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Short-term memory by transient oscillatory dynamics in recurrent neural networks
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Despite the significance of short-term memory in cognitive function, the process of encoding and sustaining
the input information in neural activity dynamics remains elusive. Herein, we unveiled the significance of
transient neural dynamics to short-term memory. By training recurrent neural networks to short-term memory
tasks and analyzing the dynamics, the characteristics of the short-term memory mechanism were obtained in
which the input information was encoded in the amplitude of transient oscillations, rather than the stationary
neural activities. This transient trajectory was attracted to a slow manifold, which permitted the discarding of
irrelevant information. Additionally, we investigated the process by which the dynamics acquire robustness to
noise. In this transient oscillation, the robustness to noise was obtained by a strong contraction of the neural
states after perturbation onto the manifold. This mechanism works for several neural network models and tasks,
which implies its relevance to neural information processing in general.
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I. INTRODUCTION

Short-term memory is essential for our cognitive activ-
ities [1]. Once an external signal is applied to an internal
neuron, its information is encoded therein and saved for a
certain time period. Some form of sustained neural activity
is therefore necessary [2]. A conventional theory of work-
ing memory is based on the representation of each memory
item as a different attractor of the considered system [3–5].
This theory is usually referred to as “memories as attractors”.
However, this is not practical when a large number of objects
has to be memorized, because it is difficult to prepare so
many attractors. Additionally, if there is a need to memorize
continuous information (e.g., length, frequency, amplitude of
inputs), it becomes more difficult to form a memory using this
attractor. Furthermore, extensive experimental reports suggest
that while short-term memory is maintained, neural activi-
ties are not constant; they instead continue to change over
time [6,7]. Indeed, the possibility of achieving short-term
memory through sustained transient dynamics has recently
been discussed [8–12]. Additionally, the general relevance of
transient activities to neural information processing has been
discussed [13].

It is unclear, however, what form of transient neural activ-
ity can afford short-term memory. In contrast to established
studies on memories as attractors, the way external inputs are
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encoded into transient dynamics is not well explored. Further-
more, in contrast to stationary neural activities at attractors,
the way information is sustained in the transient process with
time-varying neural activities remains elusive. Memory must
be robust under noise to inputs or internal neural activities.
From the view of memories as attractors, the stability of
memory is supported as the state is attracted to the attractors
(i.e., stationary states) after perturbation [14,15], whereas the
robustness in the transient dynamics is not well explored.
One must investigate how robustness to noise is achieved
to understand the transient dynamics that support short-term
memory.

To investigate the neural dynamics of short-term memory,
we adopted a recurrent neural network (RNN) trained to solve
a task that requires memorizing the input information for a
given time span. We provided a task to compare two inter-
spaced signals input with some time interval. The RNN is
required to determine which of the two subsequent signals has
the larger continuous characteristics (e.g., frequencies of the
periodic signals) [16]. Here, to solve the comparison task, it
is necessary for the neural dynamics to maintain the informa-
tion of the first signal until the second signal input arrives.
Thus, short-term memory is needed to solve this comparison
task. In this RNN, the neural dynamics consist of activities
entailing a large number of neurons connected via synapses
whose weights are adjusted by the standard back-propagation
method [17,18] to solve this task.

After the network is trained to solve the task successfully,
we analyze the generated neural dynamics to uncover how
the input information is encoded and memorized according
to the dynamics of neural activities. We find that the neural
activities exhibit a transient oscillation that endures for the
time span between the first and second signals. Subsequently,
we analyze how this oscillatory neural activity encodes the in-
put information, provides short-term memory, and solves the
task. We uncover that the information of the first signal (e.g.,
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FIG. 1. Schematic diagram of frequency comparison task. The
input consists of the first signal, a delay period during which there
is no input signal, and the second signal. Both the first and second
signals are represented by noisy sine waves. The task is to determine
which of the frequencies of the first and second signals is higher.
The frequencies of two signals satisfy 1 � ω1, ω2 � 5. In addition,
only in the training phase the difference of two signals satisfy
|ω1 − ω2| � 1.

its frequency) is encoded and memorized by the amplitude of
the transient oscillation. Then, we determine if and how this
memory by the amplitude of transient oscillation is robust to
noise using dynamical systems theory.

The remainder of this paper is organized as follows. In
the next section, we introduce the task to compare the fre-
quencies of two signals input with a given time interval as
well as the RNN model used to solve it. After demonstrating
that the trained RNN can solve the task, we analyze how
the memory of the first input is maintained. We demonstrate
that neural activities during the time span, while memory is
maintained, exhibit a transient oscillation. Here, the input-
signal information required to solve the task is encoded by the
amplitude of this transient oscillation, whereas the irrelevant
information in the input signal that is unrelated to solving
the task is discarded. Then, the robustness of the memory
to noise is analyzed. We also confirm that the mechanism
for short-term memory presented in this study is valid for
several different comparison tasks as well as in neural network
models that take biological features into the account, such
as excitatory-inhibitory balance or sparseness. Finally, the
possible relevance of the presented mechanism for short-term
memory to biological neural dynamics is discussed.

II. MODEL

A. Short-term memory task

As a task that requires short-term memory, we studied
the frequency comparison task illustrated in Fig. 1, which is
commonly adopted in the field of neuroscience [16]. In this
task, the input signals consist of the first signal, a delay period,
and the second signal. The objective of the task is to determine
which frequency is higher: that of the first or the second signal.

Specifically, the first and second signals are chosen
as noisy sine waves following u1,2(t ) = sin(ω1,2t + φ) +
η1,2(t ), where φ1,2 represents the phase of the signals, and
η1,2(t ) is a random Gaussian variable with average zero and
standard deviation 0.05. During the delay period, there is no

TABLE I. Conditions of the short-term memory task.

Condition Training phase Test phase

Length of the input signal 13 � Ts � 17 Ts = 15
Length of the delay period 25 � Td � 35 Td = 30
Frequencies of signals 1 � ω1, ω2 � 5 1 � ω1, ω2 � 5
Difference of ω1, ω2 |ω1 − ω2| � 1 |ω1 − ω2| � 0

input signal. The duration of the first (second) signal, Ts(T ′
s )

and the delay period, Td , vary with each sample in the training
phase. At Ts, the delay period starts, and at Tf = Ts + Td , the
delay period ends. At Ta = Ts + Td + T ′

s , the second signal
completes, and the neural network is asked whether the first
or second has the higher frequency. Specifically, Ts is homoge-
neously distributed as Ts ∈ [13, 17], and Td is homogeneously
distributed as Td ∈ [25, 35] throughout the samples in the
training phase (see Table I). During the test phase, to answer
the task, Ts and Td are fixed at 15 and 30, respectively. These
conditions are fixed unless otherwise mentioned.

B. Recurrent neural network

In this study, a standard model [19] is adopted for neural
activity dynamics as expressed in the equation

ẋi = −xi +
N∑

j=1

Ji j tanh(x j ) + W in
i u, (1)

where xi represents the neural activity state of neuron i
[or (1 + tanh xi )/2 can be correlated with the firing rate].1

Each neuron is recurrently connected to the others, where
Ji j represents the strength of the connection from neuron j
to i. Furthermore, ui represents the input signal, which is
defined by a cognitive task as described above and is pro-
jected onto the neurons by the input connection, W in

i . The
number of neurons, N , is set at 256. The initial state of
neuron xi(t = 0; i = 1, . . . , N ) is set to be a Gaussian random
variable with average zero and standard deviation of 0.1. In
this study, the Euler method is applied to simulate Eq. (1),
and the discretized dynamics are subsequently calculated.
A discretized Eq. (1) is adopted here as xi(t + 1) = (1 −
α)xi(t ) + α{∑N

j=1 Ji j tanh[x j (t )] + W in
i u(t )}. The time width,

α, for discretization is set to 0.25; nonetheless, the choice of
this specific value is not essential to the results.

The output of the RNN is determined by the weighted sum
of the neural states, as stated in the equation,

zi(t ) =
N∑

j=1

W out
i j x j . (2)

z is chosen to be a two-component vector and z1 − z2 repre-
sents the LOGIT of the probability that the first signal has a

1Because xi takes both positive and negative values, it does not
represent the neural activity per se. Instead, in the context of neu-
roscience, [1 + tanh(xi )]/2 is often regarded as the firing rate of the
neuron.
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higher frequency [20]. The calculation from z to the probabil-
ity is performed using the SOFTMAX function, Softmax(zi ) =
ezi/(ez1 + ez2 ).2 Therefore, Softmax(zi ) represents the proba-
bility that the RNN judge that the ith signal has the higher
frequency; If z1 > z2, the RNN estimates the first signal to
have a higher frequency, and vice versa.

The parameters of this RNN are composed of the weights
of the vector, Win, and two matrices, J and Wout; these
weights are adjusted by training the RNN to solve the task
introduced in Sec. II A. The specific learning procedure is
described in the following Sec. II C. Although, in the reservoir
computing scheme [21,22] training only changes the output
matrix, Wout, in this study, we adjust the weights of all three
matrices.

C. Training

To train the RNN for the short-term memory task described
above, we adopt a stochastic gradient descent scheme, which
is commonly used in machine-learning communities [23]. In
this scheme, the loss function is first defined to indicate how
far the output of the current RNN is from the correct answer.
This loss function is given as a function of the weights of
the matrices, which provide the parameters of the RNN. The
learning process is carried out by calculating the gradient
and optimizing the parameters in the direction toward which
the loss function becomes smaller. Although there are many
optimization algorithms, the basic concept is given by the
following equation:

Wt+1 = Wt − η∇wL, (3)

where W represents the parameters of the RNN (i.e., vector
Win and two matrices J and Wout), and η represents the learn-
ing rate. ∇wL represents the gradient of the loss function and
is calculated via back-propagation through time (BPTT) [18],
in which the dynamics of the RNN are first unfolded in time;
then, the derivatives of the loss function are calculated using
the chain rule. In this study, we adopt the SOFTMAX cross-
entropy loss function:

LCE = −
2∑

k=1

ẑk log zsoftmax
k , (4)

where zsoftmax
k ≡ ezk /(ez1 + ez2 ), and ẑ represents the target la-

bel of this task. If ω1 is larger than ω2, ẑ = (1, 0)T; otherwise,
ẑ = (0, 1)T. This target label is defined to satisfy the demand
of this task. As explained, zsoftmax

k gives the probability that
the kth signal is recognized to have higher frequency by the

2The relationship between LOGIT z1 − z2 and the probability cal-
culated by the SOFTMAX function is as follows. By definition
of the SOFTMAX function, we have p1 = ez1/(ez1 + ez2 ) = 1/(1 +
e−(z1−z2 ) ). Then, by the definition of LOGIT function, we get the LOGIT

of p1 as log[p1/(1 − p1)] = log(ez1−z2 ) = z1 − z2. From the above
explanation, the output of the SOFTMAX function can be treated as a
probability because p1 and p2 satisfy 0 � p1, p2 � 1, and p1 + p2 =
ez1/(ez1 + ez2 ) + ez2/(ez1 + ez2 ) = 1. In this study, specifically, we
interpret this probability as the probability that the first signal is
recognized to have a higher frequency by the RNN.

RNN. The SOFTMAX cross-entropy loss, therefore, represents
the difference between the probability estimated by the RNN
and the target probability. This loss function is widely used
owing to its computational efficiency [24].

To make the training process stable, L2 norm regulariza-
tion [20] is applied for the sum of the norm of the RNN
weights. Finally, the loss function is defined as

L = LCE + λL2

(∑
i

W 2
in,i +

∑
i j

J2
i j +

∑
i j

W 2
out,i j

)
, (5)

where λL2 is set to 0.0001. During the training phase, the
loss function is summed up for 50 input samples; then, the
weights of the matrices are adjusted by the gradient descent.
This process is continued for 3000 iterations. Here we adopt
ADAM [25] as the specific algorithm of optimization, which
uses ∇wL calculated by BPTT, as is mentioned above. The
learning rate, η, is set to 0.001. The training algorithm is
implemented using PYTORCH [26], which is the framework for
machine learning.

III. RESULTS

A. Short-term memory by transient oscillatory dynamics

After training, 50 pairs of signals having various ω1 and ω2

were input to the trained RNN. In Fig. 2(a), the fraction judged
by the RNN to be ω2 was higher than ω1 plotted against ω2 −
ω1. With the condition of |ω2 − ω1| > 1, the accuracy of the
choice was greater than 95%. Hence we can see that the RNN
correctly learned to solve the frequency comparison task. To
more closely examine how the neural dynamics compared the
frequencies, the neural states corresponding to various ω1 and
ω2 at t = Ta (i.e., at the end of the second signal) were plotted
using the three principal components of {xi} [Fig. 2(b)] [27].
The state changed continuously in response to the difference
in frequencies. Moreover, according to ω1 > ω2 or ω1 � ω2,
the states could be separated by a plane. Hence, the frequency
of the first signal was memorized over the delay period.

Here, the neural activities continued to change over time
during the delay period, as illustrated in Supplemental Ma-
terial, Fig. 1 [28]. It can now be confirmed that the first
signal was memorized by transient dynamics rather than by
the attractor. To further confirm this, the second signal was
removed, and the long term behavior of neural dynamics after
the delay period was observed. As shown in Fig. 3(a), when
the delay period was prolonged, the neural states converged
to a limit-cycle attractor independent of the signal frequency,
ω1. After the first signal input, neural activities were attracted
to a low-dimensional manifold at which the limit cycle was
located.3 Then, the neural activities oscillated with slowly
increasing amplitude towards the limit-cycle attractor. This
increase, however, was so slow that the short-term memory
was maintained for a sufficient amount of time. We analyze
the duration of memory in detail below.

3The fixed-point analysis [14] showed that there were a few slow
points acting as pseudosaddles through which the neural activity
passed after the first signal. See Supplemental Material, Fig. 3 [28],
for the slow points plotted in the three-dimensional PC space.
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FIG. 2. (a) Fraction judged by the RNN judge to be ω2 � ω1(◦).
The horizontal axis represents the difference between ω1 and ω2.
Hence, if the fraction is 100% (0%) for ω2 − ω1 > 0(< 0), respec-
tively, the correct answer rate (×) is 100%. As shown, if |ω1 − ω2| �
1, the correct answer rate is almost 100%, whereas it decreases as
|ω1 − ω2| decreases. (b) Neural states x at the end of the second
signal (t = Ta; timing to judge), plotted in the three-dimensional
principal component (PC) space. The PC axis is computed from the
data of the neural states at Ta for various frequency inputs. Colors
represent ω2 − ω1. The plane in the center can separate these neural
states into those satisfying ω1 > ω2.

Subsequently, we show how memory information (i.e., fre-
quency of signals) was represented in the neural activity. In
Fig. 3(a), we can see the trend in which the amplitude of the
transient oscillation before the attraction to the limit cycle has
monotonic dependence on ω1. At the end of the delay period
(t = Tf ), this trend is remarkable; there is strong negative
correlation between the amplitude, |x(t = Tf )|, and the first
signal frequency, ω1 [Fig. 3(d2)]. Hence, ω1 is encoded by
the amplitude of the transient oscillation [Fig. 3(c)]. Notably,
this monotonic coding of the input frequency by the amplitude
does not hold immediately after the input of the first signal.
Indeed, at the beginning of the delay period (t = Ts), there
was no such monotonic dependence on ω1 [see Figs. 3(b),
3(d1)]. Therefore the neural dynamics during the delay period
(Ts � t � Tf ) shaped the manifold from Figs. 3(b) and 3(c).

This coding by amplitude is beneficial for discarding in-
formation irrelevant to the task. In the present task, the input
signals included phases of the oscillation apart from the fre-
quency. Hence the RNN should discriminate the frequency
information from the phase information. Here, signals having
different phases were mapped to different points on the same
radius trajectory [Fig. 3(e)]. The neural dynamics during the
delay period (Ts � t � Tf ) dampened information on the sig-
nal other than its frequency, ω1.

The neural state corresponding to ω1, encoded by the am-
plitude of transient oscillation, was used as the initial state for
the response to the second signal. After the second signal was
input, the neural states moved separately up and down along
the PC3 axis according to the sizes of ω2 and ω1. If ω2 > ω1,
it moved in the positive direction along the PC3 axis, and vice
versa. In Fig. 3(f), changes in the PC3 component of x(t ) after
the second signal with ω2 = 3 are plotted against the ampli-
tude of x(t ) oscillation at t = Tf . As shown, depending on the
amplitude of the oscillation at t = Tf , PC3 moved upwards
when |x(t = Tf )| was small (corresponding to ω2 < ω1), and
it moved downwards when |x(t = Tf )| was large (correspond-
ing to ω2 > ω1). This property separated the neural states in
the direction of PC3, as shown in Fig. 2(b), and it enabled
the RNN to correctly solve the frequency comparison task by
using the short-term memory for ω1, as coded in the transient
amplitude.

To verify the generality of short-term memory encoded by
the amplitude of transient oscillation, we examined two other
settings. First, we changed the length of the delay period as
follows. During the training phase, Td was homogeneously
distributed as Td ∈ [75, 105], and during the test phase, Td

was fixed at 90. With this longer delay period setting, we
confirmed that the present mechanism also worked (see Sup-
plemental Material, Fig. 2 [28], for the neural activity of
trained RNN with longer delay period). Second, we trained
the RNN for two other comparison tasks, which requested we
compare the velocity and noise variance. In the former task,
the first and second signals were given by u1,2(t ) = a1,2t +
b + η1,2(t ), and the RNN was required to determine which
of the velocities, a1,2, was larger. In the latter task, the first
and second signals were given by u1,2 = sin(t + φ) + η1,2(t ),
where η1,2(t ) was a random Gaussian variable having an av-
erage of zero and a standard deviation of σ 1,2

ex . The RNN was
then required to determine which of the variances, σ 1,2

ex , was
larger. For both the tasks, a monotonic dependence between
the L2 norm of the neural states (the amplitude of transient
oscillation) and the parameter to be compared was revealed
at the end of the delay period (t = Tf ) (see Supplemental
Material, Figs. 4 and 5 [28], for the results of the different
tasks). The information of the velocity, a1, (for the former)
and the noise variance, σ 1

ex, (for the latter) was memorized as
the amplitude of transient oscillation.

B. Convergence to the limit cycle

As described previously, transient oscillatory dynamics
eventually converged to the limit cycle. When this trajectory
converged, the memory was forgotten, and the information of
the input was lost. Hence, for this memory to work and to
accomplish the task, the time to converge to the limit cycle
must be sufficiently long. As a measure of convergence of x(t )
to the limit cycle, we first introduced �(t ) = |x(t ) − x(t +
TL )|, where TL is the period of the limit cycle. Subsequently,
we estimated the convergence time to the limit cycle as the
time, t , when �(t ) was sufficiently small (i.e., the time t at
which �(t ) first satisfies �(t ) � 0.05 for the first time). We
computed the average convergence time over 100 trajectories,
x(t ), for different ω1 values and noted that the convergence
time was several times longer than Tf . We also found that
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FIG. 3. (a) Trajectories of neural activities during a prolonged delay period (Ts � t , without second signal) were plotted in a three-
dimensional principal component (PC) space. Trajectories from three different ω1, giving rise to different states at t = Ts, are given by triangle
symbol. (b) Neural states x in the PC space at the beginning of the delay period (t = Ts) for 50 different ω1’s presented with different colors.
(c) Neural states x in the PC space at the end of the delay period (t = Tf ) for ω1 corresponding to (b). (d1) Scatter plot of the norm, |x(t = Ts )|,
against the frequency of the first signal, ω1. (d2) Scatter plot of the norm at the end of the delay period, |x(t = Tf )|, against the frequency
of the first signal, ω1. Monotonic dependence is discernible. (e) Neural states x in the PC space at the end of the delay period (t = Tf ) for
ω1 = 1.5, 3, 4.5 with various 0 � φ � π . (f) Directions of neural trajectories driven by the second signal with ω2 = 3. The x axis shows the
amplitude of the trajectory at t = Tf . Arrows show the direction and magnitude of the change in the PC3 component of x(Tf + 1) − x(Tf ) for
the first input signal with ω1 = 1.5, 2, 2.5, 3.5, 4, 4.5.

during training, the convergence time increased alongside
an increase in the accuracy of the task (see Supplemental
Material, Fig. 6 [28], for the convergence time to the limit
cycle). These results suggest that the short-term memory was
maintained over a sufficiently long period, prolonged after
the delay period, and the length of the convergence time was
related to the performance of informational processing.

C. Robustness to noise

As described in Sec. I, the mechanism of the robustness
to noise in the short-term memory by transient oscillation
remains elusive. Hence, the robustness of the memory was ex-
amined by adding the noise term in Eq. (1) using the Langevin
equation:

ẋi = −xi +
N∑

j=1

Ji j tanh(x j ) + W in
i u + ξi, (6)

where ξi is a random Gaussian variable with an aver-
age of zero and a standard deviation of σneu. As with
the no-noise setting, we discretized the dynamics and ob-
tained the following equation: xi(t + 1) = (1 − α)xi(t ) +
α{∑N

j=1 Ji j tanh[x j (t )] + W in
i u(t )} + √

αξi(t ). The RNN was

trained under a noise level, σ train
neu , with regularization for the

average squared norm of neural activity, 1
Ta

∑Ta
t

∑N
i xi(t )2.

Regularization was applied to the loss function in the form of

Lnoise = L + λact
1

Ta

Ta∑
t

N∑
i

xi(t )2. (7)

The reason that we introduced this regularization term
is as follows. Notably, if the average squared norm,
1
Ta

∑Ta
t

∑N
i xi(t )2, increases, robustness will increase because

the derivative of tanh(x) will generally decrease. By using
this regularization term to suppress the norm of neural activ-
ity, we can avoid such trivial robustness. We experimentally
determined λact so that the norm of the internal dynamics of
RNNs trained with noise (σ train

neu = 0.04) would be comparable
to those trained without noise (σ train

neu = 0), and we adopted
λact = 30. Subsequently, the trained network was tested for
solving the task under the noise level, σ test

neu .
As depicted in Fig. 4(a), the accuracy of the short-term

memory task decreased with the applied noise, σ test
neu , for the

network trained without noise. In contrast, for the model
trained with a sufficient noise level, σ train

neu , the drop in the
accuracy by the increase in noise level was suppressed, even
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FIG. 4. (a) Accuracy of the frequency comparison task plotted
against the noise level, σ test

neu . Different colors show the RNN trained at
different levels of noise (σ train

neu = 0, 0.04). Bold lines show the mean
score, and shaded areas show the standard deviations. (b) The cumu-
lative contribution ratio of the perturbed trajectories up to the tenth
principal component (i.e., the cumulative percentage of the eigenval-
ues corresponding to first-to-tenth eigenvectors (

∑10
i=1 λi )/(

∑256
i=1 λi ).

These are plotted against the time following the application of per-
turbation for σ train

neu = 0 (blue), and σ train
neu = 0.04 (red). If it is larger,

more points are restricted within the lower-dimensional manifold.
Because the perturbation is completely random, the perturbation
dimension is high immediately after it is applied. However, over
time, it is attracted to a lower-dimensional manifold, especially for
σ train

neu = 0.04.

up to a noise level higher than σ train
neu . The system gained a

higher robustness to noise, which was beyond the level added
during learning. Notably, the RNN trained with neural noise
realized the same mechanism of the short-term memory with
transient oscillation.

To examine the achievement of the stability of short-term
memory, the following perturbation analysis was performed.
We set σ test

neu = 0, and subsequently, we introduced an instan-
taneous perturbation during the delay period [i.e., Ts � tper �
Tf , as xper (t ) = x(t ) + δxδt,tper ], where δx is a random vari-
able that follows a Gaussian distribution of mean zero and of
variance σ 2

per, and δt,tper represents a Kronecker delta.
Intuitively, one might expect that the distance between

the perturbed trajectory and the original trajectory would be
decreased for the networks trained under noise. Here, we first
computed the L2 norm distance between the perturbed and
original trajectories: Lper = |xper (t ) − x(t )|. In contrast to the
naive expectation, however, the distance does not depend sub-
stantially on the trained noise level, σ train

neu . Hence, the distance

between the trajectories cannot explain the memory robust-
ness for a system trained with noise σ train

neu . To understand the
robustness, the direction of the perturbation of the trajectories
must be considered. Indeed, the shift of the trajectory along
the original trajectory was not harmful to the memory dis-
cussed, because the amplitude of the transient oscillation was
not affected by the shift. Hence, the dimension of the manifold
spanned by the perturbed trajectories is more important to
the robustness of memory than the distances between the
perturbed trajectories and the original trajectories.

Accordingly, we estimated the dimension of the manifold
spanned by a large number of perturbed trajectories. We
adopted a principal component analysis (PCA) for an ensem-
ble of these perturbed trajectories. If perturbation causes a
shift mainly along the trajectory direction, perturbed trajecto-
ries should be restricted within a low-dimensional manifold
along the original trajectory. Hence, the dimension of per-
turbed trajectories estimated by PCA will work as a measure
of robustness in the directions of perturbed trajectories. To
estimate the dimension, we computed the percentage of the
variance corresponding the first-to-tenth eigenvectors for each
time after the perturbation as (

∑10
i=1 λi )/(

∑256
i=1 λi), where λi

represents the eigenvalue of covariance matrix with an order-
ing to satisfy λ1 � λ2 � · · · � λ256.

This percentage was larger when the perturbed trajectory
was restricted to a lower-dimensional manifold. As shown
in Fig. 4, for the RNN trained with noise σneu, the tra-
jectory falls into a lower-dimensional manifold over time
following the perturbation. The percentage for such robust
RNN is larger than the RNN trained without neural noise.
This result implies that the dynamics after the perturbation
was more restricted to a lower-dimensional manifold for the
model trained with noise. This low-dimensional compression
is key to the robustness of the neural noise. Notably, another
method of estimating the attractor dimension was proposed in
Refs. [29,30], where the number of eigenvectors of the princi-
pal components required to achieve 90% of the total variance
was calculated. We have confirmed that similar results have
been obtained by applying this method (see Supplemental
Material, Fig. 7 [28], for the estimated dimension of perturbed
trajectories by the method in Refs. [29,30])

To characterize the mechanism of this convergence of the
transient trajectory to low-dimensional space, we focused on
the Jacobi matrix, G(t ), of this system. The Jacobi matrix is
defined as the following equation:

Gi j (t ) = Ji j tanh′[x j (t )]. (8)

The perturbed dynamics convergence can be estimated
by the eigenvalues of matrix e

1
T

∫
dtG(t ) along the trajectory,

as was adopted in the calculation of finite-time Lyapunov
exponents [31]. Therefore, we investigated the difference of
eigenvalues between the RNNs trained with σ train

neu = 0 and
those trained with σ train

neu = 0.04. Because the value of the
Jacobi matrix depends on the specific trajectory, x(t ), we
calculated the histograms of the eigenvalues for 50 samples
of input signals (Fig. 5). We also adopted the discretization to
calculate e

1
T

∫
dtG(t ) as exp[ 1

30

∑45
t=15 G(t )].

For the latter RNN, there were more eigenvalues with neg-
ative real parts. As shown in Fig. 5, the number of eigenvalues
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FIG. 5. Histogram of the frequency distribution of the real part
of the eigenvalues of exp[ 1

30

∑45
t=15 G(t )]. We calculated G(t ) for 50

samples of the input signals. Notably, there were 256 eigenvalues
for one exp[ 1

30

∑45
t=15 G(t )]. Blue is the result for the RNN trained

without noise, and red is the result for the RNN trained with noise
(σ train

neu = 0.04). In the latter, the eigenvalues were biased to the nega-
tive side overall.

with positive real parts was reduced. This result suggests that
the restriction to a low-dimensional manifold in the robust
RNN was caused by the compression of many modes of per-
turbed dynamics. This robustness caused by the contraction
of transient trajectories was clearly distinguishable from that
caused by the stability of fixed-point attractors.

D. Different types of neural networks

To investigate the range of validity of transient oscilla-
tory short-term memory, we considered two different types
of neural networks. First, we considered neural networks in
which synapses obey Dale’s law (i.e., the neural network
consists of excitatory and inhibitory neurons, and synapses
extended from a given neuron are either all excitatory, or
inhibitory) [32,33]. Second, we considered neural networks
in which synapses were sparse. We call these networks
excitatory-inhibitory and sparse networks, respectively.

We trained the RNN to solve the frequency comparison
task while satisfying each condition. Under the excitatory-
inhibitory networks condition, as in Ref. [34], hidden neurons
were divided into excitatory and inhibitory neurons in a 4:1
ratio. J was constrained so it can be decomposed as J = J+D,
where J+ is a matrix with all components greater than or equal
to zero, and D is a diagonal matrix that satisfies Dii = 1 if
i � 180 and Dii = −1 if i > 180. With this constraint, it can
be said that J obeys Dale’s law. During the training phase, D
was fixed, and Win, J+, and Wout were adjusted. In sparse
networks, we set the percentage of synapses with nonzero
weight to approximately 20%. We adopted the deep-rewiring
technique [35] to train under constraints where only 20% of
synapses have nonzero values, and all others are zero. As
in Supplemental Material Figs. 8 and 9, after learning, the
RNNs solved the frequency comparison task by maintaining
short-term memory by transient oscillatory dynamics (see
Supplemental Material, Figs. 8 and 9 [28], for the results

under the excitatory-inhibitory networks condition and the
sparse networks condition).

IV. DISCUSSION

In this study, we uncovered a generic scheme for short-
term memory sustained by transient oscillatory dynamics by
training RNNs to achieve a task requiring short-term mem-
ory to compare two interspaced input signals [36,37]. We
demonstrated that short-term memory was encoded in the
amplitude of transient oscillations of neural activities. The
neural state given by high-dimensional dynamical systems fell
into a low-dimensional manifold [14] and exhibited transient
oscillation, which slowly approached a limit-cycle attractor.
With the passage of time, continuous information from the
first signal input, such as the frequency and velocity of the
input signal, was encoded in the amplitude of the transient
oscillation and maintained as short-term memory. Other irrel-
evant information in the inputs (e.g., phase and noise) was
discarded during the transient dynamics. Hence, short-term
memory is encoded and maintained by transient dynamics and
is robust to external noise.

The proposed mechanism, wherein the memory is encoded
in transient oscillation, contrasts with the view of memory as
fixed-point attractors (i.e., memories as attractors). When the
RNN is trained to store discrete information (e.g., the possible
input signal frequency candidates are limited to 1, 2, 3, 4,
or 5 Hz), the memories are encoded by multiple fixed-point
attractors (i.e., persistent activities) [38]. In the task adopted
in this study, by contrast, storing continuous information was
needed. Hence, encoding into the amplitude of transient os-
cillation occurred. Notably, as an alternative mechanism to
encoding continuous information, a line attractor was pro-
posed [39,40]. Here, attractors coexisted continuously on a
line in the state space of neural activities, along which the
fixed point was marginally stable [i.e., one of the eigenvalues
of the Jacobi matrix (with the eigenvector along the line)
should be zero]. However, in autonomous dynamical systems,
such marginally stable attractors are not generic, and for their
existence, special constraints are required. Indeed, in this
study, such line attractors were not shaped by learning.4

As another mechanism of short-term memory, synaptic
plasticity has been proposed [41–43]. In this case, the synaptic
connections are modeled as time varying not only during
training, but also during inferencing. The memory information
is encoded in the time-varying strength of the synapses. In
this study, because we focused on neural-based short-term
memory, synaptic connections (i.e., the vector Win and two
matrices J and Wout) change only during training and were
fixed thereafter. In future research, we plan to investigate
how short-term memory based on transient oscillation can be
realized when considering synaptic plasticity after training.

It remains to be seen if the present scheme for short-term
memory can be adopted biologically. The results suggest that

4For the possible applicability of chaotic attractors to short-term
memory, see J. S. Nicolis and I. Tsuda, Chaotic dynamics of informa-
tion processing: The magic number seven plus-minus two revisited,
Bull. Math. Bio. 47, 343 (1985).
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the short-term memory encoded by the amplitude of transient
oscillation works over a wide range of systems. This may be
plausible, because the present mechanism is generally repre-
sented in terms of dynamical systems, and it is not difficult
to generate oscillatory dynamics from an ensemble of neu-
rons. Here, we offer two remarks. We expect that the present
scheme is also valid therein, as it is robust to noise in neural
dynamics. Next, oscillatory dynamics from certain modes of
neural activities evoked by inputs were observed from neural
data references [44,45]. Notably, such dynamics are not neces-
sarily observed just by computing the average neural activity,
which is often a rather stationary reference independent of
inputs. Indeed, this is true in the proposed model. The promi-
nent oscillation depending on the input, as shown in Fig. 2,
is observed only by taking appropriate principal components.
If we compute just the average activity over all neurons, it
is almost stationary, and the oscillation is difficult to discern,
which is consistent with experimental observations.

In this study, attraction to the low-dimensional manifold of
perturbation allowed for the transient trajectory to be robust
to noise. Recently, dynamic robustness has been regarded
as an important property of information processing in the
brain [46]. The present results provide general insight into
the mechanism of this type of robustness. Furthermore, in cell
and developmental systems, such dynamic robustness has also
been discussed as homeorhesis [47–49], and the results may
be applicable to such phenomena.
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