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Mott-insulator-like Bose-Einstein condensation in a tight-binding system
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We propose a class of tight-binding systems of interacting bosons with a flat band, which are exactly
solvable in the sense that one can explicitly write down the unique ground state. The ground state is expressed
in terms of local creation operators and apparently resembles that of a Mott insulator. Based on an exact
representation in terms of a classical loop-gas model, we conjecture that the ground state may exhibit quasi
Bose-Einstein condensation (BEC) and genuine BEC in dimension 2 and in dimension 3 or higher, respectively,
still keeping Mott-insulator-like character. Our Monte Carlo simulation of the loop-gas model strongly supports
this conjecture, i.e., the ground state undergoes a Kosterlitz-Thouless transition and exhibits quasi-BEC in two
dimensions.
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I. INTRODUCTION

Tight-binding models of interacting particles with a flat
band, i.e., a set of highly degenerate single-particle energy
eigenstates, have been studied intensively over the decades.
Flat-band systems not only serve as idealized models of
materials with a narrow band but also provide a theoretical
playground for investigating various collective phenomena
arising from the interplay between particle motion and inter-
actions. This is because the effect of interactions is magnified
due to the flatness of the band. Such an approach was fruitful
in the study of the origin of ferrimagnetism [1] and ferro-
magnetism [2–5] in the Hubbard model. See Ref. [6] for a
review. For the formation of a Wigner crystal and the effect
of the change in the density in bosonic systems with a flat
band, see Refs. [7–11]. The recent proposal that the nearly flat
band in twisted bilayer graphene supports superconductivity is
intriguing [12].

In this paper we propose a class of tight-binding systems of
interacting bosons with a flat lowest band. The model is based
on the construction in Ref. [13] of flat-band Hubbard models
and can be regarded as a spinless version of the models studied
in Ref. [14]. We write down the ground state of the model
explicitly as in (5) and prove that it is the unique ground state.
The expression suggests that the ground state is essentially
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different from that of a noninteracting system and resembles
that of a Mott insulator.

In spite of the simple expression, the property of the ground
state is nontrivial and rich. By examining representations of
the norm and the correlation functions in terms of a clas-
sical loop-gas model, we conjecture that the ground states
may exhibit quasi off-diagonal long-range order (ODLRO)
in two dimensions and genuine ODLRO in three or higher
dimensions. We present some results of Monte Carlo simula-
tion of the loop-gas model, which strongly indicates that the
two-dimensional model undergoes a Kosterlitz-Thouless (KT)
transition and exhibits quasi-ODLRO in its ground states.

We note that a class of states (without parent Hamiltonians)
very similar to ours was proposed and examined in Ref. [15].
It was found that these states do not exhibit off-diagonal
(quasi) long-range order.

It was found in a two-component system of bosons that one
component may exhibit Bose-Einstein condensation (BEC)
while the other is in the Mott insulating state [16]. This
is different from our Mott-insulator-like ground state (5),
which consists only of the states created by the b̂†

u operators.
Note also that our ground state in the BEC phase, although
solidlike, is not a supersolid since there is no spontaneous
breakdown of translation symmetry [17–19]. It is a challeng-
ing problem to design a similar exactly solvable model that
has supersolid ground states.

We stress that our ground states maintain a Mott-insulator-
like nature even when they exhibit (quasi-)ODLRO. This
is most clearly seen in the anomalously small particle-
number fluctuation observed in a specific setting. See
Sec. VI (in particular, Fig. 8). This does not mean, how-
ever, that the ground states describe genuine Mott insulators.
See Sec. V.
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FIG. 1. (a) The lattice � in the case (E,B) is the square lattice
(d = 2, p = 1). The black and white circles denote the sites in E and
I, respectively. The states corresponding to the b̂ and d̂ operators
are also shown. (b) The lattice � obtained from the square lattice in
which neighboring sites are connected by two bonds (d = 2, p = 2).

It would be exciting if our exactly solvable model pro-
vides an example of a novel exotic phase of matter where
a Mott-insulator-like nature and (quasi-)ODLRO coexist. Al-
though we are not able to give a definite conclusion at the
moment, we find it rather likely that (unfortunately) our Mott-
insulator-like condensate is smoothly connected to ordinary
Bose-Einstein condensate realized, e.g., in noninteracting sys-
tems. See Sec. VI.

We nevertheless believe that it is of essential importance
that this class of exactly solvable models of strongly inter-
acting bosons has been discovered. We hope that this paper
opens a new direction in the research of quantum many-body
systems.

II. THE MODEL AND THE EXACT GROUND STATE

Let (E,B) be a finite lattice, where E is the set of sites
and B is the set of bonds. A bond is an unoriented segment
that connects two distinct sites in E . We allow multiple bonds
to connect the same pair of sites. At the center of each bond
b ∈ B, we take a new site and denote it as ub. We let I be
the set of all sites ub with b ∈ B and consider the decorated
lattice � = E ∪ I. We typically choose E to be the set of
sites of the d-dimensional hypercubic lattice with periodic
boundary conditions and take p distinct bonds connecting a
pair of neighboring sites. See Fig. 1 for the resulting decorated
lattices.

We shall define a tight-binding model of bosons on �. We
denote by â†

r and âr the creation and annihilation operators,
respectively, of a boson at site r ∈ �. They satisfy the canon-
ical commutation relations [âr, âs] = 0 and [âr, â†

s ] = δr,s for
any r, s ∈ �. The number operator is defined as n̂r = â†

r âr . We
denote by |�vac〉 the state without any bosons, i.e., the unique
normalized state such that âr |�vac〉 = 0 for any r ∈ �. For
each x ∈ E , we define

d̂x := ζ âx +
∑

u∈N (x)

âu, (1)

where ζ > 0 is a model parameter and N (x) is the set of sites
in I that are on the bonds connected to x.

We consider the Hamiltonian Ĥ = Ĥhop + Ĥint with the
hopping Hamiltonian

Ĥhop := t
∑
x∈E

d̂†
x d̂x, (2)

(k)

k1

k2

FIG. 2. The single-particle energy eigenvalue ε(k) as a function
of the wave-number vector k = (k1, k2) for the models defined on the
square lattice (E,B) as in Fig. 1. Here, k j ( j = 1, 2) runs between
−π and π . There are flat bands (formed by the b̂ states) with zero
energy and a dispersive band (formed by the d̂ states) with width
4pt . The band gap is equal to ζ 2t . See Appendix A and, in particular,
Eq. (A10).

where t > 0, and the interaction Hamiltonian

Ĥint := U

2

∑
u∈I

n̂u(n̂u − 1), (3)

where U > 0. Our model is characterized by the three pa-
rameters ζ , t , and U . Note that Ĥhop is rewritten in the
standard form as Ĥhop = ∑

r,s∈� tr,sâ†
r âs, where the amplitude

tr,s describes hopping between the nearest and some of the
next-nearest-neighbor sites, and on-site potentials. Note also
that Ĥint describes on-site repulsive interaction only on sites
in I.

The hopping Hamiltonian Ĥhop describes a tight-binding
model with a flat band. To see this, we define

b̂u := 1√
2 + ζ 2

(ζ âu − âx − ây), (4)

for u ∈ I, where x, y ∈ E are the sites connected by the bond
corresponding to u. One can easily verify the orthogonal-
ity [d̂x, b̂†

u] = 0 for any x ∈ E and u ∈ I. This means that
Ĥhopb̂†

u|�vac〉 = 0 for any u ∈ I. Since Ĥhop � 0 and the states
b̂†

u|�vac〉 with u ∈ I are linearly independent, we see that
Ĥhop has |I| independent single-particle ground states (with
zero energy). See Fig. 2 and Appendix A for more about the
single-particle energy eigenvalues.

Let us state our first theorem, which characterizes the
ground state of the model.

Theorem 1. Consider the above model with particle num-
ber N = |I|. For any ζ > 0, t > 0, and U > 0, the ground
state of Ĥ is unique, has vanishing energy, and is written as

|�GS〉 =
(∏

u∈I
b̂†

u

)
|�vac〉. (5)

Note that, in the ground state (5), exactly one particle is
associated with the adjacent three sites including u ∈ I. This
suggests that the particles are distributed almost uniformly
over the lattice, and the state resembles the ground state of
a “solid” or, more precisely, a Mott insulator. However, the
property of the ground state turns out to be much richer than a
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simple Mott insulator. In fact, we shall argue in Sec. V that the
ground state does not correspond to a genuine Mott insulator
when it exhibits (quasi-)ODLRO.

The proof of Theorem 1 is an easy application of the tech-
nique developed in Refs. [4,5,13] for the (fermionic) Hubbard
model.

Proof of Theorem 1. It follows from the definitions that
Ĥ |�GS〉 = 0. Since Ĥ � 0, this proves that |�GS〉 is a ground
state. We only need to prove that it is the unique ground state.

We first note that any single-particle state can be ex-
pressed by a linear combination of the operators b̂†

u with
u ∈ I and d̂†

x with x ∈ E . This follows by observing that b̂†
u

and d̂†
x are all linearly independent, and there are exactly

|I| + |E | = |�| operators. We thus see that any N-particle
state is written as a linear combination of the basis states
|�n〉 = {∏u∈I (b̂†

u)nu}{∏x∈E (d̂†
x )nx }|�vac〉, where the “occupa-

tion number” n = (nr )r∈� satisfies
∑

r∈� nr = N .
Our proof is based on the standard argument for

frustration-free Hamiltonians. Let |�〉 be an arbitrary state
with N = |I| particles such that Ĥ |�〉 = 0, and expand it
as |�〉 = ∑

n αn|�n〉. Noting that d̂†
x d̂x � 0 and n̂u(n̂u − 1) =

(â†
u)2(âu)2 � 0, we see that d̂†

x d̂x|�〉 = 0 and (â†
u)2(âu)2|�〉 =

0 for all x ∈ E and u ∈ I. These relations further imply that
d̂x|�〉 = 0 for all x ∈ E and (âu)2|�〉 = 0 for all u ∈ I. The
first condition implies that αn = 0 whenever nx �= 0 for some
x ∈ E . Thus the ground state contains only the b̂ states. Then
the second condition implies that αn = 0 whenever nu � 2 for
some u ∈ I. This means that |�〉 is a constant multiple of
|�GS〉. �

III. GROUND-STATE PHASE TRANSITION

We first derive an exact loop-gas model representation of
the ground state. Further details of the derivation are given
in Appendix B. Note that in this quantum-classical corre-
spondence, unlike in the standard correspondence via path
integral, a d-dimensional quantum state is mapped to a d-
dimensional classical system. This is a peculiar point about
our model and is analogous to the loop-gas representations of
the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [20] and the
Kitaev model [21].

Note first that the b̂ operators satisfy the commutation
relations

[b̂u, b̂†
v] =

⎧⎪⎨
⎪⎩

1 u = v

2β u ≈ v

β u ∼ v

0 otherwise,

(6)

where

β := (2 + ζ 2)−1. (7)

Here, u ≈ v indicates that the bonds corresponding to u and
v connect the same pair of sites, and u ∼ v indicates that the
bonds for u and v share a single common site. By repeatedly
using (6), one finds that the normalization factor 〈�GS|�GS〉
is represented as [15]

〈�GS|�GS〉 =
∑
L

β |L|, (8)

FIG. 3. A typical configuration of loops on I corresponding to
the lattice in Fig. 1(a). By an arrow from site u to v we indicate the
commutator [b̂u, b̂†

v].

where the sum is over all possible sets L = {�1, . . . , �n} with
n = 0, 1, 2, . . . of oriented loops. See Fig. 3. By an oriented
loop of length m, we mean a sequence � = (u1, . . . , um) of m
distinct sites in I such that uj ≈ u j+1 or u j ∼ u j+1 for j =
1, . . . , m, where we set um+1 = u1. Here, we identify the new
sequence obtained by the shift uj → u j+1 for j = 1, . . . , m
with the original sequence. This means that, for u1, u2 ∈ I
such that u1 ∼ u2, there is a unique loop, � = (u1, u2), of
length 2, while for u1, u2, u3 ∈ I such that u1 ∼ u2, u2 ∼
u3, and u3 ∼ u1, there are two loops, � = (u1, u2, u3) and
�̄ = (u3, u2, u1), of length 3. We also assume that, in any
set L = {�1, . . . , �n}, no loops share a common site. To take
into account the factor 2 in (6), we interpret u, v ∈ I with
u ≈ v as being connected via two distinct paths and properly
overcount loops according to this interpretation. Finally, we
wrote |L| = ∑n

j=1 |� j |, where |�| denotes the length of a loop
�. See Appendix B for details.

We can derive a similar representation for correlation func-
tions. Noting that âu|�GS〉 = ζ

√
β(

∏
w �=u b̂†

w )|�vac〉 for u ∈
I, we find that

〈�GS|â†
v âu|�GS〉 = ζ 2β

∑
L, ω:u→v

′
β |L|+|ω|, (9)

where L is again summed over sets of oriented loops and
ω is summed over all self-avoiding walks connecting u to
v, i.e., a sequence ω = (u0, . . . , um) of m + 1 distinct sites
in I such that u0 = u, um = v, and u j ≈ u j+1 or u j ∼ u j+1

for j = 0, . . . , m − 1. The length of the walk is defined as
|ω| = m. The prime in the sum indicates that ω and loops in
L do not share common sites. By combining (8) and (9), we
see that the off-diagonal correlation is represented as

〈â†
v âu〉GS = 〈�GS|â†

v âu|�GS〉
〈�GS|�GS〉 = ζ 2β

∑′
L, ω:u→v β |L|+|ω|∑

L β |L| .

(10)

The correlation function 〈â†
r âs〉GS with general r, s ∈ � has

a similar (but slightly more complicated) representation and
should behave almost similarly as 〈â†

v âu〉GS, especially when
the distance between r and s is large.

The above summations over loops and walks are in general
nontrivial and hardly evaluated explicitly. When the basic lat-
tice (E,B) is a chain with bonds connecting nearest-neighbor
sites, i.e., d = p = 1 in the notation of Sec. II, one can evalu-
ate the summations by using, e.g., the transfer-matrix method
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to show for a long enough chain that

〈â†
v âu〉GS = C

(
2β

1 +
√

1 + 4β2

)|u−v|
� C 2−|u−v|, (11)

where C = ζ 2β/
√

1 + 4β2. The correlation always decays
exponentially, and the ground state is disordered.

Let us turn to the models in higher dimensions. When β

is small (or ζ is large), we can easily prove that the corre-
sponding loop-gas model is in the disordered phase, where
configurations with only small loops are dominant. This cor-
responds to a disordered ground state that describes a Mott
insulator. To see this, we relax the constraint L ∩ ω = ∅ in (9)
to get

〈�GS|â†
v âu|�GS〉 � ζ 2β

∑
L, ω:u→v

β |L|+|ω|

= ζ 2β〈�GS|�GS〉
∑

ω:u→v

β |ω|. (12)

This implies

〈â†
v âu〉GS � ζ 2β

∑
ω:u→v

β |ω| = ζ 2β

∞∑
n=dist(u,v)


u,v (n) βn, (13)

where 
u,v (n) is the total number of self-avoiding walks of
length n that connect u and v and dist(u, v) is the minimum
length of such walks. For u ∈ I, let su and du be the numbers
of v such that u ∼ v and u ≈ v, respectively. We let ν be a
constant such that su + 2du � ν + 1 for any u ∈ I. Then we
have 
u,v (n) � (ν + 1)νn−2. [We give the following proof:
There are at most (ν + 1) choices for the first step and at
most ν choices for each of the following n − 2 steps. There
is no choice in the final step because the walk ends at v.] This
bound, with (13), implies that the correlation decays expo-
nentially for sufficiently small β, or, equivalently, sufficiently
large ζ .

Theorem 2. Let ζ be such that νβ = ν/(2 + ζ 2) < 1. Then
we have for any u, v ∈ I that

〈â†
v âu〉GS � ζ 2β(ν + 1)

ν2 (1 − νβ )
(νβ )dist(u,v). (14)

When the dimension is larger than 1 and β is sufficiently
large, on the other hand, it is expected that the loop-gas model
is in the percolating phase where a macroscopically large loop
(or a walk) appears. The transition can be characterized by the
divergence of the “static structure factor”

S := (ζ 2β )−1
∑
v∈I

〈â†
v âu〉GS. (15)

If the critical value of β for the transition is less than 1/2,
which is the upper bound for β, the ground state undergoes a
phase transition.

Let us first examine the standard large-d (or mean-field)
approximation, in which one fixes β̃ = νβ and lets d ↑ ∞
(and hence ν ↑ ∞). It is well known that, for β̃ < 1, one can
neglect contributions from loops in this limit. See Appendix

C. Then S is evaluated for any β̃ < 1 as

S �
∑

ω:u→·
β |ω| =

∞∑
n=0

νnβn = 1

1 − β̃
, (16)

where ω is summed over all self-avoiding walks (with an
arbitrary length) that start from u. We here noted that the
number of walks is almost equal to νn. The structure factor
S diverges as β approaches the critical value ν−1.

The existence of a phase transition is also suggested by
a more careful examination of the loop-gas model. Recall
that, in (8) or (9), every loop of length 3 or more is summed
exactly twice with different orientations. This is equivalent
to considering unoriented loops, but with an extra factor 2
for each loop. We thus see that our loop-gas model resem-
bles that obtained from the high-temperature expansion of
an O(2) symmetric classical ferromagnetic spin system at a
finite temperature. The O(2) symmetry corresponds to the
U(1) phase symmetry in the original quantum system. From
this analogy we conjecture that in dimensions 3 or higher
the ground state |�GS〉 may exhibit BEC (where 〈â†

v âu〉GS has
long-range order) while in two dimensions it may exhibit a
quasi-BEC (where 〈â†

v âu〉GS shows power-law decay), both at
sufficiently large β.

To prove the existence of BEC is extremely difficult, if
not impossible, since we need to show the breakdown of a
continuous symmetry. See Ref. [22] and references therein
for rare cases where the existence of BEC can be established
rigorously by using the method of reflection positivity. (A
readable account of the reflection positivity method can be
found in Ref. [6].) In the present model, we have a rigorous
result only for the system defined on a tree, where one can
apply standard techniques (see, e.g., Refs. [23,24]). See Ap-
pendix D.

IV. NUMERICAL EVIDENCE OF A
KOSTERLITZ-THOULESS TRANSITION

To see whether the ground state exhibits a phase transition,
we carried out a Monte Carlo simulation of the corresponding
loop-gas model by using the worm algorithm [25]. We focus
on the two-dimensional models constructed from the L × L
square lattice with bond number p = 1 and 2 and with peri-
odic boundary conditions. See Fig. 1.

A central quantity that we measured is the static structure
factor S defined in (15). When the correlation 〈â†

v âu〉GS be-
comes long ranged, the structure factor should diverge as a
function of L. Specifically, S = O(Ld ) if the system possesses
ODLRO, and S = O(Ld−η ) if it has quasi-ODLRO character-
ized by the correlation-decay exponent η, while S = O(1) in
the disordered phase. In particular, η = 1/4 at the KT tran-
sition point with the multiplicative logarithmic correction of
(log L)1/8 [26].

To capture more specific features of the KT transition, we
also measured the helicity modulus, which is proportional
to the superfluid density. It can be computed as the Monte
Carlo average of the squared total winding number of all loops
[15,27],

ϒ :=
〈(∑

�∈L
w�

)2〉
MC

=
〈∑

�∈L
w2

�

〉
MC

, (17)
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FIG. 4. The static structure factor S (top) and the helicity modu-
lus (bottom) as functions of β for p = 1. The horizontal line in the
bottom panel indicates the universal jump 2/π , the thermodynamic
value expected for the KT transition point.

where the summation is over all loops in the loop-gas con-
figuration L and wl is the winding number of the loop l
around the horizontal direction of the lattice. As we pass the
KT transition point entering the quasi-ODLRO phase, this
quantity is expected to show a discontinuous jump from zero
to the universal value 2/π , and keep increasing afterwards.

Let us start from the simplest model with p = 1. The top
panel of Fig. 4 shows the β dependence of the static structure
factor S for varying system sizes up to L = 64. Clearly, we do
not observe any singularity in the region β � 1/2, where the
classical-quantum correspondence is valid. The data, however,
seem to indicate that the system, as a classical loop-gas model,
has a phase transition beyond β = 1/2.

The bottom panel of Fig. 4 shows the β dependence of
the helicity modulus ϒ . It can be seen from the figure that ϒ

goes from zero to some finite value greater than the expected
jump, indicating that a KT transition takes place near β ∼ 1.
This is in contrast to the case studied in Ref. [15]. We shall
recall, however, that the loop-gas model with β ∼ 1 does not
correspond to a quantum mechanical ground state.

Having observed that the model with p = 1 does not ex-
hibit a transition (in the range β < 1/2 that is relevant for us),
let us focus on the model with p = 2. Figure 5 shows the β

dependence of the structure factor (top panel) and the helicity
modulus (bottom panel) for varying system sizes up to L = 64
in the loop-gas model corresponding to p = 2. Clearly, the
static structure factor S shows a diverging behavior for large
but not too large values of β. The helicity modulus ϒ also
shows an increase from zero to some finite value greater
than the expected universal jump π/2, strongly suggesting
the presence of a KT transition in the physically meaningful
region β < 1/2.

Further evidence of a transition can be obtained from the
size dependence of the structure factor, shown in Fig. 6. For
small values of β, before the slope of the curve reaches 7/4,
it is not a straight line but bends and starts converging to a

FIG. 5. The static structure factor S (top) and the helicity modu-
lus (bottom) as functions of β for p = 2. The horizontal line in the
bottom panel indicates the universal jump 2/π , the thermodynamic
value expected for the KT transition point.

finite value, as seen for β = 0.15. As we increase β, the curve
becomes a straight line with slope approximately equal to
7/4 (β = 0.20 in the figure). Further increase in β brings the
slope of the straight line to a value greater than 7/4 (β = 0.5
in the figure). To estimate the slope of the straight part of
the curve more quantitatively, we analyzed the data with or
without the expected logarithmic correction, i.e., fit the form
L2−η or (log L)1/8L2−η to the data regarding the exponent η as
a fitting parameter, although according to Ref. [28] it is not
clear whether including such a logarithmic correction would
improve the estimates or not. The inset shows the result of
the fitting with or without the logarithmic factor. From this
result, we may conclude that the KT transition takes place
at β = 0.20(1), which is consistent with the universal jump
in the bottom panel of Fig. 5 considering the expected slow
[∼(log L)−1] convergence of ϒ at the transition point.

FIG. 6. The size dependence of the structure factor S. The dashed
lines are the power function fitting. The inset shows the estimates
of the critical exponent η obtained by fitting with the simple power
function (blue) and the power function with the expected logarithmic
correction (red).
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FIG. 7. The size dependence of the helicity modulus near the
transition point for p = 2. Straight lines are guides for the eye.

To get additional evidence of a KT transition, we examined
this size dependence of the helicity modulus near the transi-
tion point in more detail. As shown in Fig. 7, we plot ϒ as a
function of 1/ ln L around the critical value of β. At β = 0.2,
the value close to the critical point estimated from the size
dependence of the structure factor, the data are consistent
with the linear convergence in 1/ log L to the universal jump,
as predicted in Ref. [29] as a characteristic size dependence
for the KT transition. This may be taken as another piece of
evidence suggesting the KT nature of the transition.

V. THE MODEL WITH OTHER PARTICLE NUMBERS

Let us briefly discuss the properties of the models with dif-
ferent particle numbers and a related issue about the charge
gap.

When the number of particles N is less than |I|, we see
that the space of the ground states is spanned by |�S〉 =
(
∏

u∈S b̂†
u)|�vac〉, where S is an arbitrary subset of I such that

|S| = N . The ground states show macroscopic degeneracy,
which should be immediately lifted when a generic infinitesi-
mal perturbation is added to the Hamiltonian.

The case with N > |I| is difficult, and we have almost no
exact results. We can nevertheless construct a class of exact
energy eigenstates, which may be regarded as examples of
quantum many-body scars [30,31]. Assume that the lattice
(E,B) is connected and bipartite. To be precise, we say that
(E,B) is bipartite if there is a decomposition E = E+ ∪ E−
such that two sites x, y may be connected by a bond in B only
when x ∈ E+, y ∈ E− or x ∈ E−, y ∈ E+. Let us define

D̂0 :=
∑
x∈E+

âx −
∑
x∈E−

âx. (18)

Then, for any subset S ⊂ I and n = 1, 2 . . ., it is easily shown
that the state

|�S,n〉 = (D̂†
0)n

(∏
u∈S

b̂†
u

)
|�vac〉, (19)

which has |S| + n particles, is an energy eigenstate with eigen-
value En = ntζ 2. See Appendix E.

Let us denote by EGS
N the ground-state energy of the model

with N particles and define the charge gap (or the jump in
chemical potential) as

ΔN = EGS
N+1 + EGS

N−1 − 2EGS
N . (20)

It is believed that the charge gap provides a simple criterion
for conductivity in the sense that the ground state is insulating
if ΔN is positive and of order 1 [32].

Since we have EGS
N = 0 for N � |I| in the present model,

we see that EGS
|I|+1 is nothing but the charge gap Δ|I|, which

is directly relevant to the property of the model with |I| par-
ticles. We conjecture that, for β < βc, the charge gap Δ|I| is
strictly positive and our ground state describes a Mott insula-
tor, while, for β > βc where the ground state exhibits (quasi-)
BEC, Δ|I| vanishes in the infinite volume limit according to
the theorem in Ref. [33]. Therefore the ground state, although
Mott-insulator-like, is not a genuine Mott insulator.

VI. DISCUSSION

We proposed a class of exactly solvable models of
interacting bosons with a flat band and argued that the Mott-
insulator-like ground states may exhibit (quasi-)BEC. The
conjecture is supported by strong numerical evidence that the
two-dimensional model exhibits a KT transition. The proper-
ties of the three-dimensional models remain to be investigated.

We believe it important that an exactly solvable model that
exhibits (or, that is conjectured to exhibit) nontrivial conden-
sation phenomena has been discovered. It is also interesting
to investigate the possibility of similar models of electrons,
which should exhibit superconductivity.

It may be counterintuitive that our exact ground state (5),
which consists of bosons almost localized at each u ∈ I, ex-
hibits ODLRO. One should note, however, that the operator b̂†

u
creates a coherent superposition of the three states in which a
particle is at x, y, and u. The coherence “propagates” in the
system thus generating off-diagonal correlation, which may
be short ranged or long ranged [15]. At least mathematically,
the situation is parallel to that for the long-range Néel order in
the exact valence-bond ground states of the AKLT model in
high dimensions [20,24,34].

Indeed, this point is related to the fact that the states
proposed in Ref. [15] only have short-ranged off-diagonal cor-
relation while our ground state on a suitable two-dimensional
lattice exhibits quasi-ODLRO. The basic difference is not of
a qualitative but of a quantitative nature; namely, the com-
mutator [b̂u, b̂†

v] of neighboring sites, which give the basic
parameter β, and the coordination number ν + 1 can be larger
in our models compared with that in Ref. [15].

It is worth recalling that a two-dimensional system of
interacting bosons at zero temperature generically exhibits
genuine ODLRO rather than quasi-ODLRO. We believe that
the present model exhibits only quasi-ODLRO because of its
peculiar ground-state structure (5) expressed only in terms of
local bosonic operators b̂†

u. This is consistent with the fact
that the ground state of the present two-dimensional model
is represented in terms of a classical statistical mechanical
model (i.e., the loop-gas model) in two dimensions, while
a ground state in a two-dimensional quantum system gener-
ally corresponds to a three-dimensional classical system. We
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FIG. 8. The lattice obtained by connecting two lattices based on
the square lattice by a single bond. The number of particles in each
sublattice is almost constant in the corresponding ground state.

conjecture that the observed quasi-ODLRO will be imme-
diately elevated into genuine ODLRO when the model is
perturbed. See, e.g., Ref. [35] for a discussion of similar
behavior in the ground-state correlation function of the one-
dimensional AKLT model.

We have repeatedly stressed that our exact ground state
(5) has a Mott-insulator-like character since it is generated by
local operators b̂†

u. Its peculiar property is most clearly seen if
one considers a special lattice (E,B) obtained by connecting
two arbitrary standard lattices by a single bond. See Fig. 8.
In the ground state of the model defined on the corresponding
decorated lattice �, the number of particles in each of the two
sublattices is almost constant. (To be precise, it fluctuates only
by 1.) Note that this is also true when we properly choose the
lattice so that the ground state exhibits (quasi-)ODLRO. Such
a ground state with (quasi-)ODLRO and vanishing particle-
number fluctuation is quite exotic since (quasi-)ODLRO is
usually accompanied by large density fluctuation. We should
not, however, jump to the conclusion that a novel exotic phase
of matter has been discovered. It is possible that the zero
fluctuation is a singular property of the exactly solvable model
and normal large fluctuation is recovered once the model is
perturbed. For the moment we believe that this (less exciting)
scenario is plausible. We nevertheless stress that the discovery
of models in which anomalously small particle-number fluctu-
ation and (quasi-)ODLRO may coexist indicates that strongly
interacting systems of bosons may exhibit unexpectedly rich
behavior.
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APPENDIX A: SINGLE-PARTICLE ENERGY
EIGENVALUES

Let us examine the band structure determined by the hop-
ping Hamiltonian (2). We first recall that the states b̂†

u|�vac〉
with u ∈ I and d̂†

x |�vac〉 with x ∈ E form a basis of the single-

particle Hilbert space. Since the state b̂†
u|�vac〉 has zero energy,

we focus on states spanned by d̂†
x |�vac〉.

Here, for simplicity, we assume that any pair x, y ∈ E is
either connected by p distinct bonds in B or not connected at
all. We write x ∼ y when x and y are connected by p bonds
and denote by E (x) the set of y ∈ E such that x ∼ y. Recalling
the definition

d̂x = ζ âx +
∑

u∈N (x)

âu, (A1)

we see that

[d̂x, d̂†
y ] =

⎧⎨
⎩

ζ 2 + pzx x = y
p x ∼ y
0 otherwise,

(A2)

where zx = |E (x)| is the coordination number (i.e., the num-
ber of neighboring sites) of the original lattice (E,B). Note
that |N (x)| = pzx. The commutation relation, along with the
definition (2) of Ĥhop, implies

[Ĥhop, d̂†
x ] = (ζ 2 + pzx )t d̂†

x + pt
∑

y∈E (x)

d̂†
y . (A3)

Consider an arbitrary state spanned by d̂ operators

|ϕ〉 =
∑
x∈E

ϕxd̂†
x |�vac〉, (A4)

where ϕx ∈ C. By using the commutation relation (A3) and
Ĥhop|�vac〉 = 0, we see that

Ĥhop|ϕ〉 =
∑
x∈E

ϕx

⎧⎨
⎩(ζ 2 + pzx )t d̂†

x + pt
∑

y∈E (x)

d̂†
y

⎫⎬
⎭|�vac〉

=
∑
x∈E

⎧⎨
⎩(ζ 2 + pzx )t ϕx + pt

∑
y∈E (x)

ϕy

⎫⎬
⎭d̂†

x |�vac〉,

(A5)

where we switched the roles of x and y to get the final expres-
sion. Thus the Schrödinger equation

Ĥhop|ϕ〉 = ε|ϕ〉 (A6)

reduces to

(ζ 2 + pzx )t ϕx + pt
∑

y∈E (x)

ϕy = ε ϕx for any x ∈ E, (A7)

which is nothing but the standard tight-binding Schrödinger
equation with hopping pt and on-site potential (ζ 2 + pzx )t .

Now we suppose that (E,B) is the d-dimensional L ×
· · · × L hypercubic lattice with even L and periodic boundary
conditions, i.e.,

E = {(x1, . . . , xd ) | x j = 1, . . . , L}, (A8)

and x ∼ y when |x − y| = 1. The coordination number is zx =
2d for all x. Let us take the standard plane wave ϕ(k)

x = eik·x

with k · x = ∑d
j=1 k jx j and k ∈ K, where the set of wave-

number vectors is

K = {(k1, . . . , kd ) | k j = 2π

L
nj, n j = −L/2 + 1, . . . , L/2}.

(A9)
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Substituting ϕ(k)
x into (A7), one readily confirms that this is an

energy eigenstate with eigenvalue

ε(k) = ζ 2t + 2pt
d∑

j=1

(cos k j + 1). (A10)

See Fig. 2 for the case with d = 2.

APPENDIX B: LOOP-GAS REPRESENTATIONS

Let us describe in some detail the derivations of the loop-
gas representations (8) and (9). From b̂u|�vac〉 = 0, we have
the standard relation

〈�GS|�GS〉 = 〈�vac|
(∏

u∈I
b̂u

)(∏
u∈I

b̂†
u

)
|�vac〉

=
∑
π

∏
u∈I

[b̂u, b̂†
π (u)], (B1)

where π is summed over all permutations of the elements of
I.

We first focus on the simpler class of models where no sites
u, v ∈ I satisfy u ≈ v.

To see that (B1) leads to the claimed representation (8), it
is best to first examine a simple example. Suppose that I =
{u1, u2, u3}, and it holds that u1 ∼ u2, u2 ∼ u3, and u3 ∼ u1.
Then we see explicitly from (B1) that

〈�GS|�GS〉 = 1 + [b̂1, b̂†
2] [b̂2, b̂†

1] + [b̂2, b̂†
3] [b̂3, b̂†

2]

+ [b̂3, b̂†
1] [b̂1, b̂†

3] + [b̂1, b̂†
2] [b̂2, b̂†

3] [b̂3, b̂†
1]

+ [b̂1, b̂†
3] [b̂3, b̂†

2] [b̂2, b̂†
1]

= 1 + 3β2 + 2β3, (B2)

where we abbreviated b̂u j as b̂ j .
To treat general cases, fix π and let I ′ = {u ∈ I | π (u) �=

u}. It is well known (and easily proved) that I ′ is decomposed
into a disjoint union as I ′ = ⋃n

k=1 ck , where each ck is a cycle.
A cycle c is a set of more than one site that can be rearranged
into an ordered sequence (u1, . . . , um) such that π (u j ) = u j+1

for j = 1, . . . , m, where we wrote um+1 = u1. Defining the
weight for the cycle c as W (c) = ∏m

j=1[b̂u j , b̂†
u j+1

], we see
that the summand on the right-hand side of (B1) factorizes as∏

u∈I[b̂u, b̂†
π (u)] = ∏n

k=1 W (ck ). By recalling (6), we get the
desired representation (8).

To derive (9), we take arbitrary v �= u and evaluate

〈�GS|â†
v âu|�GS〉 = ζ 2〈�vac|

(∏
w �=v

b̂w

)(∏
w �=u

b̂†
w

)
|�vac〉.

(B3)
Since there is b̂u but no b̂†

u, we must have [b̂u, b̂†
u1

] with u ∼ u1

to have a nonzero contribution. This implies that we also need
[b̂u1 , b̂†

u2
] with u1 ∼ u2, and so on. This is terminated only

when we have [b̂um−1 , b̂†
v] with um−1 ∼ v. We have obtained

the contribution from the random walk. The contribution from
loops can be derived as in the above.

We now turn to a general class of models where we need to
take into account the factor 2 that appears in the commutation
relation [b̂u, b̂†

v] = 2β for u, v ∈ I such that u ≈ v. This can

x y

u

v

FIG. 9. The graphs corresponding to the normalization factor
〈�GS|�GS〉 in the simplest model with only two u, v ∈ I such that
u ≈ v.

be of course done by redefining the weights for loops and
walks, but there is a more elegant way of incorporating the
factor. We use the same definitions for the weights but regard
in general that sites u and v with u ≈ v are connected by two
distinct paths.

To see that this works, it (almost) suffices to consider the
simplest model constructed from the lattice E = {x, y} with
only two sites where x and y are connected by two distinct
bonds. We then let u and v be the sites at the center of these
bonds. We thus have u ≈ v. In this case we see from (B1) that

〈�GS|�GS〉 = 1 + [b̂u, b̂†
v] [b̂v, b̂†

u] = 1 + 4β2. (B4)

The factor 4 is reproduced as in Fig. 9.
The configurations of loops in these general models can

be much more complicated than Fig. 3 in the main text. In
the model with d = 2 and p = 2 depicted in Fig. 1(b), for
example, the loops are defined on a lattice similar to Fig. 3,
but each white site should be replaced by a pair of white sites
connected by two distinct paths, and a path connecting two
white sites should be replaced by four paths connecting two
pairs of white sites.

APPENDIX C: LARGE-d APPROXIMATION

In the large-d approximation, we can neglect the possibility
that a random walk accidentally intersects its trajectory. This
means that the number of length n walks is given by νn. We
used this estimate in (16). Note that we here do not make a
distinction between ν and ν + 1.

Let us see why we can neglect the contribution from loops.
Let 
(n) be the number of loops that contain a given site in
I. Since there are at most (ν + 1) choices for the first step, at
most n choices for each of the following n − 2 steps, and no
choices in the final step, we have


(n) � (ν + 1)νn−2. (C1)

Thus the total contribution from all the loops containing a site
is bounded from above by

∞∑
n=2


(n)βn �
∞∑

n=2

νn−1βn = 1

ν

∞∑
n=2

β̃n. (C2)

This vanishes as ν ↑ ∞ provided that the sum converges. [To
be precise, to fix a site and sum over all the loops containing
it is not a proper way of evaluating the summations in (10).
However, it gives a correct order estimate in terms of ν.]
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(E1,B1)

(E2,B2)
(E3,B3)

o o o

FIG. 10. The first three generations of the tree with branching
number 3. The site at the root is denoted as o.

APPENDIX D: BOSE-EINSTEIN CONDENSATION
IN THE MODEL ON A TREE

We shall study the model defined on a tree and show
that the ground state exhibits Bose-Einstein condensation for
sufficiently small ζ .

Let (En,Bn) be the regular n-generation tree with branch-
ing number 3, as depicted in Fig. 10. As in the main text,
we define the corresponding set of sites In and consider the
model of interacting bosons on En ∪ In. Our goal is to show
that the ground state exhibits spontaneous symmetry breaking
associated with BEC. We note that the model on the tree with
branching number 2 does not exhibit a phase transition.

A standard method to test for the existence of spontaneous
symmetry breaking is to impose boundary conditions that
explicitly favor certain order and see whether the effect of
the boundary conditions survives in the infinite-volume limit.
In the case of ferromagnetic spin systems, this is done by
enforcing spins at the boundary to point in a certain fixed
direction. In the case of BEC, the corresponding procedure is
to replace b̂†

u at the boundary by α + γ b̂†
u with some nonzero

α, γ ∈ C and then to examine the expectation value of the
annihilation operator deep inside the tree. In the ferromagnetic
Ising model, for example, it is known that the same procedure
exactly recovers the result of the Bethe approximation [23].
See also Ref. [24] for a treatment of a quantum spin state.

To be precise, let ∂In be the set of sites at the boundary in
In. See Fig. 11. We then consider the ground state with the
plus boundary condition defined as

|�+
GS〉 =

( ∏
u∈In\∂In

b̂†
u

)( ∏
u∈∂In

(1 + b̂†
u)

)
|�vac〉. (D1)

I1 I2

o′
o′

FIG. 11. The lattices I1 and I2. The bonds denote the connection
u ∼ u′. The gray circles are the sites in the boundary ∂In, and the root
of the lattice is denoted as o′.

(a) (b)

FIG. 12. Allowed configurations of loops and walks for the rep-
resentations of (a) 〈�+

GS|�+
GS〉 and (b) 〈�+

GS|âo|�+
GS〉.

Note that we have chosen α = γ = 1 for simplicity. We are
interested in the expectation value

〈âo〉+GS = 〈�+
GS|âo|�+

GS〉
〈�+

GS|�+
GS〉

, (D2)

especially in its limiting value as n ↑ ∞, where o denotes the
site at the root of the tree (En,Bn).

As in the main text, we develop loop-gas representations
for 〈�+

GS|�+
GS〉 and 〈�+

GS|âo|�+
GS〉. Reflecting the special ge-

ometry of In, the representations contain loops of length 2,
3, or 4, but not larger. Apart from these loops the representa-
tions contain random walks that start from a site in ∂In and
end at another site in ∂In. Note that the symmetry-breaking
boundary terms play the roles of sources and sinks of the
walks. Of course, the loops and the walks should satisfy the
site-avoiding conditions. See Fig. 12(a). These are all contri-
butions to the representation for 〈�+

GS|�+
GS〉, and we have

〈�+
GS|�+

GS〉 =
∞∑

m=0

∑
�1,...,�m

∞∑
k=0

∑
ω1,...,ωk :∂I→∂I

β
∑ |� j |+

∑ |ω j |.

(D3)

The representation of 〈�+
GS|âo|�+

GS〉 must contain a ran-
dom walk that starts from site o′, the root of In, and ends at a
site in ∂In. See Fig. 12(b). Thus the representation is given by

〈�+
GS|âo|�+

GS〉 =
√

β
∑

ω0:o′→∂I

∞∑
m=0

∑
�1,...,�m

×
∞∑

k=0

∑
ω1,...,ωk :∂I→∂I

β
∑ |� j |+

∑ |ω j |. (D4)

Following the standard procedure for models on a tree
[23,24], we shall evaluate these sums by using exact recursion
relations. We define four sums Xn, Yn, Z+

n , and Z−
n of loops

and walks as in (D3) and (D4) with different conditions on
site o′ at the root of In. In Xn we sum over all configurations
in which there is no loop or walk touching o′. In Yn we sum
over all configurations in which there are two segments (which
are part of a loop or a walk) touching o′. In Z+

n (Z−
n ) we sum

over all configurations where there is exactly one segment
(which is a part of a walk) coming into (going out of) o′.
Note that we have X0 = 1, Y0 = 0, and Z±

0 = 1. We see that
〈�+

GS|�+
GS〉 = Xn + Yn, 〈�+

GS|âo|�+
GS〉 = √

β Z−
n , and hence

〈âo〉+GS =
√

β
Z−

n

Xn + Yn
=

√
β

zn

1 + yn
, (D5)
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FIG. 13. The diagrammatic derivation of the recursion relations (D7), (D8), and (D9). In+1 is decomposed into the square containing the
root o′ and three copies of In. By specifying a configuration (of loops and walks) on the square, possible types of configurations on each branch
are determined separately. By counting the number of similar configurations, we get the recursion relations.

where we defined

yn = Yn

Xn
, zn = Z−

n

Xn
. (D6)

Now it is straightforward (although tedious) to see that Xn, Yn,
Z+

n , and Z−
n satisfy the exact recursion relations

X ′ = (X + Y )3 + 3β2X 2(X + Y ) + 2β3X 3

+ 6β(X + Y )Z+Z− + 6β2XZ+Z−, (D7)

Y ′ = 3β2X (X + Y )2 + 6β3X 2(X + Y ) + 6β4X 3 + 3β4X 3

+ 6β2(X + Y )Z+Z− + 18β3XZ+Z−, (D8)

(Z+)′ = 3β(X + Y )2Z+ + 6β2X (X + Y )Z+

+ 9β3X 2Z+ + 6β2(Z+)2Z−, (D9)

(Z−)′ = 3β(X + Y )2Z− + 6β2X (X + Y )Z−

+ 9β3X 2Z− + 6β2Z+(Z−)2, (D10)

where we wrote Xn−1, Yn−1, and Z±
n−1 as X , Y , and Z±, and Xn,

Yn, and Z±
n as X ′, Y ′, and (Z±)′. See Fig. 13. Since (D9) and

(D10) are symmetric under the exchange of Z+ and Z− and
we have Z+

0 = Z−
0 , we see that Z+

n = Z−
n for all n.

Then the relations (D7), (D8), (D9), and (D10) lead to the
following recursion relations for yn and zn = Z±

n /Xn:

y′ = 3β2(1+y)2+6β3(1+y)+9β4+6β2(1+y)z2+18β3z2

(1+y)3+3β2(1+y)+2β3+6β(1+y)z2+6β2z2
,

(D11)

z′ = 3β(1 + y)2z + 6β2(1 + y)z + 9β3z + 6β2z3

(1 + y)3 + 3β2(1 + y) + 2β3 + 6β(1 + y)z2 + 6β2z2
,

(D12)

where we wrote yn−1 and zn−1 as y and z, and yn and zn as y′
and z′. Our task is to start from the initial values (y0, z0) =
(0, 1), repeatedly apply the recursion relations (D11) and
(D12), and find the behavior of (yn, zn) in the limit n ↑ ∞. We
get a reliable conclusion from a simple numerical calculation.

We see that there is a critical value of β, which is estimated
to be βc � 0.319. For β ∈ (0, βc), we see that yn → y∗(β ) >

0 and zn → 0. This means that the order parameter 〈âo〉+GS
tends to zero as n ↑ ∞, indicating that there is no BEC. For
β ∈ (βc, 1/2), we see that yn → y∗(β ) > 0 and zn → z∗(β ) >

0. Thus the order parameter 〈âo〉+GS converges to a nonzero
value as n ↑ ∞. This means that the ground state exhibits
spontaneous symmetry breaking of the U(1) symmetry, which
corresponds to BEC.

APPENDIX E: EXACT ENERGY EIGENSTATES

We construct a series of exact energy eigenstates for any
particle number, including N = |I|. These energy eigenstates
are interesting by themselves since they provide examples of
quantum many-body scars [30,31].

Here, we assume that the lattice (E,B) is connected and
bipartite. By saying that (E,B) is bipartite we mean that there
is a decomposition E = E+ ∪ E− such that two sites x, y may
be connected by a bond in B only when x ∈ E+, y ∈ E− or x ∈
E−, y ∈ E+. For simplicity we shall assume that a pair of sites
x, y ∈ E is either connected by p bonds in B or not connected
at all. However, the following result regarding exact energy
eigenstates is valid without this restriction.

As in Sec. V, we define

D̂0 :=
∑
x∈E+

âx −
∑
x∈E−

âx. (E1)

Then we shall prove, for any subset S ⊂ I and n = 1, 2, . . .,
that the state

|�S,n〉 = (D̂†
0)n

(∏
u∈S

b̂†
u

)
|�vac〉 (E2)

satisfies

Ĥ |�S,n〉 = ntζ 2|�S,n〉. (E3)

Thus |�S,n〉 is an exact energy eigenstate with particle number
N = |S| + n and energy ES,n = ntζ 2.
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Note that we can express D̂0 in terms of the d̂ operators as

D̂0 = 1

ζ

⎛
⎝∑

x∈E+

d̂x −
∑
x∈E−

d̂x

⎞
⎠. (E4)

Then, by using (A3), we find

[Ĥhop, D̂†
0] = 1

ζ

⎛
⎝∑

x∈E+

⎧⎨
⎩t (ζ 2 + pzx )d̂†

x + pt
∑

y∈E (x)

d̂†
y

⎫⎬
⎭ −

∑
x∈E−

⎧⎨
⎩t (ζ 2 + pzx )d̂†

x + pt
∑

y∈E (x)

d̂†
y

⎫⎬
⎭

⎞
⎠

= 1

ζ

⎛
⎝∑

x∈E+

tζ 2d̂†
x −

∑
x∈E−

tζ 2d̂†
x

⎞
⎠

= tζ 2D̂†
0. (E5)

We note in passing that tζ 2 is the minimum energy among
single-particle energy eigenstates that are orthogonal to the
flat band (i.e., the states generated by the b̂† operators) and that
the state generated by D̂†

0 is the unique energy eigenstate with
energy tζ 2. This fact is obvious from the dispersion relation
(A10) for the models on the hypercubic lattice but can be
proved in general.

Note that by construction the operator D̂†
0 does not contain

â†
u for any u ∈ I. This immediately implies that

[Ĥint, D̂†
0] = 0. (E6)

It is clear from (E5) and (E6) that Ĥhop|�S,n〉 = ntζ 2|�S,n〉
and Ĥint|�S,n〉 = 0. We thus find that |�S,n〉 is an eigenstate of
Ĥ = Ĥhop + Ĥint with eigenvalue ES,n = ntζ 2.
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