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A quantum system Q is characterized by a single potential v and its eigenstates. While v is usually postulated
for a given physical problem, it represents the interaction with an implicit environment E . We use the exact
factorization to show how v emerges if the quantum environment is explicitly taken into account. In general, each
eigenstate of the supersystem S = Q ∪ E corresponds to a different potential v j and state χ j of Q. Such a state
χ j typically has no nodes and is the ground state of v j , even if the corresponding state of the supersystem is an
excited state. There are however two exceptions. First, if the energy scale for exciting Q is much smaller than for
exciting E , the potentials v j are similar in shape and differ only by sharp spikes. An excitation of S can then be
viewed as an excitation of Q with its environment being unaffected, and Q is approximately described by a single
spikeless potential v and its eigenstates. Second, χ j can sometimes have exact nodes, e.g., due to the symmetry
of the problem, and is the excited state of a spikeless potential. We explain and investigate the two cases with
model systems to illustrate the intricacies of the separation of a quantum system from its environment. As an
application, we use the equivalence of χ j being either an excited state of a spikeless potential or the ground state
of a spiky potential: For one-dimensional systems, we provide a method to calculate the location of the nodes
of an excited state from the calculation of a ground-state wave function. This approach can also be conceptually
useful for the computationally hard problem of calculating highly excited states or many-fermion systems.
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I. INTRODUCTION

In standard nonrelativistic quantum mechanics, a quantum
system Q is described by a Hamiltonian, its eigenstates, and
eigenenergies. To set up the Hamiltonian, the energetic con-
tributions to the system are defined as a sum of the kinetic
energy of the particles in the system and potentials that the
particles experience. Those potentials originate from an inter-
action with some environment E that is not part of Q itself.
For example, the Hamiltonian for a particle (Q) in a laser
field contains a (scalar and/or vector) potential representing
the interaction with photons (E ), and the potential describing
the nuclear vibration (Q) of a diatomic originates from the
presence of the electrons (E ) in the molecule.

The description of the quantum system Q interacting via
potentials with some implicit environment E has to emerge
from a quantum description of the supersystem S composed
of Q and E . The sketch in Fig. 1 shows the arrangement
schematically: The quantum environment E is described by
a wave function φ(q; Q) that depends on the coordinates q of
the particles in E and, parametrically as defined below, also
on the coordinates Q of the particles in Q. This wave function
leads to a scalar potential v and a vector potential A that act on
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the particles in Q. The quantum system Q in its environment
E is then described by the wave function χ .

A well-known example of this emergence is the treatment
of a molecule within the Born-Oppenheimer approximation
(BOA) [1]. In the BOA, the energy of a molecule composed
of electrons and nuclei is obtained by solving a Schrödinger
equation for the nuclei alone, and the electrons provide the po-
tential for the nuclear vibrational states. The quantum system
Q is the nuclei, the quantum environment E is the electrons,
and different states of the molecule (the supersystem S )
belong approximately to excitations of Q alone; the potential
for the nuclei and hence E is the same for multiple vibrational
states. This is indicated in Fig. 1(b), where several states ψ j

of S (the molecule) belong to the same state φ0 of E (the
electrons) and hence lead to the same potentials {v0, A0} for
Q (the nuclei); the wave functions χ j of Q are different
eigenstates of this one set of potentials. The BOA works well
for many molecules because of the mass difference between
nuclei and electrons, which leads to an approximate separation
and to different energy scales for the excitation of these two
particle types.

Notwithstanding this, the BOA is an approximation. If
we want to know how the description of Q in terms of a
single Hamiltonian emerges from the description of S , we
need to turn to an exact method that yields the BOA as a
limit. A suitable method is the separation of a wave func-
tion into a marginal and a conditional part, which was first
studied some time ago [2–4] and which has recently been
extended as exact factorization (EF) [5–7]. While the EF is
extensively used for the molecular problem, e.g., for obtaining
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FIG. 1. (a) Quantum supersystem S consisting of the quantum system Q and the quantum environment E . The wave function φ of E
depends conditionally on Q. The φ provides a scalar potential v and a vector potential A that encode the environmental effects of (the particles
in) E on (the particles in) Q. (b) Each state ψ j of S corresponds to one set of wave functions {χ j, φ j} and their corresponding potentials
{v j, Aj}, as indicated in the column “exact.” The χ j are usually the ground states of these potentials. In the Born-Oppenheimer approximation
(BOA), φ0 and hence also {v0, A0} are approximately the same for multiple states, and the wave functions χ j are excited states of these
potentials.

the electron dynamics [8,9], as a trajectory-based simulation
method [10–12], in the context of Bohmian mechanics [13],
to find the effective nuclear mass due to the presence of the
electrons [14], or to extend density functional theory [15,16],
many further applications have been found, such as the inverse
electron-nuclear problem [17], treating light-matter interac-
tions [18,19], obtaining an embedding method for electronic
wave functions [20] as well as reducing a many-electron
problem to a one-electron problem [21–23], explaining the
status of the time parameter in quantum mechanics [24–27],
and more [28]. The many applications illustrate that the EF
formalism is applicable to a wide variety of problems. Thus,
we consider the EF here as a general method to separate a
quantum system and an environment. As such, the EF is an
alternative to other methods like density matrix theory [29,30]
and understanding how it describes the interaction of a system
with its environment is useful to assess its applicability.

In the EF, the probability density |ψ j (Q, q)|2 for the wave
function ψ j (Q, q) of the jth state of the supersystem S is
written as the product

|ψ j (Q, q)|2 = |χ j (Q)|2|φ j (q; Q)|2, (1)

where

|χ (Q)|2 =
∫

|ψ (Q, q)|2dq (2)

is the marginal probability density of the system Q of par-
ticles with coordinates Q and |φ j (q; Q)|2 is the conditional
probability density of the environment E of particles with
coordinates q, given some configuration Q. The relation (1)
looks very similar to the BOA ansatz (where Q are the nu-
clear coordinates and q are the electronic coordinates), but no
approximation or restriction of the type of particles is made.
An important result of the EF, discussed below, is that if
ψ j (Q, q) is given by a Schrödinger equation, also χ j (Q) is
given by a Schrödinger equation. In this Schrödinger equation,
the environment E appears only as a scalar potential v j (Q)
and a vector potential Aj (Q), and both potentials are func-
tionals of φ j . However, contrary to the usual description of a
quantum system in terms of one potential and its eigenstates,

every state ψ j corresponds to one wave function φ j of the
environment and hence also to one (not necessarily unique)
set of potentials {v j, Aj}. In the column “exact” in Fig. 1,
this relationship between the wave functions and potentials
is indicated schematically. Additionally, the state χ j is only
one eigenstate of {v j, Aj}. Thus, in general it is not possible to
describe Q with one set of potentials {v0, A0} and several of
its eigenstates, like in the BOA, but several potentials {v j, Aj}
have to be used with one eigenstate for each of them. Finally,
χ j is usually the ground state of its potentials, even if the
corresponding state ψ j is an excited state of the supersystem.
The reason why this is the case is because χ j typically has no
nodes, as the condition for nodes to appear is rather strong:
From (2) it follows that, at the position Q0 of a possible node,
ψ (Q0, q) needs to be zero for all values of q.

The first goal of this article is to illustrate how the EF
separates the system and environment. We use two simple
model systems to understand the peculiarities of the transition
from the multipotential description of Q to the description in
terms of one potential and its eigenstates.

In particular, when the exact states χ j of Q are ground
states of their potentials even if they belong to excited states
of S , they do not have nodes. Instead, in situations where the
BOA becomes applicable, the scalar potentials v j of several
states become similar to each other, with the exception of
certain positions where the v j have spikes (on the scale of
the problem; the v j are smooth functions, as explained be-
low). Then the different v j can be replaced by one spikeless
potential v0 and the states χ j can be obtained as excited states
of this potential. In this way, the BOA recovers the standard
treatment of a (closed) quantum system.

The appearance of nodeless wave functions and spiky po-
tentials [4] has been discussed repeatedly [3,4,31–37]. In the
literature, there is also some discussion about the existence of
states χ j with exact nodes, in particular for situations where a
conical intersection appears in a Born-Oppenheimer treatment
of the molecular problem [35–37]. The second goal of our
article is to contribute to this discussion by presenting models
constructed such that χ j has nodes. We show that these wave
functions can be interpreted as both ground and excited states
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of potentials with and without spikes, respectively. It follows
that there is an equivalence of excited states of some potential
v0 with ground states of a potential v j that is almost v0, except
at isolated points, where spikes are found.

Our third goal with this article is to use this equivalence.
We observe that, for one-dimensional problems, the nodes of
the jth eigenstate of v0 are at the positions where the ( j − i)th
eigenstate of vi (i � j) has its maximum energy as a function
of the position of the spikes. An interesting consequence is an
algorithm to compute the location of nodes of excited states
from ground-state calculations. Although we only found a
proof for one-dimensional problems, the idea may be useful
in the context of the sign problem in quantum Monte Carlo
methods that is still an obstacle for determining excited states
or states of a fermionic problem [38].

To achieve the three goals, we start by describing the EF in
Sec. II. Thereafter, in Sec. III we show how nodes develop for
the wave functions of a quantum system Q in its environment,
in the limit of the BOA, and why a gauge freedom in the
theory of the EF is relevant. In Sec. IV we explain how these
nodes correspond to spikes in the potentials and we present
how the BOA picture of excited states of one spikeless po-
tential emerges. The BOA is an approximation and the wave
function of Q typically does not have exact nodes. In Sec. V
we first discuss literature cases and we present two models
where exact nodes can be found. There it becomes clear that
excited states of a spikeless potential can be viewed as the
ground state (or lower excited states) of a spiky potential.
This is further investigated in Sec. VI and used to propose
an algorithm for determining the location of nodes of excited
states in one-dimensional problems. A conclusion is given in
Sec. VII.

To avoid excessive definitions due to the different models
used in the article, we use the notation of Sec. II, where the
relevant quantities of the exact factorization are introduced,
throughout the text for different models. The notation within
a section is unique, but the same symbols are used for similar
quantities in the different sections. Vector quantities do not
have a special font except for the parameter vectors introduced
in Sec. VI. The numerical solutions of the model systems are
obtained with the PYTHON toolbox QMSTUNFTI [39] that uses
the sparse matrix functionality of SCIPY [40], which in turn
uses the ARPACK library [41] for solving eigenvalue problems.
We use atomic units.

II. EXACT FACTORIZATION

The EF [5–7] is a method to separate a quantum system Q
from its environment E . Given that the supersystem S com-
posed of Q and E is described by a Schrödinger equation, also
Q is described by a Schrödinger equation. The EF explicitly
provides the potentials that appear in the Hamiltonian of Q
due to the presence of E , and these potentials are given in
terms of the wave function of E . In the following, we use a
two-particle notation and a simple kinetic energy operator for
S , but the formalism extends to any number of particles and
to more complicated Hamiltonians.

Let ψ (Q, q) be the wave function of a multicomponent
quantum system S with coordinates Q and q that describe any
number of (possibly identical) particles. The particles with

coordinates Q constitute the quantum (sub)system Q whose
properties are to be determined in the presence of the particles
at q, which represent the environment E of Q. The wave
function ψ (Q, q) is written as a product

ψ (Q, q) = χ (Q)φ(q; Q), (3)

with the partial normalization condition

〈φ(q; Q) | φ(q; Q)〉q
!= 1 ∀ Q. (4)

Here 〈a | b〉q is the complex-valued scalar product with respect
to the q space. With these definitions and with the assumption
that ψ (Q, q) is normalized, (3) just states that a joint probabil-
ity density is the product of a conditional probability density
and a marginal probability density [see (1)] but in terms of
probability amplitudes (wave functions). We write the wave
function for Q explicitly as

χ (Q) := e−iS(Q)
√

ρ(Q), S ∈ R, (5)

with the marginal density ρ(Q) ≡ |χ (Q)|2 given by (2). Here
ρ corresponds to the probability density for the quantum sys-
tem Q in the presence of the particles in the environment E .
There is no ambiguity in the definition of ρ(Q), but the wave
function χ is uniquely defined only up to the phase S(Q). This
phase is a gauge freedom and therefore observables have to be
defined such that they are independent of the choice of S, as
discussed below.

The wave function for the environment E is the conditional
wave function

φ(q; Q) := ψ (Q, q)

χ (Q)
, (6)

which, after choosing S(Q) in (5), is also uniquely defined.
It is a wave function that depends parametrically on Q, much
like a time-dependent wave function depends on a parameter t
called time [24]. The t parameter in time-dependent quantum
mechanics is however a classical parameter, while the Q pa-
rameter is a quantum parameter that is distributed according
to χ (Q) [27].

The wave function ψ (Q, q) is a solution of the Schrödinger
equation

(
− ∇2

Q

2M
+ H (Q)

)
ψ (Q, q) = Eψ (Q, q), (7)

with the Hamiltonian of E given as

H (Q) = −∇2
q

2m
+ V (Q, q). (8)

The notation H (Q) emphasizes that H is also a function of the
coordinates Q of particles that are not part of E . With these
definitions, it follows that the marginal wave function is also
a solution of a Schrödinger equation, but for Q alone,

(
[−i∇Q + A(Q)]2

2M
+ v(Q)

)
χ (Q) = Eχ (Q), (9)

with a scalar potential

v(Q) = vH(Q) + vG(Q) (10)
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and a vector potential

A(Q) = 〈φ(q; Q)| − i∇Qφ(q; Q)〉q . (11)

The scalar and vector potentials fully describe the effect that
the environment E has on Q and are obtained from the wave
function φ(q; Q) of the environment. The scalar potential is
composed of two terms. The first term is the average energy of
the environment for a certain configuration Q of the quantum
system Q,

vH(Q) = 〈φ(q; Q)|H (Q)|φ(q; Q)〉q . (12)

The second term, which originates from the kinetic energy
operator with respect to Q, is the geometric term that origi-
nates from how the wave function φ(q; Q) of the environment
changes when the configuration Q is changed,

vG(Q) = 1

2M
〈∇Qφ(q; Q)|P̂⊥|∇Qφ(q; Q)〉q . (13)

Here P̂⊥ is a projector

P̂⊥ = 1q − |φ(q; Q)〉〈φ(q; Q)|q (14)

defined in the q space that projects on the space orthogonal
to φ(q; Q); P̂⊥ is necessary to make the geometric potential
vG gauge invariant, i.e., to make it independent of the choice
of the phase S(Q) in (5). The symbol 1q represents the unity
operator in q space.

With these definitions, the choice of the phase S for the
wave function χ only affects the vector potential A. Choosing
a different phase, i.e.,

χ̃ (Q) = e−iS̃(Q)χ (Q), (15)

φ̃(q; Q) = e+iS̃(Q)φ(q; Q), (16)

leaves all equations of the EF formalism unchanged provided
the vector potential is changed as

Ã(Q) = A(Q) + ∇QS̃(Q). (17)

The choice of the phase S of χ is thus a choice of gauge and
different gauges are considered below. Observables need to be
independent of the choice of S. Such observables for Q are,
e.g., the position expectation value

〈Q〉 = 〈χ |Q|χ〉, (18)

the momentum expectation value

〈P〉 = 〈χ | − i∇Q + A(Q)|χ〉, (19)

or the expectation value of the kinetic energy

〈T 〉 = 〈χ | [−i∇Q + A(Q)]2

2M
+ vG(Q) | χ〉, (20)

which are all expectation values of the particles of Q in the
presence of the environment E .

III. EXCITED STATES AND NODES
IN THE WAVE FUNCTION

With the formalism for the EF we now study what the wave
function χ j of the quantum system Q looks like for an excited
state ψ j of the supersystem S . For this purpose, we use a
simple S composed of two particles at x1 and x2 with masses

FIG. 2. (a), (c), and (e) Contour plot of the wave function
ψ1(x1, x2) with colors indicating the sign and (b), (d), and (f) cor-
responding marginal wave function χ1(x1) for different values of the
mass parameter m1. The marginal wave function χ1 is shown in the
even gauge (25) (gray dashed line) and in the odd gauge (26) with
a sign change at x1 = 0 (thin solid line). The coordinate x1 is scaled
with m1/4

1 for better comparison, and χ1 is renormalized accordingly.

m1 and m2, respectively, that are both localized around the
origin by a harmonic potential and that attract each other via
a soft Coulomb potential (to avoid the Coulomb singularity in
one dimension). The Schrödinger equation is

(
− ∂2

1

2m1
+ H (x1)

)
ψ j (x1, x2) = Ejψ j (x1, x2), (21)

with the environment Hamiltonian

H (x1) = − ∂2
2

2m2
− 1√

(x1 − x2)2 + b
+

(x1

c1

)2
+

(x2

c2

)2

(22)

and with parameters b = 0.5a2
0 and c1 = c2 = 5a0. For the

particle at x2, which will be the environment, we use the
electron mass m2 = me. If we chose m1 = me, the model can
be interpreted as positronium in a harmonic trap.

The first excited state ψ1(x1, x2) is antisymmetric with re-
spect to the exchange of x1 and −x2 and thus has a node along
x1 = −x2. It is shown in Fig. 2(a). In Fig. 2(b) the marginal
wave function

χ1(x1) = e−iS1(x1 )
√

ρ1(x1) (23)

with marginal density

ρ1(x1) =
∫ +∞

−∞
|ψ1(x1, x2)|2dx2 (24)

is shown for the gauge

S1(x1) = 0 (25a)

⇒ A(x1) = 0 (25b)
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and for the gauge

S1(x1) = πθ (x1) (26a)

⇒ A(x1) = πδ(x1). (26b)

The function θ (x) is the unit step function, with its derivative,
the delta function δ(x). We call the gauge (25) the even gauge
and the gauge (26) the odd gauge because χ1 is an even or
odd function in these gauges. In the even gauge, χ1 is the
positive square root of the marginal density and a continuous
function. In the odd gauge, the sign of χ1 changes at x1 = 0.
As |χ1(0)| �= 0, the function χ1 is discontinuous in this gauge.
The effect of the δ function in the vector potential A(x1) is that
it compensates for the discontinuity of χ1 in the Schrödinger
equation and in the calculation of the gauge-invariant observ-
ables. From Fig. 2 it is clear that, due to the large jump of χ1

at x1 = 0, there is very little reason to use the odd gauge.
If the mass parameter m1 of the particle in Q is increased

(relative to the mass of the particle in the environment), the
nodal line of ψ1(x1, x2) becomes closer and closer to being
perpendicular with respect to the x1 axis. For the case m1 =
100me the nodal line is almost perpendicular, as shown in
Fig. 2(e). The marginal density ρ1(x1) becomes very small at
x1 = 0 because the integration of |ψ1|2 along x2 is now almost
along the nodal line. The even gauge still yields a continuous
marginal wave function χ1, but its slope in the region x1 ≈ 0
looks almost discontinuous on the scale of the figure (which is
the relevant scale of the problem), with a sharp turn at x1 = 0.
This has to be contrasted with the odd gauge: Although the
function χ1 is still discontinuous at x1 = 0, the fact that |χ1|
becomes very small leaves the impression that the odd gauge
is the “natural” choice. If χ1(x1) was actually zero at x1 = 0,
it would be a continuous function in the odd gauge and its first
derivative would be continuous as well.

Thus, for large m1 and in the odd gauge, the wave function
χ1(x1) of Q that corresponds to the first excited state of S
also looks like an excited state of some potential. There is
still a δ function appearing in the vector potential at x1 = 0.
However, in the Schrödinger equation and in the calculation
of observables the vector potential is always multiplied by χ1

and |χ1(x1 = 0)| becomes smaller and smaller with increasing
m1. For m1 → ∞, the nonzero vector potential thus becomes
irrelevant.

The limit m1 → ∞ corresponds to the BOA, which is also
the limit where an excitation of S can be seen as an excitation
of Q with no effect on its environment E ; the excitation of the
two subsystems happens on different timescales. While χ1 in
the odd gauge and for large m1 looks like a first excited state,
the corresponding conditional wave function of the environ-
ment looks like the ground-state wave function, as shown in
Appendix A. Without invoking the BOA, however, each state
ψ j of the supersystem S corresponds in principle not only to
one marginal wave function χ j , but also to one conditional
wave function φ j and hence to one set of scalar potential
v j and vector potential Aj . Thus, Q is not described by the
eigenstates of only one Hamiltonian. Instead, all the χ j are
the ground states of their corresponding potentials {v j, Aj}. In
the following, we study the behavior of the potentials v j in the
BOA limit.

IV. SPIKY POTENTIALS

To show how the potentials v j corresponding to different
states of the supersystem behave, we turn to a model that
was already used in connection with the EF in [9]. This
model represents some of the basic features of a symmetric
coupled electron-proton transfer. We choose it here because it
results in the well-known double-well potential for a tunneling
dynamics (e.g., of the ammonia molecule) within the BOA
and is thus a familiar system for most readers. Its Schrödinger
equation is(

− ∂2
R

2M
+ H (R)

)
ψ j (R, x, y) = Ejψ j (R, x, y), (27)

with the electronic Hamiltonian

H (R) = −∂2
x

2
− ∂2

y

2
+ V (R, x, y), (28)

where the potential

V = − 1√
x2 + y2 + α2

+
( R

R0

)4

+ 1√
R2 + β

− 1√
(R − x)2 + y2 + α1

(29)

can be interpreted as that of a nucleus of mass M located at
(X,Y ) = (R, 0) that is allowed to move in the R direction, an
electron at (x, y), and another nucleus clamped at (X,Y ) =
(0, 0). A quartic potential is added to make the whole system
bound. The parameters are α1 = 0.5a2

0 and α2 = β = 4a2
0, and

we use a nuclear mass of only M = 30me to be able to clearly
see the effect of the mass difference between the electron and
nucleus.

Figure 3(a) shows the ground and first excited nuclear
state of the system within the BOA. For this purpose, vBO

0
for the lowest eigenstate of the electronic Hamiltonian H is
determined by solving

H (R)φBO
j (x, y; R) = vBO

j (R)φBO
j (x, y; R) (30)

for fixed values of R. The function vBO
0 (R) is a symmetric

double-well potential along R. Then vBO
0 is used as the po-

tential for the nucleus and its lowest two eigenstates χBO
0,0 and

χBO
0,1 are determined by solving

(
− ∂2

R

2M
+ vBO

0 (R)

)
χBO

0,k (R) = EBO
0,k χBO

0,k (R). (31)

The nuclear states χBO
0,0 and χBO

0,1 form an almost degen-
erate tunneling doublet, with the energetically lower even
eigenstate χBO

0,0 (R) and the energetically higher odd eigenstate
χBO

0,1 (R). Thus, while the ground-state density |χBO
0,0 (R)|2 be-

comes small around R = 0 but is always larger than zero,
|χBO

0,1 (R)|2 is zero at R = 0, as expected for the first excited
state of the potential.

The situation is different when viewed in the EF formalism.
Each eigenstate ψ j of the Schrödinger equation (27) corre-
sponds to a nuclear wave function χ j (R) but also to a potential
v j (R). The nuclear wave functions χ j (R) in this example are
always the energetically lowest eigenstates of v j (R); hence
they have no nodes. In Fig. 3(b) those eigenstates together
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FIG. 3. Nuclear states of the electron-proton transfer model (27). (a) Lowest electronic Born-Oppenheimer surface vBO
0 (R) together with

the two lowest Born-Oppenheimer nuclear wave functions χBO
0, j (shifted to their eigenvalues EBO

0, j ). (b) Exact factorization marginal potentials
v j and marginal wave functions χ j (shifted to their eigenvalues) of the two lowest eigenstates of (27).

with their potentials are shown for the gauge equivalent to
(25), where χ j (R) is positive (real valued) and A(R) = 0. The
nuclear ground state χ0(R) and its EF potential v0(R) look
very similar to χBO

0,0 (R) and vBO
0 (R), respectively. However,

like χ0(R), also χ1(R) has no change of sign at R = 0 in our
chosen gauge, and the marginal density |χ1(R)|2 is also larger
than zero for R = 0, albeit smaller than |χ0(R)|2 in that region
[see the inset of Fig. 3(b); χ1 becomes almost zero but does
not reach it]. The corresponding EF potential v1(R) is mostly
similar to vBO

0 (R), but markedly different around R = 0: There
v1(R) has a narrow spike of finite height. This spike is the
reason that the density of the first excited state |χ1(R)|2 is
smaller than that of the ground state |χ0(R)|2 around R = 0,
although both are the ground states of otherwise similar poten-
tials. If the mass of the nucleus is increased, the spike becomes
narrower and higher and |χ1(R = 0)|2 becomes closer and
closer to zero. However, the spikes are only spiky on the
scale of the problem: Both the marginal wave functions and
the potentials are continuous smooth functions, as would be
visible if we would zoom in on them.

We thus see how the BOA picture emerges from the EF
description in the limit of large nuclear mass: The potentials
v j for different states ψ j of the supersystem become more
and more equal with higher and higher mass of the marginal
system, until the marginal states can be treated as different
states of the same potential v. This is the limit where the
environment E (here the electron) of the quantum system Q
(here the nucleus) can be fully described with one potential.
Thus, Q can be considered in the usual way as a quantum
system with one Hamiltonian and its eigenstates.

V. EIGENFUNCTIONS WITH A NODE

In the EF, each state ψ of the quantum supersystem S
gives rise to a potential v for the marginal system Q. As seen
in the examples of the two preceding sections, the marginal
wave function χ typically has no nodes and is the ground state
of the EF potential v, even though it may correspond to an
excited state of S . Only in the limit of the BOA can χ have
nodes and be considered as an excited state itself. Naturally
this raises the question if it is possible for the marginal wave

function χ to have a node or nodes by construction or due
to symmetry and if χ can then also be an excited state of v.
The χ is usually nodeless because the condition to have an
exact node is rather strong: The density |ψ (Q; q)|2 (which is
a semidefinite-positive function) must be zero at the location
Q = Q0 of the node for all values of the coordinates q. For
a general quantum system this is a very unlikely situation.
However, such situations can be constructed explicitly.

Nodes in nonadiabatic eigenfunctions have been discussed
in the literature. For example, in [32] a wave function

ψ (R, q) = χBO
1 (R)φBO

1 (q; R) + χBO
2 (R)φBO

2 (q; R) (32)

was considered for a diatomic molecule with internuclear
distance R, where φBO

j is an eigenstate of the electronic
Hamiltonian with electronic coordinates q. In the article it
was concluded that whenever χBO

1 (R0) = χBO
2 (R0) = 0 for

some R0, there is also a node in the marginal wave function
χ (R0) = 0 corresponding to ψ (R, q). At these positions R0,
also singularities appear in the potential v(R). Singularities
and nodes are also shown in [32] for one example eigenstate.
However, closer inspection and our own eigenvalue calcula-
tions for the same system reveal that the nodes of χBO

1 and
χBO

2 do not appear at the same position R, only in vicinity
of each other. Therefore, the marginal wave function χ (R)
does not have nodes, only regions where the marginal density
|χ (R)|2 becomes very close to zero, similar to the situation in
Fig. 3(b). Hence, there are spikes of finite height in the corre-
sponding potential v(R), as also illustrated in another article
on the same system [33]. Further details for our calculations
of this system are given in Appendix B.

A second literature example is the articles [36,37], where
marginal wave functions with nodes are constructed at sub-
merged conical intersections of molecular systems. In this
case the node is possible due to the degeneracy of the involved
states and the symmetry of the model. However, we are some-
what skeptical regarding the transfer of the model of [36,37]
to realistic molecules, for the following reasons. There are
discussions of the exact static properties and of the dynamics
through a conical intersection presented in [42,43], respec-
tively, which show that at the location of a conical intersection
there is nothing special happening, except if considered in the
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Born-Oppenheimer framework. Also, degeneracies of elec-
tronic wave functions in the Born-Oppenheimer framework
need not correspond to degenerate states for the full electron-
nuclear problem. Finally, when treating the separation of
coordinates including the center of mass and the rotational
degrees of freedom fully correctly, we think that it is even
less likely to find locations where the full wave function has a
node along a set of coordinates (e.g., all electronic coordinates
for a given nuclear configuration) such that the marginal wave
function has a node there.

In the following, we present two methods on how to con-
struct marginal wave functions with nodes, both also using
degenerate states. These methods are given here to show that
it is in principle possible to construct such marginal wave
functions, but we do not claim (or assume) that they can be
transferred to general high-dimensional interacting systems,
like the nuclei and electrons of a molecule.

A. Radially symmetric eigenfunctions

In the first method, we use the radial symmetry of a
two-dimensional problem and interpret it as a two-particle
one-dimensional system. The Schrödinger equation for two
particles with unit mass, constrained to move in one dimen-
sion, is(

−∂2
1

2
− ∂2

2

2
+ V (x1, x2)

)
ψ (x1, x2) = Eψ (x1, x2). (33)

If the potential is radially symmetric in the sense that

V (x1, x2) = V (r), (34)

with x1 = r cos ϕ and x2 = r sin ϕ, we can write the Hamilto-
nian in polar coordinates as

Ĥ = − ∂r

2r
(r∂r ) − 1

2r2
∂2
ϕ + V (r). (35)

As the Hamiltonian commutes with the operator ∂2
ϕ , both oper-

ators share common eigenfunctions. The eigenfunctions of the
operator ∂2

ϕ are the eigenfunctions of the “angular momentum
operator” L̂ = −i∂ϕ ,

∂ϕeilϕ = ileilϕ ⇒ ∂2
ϕeilϕ = −l2eilϕ, (36)

where l ∈ Z. As the eigenspace of eigenfunctions of the oper-
ator ∂2

ϕ is doubly degenerated for |l| �= 0, we have the freedom
of choosing any linear combination of eigenfunctions e+i|l|ϕ
and e−i|l|ϕ . Thus, we can choose an eigenfunction with a nodal
plane at ϕ = ±π/2, i.e., with a nodal plane at x1 = 0, as

sin

[
|l|

(
ϕ − π

2

)]
= e+i|l|ϕ − (−1)|l|e−i|l|ϕ. (37)

The general eigenstate of (33) is of the form

ψ (x1, x2) = ψr (r) sin

[
|l|

(
ϕ − π

2

)]
, (38)

where |l| ∈ N1 = {1, 2, 3, . . . } and ψr (r) is a solution of the
radial Schrödinger equation with the Hamiltonian

Ĥr = − ∂r

2r
(r∂r ) + |l|2

2r2
+ V (r). (39)

By construction, the marginal wave function χ (x1) corre-
sponding to the wave function ψ (x1, x2) of (38) has a node
at x1 = 0.

This method works for any choice of the potential V (r), but
it is instructive to show it for a concrete example. We choose
the Coulomb potential

V (x1, x2) = − 1√
x2

1 + x2
2

; (40)

hence we describe a one-dimensional electron-positron sys-
tem (positronium). The two-dimensional solutions are eigen-
states |n, l〉 with energy quantum number n ∈ {1, 2, 3, . . . }
and angular momentum quantum number l ∈ {−(n −
1), . . . ,−1, 0, 1, . . . , n − 1} (the explicit form of the func-
tions can be found in [44]),

Ĥ |n, l〉 = En |n, l〉, En = − 1

2
(
n − 1

2

)2 , (41)

L̂ |n, l〉 = l |n, l〉. (42)

Using the linear combination (37), we can construct
the desired wave functions for n ∈ {2, 3, . . . } and |l| ∈
{1, 2, . . . , n − 1} as

ψn,|l|(x1, x2) = 1√
2

[|n,+|l|〉 − (−1)|l| |n,−|l|〉]. (43)

Two of these wave functions are

ψ2,1(x1, x2) = 8

9

√
2

3π
x1e−(2/3)

√
x2

1+x2
2 ,

ψ3,2(x1, x2) = 32

125

√
2

15π
x1x2e−(2/5)

√
x2

1+x2
2 , (44)

which correspond to the marginal densities

|χ2,1(x1)|2 = 256

243π
x3

1K1

(
4

3
|x1|

)
,

|χ3,2(x1)|2 = 1024

46875π
x4

1K2

(
4

5
|x1|

)
,

(45)

where Kn(x) are the modified Bessel functions of the second
kind. We can choose an even or odd gauge for the marginal
wave functions, like we did in Sec. III. The choice of odd
marginal wave functions and the corresponding EF potentials
is shown in Fig. 4. For states |l| = 1 the EF potential v(x1)
diverges at the origin approximately as ln |x1|. Although the
potential is unbounded, the spectrum is bounded as the log-
arithm is slowly divergent at the origin. For |l| > 1, v(x1) is
finite and bounded and so is the spectrum. As we can see in
Fig. 4, the marginal wave functions χn,|l| correspond to the
first excited state of the EF potential.

If we chose an even marginal wave function instead, it
has a cusp at the origin. Then an additional term of the form
δ(x1)/|x1| appears in v(x) and χn,|l| corresponds again to the
ground state of this potential.

B. Factorizable wave functions

The second method to construct marginal wave functions
with a node is based on the idea of factorizable eigenfunctions
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FIG. 4. (a) and (b) Two wave functions ψn,|l|(x1, x2) defined by
(43) for the one-dimensional positronium model, with nodes indi-
cated by black lines and the color of the contour plot indicating the
sign of the wave function. (c) and (d) Corresponding EF potential
v(x1) as well as the ground and the first excited state of v(x1)
for χn,|l|(x1) for the densities given in (45). The sign of χn,|l| was
chosen such that it is an odd function. The first excited state of v(x1)
corresponds to χn,|l|(x1).

that have a node at same position. We assume a system of two
particles of mass m = 1, whose Hamiltonian is separable as

Ĥ (x1, x2) = ĥ(x1) + ĥ(x2), (46)

where ĥ is a one-particle Hamiltonian

ĥ(x1) = −∂2
1

2
+ V (x1). (47)

From the eigenstates of the single-particle Hamiltonian ĥ,

ĥξn(x1) = Enξn(x1), (48)

we construct the symmetrized states

ψ±
m,n(x1, x2) = 1√

2
[ξm(x1)ξn(x2) ± ξn(x1)ξm(x2)]. (49)

If ξm and ξn share a node at one position, this node will
translate to the marginal wave function χ± corresponding to
ψ±. One way how to accomplish this is by choosing odd
eigenfunctions of the symmetric one-particle potential v. For
demonstration purposes we choose a harmonic potential V (x1)
with eigenstates ξn. The energetically lowest states of this
construction are

ψ+
1,3(x1, x2) = 2√

3π
x1x2

(
x2

2 + x2
1 − 3

)
e−x2

1/2−x2
2/2, (50)

ψ−
1,3(x1, x2) = 2√

3π
x1x2

(
x2

2 − x2
1

)
e−x2

1/2−x2
2/2. (51)

Due to the orthogonality of one-particle eigenstates, the cor-
responding marginal densities as well as the EF potentials are
the same for ψ+

1,3 and ψ−
1,3,

|χ±(x1)|2 = 1

6
√

π

(
15x2

1 − 12x4
1 + 4x6

1

)
e−x2

1 , (52)

v±(x1) = 5 + −1215 + 2553x2
1 − 2112x4

1 + 936x6
1 − 208x8

1 + 16x10
1

2
(
15 − 12x2

1 + 4x4
1

)2 + δ(x1)

|x1| . (53)

As in the last example, the presence of the term δ(x1)/|x1|
depends on the choice of sign of the marginal wave function
χ±(x1). Figure 5 shows χ± for the choice where it changes
sign at x1 = 0, v± has no spike, and χ± also corresponds to
the first excited state of this potential.

We remark that, coincidentally, the choice of the potential
V (x1) as the harmonic potential leads also to a radially sym-
metric two-particle potential, as in the first method. However,
the second method for constructing marginal wave functions
with a node works for any choice of the one-particle potential
V (x1) and does not depend on a radial symmetry of the prob-
lem. The harmonic potential is also the only case where the
two methods coincide.

VI. DETERMINING NODES OF EXCITED STATES FROM
GROUND-STATE CALCULATIONS

Our explicit consideration of the quantum environment
E of the quantum system Q showed that there is a
correspondence between excited states of a spikeless potential

v = v0 and the ground state of a similar but spiky potential. In
this section we use the correspondence for one-dimensional
systems to determine the location of nodes of an excited state
of v0 from ground-state calculations by using a modified
potential.

For this purpose, we define the Schrödinger equation(
− ∇2

Q

2M
+ v j (Q; Q j )

)
χ j,k (Q; Q j ) = Ej,k (Q j )χ j,k (Q; Q j )

(54)

with some set of parameters Q j that denote the position of
spikes. The potential v0 is the spikeless potential and thus
Q0 is an empty set. We assume that Q is one dimensional,
although some parts of the following discussion are also ap-
plicable for higher-dimensional problems.

In general, the jth excited state χ0 j of v0 is the ground state
of the potential

v j (Q; Q j ) = v0(Q) +
j∑

k=1

d (Qj,k ), (55)
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FIG. 5. (a) and (b) Wave functions ψ±
1,3(x1, x2) of (50) and (51) (contour plots, where the colors indicate the sign and the lines are the nodal

lines). (c) Plot of v± given in (53), without the δ(x1)/|x1| term, and its two lowest eigenstates. The χ± of (52) corresponds to the first excited
state of this potential if its sign is chosen such that it changes at x1 = 0.

where d (Qj,k ) are spikes at the j configurations Qj,k that
coincide with the location of the nodes of χ j . The parameter
vectors are Q j = (Qj,1, Qj,2, . . . , Qj, j ). Although we consider
only one-dimensional examples for Q, this statement is
true also for higher dimensions provided the real-valued
eigenstates are chosen in the case of a degeneracy of states.
In higher dimensions, each Qj,k is a nodal (hyper)surface,
j is the label of the energy eigenvalue counting degenerate
states only once (because they have the same number of nodal
surfaces), and each state of a set of degenerate states has its
own v j with different Q j (which would lead to another index
to account for that).

We can use the potentials defined in (55) to calculate
any excited state as the ground state of some v j . Figure 6
exemplifies the basic idea with the model of a harmonic
oscillator. Figure 6(a) shows the two lowest eigenstates of
the harmonic oscillator potential v0(x) = x2

2 . By symmetry,
the first excited state must have a node at x = 0; hence it
can be computed as the ground state of a potential v1 that is
equal to v0 except at x = 0, where we add a spike by hand.
For the numerical calculation we set v1(0) = 1012Eh on the
discrete x grid, which provides the state shown in Fig. 6(b)
as the ground state. Figure 6(c) shows the ground state of the
half-harmonic-oscillator potential where the potential is set to

1012Eh for all grid points x � 0, for comparison. There is no
difference between the states and their eigenvalues within the
numerical accuracy.

For the first excited state of the harmonic oscillator the po-
sition of the node is given by symmetry. In general, however,
the locations Q j of the nodes are not known and the potential
v j of (55) cannot be set up immediately. However, there are
two conditions for the values of Q j .

The first condition is that the energy of the ground state
computed in each of the regions separated by the spikes at
Q j is the same. For example, in Fig. 6 we can move the
spike and compute the eigensystem on left and right sides
of the spike separately. The correct location of the spike is
where the two energies match. This condition also holds for
higher-dimensional problems where the regions are separated
by hypersurfaces Q j .

The second condition for the values of Q j is that the nodes
of the jth eigenstate χ0, j of v0 are at the positions where the
energy Ei, j−i(Q j ) of the ( j − i)th eigenstate χi, j−i of vi (i � j)
has its maxima as a function of the spike positions Q j . For
definiteness, we call this condition the maxnode condition in
the following, and it is only considered for one-dimensional
problems. In the following, we illustrate it with an example. A

FIG. 6. (a) The two lowest eigenstates of a harmonic oscillator potential, (b) the lowest eigenstate of a harmonic oscillator potential with a
large spike at x = 0, and (c) the lowest eigenstate of a harmonic oscillator half-potential, shifted to their eigenvalues and shown together with
their potentials.
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FIG. 7. (a) Potential v0 of (56) shown together with its four lowest eigenfunctions (filled areas, shifted to their eigenvalues). (b) Same as
(a) but for a narrow energy region to show the node of the first excited state of v0. (c) Energy E1,k of the three lowest eigenstates of v1 of (58)
depending on the position of the spike at x1,1. (d) Same as (c) but for the energetic region of (b). We note that E1,0 has only one maximum and
E1,1 has only two maxima, even though the regions close to the maxima can become very flat as a function of x1,1.

proof of the maxnode condition for one-dimensional problems
is given in Appendix C.

In Fig. 7(a) the potential

v0(x) = 0.2x4 + 0.1x3 − 2x2 (56)

and its four lowest states χ0, j (shifted to their corresponding
eigenvalues E0, j) are shown, determined from(

−∂2
x

2
+ v0(x)

)
χ0, j (x) = E0, jχ0, j (x). (57)

The first excited state has a node, as is visible in the detailed
view of the energy region around the node, shown in Fig. 7(b).
Figures 7(c) and 7(d) show the energy E1,k of the three lowest
states of

v1(x; x1,1) =
{
v0(x) if x �= x1,1

∞ if x = x1,1
(58)

as a function of the location x1,1 of the spike. In the numerical
calculation, ∞ is replaced with 1012Eh, this spike is moved
along the x grid, and an eigenvalue equation is solved for
each position of the spike. As can be seen from the figure,
the location of the node of the first excited state χ0,1 of v0

is where the energy E1,0(x1,1) of the ground state χ1,0 of v1

is maximal as a function of the spike position x1,1; Fig. 7(d)
shows the relevant energetic region. Similarly, the two nodes
of the second excited state χ0,2 of v0 are where the energy
E1,1(x1,1) of the first excited state χ1,1 of v1 has its maxima,
and the three nodes of the third excited state χ0,3 of v0 are
where the energy E1,2(x1,1) of the second excited state χ1,2 of

v1 has its maxima. In general, the nodes of the jth eigenstate
of v0 are at the positions where the energy E1, j−1(x1,1) of the
( j − 1)th eigenstate of v1 is maximal as a function of the spike
position x1,1.

The nodes of χ0,2 are also at the position where the ground
state χ2,0 of a potential with two spikes,

v2(x; (x2,1, x2,2)) =
{
v0(x) if x �= x2,1, x2,2

∞ if x = x2,1, x2,2,
(59)

has its maximum energy as a function of the position of
the two spikes (not shown). In general, the nodes of the jth
eigenstate of v0 are where the ground state of the potential
v j with j spikes has its maximum energy as a function of the
spike positions. If we combine these observations, we have
the maxnode condition.

Based on the maxnode condition, it is straightforward to
propose an algorithm for one-dimensional problems to find
the nodes of the jth excited state as the ground state of v0 with
an additional j spikes. First, j spikes are added at random po-
sitions. Second, the gradient of the ground-state energy with
respect to a change of the position of the spikes is calculated.
Third, the spikes are shifted in the direction of the gradient.
This procedure is repeated until the maximum energy of the
ground state is found. The location of the spikes is then the
location of the nodes of the jth excited state of v0.

For our model, there are some small gradients that make
a numerical implementation difficult. The gradients are small
in regions where there is a node but a very small amplitude
of the wave function because of the asymmetric double-well
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FIG. 8. Conditional wave functions (a) φ0(x2; x1), (b) φ1(x2; x1) for gauge (25), and (c) φ1(x2; x1) for gauge (26) for the ground state and
for the first excited state of the model of two attracting particles in a harmonic trap discussed in Sec. III, respectively. The three columns
correspond to the different masses m1 of the particle at x1 (m2 = 1me).

structure. Hence, those small gradients are less of a problem
if the model does not exhibit such states or if the evaluation
of nodes in regions where there is almost no amplitude is not
relevant.

Before concluding this section, we note a peculiarity of
the energies E1,k (x1,1) shown in Fig. 7(c): As those energies
are obtained by solving (54) with the position x1,1 being a
parameter, the problem is similar to the Born-Oppenheimer
calculation of a potential energy surface. Hence, E1,k (x1,1)
are “adiabatic surfaces” that are ordered according to their
energetic numbering. Corresponding diabatic surfaces can
be determined by continuing the functions along a coarse-
grained slope on the scale of Fig. 7(c) [and not on the true
slope given in Fig. 7(d)]. Such diabatic surfaces are shown
in Appendix D. In this one-dimensional example there are no
exact crossings of the surfaces, only avoided crossings. For
higher-dimensional problems these surfaces can cross and the
equivalent of conical intersections may appear.

VII. CONCLUSION

Quantum systems are always open systems interacting with
a quantum environment. While the typical approach to study
open quantum systems is based on density matrix theory [29],
already a seemingly closed quantum system with a Hamil-
tonian that contains potentials can be viewed as an open
quantum system because the potentials encode an interaction
with an unspecified environment.

Our first goal with this article was to illustrate how the
EF describes a system and its environment. Using the EF,
we studied how potentials emerge from explicit consideration
of the quantum environment of a quantum system. We have
shown that an exact treatment of the quantum system Q in
its environment E is in general in terms of many potentials
v j (Q) with their ground states χ j (Q). In the limit of the BOA
these potentials all become similar, except for localized finite
spikes, and Q can approximately be described by a spikeless
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FIG. 9. (a) The two states χ1 and χ2 for the seventh excited
state of the coupled Schrödinger equation (B1). (b) Corresponding
marginal wave function χ . (c) The two states χ− and χ+ and the
(n = 7)th eigenfunction χ n

− for the potential V−. (d) The EF potential
v, the two adiabatic potentials V− and V+, and the eigenenergy E .

potential and its eigenstates. Excitations of the supersystem
S composed of Q and E are then excitations of Q alone,
with E being unaffected. In this way, the usual description
of a (closed) quantum system in terms of a potential and its
eigenstates is recovered.

Our second goal was to study what happens when χ j (Q)
has exact nodes. While the states χ j (Q) of Q that follow
from the EF are typically nodeless even if they correspond
to excited states of S , we also constructed situations where
χ j (Q) has exact nodes. Then χ j (Q) can be viewed both as
the ground state of a spiky potential or, more naturally, as the
excited state of a spikeless potential.

Motivated by this insight, we have also achieved our third
goal: For one-dimensional systems, we presented a method
for finding the nodes of excited states based on ground-state
calculations using spiky potentials. The idea on which our
method is based may be interesting for quantum Monte Carlo
calculations of fermionic problems. There the fixed-node vari-
ational principle is often used: The energy minimization of a
trial wave function with its nodes restricted to the position
of the nodes of some excited state yields exactly that excited
state, as proven in [45]. As even the ground-state wave func-
tion of a many-fermion system is a highly excited state of
the corresponding Hamiltonian without symmetry constraints,
the function is strongly oscillating and evaluation of integrals
(expectation values) is numerically difficult. A remedy for this
so-called fermionic sign problem in quantum Monte Carlo
methods is a fixed-node approximation [38] based on the
fixed-node variational principle.

However, the fixed-node variational principle does only tell
the location of the nodes. By using that spikes in the potential
are equivalent to constraints on the position of the nodes, we
have shown how the position of nodes can be obtained by
an algorithm that shifts the spikes along the energy gradient

obtained from a ground-state calculation, for one-dimensional
systems. So far, we have not found a generalization of our
method for higher dimensions, and we also think that fur-
ther constraints may be needed in addition to the maxnode
condition to find nodal surfaces in a similar way. Thus, it
can be interesting and potentially rewarding to study how our
insights can be applied to the computation of properties of
higher-dimensional systems.
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APPENDIX A: CONDITIONAL WAVE FUNCTION
FOR THE MODEL OF SEC. III

In Sec. III the first excited state ψ1(x1, x2) of the model of
two attracting particles in a harmonic trap and its marginal
wave function χ1(x1) was discussed. Figure 8 shows the
conditional wave functions φ0(x2; x1) and φ1(x2; x1) for the
ground state and the first excited state of the two-particle
model, respectively. Here φ j (x2; x1) is the wave function of
the environment E (the particle at x2) for a given configuration
x1 of the particle in the quantum system Q.

For the first excited state, φ1(x2; x1) is shown for the two
gauges (25) [Fig. 8(b), where there is no sign change in the
marginal wave function χ1] and (26) [Fig. 8(c), where there
is a sign change in the marginal wave function χ1]. With
increasing mass m1 of the particle in Q, the state φ1(x2; x1)
of the environment becomes very similar to that of the ground
state, φ0(x2; x1), shown in Fig. 8(a). Like for χ1, we also find
for φ1 that the gauge (25) is suitable for small masses m1,
while the gauge (26) becomes the natural gauge for larger
m1. For larger m1, we can thus interpret the first excited state
ψ1(x1, x2) as an excitation of Q alone, with the environment
E staying in its ground state.

APPENDIX B: ANALYSIS OF A
NONADIABATIC EIGENFUNCTION

In Sec. V we mentioned a literature example of nonadia-
batic eigenfunctions that seem to have nodes but actually do
not have them. From the ansatz (32), the problem is described
with two coupled differential equations[(

TN 0

0 TN

)
+

(
V1(R) γ (R)

γ (R) V2(R)

)](
χBO

1 (R)

χBO
2 (R)

)
=E

(
χBO

1 (R)

χBO
2 (R)

)
,

(B1)

where TN = − 1
2M ∂2

R is the kinetic energy with reduced nuclear
mass M. We used data from [46] to construct the Morse poten-
tial models of V1(R) and V2(R). As in [32], we use a constant
coupling term γ (R) = γ = 890 cm−1 and, using QMSTUNFTI

[39], we calculated the first 20 coupled eigenfunctions. Our
calculated eigenenergies and occupation numbers for each
state correspond to those in [32]. We demonstrate our results
for the same state (the seventh excited state v = 4, b′) as in
this article. Close inspection shows that the nodes of χBO

1 and
χBO

2 do not appear at the same position R, only in the vicinity
of each other, as can be seen in Fig. 9(a). The marginal wave

033194-12



NODELESS WAVE FUNCTIONS, SPIKY POTENTIALS, AND … PHYSICAL REVIEW RESEARCH 3, 033194 (2021)

FIG. 10. Shown on top are the energies E1,k (x1,1) for the seven lowest states of the potential v1 given in (58) with a spike at x1,1, sorted
energetically (left, adiabatic) and according to linear extrapolation (right, diabatic). On the bottom are the corresponding wave functions
χ1,k (x1; x1,1) with energy increasing from the bottom to the top panel, shown as a contour plot, corresponding to the adiabatic ordering (left)
and diabatic ordering (right).

function χ gets close to zero, but never reaches zero, as seen
in Fig. 9(b). Therefore, we observe spikes in the potential v(R)
[see Fig. 9(d)], which are also illustrated in another article on
the same system [33].

The reason why the nodes of χBO
1 and χBO

2 are so close to
each other can be better understood in a different basis. The
potential part of the Hamiltonian can be diagonalized as(

V1(R) γ (R)
γ (R) V1(R)

)
∼

(
V−(R) 0

0 V+(R)

)
. (B2)

The wave function in the new adiabatic basis is represented by
functions (χ−(R), χ+(R)). The kinetic term in the new basis
is no longer diagonal but is almost diagonal when the ener-
getic separation of the potentials V− and V+ is large. As the
eigenenergy E is always below V+, we expect a low pop-
ulation of the state χ+. The coupled eigenvalue solution is
then very close to the eigenvalue solution in just the poten-
tial V−(R). This can be seen in Fig. 9(c), where the seventh
excited state of V− is depicted. If χ+(R) = 0, the marginal
wave function χ (R) and the eigenfunction χ−(R) would be
identical and have nodes. However, for the exact calculation
the kinetic term is not completely diagonal and therefore there
is a nonzero contribution of χ+(R), leading to a nonzero
marginal wave function χ (R) =

√
χ−(R)2 + χ+(R)2.

APPENDIX C: PROOF OF THE MAXNODE CONDITION

The maxnode condition for one-dimensional (nondegener-
ate) problems is the following condition: The nodes of the
jth eigenstate χ0, j of v0 are at the positions where the energy
Ei, j−i(x j ) of the ( j − i)th eigenstate χi, j−i of vi (i � j) has its

maxima as a function of the spike positions x j . Here v j has j
spikes and x j is the vector of the locations x j,k of those spikes
with k = 1, . . . , j.

We prove the maxnode condition for a discretized prob-
lem only. Given is a Hermitian matrix H of size n × n with
spectrum λ1(H ) � λ2(H ) � · · · � λn(H ). We construct the
compression H ′ of size m × m from H by removing some
rows and columns. The Cauchy interlacing theorem provides
the bounds λk (H ) � λk (H ′) � λk+n−m(H ) for the eigenvalues
of H ′.

We first consider the potential v0 and the potential v1 that
only differs from v0 by a spike at x1,1. The Hamiltonian
H (v1) for v1 has one eigenvalue +∞ and the correspond-
ing eigenvector δ(x − x1,1). Due to the orthogonality, all
other eigenvectors of H (v1) are zero at x1,1. We can thus
obtain those other eigenvectors by solving the eigenvalue
problem for H ′(v1) obtained from H (v1) by removing the
row and column corresponding to x1,1. As H ′(v1) is a
compression of H (v0), the Cauchy interlacing theorem tell
us that λk (H (v0)) � λk (H ′(v1)) � λk+1(H (v0)), i.e., the kth
eigenvalue of the spiky potential appears somewhere be-
tween the kth and (k + 1)th eigenfunctions of the spikeless
potential.

We also know that when x1,1 is exactly at a node of the
(k + 1)th eigenfunction of v0, this function is also the kth
eigenfunction of v1. Therefore, when λk (H ′(v1)) reaches its
maximum as a function of x1,1, this maximum is λk+1(H (v0)).

Next we consider v2 that has two spikes at x2 = (x2,1, x2,2).
Designating H ′(v2) as being the compressed Hamiltonian
of H (v2) where the rows and columns associated with the
two spikes have been removed, we have that λk (H (v0)) �
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λk (H ′(v2)) � λk+2(H (v0)). Again, when x2,1 and x2,2 are
exactly at nodes of the (k + 2)th eigenfunction of v0, this
function is also the kth eigenfunction of v2. Therefore, when
λk (H ′(v2)) reaches its maximum as a function of x2, this
maximum is λk+2(H (v0)). The maxnode condition follows by
induction.

APPENDIX D: ADIABATIC AND DIABATIC STATES

We consider a transformation in the spirit of the trans-
formation from adiabatic states to diabatic states in the
Born-Oppenheimer framework, but for a potential that de-
pends parametrically on the position of one spike. Figure 10
shows the seven lowest eigenstates χ1,k (x1; x1,1) and ener-
gies E1,k (x1,1) of v1 given in (58) with one spike at x1,1, for
the spikeless potential v1 of (56). The left panels show the
adiabatic ordering where the states are ordered according to

their energetic order. The sign of χ1,k (x1; x1,1) along x1,1 is
undetermined and was set to be as continuous as possible,
based on the overlap of χ1,k on two neighboring grid points
along x1,1.

The adiabatic surfaces E1,k (x1,1) do not cross, but a trans-
formation similar to the transformation from adiabatic states
to diabatic states in the Born-Oppenheimer approach is possi-
ble. Then the order is not based on the energy but such that the
character of the wave function is continuously changing. The
right panels of Fig. 10 show the result of a transformation to
diabatic states. The transformation was achieved based on the
continuity of E1,k (x1,1): Two neighboring points of E1,k (x1,1)
along the x1,1 grid were used to linearly extrapolate the energy
at the next point along x1,1, and the true values of E1,k (x1,1)
were sorted according to this extrapolation. There are 2 × 7
diabatic states shown in the figure, seven that increase in en-
ergy from small to large x1,1 and seven that decrease in energy.
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