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Smoothing is a technique that is used to estimate the state of a system using measurement information both
prior and posterior to the estimation time. Two notable examples of this technique are the Rauch-Tung-Striebel
and Mayne-Fraser-Potter smoothing techniques for linear Gaussian systems, both resulting in the optimal
smoothed estimate of the state. However, when considering a quantum system, classical smoothing techniques
can result in an estimate that is not a valid quantum state. Consequently, a different smoothing theory was
developed explicitly for quantum systems. This theory has since been applied to the special case of linear Gaus-
sian quantum (LGQ) systems, where, in deriving the LGQ state smoothing equations, the Mayne-Fraser-Potter
technique was utilized. As a result, the final equations describing the smoothed state are closely related to the
classical Mayne-Fraser-Potter smoothing equations. In this paper, I derive the equivalent Rauch-Tung-Striebel
form of the quantum state smoothing equations, which further simplify the calculation for the smoothed quantum
state in LGQ systems, and I provide insight into the dynamics of the smoothed quantum state. This form
of the LGQ smoothing equations brings to light a property of the smoothed quantum state that was hidden
in the Mayne-Fraser-Potter form, namely the nondifferentiability of the smoothed mean. By identifying the
nondifferentiable part of the smoothed mean, I am then able to derive a necessary and sufficient condition for the
quantum smoothed mean to be differentiable in the steady-state regime.
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I. INTRODUCTION

Estimating an unknown state, i.e., a probability density
function (PDF), of physical systems using indirect measure-
ment results has been studied in great depth [1–13]. When
restricting to the case of (classical) linear Gaussian (LG)
systems, Kalman and Bucy [1] developed an optimal esti-
mation technique, known as filtering, which conditions the
estimate of the state on past measurement information, i.e.,
measurement information up until the time of estimation τ .
This estimated state is referred to as the filtered state. While
one of the appeals of the Kalman-Bucy filtering technique is
its ability to actively update the estimate of the state in real
time, there are other optimal estimation techniques that are
more accurate [2–13].

One such technique was developed soon after the Kalman-
Bucy filtering theory by Rauch, Tung, and Striebel [2,3]. This
technique, referred to as smoothing, not only utilizes the past
measurement information as the Kalman-Bucy filter does, but
it also uses information gathered after the estimation time
τ , i.e., the “future” measurement record, to provide a more
accurate estimate of the state. The Rauch-Tung-Striebel (RTS)
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smoothing technique, first, uses the Kalman-Bucy filtering
technique to estimate the state until the final estimation time
T . Once at the final estimation time T , the RTS smoothing
equations run back over the estimated state, updating the
results based on the future measurement record that has been
gathered. This results in a smoothed estimate of the state.
The only drawback of this smoothing technique, compared to
filtering, is that the smoothed state cannot be obtained in real
time since future information is required.

A similar technique, developed by Mayne [4], Fraser [5],
and Potter [6] shortly after RTS smoothing, also utilized a
past-future measurement record. Mayne-Fraser-Potter (MFP)
smoothing, sometimes referred to as two-filter smoothing for
reasons that will become apparent, also utilizes Kalman-Bucy
filtering to condition on the past measurement record. How-
ever, to make use of the future information, they introduced a
secondary filter, which I will refer to as a retrofilter, that ran
backwards from a final uninformative state conditioning on
the future measurement record. This state is the retrofiltered
state. Combining the filtered state and the retrofiltered state
together results in the MFP smoothed state. It has since been
shown [6] that the RTS smoothed state and the MFP smoothed
state are, in fact, identical.

Moving to quantum systems, an analogous problem to
classical state estimation also exists, where instead of esti-
mating a PDF one wishes to estimate the density matrix ρ.
Similar to the classical filtering theory, one can estimate the
quantum state based on the past measurement record. As a
result, this technique is often referred to as quantum filter-
ing [14–16]. Interestingly, if one restricts to linear Gaussian
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quantum (LGQ) systems, the quantum filtering technique re-
duces to the Kalman-Bucy filtering theory [17–19]. Given
this, one might assume that classical smoothing techniques,
such as the RTS or MFP techniques, can also be applied to
quantum state estimation. This is not the case. Applying the
classical theory to quantum state estimation can result in an
unphysical estimate of the quantum state [20–24]. This is
due to the noncommutativity of the operators describing the
system and the operators describing the future measurement
outcomes in quantum theory, which is usually not present in
the classical theory. Due to the failure of the classical theory,
Guevara and Wiseman [22] devised a new smoothing theory
specifically for quantum systems, namely the quantum state
smoothing theory.

The quantum state smoothing theory [22,24,25] introduces
a secondary measurement record that is unobserved by the
observer, say Alice, but is observed by someone else, say
Bob. The role of Bob’s measurement is to gather information
about the system that Alice’s measurement may have missed.
If Alice had access to Bob’s record, hereby referred to as the
“unobserved” record, she could condition the estimate of the
state on both her past observed record

←−
O and the unobserved

record
←−
U to obtain the true state of the system ρT = ρ←−

O
←−
U

,
a state containing the maximum amount of information about
the system given the measurements. Here, a leftward arrow
indicates that it is the past record, and a bidirectional arrow
indicates a past-future record. However, since Alice does not
have access to the unobserved record, she cannot compute
the true state of the system. The best [26] Alice can do is
to estimate the true state based only on the observed record.
Now, Alice can obtain a smoothed quantum state by averaging
over all possible true states conditioned on her past-future

observed record
←→
O [22], i.e.,

ρS = E←−
U |←→O {ρT}, (1)

where EA|B{C} denotes the ensemble average of C over A
conditioned on B, and it may appear without the A subscript
when A = C.

Following the conception of the smoothed quantum state,
the theory was applied to the special case of LGQ systems
[24,27,28]. To derive the LGQ smoothed quantum state, the
classical MFP smoothing technique was used. These quantum
state smoothing equations, due to being closed-form equa-
tions, have been able to identify properties of the smoothed
quantum state [24,27,28] that would have been difficult to
find in the general case. Furthermore, the smoothed state is
far simpler to compute for LGQ systems compared to even
a simple system in the general case, allowing for easier veri-
fication of these properties. However, while the MFP forms
of the quantum state smoothing equations have been very
useful, they require the calculation of a retrofiltered state.
This can be avoided by instead using the RTS form of the
smoothing equations, making the smoothed state even simpler
to compute for LGQ systems. Additionally, the RTS form of
the quantum state smoothing equations are dynamical equa-
tions, and they can provide insight into the properties of the
smoothed quantum state that would otherwise be hidden in
the MFP form. As a case in point, I derive a necessary and

sufficient constraint for the mean of the smoothed quantum
state to evolve smoothly in the steady-state regime.

This paper is structured as follows. First, in Sec. II, I
will briefly review classical and quantum state smoothing for
linear Gaussian systems. Next, in Sec. III, I will derive the
RTS form of the smoothed quantum state. Finally, in Sec. IV,
I will discuss this RTS form of the LGQ state smoothing
equations, showing that, under the same condition that makes
the classically smoothed mean a continuous function, the path
of the smoothed mean is necessarily nondifferentiable. Fur-
thermore, I identify a necessary and sufficient condition for
the mean of the smoothed quantum state to be differentiable
in the steady-state regime.

II. LINEAR GAUSSIAN STATE ESTIMATION

A. Classical

Consider a classical dynamical system. The state of the
system is given by a probability density function ℘(x̌), where
x̌ = (x̌1, x̌2, . . . , x̌M )� is a vector of M parameters that are
required to completely characterize the system, and � denotes
the transpose. Note, for clarity, the wedge accent will be used
to denote a dummy variable to differentiate it from the corre-
sponding random variable. For a LG system, the classical state
will be a Gaussian distribution, i.e., ℘(x̌) = g(x̌;E{x̌},V ),
completely described by its mean E{x̌} and covariance ma-
trix V = E{x̌x̌�} − E{x̌}E{x̌�}. To guarantee that the state
remains Gaussian throughout the evolution of the system, pro-
vided that at the initial time t0 the state is Gaussian with mean
E{x̌(t0)} = x0 and covariance V (t0) = V0, it is necessary that
the following two constraints are satisfied [7–12,19]. First,
the evolution of x must be described by a linear Langevin
equation

dx = Ax dt + Edvp. (2)

Here A (the drift matrix) and E are constant matrices, and the
process noise dvp is a vector of independent Wiener incre-
ments satisfying

E{dvp} = 0, dvpdv�
p = IK dt, (3)

where Ik is the k × k identity matrix. Secondly, any measure-
ment current y used to refine our estimate of the state must
also be linear, i.e.,

ydt = Cx dt + dvm, (4)

where the measurement matrix C is a constant matrix, and
the measurement noise dvm is a vector of independent Wiener
increments satisfying similar conditions to Eq. (3). Usually, it
is also assumed that the process noise and measurement noise
are uncorrelated [1–12], i.e., dvp(dvm)� = 0, however this as-
sumption is not always true, i.e., there might be measurement
backaction. For the sake of generality, I will consider the case
in which the two noises may be correlated, described by the
cross-correlation matrix [19,29–32]

��dt = Edvp(dvm)�. (5)

If all of the above criteria are satisfied, one can calculate the
filtered estimate of the state ℘F(x̌) ≡ ℘(x̌|←−O ) = g(x̌; xF,VF)
by conditioning the state on the past measurement record
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←−
O . The filtered mean xF := E|←−O {x̌} and covariance VF =
E

x̌|←−O {x̌x̌�} − xFx�
F are given by the Kalman-Bucy filtering

equations [1,19,29–32]

dxF = AxFdt + K+[VF]dwF, (6)

dVF

dt
= AVF + VFA� + D − K+[VF]K+[VF]�, (7)

with initial conditions xF(t0) = x0 and VF(t0) = V0. Here
D = EE� is the diffusion matrix,

K±[V ] = VC� ± �� (8)

is the optimal Kalman gain, where the minus version will
appear shortly, and the vector of innovations is defined as
dwc = ydt − Cxcdt for a given conditioning c ∈ {F, R, S},
representing filtering, retrofiltering, and smoothing, respec-
tively, and it satisfies similar conditions to Eq. (3).

One can also calculate the smoothed estimate of the state
℘S(x̌) ≡ ℘(x̌|←→O ) = g(x̌; xS,VS) by conditioning the estimate

on the past-future measurement record
←→
O . The optimal

smoothed mean xS := E|←→O {x̌} and covariance matrix VS =
E

x̌|←→O {x̌x̌�} − xSx�
S can be calculated in two ways. The first

method is a maximum-likelihood argument and results in the
RTS smoothing equations [2,3,32]

dxS = AxSdt + D̃V −1
F (〈x〉S − 〈x〉F)dt + ��dwS, (9)

dVS

dt
= (

Ã + D̃V −1
F

)
VS + VS

(
Ã + D̃V −1

F

)� − D̃, (10)

with the final conditions xS(T ) = xF(T ) and VS(T ) = VF(T ).
Here, Ã = A − ��C, D̃ = D − ���.

The second method arises from a Bayesian argument,
where one first introduces a retrofiltered state that runs back-
wards in time from the final estimation time. This retrofiltered
state will also be Gaussian with mean xR := E|−→O {x̌} and co-

variance VR = E
x̌|−→O {x̌x̌�} − xRx�

R , given by

− dxR = −AxRdt + K−[VR]dwR, (11)

−dVR

dt
= −AVR − VRA� + D − K−[VR]K−[VR]�, (12)

with V −1
R (T ) = 0 describing an uninformative state. Com-

bining the filtered and retrofiltered state gives the smoothed
state, with the mean and covariance described by the MFP
smoothing equations [4–6]

xS = VS
[
V −1

F xF + V −1
R xR

]
, (13)

VS = (
V −1

F + V −1
R

)−1
. (14)

It has since been shown [6] that the RTS and MFP forms of the
smoothed mean and covariance are identical, and this is easily
verified by differentiating Eqs. (13) and (14) with respect to
time.

B. Quantum

To begin, let us consider an open quantum system whose
density matrix ρ, assuming a Markovian system, evolves ac-

cording to the Lindblad master equation [19]

h̄
dρ

dt
= −[Ĥ, ρ] + D[ĉ]ρ, (15)

with initial condition ρ(t0) = ρ0. Here Ĥ is the system Hamil-
tonian describing unitary evolution, ĉ = (ĉ1, ĉ2, . . . , ĉK ) is
the vector of Lindblad operators describing the interaction
between the system and environment, [A, B] = AB − BA is
the commutator, and the superoperator

D[ĉ]ρ = ĉkρĉ†
k − {ĉ†

k ĉk, ρ}/2, (16)

with {A, B} = AB + BA being the anticommutator; I am using
the Einstein summation convention over repeated indices.

For this quantum system to be analogous to a classical
LG system, we require that the system observables have an
unbounded spectrum. Thus, we will assume that the quantum
system can be described by N bosonic modes with each mode
described by a position q̂k and momentum p̂k , which sat-
isfy the commutation relation [q̂k, p̂�] = ih̄δk,�. We can then
construct a 2N vector x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )� describing
all the modes of the bosonic system. For the system to be
classified as a LGQ system [17–19], the Wigner function, a
quasiprobability distribution defined as

W (x̌) = (2π )−2N
∫

d2N b Tr[ρeib�(x̂−x̌)], (17)

must initially be Gaussian and remain Gaussian, where the
latter can be guaranteed when the Hamiltonian is quadratic
and the vector of Lindblad operators is linear in x̂, i.e., Ĥ =
x̂�Gx̂/2 and ĉ = Bx̂, respectively. Here, d2N b = ∏2N

k=1 bk is
the usual vectorial integral measure. Note, since we are using
the Wigner function to characterize the quantum state, the
Hamiltonian must be symmetrically ordered in q̂k and p̂k ,
meaning G needs to be a symmetric matrix. As the Wigner
function is Gaussian, i.e., W (x̌) = g(x̌; 〈x̂〉,V ), all that is
required to know the state is the mean 〈x̂〉 and covariance ma-
trix, defined symmetrically, Vk� = 〈x̂k x̂� + x̂�x̂k〉/2 − 〈x̂k〉〈x̂�〉,
where the quantum expectation is 〈•〉 = Tr[•ρ]. Using the
Lindblad master equation, we can compute the dynamic equa-
tions for the unconditioned mean and covariance,

d〈x̂〉 = A〈x̂〉dt, (18)

dV

dt
= AV + VA� + D, (19)

with initial conditions 〈x̂〉(t0) = 〈x̂〉0 and V (t0) = V0. Here

A = 	(G + Im[B†B]) and D = h̄	 Re[B†B]	�, (20)

with 	k� = −i[x̂k, x̂�]/h̄ being a symplectic matrix. Addi-
tionally, since the position and momentum operators do not
commute, it is necessary that the covariance matrix obeys the
Schrödinger-Heisenberg uncertainty relation

V + ih̄

2
	 � 0. (21)

Without any measurement information, this would be the most
accurate estimate of the state possible.

If one wishes to obtain a better estimate on the quantum
state, it is necessary to gather more information about the
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system by measuring the environment. In the event of a con-
tinuous monitoring, we can condition the evolution of the
state on the past measurement results and obtain the so called
quantum filtering equation [19,33],

h̄dρF = −i[H, ρF]dt + D[ĉ]ρFdt +
√

h̄dw�
F H[M†ĉ]ρF,

(22)
with ρF(t0) = ρ0. For reasons that will become apparent, I
have restricted the measurements to diffusive-type measure-
ments, such as homodyne or heterodyne schemes, with the
matrix M (assumed time-independent for simplicity) charac-
terizing the particular unraveling. Here the filtered innovation
is a vector of independent Wiener increments defined by
dwF = ydt − 〈M†ĉ + ĉ†M�〉Fdt , satisfying conditions simi-
lar to Eq. (3), with the conditioned expectation value defined
as 〈•〉c = Tr[•ρc] with c ∈ {F, T, S}, representing the filtered,
true, and smoothed states, respectively, and ydt being the
measurement current, and the superoperator

H[M†ĉ]ρ = M†ĉρ + ρĉ†M − Tr[M†ĉρ + ρĉ†M]ρ. (23)

To ensure that the resulting filtered state is a valid quantum
state, it is necessary and sufficient [33] that the matrix M
satisfies MM† = diag(η1, η2, . . . , ηK ), where 0 � ηk � 1 ∀ k
and it can be interpreted as the fraction of the channel ĉk that
has been observed. Note, it must be the case that at least one
ηk > 0, otherwise no measurement has been performed and
both filtering and smoothing are redundant.

When considering an LGQ system, in order to keep the
filtered Wigner function Gaussian throughout the entire evo-
lution, we require the measurement current to be linear in x̂
(which is the case for diffusive type measurements), i.e.,

ydt = Cx̂ dt + dvm, (24)

where the measurement matrix C = 2
√

h̄−1T �B̃, T � =
[Re(M�), Im(M�)], B̃� = [Re(B�), Im(B�)], and the mea-
surement noise, for simplicity, is assumed to be white, i.e.,
it satisfies the properties in Eq. (3). As was the case for the
unconditioned state, since the filtered state has been restricted
to have a Gaussian Wigner function, WF(x̌) = g(x̌; 〈x̂〉F,VF),
we only need information about the mean and covariance
matrix to specify the state. Using Eq. (22), one can obtain the
equations for the filtered mean and covariance matrix [17–19],

d〈x̂〉F = A〈x̂〉Fdt + K+[VF]dwF, (25)

dVF

dt
= AVF + VFA� + D − K+[VF]K+[VF]�, (26)

with initial conditions 〈x̂〉F(t0) = 〈x̂〉0 and VF(t0) = V0. Here
K+[V ] is defined in Eq. (8), with � = −√

h̄T �SB̃	� and S =[ 0 IK

−IK 0

]
. Note, since the filtered state ρF is a valid quantum

state, it is the case that VF satisfies the Schrödinger-Heisenberg
uncertainty relation.

If one wishes to obtain an even more accurate estimate of
the state, it is possible that we can condition the estimate of the
state on not only the past measurement information but also
the future measurement record. This leads us to the quantum
state smoothing theory of Guevara and Wiseman [22].

III. DERIVING THE QUANTUM RAUCH-TUNG-STRIEBEL
SMOOTHED STATE

To calculate a smoothed quantum state, one needs to first
introduce the true state ρT. As mentioned in the Introduction,
the true state is an estimate conditioned on two independent
measurement records, the past record observed by Alice and
the past record observed by Bob. This situation is merely an
extension of the filtering scenario to multiple independent
measurement records, and thus it is simple to see that the
resulting stochastic master equation will be

h̄dρT = −i[H, ρT]dt + D[ĉ]ρTdt

+
∑

r∈{o,u}

√
h̄d w�

r H[M†
r ĉ]ρT, (27)

where, assuming Alice and Bob have the same initial in-
formation about the quantum state, the initial condition is
ρT(t0) = ρ0. Note, this may not always be the case and it
is trivial to adapt to the general case, however this assump-
tion seems like a scenario that would occur frequently and
is worth considering. As before, we are restricting to the
case in which both Alice and Bob measure there respective
fractions of the measurement channels using a diffusive-type
measurements. We have introduced the (r)ecord subscript
to distinguish between the record (o)bserved by Alice and
the record (u)nobserved by Alice (Bob’s record), where the
matrices Mo and Mu describe how Alice and Bob have unrav-
eled the system, respectively. The observed and unobserved
innovations are defined as dwr = yrdt − 〈M†

r ĉ + ĉ†M�
r 〉Tdt ,

where we have assumed both records are uncorrelated, i.e.,
dwodw�

u = 0, and yrdt is the corresponding measurement
current for Alice and Bob.

As was the case for the filtered state, to ensure that
the true state is a valid quantum case, it is necessary
and sufficient that both Mo and Mu must satisfy MrM†

r =
diag(ηr,1, ηr,2, . . . , ηr,K ) with 0 � ηr,k � 1 and ηo,k + ηu,k �
1 ∀k. Note, although it is often convenient to assume that
MoM†

o + MuM†
u = IK [24,27,28], that is, together Alice’s and

Bob’s measurements constitute a perfect measurement of the
system and the resulting true state will be pure, it not a neces-
sary assumption and what follows will hold generally. As was
the case with filtering, it must be that at least one ηo,k > 0 and
ηu,k′ > 0.

For an LGQ system, to ensure that the true state remains
Gaussian, as was the case for filtering, we require that both
Alice’s and Bob’s measurements are linear,

yrdt = Cr〈x̂〉Tdt + dwr, (28)

where, for simplicity, I have defined the currents in terms
of the true mean 〈x̂〉T and the innovation, where, in this
form, it should be clear that the observed innovation dwo =
yodt − Co〈x̂〉Tdt is different from Alice’s filtered inno-
vation dwF = yodt − Co〈x̂〉Fdt . Given this restriction, the
Wigner function for the true state will be Gaussian, WT(x̌) =
g(x̌, 〈x̂〉T,VT), with the true mean 〈x̂〉T and covariance VT

[27,28],

d〈x̂〉T = A〈x̂〉Tdt +
∑

r∈{o,u}
K+

r [VT]dwr, (29)
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dVT

dt
= AVT + VTA� + D −

∑
r∈{o,u}

K+
r [VT]K+

r [VT]�, (30)

with initial conditions 〈x̂〉T(t0) = 〈x̂〉0 and VT(t0) = V0. Here,
K±

r [V ] = VC�
r ± ��

r , where Cr and �r are defined in the same
way as before, with the appropriate Mr used in both cases.

Now that the true state has been calculated, we can be-
gin to derive the smoothed quantum state for LGQ systems.
To begin, as we are interested in the Wigner function of
the smoothed state WS(x̌) in the LGQ setting, we can apply
Eq. (17) to both sides of Eq. (1), where, by the linearity of the
trace, we obtain

WS(x̌) = E←−
U |←→O {WT(x̌)}. (31)

As the Wigner function of the true state is restricted to a
Gaussian, we know that it only depends on the mean 〈x̂〉T and
covariance matrix VT, the latter of which is deterministic with
the former depending explicitly on both

←−
O and

←−
U . Hence,

averaging over
←−
U with a fixed

←→
O will be equivalent to

averaging over the true mean 〈x̂〉T for a fixed observed record.
To make the notation simpler for the derivation to come, we
take

◦x = 〈x̂〉T, where the ellipse accent will be referred to
as a “halo” and will denote intermediary variables between
the true state and the filtered/smoothed state. Making these
changes to Eq. (31), we get

WS(x̌) = E◦
x|←→O {WT(x̌)} =

∫
d2N◦x℘(

◦x|←→O )g(x̌;
◦x,VT). (32)

We also know that℘(
◦x|←−O ) will be a Gaussian distribution. To

see why this is the case, we rewrite Eq. (29) as

d
◦x = A

◦xdt + Ēd v̄p, (33)

where Ēd v̄p = ∑
r∈{o,u} K+

r [VT]dwr, with the observed mea-
surement current

yodt = Co
◦xdt + dwo, (34)

where it is clear that
◦x is described by a linear Langevin

equation, as in Eq. (2), and by conditioning on a linear mea-
surement current the resulting PDF will be Gaussian.

As ℘(
◦x|←→O ) is a classical object, we can simply apply

classical smoothing theory in order to compute this PDF, and

since this PDF is Gaussian, ℘(
◦x|←→O ) = g(

◦x;
◦xS,

◦
VS), we only

need to determine the mean
◦xS and covariance

◦
VS. At this

point there are two paths we can take, i.e., we can use either
the MFP or RTS smoothing technique on Eq. (33) to obtain
equations for the haloed smoothed mean and covariance. As
stated earlier, I will choose the latter. Applying Eqs. (9) and
(10) to Eq. (33) results in

d
◦xS = A

◦xSdt + D̄
◦
V −1

F (
◦xS −◦xF)dt + �̄�dwS, (35)

d
◦
VS

dt
= (

Ā + D̄
◦
V −1

F

)◦
VS + ◦

VS
(
Ā + D̄

◦
V −1

F

)� − D̄, (36)

with final conditions
◦xS(T ) = ◦xF(T ) and

◦
VS(T ) = ◦

VF(T ).
Here Ā = A − �̄�Co, D̄ = Ē Ē� − �̄��̄, �̄�dt =
Ēd v̄pdw�

o = K+
o [VT]dt , and dwS = yodt − Co

◦xSdt .
Additionally, I have introduced both the haloed filtered
mean

◦xF = E|←−O {◦x} and covariance
◦
VF = E◦

x|←−O {◦x◦x�} −◦xF
◦x�

F ,

which are obtained from the filtered PDF ℘(
◦x|←−O ). Note,

in Eqs. (35) and (36) I have assumed that
◦
VF is invertible,

which may not always be the case. In the event that
◦
VF is not

invertible, the smoothed quantum state can still be computed
with slight modifications; see Appendix for details.

While the haloed filtered mean and covariance do sat-
isfy their own differential equations, it has been shown [27]
that

◦xF = 〈x̂〉F and
◦
VF = VF − VT, thus the specific equa-

tions are not important for computing the haloed smoothed
mean and covariance matrices. However, for simplicity, the
haloed covariance matrix will be used more often for simplic-
ity. It should also be emphasized that

◦
VF is the covariance

of a classical state and thus is not required to satisfy
the Schrödinger-Heisenberg uncertainty relation, unlike VF

and VT.
Finally, we have all the necessary information to compute

the smoothed quantum state for LGQ systems. Returning to

Eq. (32), we can substitute in the Gaussian PDF, ℘(
◦x|←→O ) =

g(
◦x;

◦xS,
◦
VS), obtaining

g(x̌; 〈x̂〉S,VS) =
∫

d2N◦x g(
◦x;

◦xS,
◦
VS)g(x̌;

◦x,VT), (37)

where, using the fact that convolving two Gaussian functions
will result in another Gaussian, I have replaced the Wigner
function of the smoothed state with its Gaussian with mean
〈x̂〉S and covariance matrix VS. Using the properties of such a
convolution, we find that 〈x̂〉S = ◦xS and VS = ◦

VS + VT. Thus,

using dVS
dt = d

◦
VS
dt + dVT

dt , we obtain the RTS form of the quan-
tum state smoothing equations,

d〈x̂〉S = A〈x̂〉Sdt + D̄
◦
V −1

F (〈x̂〉S − 〈x̂〉F)dt + K+
o [VT]dwS,

(38)
dVS

dt
= (

Ā + D̄
◦
V −1

F

)
VS + VS

(
Ā + D̄

◦
V −1

F

)� + Q, (39)

with the final condition VS(T ) = ◦
VF(T ) + VT(T ) = VF(T ) and

Q = D − ��
o �o + VTC�

o CoVT − D̄
◦
V −1

F VT − VT
◦
V −1

F D̄ − 2D̄.

(40)

One advantage of the RTS form of the LGQ state smoothing
equations is that there is no need to compute the retrofiltered
effect, and we only have to focus on computing the necessary
quantities to obtain the smoothed state. While this does not
reduce the overall number of differential equations (ordinary
or stochastic) that need to be solved to compute the smoothed
quantum state, it does remove the extra step of computing
the smoothed mean and covariance using the MFP equations.
However, the greatest advantage lies in the fact that the RTS
equations are dynamical equations that can provide insight
into how the smoothed state evolves. This is hidden in the
MFP forms and also in the general expression in Eq. (1).

IV. DIFFERENTIABILITY OF THE QUANTUM
SMOOTHED MEAN

To show just one of the perks of having the dynami-
cal equations, I will investigate nondifferentiability of the
smoothed mean. It may not be terribly surprising that the mean
of the smoothed quantum state is nondifferentiable as this is
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also the case in classical smoothing. However, there is a slight,
perhaps predictable difference between the innovation terms
in the classical and quantum cases. Specifically, we see that, in
the quantum case, there is a dependence on the true covariance
VT, which is reasonable as this is the minimum uncertainty
in the mean for the quantum system given Alice’s and Bob’s
measurements. Thus it is reasonable to expect that Alice’s
measurement would change her estimate of the mean by at
least an amount proportional to VT. In contrast, the innovation
in the classical case only depends on the cross-correlation
matrix � since the true covariance is zero, corresponding to a δ

function PDF, where the Schrödinger-Heisenberg uncertainty
relation prevents VT → 0 in quantum systems. Furthermore,
because of the uncertainty relation, one might expect that the
quantum smoothed mean will always be nondifferentiable.
This is not the case.

In the classical case, all that is required for the smoothed
mean xS to be differentiable is that the cross-correlation ma-
trix � = 0, meaning that Alice’s measurement is uncorrelated
with the noise affecting the system. However, this condition
is not sufficient in general for the quantum case. To find the
condition for differentiability in the quantum case, we will
assume that the mean is differentiable, that is, d〈x̂〉S ∝ dt ,
over the interval [τ1, τ2]. It is easy to see by looking at Eq. (38)
that the only term that is preventing the mean from being
differentiable is the innovation term K+

o [VT]dwS. Thus, in
order for the mean to be differentiable, this innovation term
must either be proportional to dt or vanish over the interval.
It is impossible for the former to be true as for the innovation
term to be proportional to dt , since dw�

S dwS ∝ dt , it must be
the case that K+

o [VT] = Rdw�
S , where R is an arbitrary matrix.

This cannot be the case as VT, Co, and �o are all independent of
the observed measurement at the estimation time. The latter,
on the other hand, is possible and occurs when K+

o [VT] = 0.
Note, one could also make this term vanish by considering
K+

o [VT] ∝ dt . However, this means that Co and �o are of
order dt , as VT cannot be by the Schrödinger-Heisenberg
uncertainty relation, which causes the filtered mean, and con-
sequently the smoothed mean, to reduce the unconditioned
estimate. Thus, this case can be ignored. Since we are con-
sidering a fixed measurement scheme, i.e., Co and �o are
time-independent, it is impossible for K+

o [VT] = 0 to be satis-
fied at all times. Thus, to have a differentiable smoothed mean
over a noninfinitesimal time interval, I will only consider
time intervals in the steady-state regime, i.e., τ1 � τ ss, where
τ ss is the time taken for the true covariance to reach steady
state.

Under this condition, the steady state of the true covariance
V ss

T satisfies

0 = AV ss
T + V ss

T A� + D − K+
u

[
V ss

T

]
K+

u

[
V ss

T

]�
. (41)

At this point, we can see that the steady-state covariance
of the true state is identical to the steady state of a single
record filtered state, like Eq. (26). However, rather than using
Alice’s past record, it is Bob’s past record that is used. For
comparison, Bob’s filtered state is W←−

U
(x̌) = g(x̌; 〈x̂〉←−

U
,V←−

U
),

with

d〈x̂〉←−
U

= A〈x̂〉←−
U

dt + K+
u [V←−

U
]dw←−

U
, (42)

dV←−
U

dt
= AV←−

U
+ V←−

U
A� + D − K+

u [V←−
U

]K+
u [V←−

U
], (43)

where dw←−
U

= yudt − Cu〈x̂〉←−
U

dt . Thus, we have that if the
mean of the smoothed quantum state is differentiable in the
steady-state regime, then V ss

T = V ss←−
U

.
Importantly, the converse of this is also true, that is, if

V ss
T = V ss←−

U
, then the mean of the smoothed quantum state is

differentiable. This is simple to see since the steady state of
the true covariance in general satisfies

0 = AV ss
T + V ss

T A� + D − K+
o [V ss

T ]K+
o

[
V ss

T

]�

− K+
u

[
V ss

T

]
K+

u

[
V ss

T

]�
, (44)

and the steady-state of Bob’s filtered covariance satisfies

0 = AV ss←−
U

+ V ss←−
U

A� + D − K+
u

[
V ss←−

U

]
K+

u

[
V ss←−

U

]�
. (45)

Since V ss
T = V ss←−

U
, Eq. (44) reduces to K+

o [V ss
T ]K+

o [V ss
T ]� = 0

giving K+
o [V ss

T ] = 0. As we have already shown, under this
condition d〈x̂〉S ∝ dt and it is differentiable. As a result, we
have the necessary and sufficient condition that V ss

T = V ss←−
U

for
a differentiable mean of the smoothed quantum state in the
steady-state regime.

Note, this is true more generally outside the steady-state
regime, when VT(t ) = V←−

U
(t ) over a time interval [τ1, τ2]. To

see this, we note that since VT(t ) = V←−
U

(t ), their derivatives at
all times in the interval are also equal. Subtracting Eq. (30)
from Eq. (43) gives K+

o [VT]K+
o [VT]� = 0 and thus K+

o [VT] =
0 for all times in the interval. Hence, in the general case, it
is sufficient for a differentiable smoothed mean over the in-
terval [τ1, τ2] if VT(t ) = V←−

U
(t ). However, it is not a necessary

condition.
This differentiability condition contains useful informa-

tion about the types of systems and measurements that could
exhibit a differentiable smoothed mean. Specifically, we see
from V ss

T = V ss←−
U

that Alice’s measurement cannot reduce the
uncertainty of the true state beyond what Bob’s measurement
already has. This immediately means that the quantum system
must have more than one Lindblad operator, otherwise the
portion of the channel that Alice monitors will always reduce
the uncertainty by a fraction more when combine with Bob’s
measurement.

As an example, I will consider a single-mode (N = 1) open
quantum system described by the master equation,

h̄
dρ

dt
= −iχ [(q̂ p̂ + p̂q̂)/2, ρ] + γD[q̂ + i p̂]ρ + κD[q̂]ρ.

(46)
Note, while this is a toy system to illustrate the differentia-
bility condition for quantum state smoothing, in principle it
could be constructed using linear optics. In fact, this system
is similar to an optical parametric oscillator [18,19], where
the only difference is that the additional Lindblad operator
ĉ2 = q̂, as mentioned before, is required. In this system, since
the variance in the p̂ quadrature is bounded by the squeezing
Hamiltonian, we can expect that, when κ is large enough, the
amount of information about the position quadrature gained
by monitoring ĉ2 would reduce the uncertainty in q̂ by enough
so that the state is pure. Thus, for this system, if Bob were
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(a)

(b)

FIG. 1. (a) A single realization of the q- and p-quadratures (left and right, respectively) for the quantum system Eq. (46). The top two
graphs are when Alice is measuring the γ -channel with homodyne phase θγ ,o = π/8 and Bob is measuring the κ-channel with θκ,u = 0, where
g = 1. The quantum smoothed mean (red line) initially evolves stochastically. However, at t ≈ 0.8, a sufficient time has passed for the system
to reach steady state and the quantum smoothed mean begins to evolve continuously since V ss

T = V ss←−
U

. Whereas the other three estimates—the
true mean (black line), the filtered mean (blue line), and the classically smoothed mean (green line)—naively applied to the quantum system,
all evolve stochastically. For this case, 〈 p̂〉T(t ) = 〈 p̂〉F(t ) = 0. (b) A single realization of the q- and p-quadratures (left and right, respectively)
for the reverse scenario is considered for Alice and Bob. That is, Alice measures the κ-channel with θκ,o = 0 and Bob measures the γ -channel
with homodyne phase θγ ,u = π/8, in this case with g = 0.1. While Alice’s measurement has a zero cross-correlation matrix, i.e., �o = 0, the
quantum smoothed mean (red line) evolves stochastically, since V ss

T �= V ss←−
U

. I have included the true mean (black line) and filtered mean (blue
line) for completeness, where 〈 p̂〉F(t ) = 0. Also, in this case, since Alice’s cross-correlation matrix is zero, the classically smoothed mean
evolves continuously. In both cases, h̄ = 2 and the initial conditions are taken to be 〈x̂〉0 = (0, 0)� and V0 = diag(10, (1 + g)/2), where V0 was
chosen to be a finite version of the unconditioned steady state.

to perfectly monitor ĉ2 (the κ-channel), with Alice perfectly
monitoring ĉ1 (the γ -channel), then the steady state of the true
state would be pure, as both Alice and Bob have performed
a perfect monitoring, and the steady state of Bob’s filtered
state will also be pure with the same covariance, satisfying
the differentiability condition.

To make this more formal, time will be measured in
units of χ−1 and I will consider the case γ = χ . For
this system, the drift and diffusion matrices are A =
diag(0,−2) and D = h̄ · diag(1, 1 + g), where g = κ/χ . I
will assume that Alice and Bob both perform homodyne
measurements. For homodyne measurements, the matrix
Mr = diag(

√
ηγ ,r exp[iθγ ,r],

√
ηκ,r exp[iθκ,r]), with the result-

ing measurement matrix

Cr = 2
√

h̄−1

[√
ηγ ,r cos θγ ,r

√
ηγ ,r sin θγ ,r√

gηκ,r cos θκ,r 0

]
, (47)

and cross-correlation matrix

�r = −
√

h̄

[√
ηγ ,r cos θγ ,r

√
ηγ ,r sin θγ ,r

0
√

gηκ,r sin θκ,r

]
. (48)

Here, ηn,r and θn,r are the measurement efficiency and ho-
modyne phase, respectively, for each channel n ∈ {γ , κ} and
observer r ∈ {o, u}.

To demonstrate the smooth evolution of the quantum
smoothed mean, Bob must measure the position quadrature of
the κ-channel perfectly, i.e., ηγ ,u = 0, ηκ,u = 1, and θκ,u = 0.
Crucially, g is chosen to be unity as this is the point where the
steady-state solution for Bob’s filtered covariance is pure and
is equal to the true state. Alice, on the other hand, perfectly
monitors the γ channel, i.e., ηγ ,o = 1, with some homodyne
phase θγ ,o = π/8. Note, the particular homodyne phase for
Alice does not matter in the slightest for the theory and was
just chosen for the simulations. As Fig. 1(a) shows, after a
sufficient time (t ≈ 0.8) for the true covariance to reach its
steady state, the quantum smoothed mean (red line) begins to
evolve smoothly, as one would expect from a differentiable
function, whereas the other three estimates, i.e., the true,
the filtered, and the classically smoothed means, all evolve
stochastically over the entire time interval. The classically
smoothed mean was computed using Eqs. (9) and (10), where
the measurement matrix C and the cross-correlation matrix �
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have been replaced with Alice’s measurement matrix Co and
cross-correlation matrix �o.

Now, if we reverse the channels that Alice and Bob mea-
sure, i.e., ηγ ,u = 1, θγ ,u = π/8 and ηκ,o = 1, θκ,o = 0, we
would expect the smoothed mean to be nondifferentiable
throughout the entire evolution, like the filtered and true state.
This is clearly the case, as seen in Fig. 1(b). Note, for this
case g �= 1 so that Alice’s filtered and smoothed states do not
reduce to the true state when the system reaches steady state.

The fact that the quantum smoothed mean evolves stochas-
tically might bring into question whether this technique
should be referred to as smoothing. While it is idiosyncratic
that a “smoothing” technique does not provide a smooth es-
timate, I reiterate that the classically smoothed mean suffers
from the same issue when �o �= 0, as seen in Fig. 1(b). I also
remind the reader that the smoothing technique refers to using
future measurement information as well as the past informa-
tion to obtain an estimate [7–13] and not necessarily obtaining
a smooth estimate. Thus, I believe there is no issue in referring
to this quantum state estimation technique as smoothing.

V. CONCLUSION

In this paper, I have derived the Rauch-Tung-Striebel forms
of the quantum state smoothing equations for LGQ systems.
These forms make it easier to compute the smoothed quantum
state, as there is no need to compute or even mention the retro-
filtered effect, while also providing insight into the dynamics
of the smoothed quantum state. From these equations, I have
derived a necessary and sufficient condition for the quantum
smoothed mean to be differentiable in the steady-state limit.
These equations could prove very useful in the future in identi-
fying more properties of the smoothed state. A good example
in the existing literature could be to provide an explanation
or even an analytic solution for the optimal measurement
strategies for Alice and Bob presented in Ref. [28]. Addi-
tionally, there may even be uses for this smoothing technique
outside of quantum mechanics. This result would hold for
any classical linear Gaussian system with a minimum bound
on the covariance, i.e., a system with an uncertainty relation.
Lastly, it would be interesting to see if the sufficient condition
VT(t ) = V←−

U
(t ) for a differentiable quantum smoothed mean is

sufficient outside the LGQ regime.
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APPENDIX: NONINVERTIBLE HALOED
FILTERED COVARIANCE

To show how to treat the smoothed quantum state when
◦
V −1

F does not exist, I will go back to the more general defini-
tions and consider the definition of the filtered state in terms

of the true state, that is, ρF = E←−
U |←−O {ρT} [22]. Following

similar steps to the derivation of the smoothed quantum state
in Sec. III, I arrive at

WF(x̌) =
∫

d2N◦x℘(
◦x|←−O )WT(x̌). (A1)

In particular, I will look at the probability distribution

℘(
◦x|←−O ) = g(

◦x;
◦xF,

◦
VF), where the Gaussianity follows from a

similar argument to ℘(
◦x|←→O ). As

◦
VF is a real symmetric ma-

trix, we can make use of the eigendecomposition
◦
VF = P��P,

where P is a matrix containing the eigenvectors of
◦
VF, and

� = diag(λ1, λ2, . . . , λ2N ), with λi being an eigenvalue of
◦
VF.

Performing a change of basis to the eigenbasis, the Wigner
function of the filtered state becomes

g(ž; 〈ẑ〉F, PVFP�) =
∫

d2N◦z g(
◦z;

◦zF,�)g(ž;
◦z, PVTP�),

(A2)
where ž = Px̌, 〈ẑ〉 = P〈x̂〉F,

◦z = P
◦x, and

◦zF = P
◦xF. Now,

since � is a diagonal matrix, the Gaussian PDF can be factor-
ized as g(

◦z;
◦zF,�) = ∏2N

k=1 g(◦zk;◦zF,k, λk ), and we can consider
the scenario in which

◦
VF has at least one zero eigenvalue.

Let us assume, without loss of generality, that λk > 0 ∀k �
s and the remaining 2N − s eigenvalues are zero. Using the
fact that limσ→0 g(x̌; a, σ 2) = δ(x̌ − a), the Gaussian PDF
becomes

g(
◦z;

◦zF,�) =
s∏

k=1

g(◦zk;◦zF,k, λk )
2N∏

j=s+1

δ(◦z j −◦zF, j ). (A3)

Computing the integral in Eq. (A2), we find that the trans-
formed filtered mean and covariance are

〈ẑ〉F = [◦zF,1, . . . ,
◦zF,s, 〈ẑ〉T,s+1, . . . , 〈ẑ〉T,2N ]�, (A4)

PVFP� = � + PVTP�. (A5)

Thus, when
◦
VF has at least one zero eigenvalue, the corre-

sponding components of the mean and covariance matrix are
equal to the same components of the transformed true mean
and covariance.

Moving on to quantum state smoothing, beginning with
Eq. (37), if we perform the same change of basis as we did
for the filtered state, we obtain

g(ž; 〈ẑ〉S, PVSP�)

=
∫

d2N◦z g(
◦z;

◦zS, P
◦
VSP�)g(ž;

◦z, PVTP�), (A6)

where 〈ẑ〉S = P〈x̂〉S and
◦zS = P

◦xS. However, unlike in the
filtering case, P

◦
VSP� is not necessarily a diagonal matrix and

thus the Gaussian cannot be completely factorized. However,
we can still expect the Gaussian to factorize as

g(
◦z;

◦zS, P
◦
VSP�) = g(

◦z′;◦z′
S,

◦
V ′

S)
2N∏

j=s+1

δ(◦z j −◦zS, j ), (A7)

because conditioning the estimate of 〈ẑ〉T on more information
cannot make those components of the probability distribution
any more certain than a δ function. Here

◦z′, ◦z′
S are the first s
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components of
◦z and

◦zS, respectively, and
◦
V ′

S is the first s × s
block of P

◦
VSP�. Computing the integral in Eq. (A7) gives

〈ẑ〉S = [
◦z′

S, 〈ẑ〉T,s+1, . . . , 〈ẑ〉T,2N ]�, (A8)

PVSP� =
[◦
V ′

S 0

0 0

]
+ PVTP�. (A9)

We see that, like the filtered state, the components of
the smoothed mean that have an eigenvalue of zero for the
◦
VF(t ) are equal to the corresponding components of the true
mean and similarly for the smoothed covariance matrix. The
remaining components of the mean and covariance are com-
puted using the remaining elements of the filtered mean and
covariance. This now gives us a method to compute the
smoothed quantum state when

◦
V −1

F does not exist at a par-
ticular time t . In the event that this occurs, the MFP form in
Ref. [27] will be more useful because when the inverse does
not exist at time t , it will only affect the smoothed mean and
covariance at t , which can easily be correct.

As an aside, this analysis highlights an interesting prop-
erty of the smoothed quantum state. In the event that all the
eigenvalues of the haloed filtered covariance are zero, using
Eqs. (A8) and (A9) the smoothed mean and covariance will
be equal to the true mean and true covariance, respectively.
While this in itself is not particularly interesting, it becomes
interesting when we consider the initial conditions for the
smoothed state. As we have assumed throughout this paper,
we have VF(t0) = VT(t0) = V0, i.e.,

◦
VF(t0) = 0. Thus, we have

that initially the smoothed quantum state must have mean
〈x̂〉S(t0) = 〈x̂〉T(t0) = 〈x̂〉0 and covariance VS(t0) = VT(t0) =
V0, meaning that, in this case, the smoothed quantum state
will always start in the same state as both the filtered and
true quantum state. Moreover, this fact holds irrespective of
whether the true state is pure or not. As pointed out earlier,
we can see this occur in Fig. 1, where we also see that the
classically smoothed state does not coincide with the filtered
and true means initially. This is because, in the classical case,
it is always assumed that the classical true state (the state of
maximal knowledge) is a δ function causing the condition
to be violated. Note, this does not mean that the quantum
smoothed mean can be computed forward in time, just that
it is constrained at both t0 and T .

While the MFP form of the quantum state smoothing equa-
tions might be more useful in general, there is a special case
when P is time-independent over an interval [τ1, τ2] with
λk = 0 for k > s. In this case, the Moore-Penrose pseudoin-
verse can be used in Eqs. (38) and (39) instead of the usual
matrix inverse. Over this interval, following the reasoning
prior to this, 〈ẑ〉S and

◦
VS will be of the forms Eq. (A8) and

(A9), respectively, over the interval. I will show that taking
the pseudoinverse of the haloed filtered covariance causes the
smoothed mean and covariance to evolve as the correspond-
ing components of the true state would, while the remaining
components evolve in a similar manner to a system in which
the inverse exists.

Beginning with the mean, the stochastic differential equa-
tion for the transformed mean is

d〈ẑ〉S = Ā∗〈ẑ〉Sdt + D̄∗�+(〈ẑ〉S − 〈ẑ〉F)dt + PK+
o [VT]yodt,

(A10)

where I have used P�P = I2N and an asterisked matrix de-
notes a transformation by P, i.e., F ∗ = PFP�, and �+ is the
pseudoinverse of �. For a diagonal matrix, the pseudoinverse
is simple to compute by inverting the nonzero elements and
leaving the remaining elements unchanged. Looking at the kth
component of the mean, we have

d〈ẑk〉S = Ā∗
k,�〈ẑ�〉Sdt + (D̄�)k,�(〈ẑ�〉S − 〈ẑ�〉F)dt

+ (PK+
o [VT])k,�yo,�dt, (A11)

where for comparison, the evolution of the kth component of
the transformed true mean is

d〈ẑk〉T = Ā∗
k,�〈ẑ�〉Tdt+(PK+

o [VT])k,�yo,�dt

+ (PK+
u [VT])k,�dwu,�. (A12)

When k > s, since the evolution of the smoothed mean must
be the same as the evolution of the true mean over the time
interval, as 〈ẑk〉S(τ2) = 〈ẑk〉T(τ2), it must be the case that the
matrices must have the following block forms:

Ā∗ =
[

Ā∗
00 Ā∗

01

0 Ā∗
11

]
, D̄∗ =

[
D̄∗

00 0

0 0

]
, (A13)

where the blocks are divided so that the diagonal matrices
have dimensions s × s and (2N − s) × (2N − s).

We can understand why this must be the case because if
Ā∗ was of another form, the first term in Eq. (A11) would
cause the evolution of the kth component to be influenced
by components other than the true mean and hence would
cause the kth components to deviate from the true mean. A
similar reasoning follows for the form of D̄∗ to eliminate the
second term. Note, since the lower half of D̄∗ is zero, we
see, using D̄ = K+

u [VT]K+
u [VT]�, that (K+

u [VT])k,� = 0 for all
� when k > s. This will eliminate the final term in Eq. (A12)
and the kth components will evolve identically.

All that remains is to show that Ā∗ and D̄∗ are of the forms
in Eq. (A13). Consider the differential equation for the haloed
filtered covariance [27,28],

d
◦
VF

dt
= Ā

◦
VF + ◦

VFĀ� + D̄ − ◦
VFC�

o Co
◦
VF. (A14)

Using
◦
VF = P��P, we obtain

d�

dt
= Ā∗� + �Ā∗� + D̄∗ − �P�C�

o CoP�, (A15)

and for the k, �th element we have

dλk

dt
δk,� = λ�Ā∗

k,mδm,� + λkδk,mĀ∗�
m,� + D̄∗

k,�

− λkλ�δk,m(PC�
o CoP�)m,nδn,�. (A16)

Looking at k, � > s and remembering that the zero eigen-
values do not change over the interval, we have D̄∗

k,� = 0.
By looking at the k, kth element of D̄∗ with k > s, we have
D̄∗ = ∑

�(PK+
u [VT])2

k,� = 0 and thus (PK+
u [VT])k,� = 0 for all

�, showing that D̄∗ is of the form in Eq. (A13). Now, re-
turning to Eq. (A16), if we consider the case in which k > s
and � < s + 1, we have λ�Ā∗

k,� + D̄∗
k,� = 0. As we have just

shown, in this regime D̄∗
k,� = 0, and we know λ� �= 0, result-

ing in Ā∗
k,� = 0. Thus Ā∗ is also of the form in Eq. (A13) and

033196-9



KIARN T. LAVERICK PHYSICAL REVIEW RESEARCH 3, 033196 (2021)

completes the proof that the components of the transformed
smoothed mean with k > s are equal to the true mean during
the interval. Moving onto the haloed covariance matrix, con-
sider that the transformed differential equation for the haloed
smoothed mean is

d
◦
V ∗

S

dt
= (Ā∗ + D̄∗�+)

◦
V ∗

S + ◦
V ∗

S (Ā∗ + D̄∗�+)� − D̄∗. (A17)

It is easy to show using Eq. (A13) ) that, given the forms of
Ā∗ and D̄∗, the haloed covariance is of the form

◦
V ∗

S =
[

(
◦
V ∗

S )00 0

0 0

]
, (A18)

and will remain in this form over the inerval [τ1, τ2].
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