig. 9(a)], it appears that |ρLIPS − ρNLPS| is
generally smaller than |ρBLPS − ρNLPS|. As for diamond C and
SiC, the calculated ρLIPS satisfactorily reproduce the charac-
teristic features of ρNLPS: The peculiar double peaks between
the C-C bonds in diamond C and the substantial iconicity
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FIG. 7. Electron densities (left panels) obtained by NLPS and LIPS and the electron-density differences (right panels) for (a) body-
centered-cubic(bcc)-Li, (b) face-centered-cubic(fcc)-Al, and (c) fcc-Cu along the [100] direction. The position of each atom along the [100] is
marked on the top lines of each figure. For Al, the data obtained by using BLPS is also shown.

in SiC (Fig. 9). The maximum deviation of ρLIPS − ρNLPS

for diamond is 4.38 × 10−2 bohr−3 at the C nuclear site for
diamond C. For SiC it is 4.49 × 10−2 bohr−3 again at the C
nuclear site.

We also evaluate the quality of our LIPSs by calculating the
total energy as a function of the volume E (V ) for ds-Si, ds-

C, bcc-Li, bcc-Na, fcc-Al, fcc-Cu, NaCl, and zincblende(3C)-
SiC. The obtained E (V ) is fitted to Murnaghan’s equation of
state [76] to deduce the equilibrium lattice constant a0 and the
bulk modulus B0. The results are shown in Table X along with
those obtained by the NLPSs. The results from the BLPS for
Li, Al, and Si are also tabulated.

FIG. 8. Electron densities (left panels) obtained by NLPS and LIPS and the electron-density differences (right panels) for (a) body-
centered-cubic(bcc)-Na along the [100] direction and (b) NaCl along the [111] direction on the (110) plane. The position of each atom along
each direction is marked on the top lines of each figure.
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FIG. 9. Electron densities (left panels) obtained by NLPS and LIPS and the electron-density differences (right panels) for (a) diamond-
structured Si, (b) diamond-structured C, and (c) SiC along the [111] direction on the (110) plane. The position of each atom along the [111]
on the (110) is marked on the top lines of each figure. For Si, the data obtained by using BLPS is also shown.

It is clear that the structural properties of the 8 different
materials produced by our LIPSs are as accurate as those from
the NLPSs. The electron densities and the structural properties
obtained above certainly assures the reliability and the trans-
ferability of the frozen-core approximation (pseudopotential
scheme) using our LIPSs.

APPENDIX B: FUNCTIONAL DERIVATIVE OF
LAPLACIAN-LEVEL KINETIC-ENERGY FUNCTIONAL

For any Laplacian level KEDF of the form

T [ρ] =
∫

τ (ρ, |∇ρ|2,∇2ρ)dr, (B1)

the variation with respect to the electron density is

δT [ρ] =
∫ [

∂τ

∂ρ
δρ + ∂τ

∂ (|∇ρ|2)
δ(|∇ρ|2)

+ ∂τ

∂ (∇2ρ)
δ(∇2ρ)

]
dr

=
∫ [

∂τ

∂ρ
− 2∇ ·

(
∂τ

∂ (|∇ρ|2)
∇ρ

)

+∇2

(
∂τ

∂ (∇2ρ)

)]
δρdr, (B2)

where we used δ(|∇ρ|2) = 2∇ρ · ∇(δρ), δ(∇2ρ) = ∇2(δρ),
and the first (

∫
v(r) · ∇ f (r)dr = − ∫

f (r)∇ · v(r)dr)

TABLE X. Equilibrium lattice constants (a0) in Å and bulk moduli (B0) in GPa obtained by using the NLPS and our LIPS of 8 different
solids. For bcc-Li, fcc-Al, and ds-Si, the obtained values using the BLPS are also listed. Numbers in parentheses are the relative errors with
respect to the experimental values. The mean absolute relative errors (MAREs) in % with respect to the experimental values are 0.59 (NLPS),
1.11 (BLPS), and 1.13 (LIPS) for a0, and 6.21 (NLPS), 6.78 (BLPS), 11.0 (LIPS) for B0.

bcc-Li diamond bcc-Na fcc-Al ds-Si NaCl fcc-Cu SiC

a0 B0 a0 B0 a0 B0 a0 B0 a0 B0 a0 B0 a0 B0 a0 B0

NLPS 3.430 13.3 3.560 434 4.212 7.68 4.051 77.8 5.466 86.9 5.694 23.9 3.634 146 3.077 226

(−1.75) (−4.32) (−0.20) (−1.81) (−0.31) (21.9) (0.02) (2.37) (0.63) (−12.0) (0.96) (−2.05) (0.66) (4.29) (−0.19) (0.89)

BLPS 3.481 14.8 3.968 84.0 5.377 95.5

(−0.29) (6.47) (−2.02) (−9.08) (−1.01) (−17.1)

LIPS 3.508 14.9 3.517 327 4.266 7.71 4.050 77.5 5.392 100 5.480 25.9 3.645 158 3.023 246

(0.49) (7.19) (−1.40) (−26.0) (0.97) (22.4) (0.00) (1.97) (−0.74) (1.21) (−2.84) (6.15) (0.97) (12.9) (−1.62) (9.82)

Exp. 3.491 13.9 3.567 442 4.225 6.3 4.05 76 5.432 98.8 5.64 24.4 3.61 140 3.083 224
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FIG. 10. Evolution of the cost function during the optimization
process. The inset shows a zoom-in for the epochs smaller than 100.

and the second Green’s identities (
∫

f (r)∇2g(r)dr =∫ ∇2 f (r)g(r)dr). Specifically, when the kinetic energy is
expressed in meta-GGA form [Eq. (5)], substituting the
expressions

∂τ

∂ρ
= τTF

(
5

3ρ
F + ∂s2

∂ρ

∂F

∂s2
+ ∂q

∂ρ

∂F

∂q

)
(B3)

∂τ

∂ (|∇ρ|2)
= τTF ∂F

∂s2

∂s2

∂ (|∇ρ|2)
(B4)

∂τ

∂ (∇2ρ)
= τTF ∂F

∂q

∂q

∂ (∇2ρ)
(B5)

in Eq. (B2) leads to Eq. (9) with the use of ∂s2/∂ρ =
−8s2/(3ρ), ∂s2/∂ (|∇ρ|2) = ρ−8/3/(4(3π2)2/3), ∂q/∂ρ =
−5q/(3ρ), and ∂q/∂ (∇2ρ) = ρ−5/3/(4(3π2)2/3).

APPENDIX C: TRAINING DETAILS

We here determine the training hyperparameters, η and ν,
appearing in the NN weight updating formula Eq. (11). We
have first performed a grid search for optimum constant values
of η and ν in the range of 10−4 � η � 10 and 10−8 � ν � 1,
and found that a pair of constants, (η = 0.1, ν = 10−5), pro-
vides the smallest RMSE

√
2L of 0.228. Since the ordinary

gradient scheme represented by ν is helpful only at early
stages of training, we introduce proper time scheduling of ν,
keeping η = 0.1 constant. We consider three options for ν(t ),
ν(t ) = ν0/(1 + bt ), ν0/

√
1 + bt , and ν0 exp(−bt ), where t is

the number of the training epoch and ν0 = 10−5. We have
found that ν = ν0/(1 + bt ) with b = 10−2 provides the small-
est RMSE and adopted this scheduling in the present work.

Figure 10 shows variation of the cost function L during
the optimization for the case of the fixed A = 101.5 (see Ap-
pendix F below). It is noteworthy that the training of only
100 epochs makes the cost function small by three-orders-
of-magnitude, being less than 0.1 Ha2. It is shown that the
cost function becomes smallest at the 1400-th epoch. We thus
adopt the NN weight at the 1400th epoch as the final trained
weight. The total computational time for the optimization of
the NN weights is typically less than 30 minutes on usual
house computers, which is the orders-of-magnitudes shorter
than the computational time for the SCF calculations. We note

that 3000 training points are sufficient to minimize the cost
function to the value less than 0.06 Ha2.

APPENDIX D: FUNCTIONAL DERIVATIVE TRAINING

In order to calculate ∂L/∂W , we need to obtain
several derivatives, ∂F NN/∂W , ∂ (∂F NN/∂ (s2))/∂W and
∂ (∂F NN/∂q)∂W . In this paper, the first derivative is obtained
by the conventional backpropagation, and the second and the
third derivatives are obtained by the backpropagation for the
derivatives [49,50]. Here we briefly overview the algorithm
of the backpropagation in order to explain how to compute
the partial derivative of NN outputs with respect to the NN
weights W . The number of the neuron in the final layer
is DN = 1 in our case. In the conventional backpropaga-
tion, our aim is to compute ∂z(N )

1 /∂W (l )
ji from ∂z(N )

1 /∂a(N )
1 =

σ (N )′(a(N )
1 ). Using the quantity δ

(l )
j that satisfies the recursive

formula

δ
(l )
j ≡ ∂z(N )

1

∂a(l )
j

=
∑

k

∂z(N )
1

∂a(l+1)
k

∂a(l+1)
k

∂a(l )
j

=
∑

k

δ
(l+1)
k

∂

∂a(l )
j

∑
i

W (l+1)
ki σ

(
l )(a(l )

i

)

=
∑

k

δ
(l+1)
k W (l+1)

k j σ (l )′(a(l )
j

)
, (D1)

we can obtain ∂z(N )
1 /∂W (l )

ji as

∂z(N )
1

∂W (l )
ji

= δ
(l )
j z(l−1)

i . (D2)

This formula allows us to recursively compute ∂z(N )
1 /∂W (l )

ji

from δ
(N )
1 . Next, we derive a similar recursive method to obtain

∂γ
(N )

1r /∂W (l )
ji , where γ

(N )
1r = ∂z(N )

1 /∂z(1)
r is the derivative of the

output with respect to the inputs. Here γ
(l )

1r has been computed
recursively as

γ
(l )

1r = σ (l )′(a(l )
j

) ∑
k

W (l )
jk γ

(l−1)
kr (D3)

in advance. Using Eq. (D2), we have

∂γ
(N )

1r

∂W (l )
ji

= z(l−1)
i

∂δ
(l )
j

∂z(1)
r

+ ∂z(l−1)
i

∂z(1)
r

δ
(l )
j

= z(l−1)
i

∂δ
(l )
j

∂z(1)
r

+ γ
(l−1)

ir δ
(l )
j . (D4)

By introducing a quantity ζ
(l )
jr that satisfies the recursive for-

mula

ζ
(l )
jr ≡ ∂δ

(l )
j

∂z(1)
r

= ∂

∂z(1)
r

[
σ (l )′(a(l )

j

) ∑
k

∂z(N )
1

∂a(l+1)
k

W (l+1)
k j

]

= ∂σ (l )′(a(l )
j

)
∂z(l )

j

γ
(l )
jr

∑
k

W (l+1)
k j δ

(l+1)
k

+ σ (l )′(a(l )
j

) ∑
k

W (l+1)
k j ζ

(l+1)
kr , (D5)

033198-14



ORDER-N ORBITAL-FREE DENSITY-FUNCTIONAL … PHYSICAL REVIEW RESEARCH 3, 033198 (2021)

FIG. 11. Comparison of our response function χ0(η) with the
Lindhard response function χLind(η) after the optimization of the
parameter β.

we can compute ∂γ
(N )

1r /∂W (l )
ji starting from ζ

(N )
jr = 0 since we

take the activation function in the output layer as an identity
function, z(N )

1 = σ (N )(a(N )
1 ) = a(N )

1 .

APPENDIX E: DETERMINATION OF THE
ENHANCEMENT FACTOR F (0)(s2, q)

We have optimized β in the enhancement factor F (0)(s2, q),
Eq. (13), so that the inverse of the response function derived
from this enhancement factor in the homogeneous-gas limit,

− 1

χ0(η)
= π2

kF

(
1 + η2

3
+ 9

5
βη4

)
(E1)

reproduces the Lindhard function

− 1

χLind(η)
= π2

kF

(
1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
)−1

. (E2)

Here η = k/(2kF) with kF being (3π2ρ)1/3.
To this end, we have discretized η and defined 104 points

ηi ∈ [10−5, 4]. Then, we have performed the least square fit-
ting that minimizes the cost function C

C = 1

2

∑
i

[
1

χ0(ηi )
− 1

χLind(ηi )

]2

, (E3)

which results in the optimized value, β = 0.382. The obtained
χ0(η) is compared with χLind(η) in Fig. 11.

APPENDIX F: DETERMINATION OF SUBSPACE
DECOMPOSITION PARAMETER A

The parameter A, which defines our subsystem DFT func-
tional [Eq. (14)] can be determined by minimizing the cost
function L [Eq. (8)]. In the case, the metric tensor Gik

[Eq. (12)] is expanded to (nW + 1) × (nW + 1) dimension by
adding the components related to ∂[δT̃ NN(rp)/δρ]/∂A. We
have indeed minimized the cost function with the expanded
metric tensor and determined the parameter A. In the actual
minimization, we have performed grid search for the initial
values of Am = 100.5m with m being integers from 0 to 9 (a
typical logarithmic grid) and the subsequent neural-network

TABLE XI. The subsystem-DFT parameter A and the corre-
sponding RMSE between our NN KEFD and KS KEFD (the column
“
√

2L” in the unit of Ha). KS density ρKS is used to evaluate
√

2L.
The RMSE of the SCF density ρSCF obtained by our OFDFT scheme
with each value of A with respect to ρKS is also shown (the column
“RMSE” in the unit of 10−2 × bohr−3). [(nW + 1) × (nW + 1)]G and
[nW × nW ]G denote the results with the expanded metric tensor and
the original metric tensor without the ∂[δT̃ NN(rp)/δρ]/∂A-related
components, respectively.

m [(nW + 1) × (nW + 1)]G [nW × nW ]G

(Am = 100.5m) Aopt
√

2L RMSE
√

2L RMSE

0 2.751020 0.433 1.904 0.289 1.271
1 4.220258 0.331 1.534 0.273 1.262
2 10.54878 0.269 1.225 0.264 1.201
3 31.76219 0.284 1.232 0.274 1.186
4 100.0558 0.328 1.204 0.326 1.194
5 316.2413 0.404 1.300 0.387 1.246
6 1000.005 0.408 1.274 0.400 1.246
7 3162.279 0.337 1.231 0.346 1.266
8 10000.00 0.297 1.243 0.297 1.243
9 31622.78 0.279 1.238 0.279 1.238

minimization of the cost function L. We have found that
the optimized value Aopt depends on the initial choice Am as
shown in Table XI, indicating that the cost function L shows
multistability as a function of A. This is presumably due to
a fact that the NN weights {W i} rather than A are decisive
to determine the cost function. The computed RMSE of our
KEFD with respect to the KS-KEFD, i.e.,

√
2L itself, for each

value of Aopt are tabulated in Table XI. For A = 10.549,
√

2L
has the minimum value of 0.269 Ha although it increases only
by 7% for A = 31.76.

Observing the insensitivity of the cost function to the pa-
rameter A, we have also performed the minimization of the
cost function with the original metric tensor with the dimen-
sion of nW with the fixed value of A = Am. The obtained

√
2L

is shown in Table XI. The
√

2L values are comparable with
those obtained for Aopt and the minimum value 0.264 Ha for
Am = 10 is even smaller than the value 0.269 Ha for A =
10.549 above. This is presumably because we have succeeded
to optimize {W i} better with the fixed choice of A. This
may indicate the limitation of the present SNGD optimization
scheme for the two parameter sets with different mathematical
structures.

Having observed that the
√

2L values are insensitive to
the value of A, we introduce another criterion to determine
the A value. That is to minimize the difference of the elec-
tron density ρSCF obtained by the SCF calculations in our
OFDFT scheme with each A and {W i} values from that ρKS

obtained by the KSDFT scheme. The minimum RMSE 1.186
×10−2 bohr−3 of those two densities are obtained for the A
value of 101.5. This set of parameters, A and {W i} in turn
produces value of 0.274 Ha for

√
2L, which is just 3.8%

larger than the minimum
√

2L explained above. Recalling that
the electron density is the fundamental quantity in DFT, we
adopt the value of A = 101.5 in the present paper. Further
examination of the A value remains in future.
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