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The coherent superposition of nonorthogonal fermionic Gaussian states has been shown to be an efficient
approximation to the ground states of quantum impurity problems [Bravyi and Gosset, Commun. Math. Phys.
356, 451 (2017)]. We propose a practical approach for performing a variational calculation based on such
states. Our method is based on approximate imaginary-time equations of motion that decouple the dynamics
of each Gaussian state forming the ansatz. It is independent of the lattice connectivity of the model and
the implementation is highly parallelizable. To benchmark our variational method, we calculate the spin-spin
correlation function and Rényi entanglement entropy of an Anderson impurity, allowing us to identify the
screening cloud and compare to density matrix renormalization group calculations. Secondly, we study the
screening cloud of the two-channel Kondo model, a problem difficult to tackle using existing numerical tools.
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I. INTRODUCTION

Quantum impurity models—systems of a few strongly in-
teracting degrees of freedom coupled to a large bath of nonin-
teracting fermions—constitute an important class of problems
in condensed matter physics. Despite the small number of
interacting modes involved, this class of problems can exhibit
rich many-body physics phenomena. The archetypical phe-
nomenon is the Kondo effect, where even weak interactions
can lead to strong nonperturbative corrections to the ground
state [1]. Such models also appear as effective models in many
embedding methods, such as dynamical mean-field theory [2]
that solve extended quantum many-body systems by approxi-
mately mapping them to quantum impurity problems.

Over the years, various numerical methods have been de-
veloped to tackle quantum impurity problems. A particularly
successful approach is Wilson’s numerical renormalization
group (NRG) [1] and its extensions [3], which have allowed
to study this class of problems in the thermodynamic limit. A
related set of variational methods, based on the density matrix
renormalization group (DMRG) [4] has also been used exten-
sively and compared to NRG [5,6]. Finally, quantum Monte
Carlo methods have been successfully applied to systems
where the sign-problem is mild, see, e.g., Refs. [7,8]. Despite
these methods being very powerful, they each come with their
limitations. For example, NRG is limited by an exponential
scaling in the number of degrees of freedom of the impurity
and the number of channels in the noninteracting bath; DMRG
scales more favorably in the size of the impurity, but (since it
does not exploit the noninteracting nature of the bath) retains
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an exponential scaling with the number of channels in the
bath, rendering it very challenging to study, e.g., mesoscopic
problems with several leads. Quantum Monte Carlo methods,
on the other hand, typically suffer from severe sign problems
for multiorbital systems.

A natural question is whether a well-chosen class of
variational states could exploit the structure of quantum
impurity models to circumvent the limitations of these
established approaches. For example, this was pursued for
some models using a non-Gaussian variational approach in
Refs. [9–11]. Recently, this question was affirmatively an-
swered more generally by proving that the ground states
of any quantum impurity problem can be approximated by
a superposition of nonorthogonal fermionic Gaussian states
[12]. This is obviously the case when the number of states
in the superposition—which we will refer to as the rank of
the ansatz—grows exponentially with the full system size,
as the states then form a complete many-body basis. More
interestingly, the rigorous mathematical bounds of Ref. [12]
demonstrate that the minimal rank to obtain a good approx-
imation of the ground state scales only with the size of the
impurity and the desired precision, while being independent
of the size of the bath.

Having chosen this superposition of Gaussians (SGS)
ansatz for the study of quantum impurity models, the chal-
lenge is to devise practical algorithms to perform numerically
efficient computations. Here, we focus on the problem of find-
ing the lowest-energy state within the variational manifold.
Multiple generic approaches exist for performing the energy
minimization within a variational space, such as gradient
descent and imaginary time evolution [13,14]. In particular,
formal solutions for related ansatzes were originally devel-
oped under the name of resonating Hartree-Fock [15–17].
However, due to the large number of variational parameters
in the SGS ansatz and the presence of several nonlinear
constraints, their numerical implementation can become pro-
hibitively costly for large systems.
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In this paper, we propose a simpler and numerically
less costly path towards energy minimization within the
variational manifold of SGS states based on several key ap-
proximations to the imaginary time equations of motion. First,
at each step we project the dynamics onto the subspace or-
thogonal to the one spanned by the current set of Gaussian
states forming the SGS. Furthermore, we alternate the evolu-
tion of the coefficients of the coherent superposition of states
and the (normalized) Gaussian states themselves. This allows
us to decouple the equations of motion for each Gaussian state
at each step in the evolution. While the projection of these
equation of motions onto the variational manifold does not
exactly correspond to imaginary time evolution, we show that
under this evolution, the energy is nonincreasing. The vari-
ational state therefore converges to a local energy minimum
within the manifold and can thus be used to study ground-
state properties of quantum impurity models (we note that
a guarantee on convergence to a global minimum typically
cannot be given for variational algorithms).

To illustrate the power of this approach, we apply it to
two canonical impurity models: the single-impurity Ander-
son model [18] and the two-channel Kondo model [19]. The
former has been studied using a variety of methods and is
well-understood both analytically and numerically, thus al-
lowing us to confirm the validity of our method. We find that
using comparable computational resources, our method is able
to achieve an error in the ground-state energy that is about
one order of magnitude better than DMRG. The two-channel
Kondo model, on the other hand, is much more challenging
to study numerically, and real-space correlation functions for
fermionic leads had previously eluded numerical simulations.
Instead, prior numerical studies have required either mapping
to related problems in the same universality class [20] or
focusing on quantities that can be calculated using the local
dynamics of the impurity [21].

The SGS ansatz considered in this paper can be seen as a
generalization of the generalized Hartree-Fock (GHF) method
[22,23], which aims to find the approximate ground state
of a system using a variational minimization over the field
of fermionic Gaussian states. While exact for a noninteract-
ing system, GHF corresponds to a mean-field approximation
for interacting systems. Additional approaches related to
our paper are known as multicomponent or multireference
Hartree-Fock-Bogoliubov methods, where a superposition of
Gaussian states is obtained by projecting a single symmetry-
breaking Gaussian state in a chosen symmetry sector [24,25].
We note furthermore that our method can be viewed as a
generalization of configuration interaction (CI) methods com-
monly used in quantum chemistry calculations; however, in
contrast to typical CI methods, we use nonorthogonal Gaus-
sian states rather than orthogonal Slater determinants and
optimize the choice of Gaussian basis states along with their
coefficients, rather than using a fixed basis (for example, based
on the Hartree-Fock solution or single-particle excitations).

The remainder of this paper is structured as follow. In
Sec. II, we set the notation and describe the structure of the
SGS ansatz. In Sec. III, we describe a generic minimiza-
tion procedure for finding a variational approximation to the
ground state and its numerical implementation. In Sec. IV, as
a first demonstration of the method, we study the screening

cloud of a single impurity Anderson model and benchmark
our results using DMRG. Finally, in Sec. V we extend the
calculations of the previous section by considering the two-
channel Kondo model.

II. ANSATZ AND PROBLEM STRUCTURE

We start by describing the structure of fermionic quantum
impurity models and of the SGS ansatz. We also introduce the
covariance matrix formalism for fermionic Gaussian states,
which will be used throughout this paper.

A. Generic quantum impurity model

We consider a lattice model of N fermionic degree of
freedoms with Hamiltonian H = H2 + H4. We choose to work
within a formalism of Majorana operators, noting that any
fermion problem (both with and without particle-number con-
servation) can be rewritten in this form. The noninteracting
part of the Hamiltonian is given by

H2 = i
2N∑

k,l=1

Ak,l ckcl , (1)

where A is a real and skew-symmetric matrix, and ck = c†
k is

a set of 2N Majorana operators that obey standard anticom-
muation relations {c j ck} = 2δ j,k . The interacting part of the
Hamiltonian reads

H4 =
2N∑

k,l,p,q

Uk,l,p,qckclcpcq, (2)

where the rank-4 tensor U is skew-symmetric with respect
to the exchange of any neighboring indices. The interaction
involves at most M � N distinct Majorana operators making
U a sparse tensor. We remark that no assumption with regards
to the lattice connectivity is made in our model definition. Al-
though we focus here and below on quartic interaction terms,
there is no fundamental limitation to including interaction
terms involving a larger number of operators.

The ground state of the quadratic Hamiltonian H2 will be
a Slater determinant if H2 conserves the number of particles
or, more generally, a fermionic Gaussian state [26] in the case
where the U (1) symmetry is broken and only the parity of
the number of particles is preserved. As Slater determinants
constitute a subset of the fermionic Gaussian states, we will
focus our discussion on Gaussian states. Although there might
be a slight numerical overhead associated with working in
this enlarged class of states, it has the advantage of naturally
allowing the treatment of (mean-field) superconductivity.

B. Covariance matrix formalism

We now briefly introduce key aspects of the covariance
matrix formalism that we use to describe Gaussian states [12].
We defer technical details of the computations with covari-
ance matrices to Appendix A.

Any fermionic Gaussian state |φ〉 obeys a Wick theorem
and thus can be fully described by the expectation values of
fermion bilinears. It is convenient to introduce the covariance
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matrix (CM)

�k,l = −i

2
〈φ|[ck, cl ]|φ〉, (3)

where k, l ∈ 1 . . . 2N . This matrix is real and skew-symmetric
by construction. The expectation value of any product of Ma-
jorana operators can then be calculating as the Pfaffian of a
submatrix of �. For a normalized pure state the elements of
the CM are subject to the constraint �2 = −1.

Since the covariance matrices � are matrices of expecta-
tion values, they are invariant under a gauge transformation
|φ〉 → eiθ |φ〉, with θ a real number. For calculations involv-
ing multiple Gaussian states |φμ〉 (μ = 1, 2, . . . ), it is often
necessary to fix this gauge freedom. Following Ref. [12],
this can be achieved by choosing a reference state |φ0〉 and
taking 〈φ0|φμ〉 to be real and positive for all μ. Overlaps
of Gaussian states and matrix elements can be obtained
using the respective covariance matrices of the states. See
Appendix A and Ref. [12] for the relevant expressions.

C. Sum of Gaussian states ansatz

Following Ref. [12], the variational ansatz considered in
this paper is formulated as1

|ψ〉 =
R∑

μ=1

λμ|φμ〉, (4)

with {|φμ〉} a set of nonorthogonal Gaussian states, λμ com-
plex scalar amplitude, and R the rank of the ansatz. We
emphasize that allowing for nonorthogonal states in Eq. (4)
is crucial to the efficiency of the ansatz. This is because the
linear combination of several Gaussian states is in general
not Gaussian; therefore, one cannot orthogonalize the set of
vectors |φμ〉 while preserving their Gaussianity.2

The variational state defined in Eq. (4) is characterized by
the set of covariance matrices and amplitudes {�μ, λμ|μ =
1 . . . R}. This corresponds to O(RN2) variational parameters,
subject to two normalization constraints. First, the normaliza-
tion of the variational state requires∑

μ,ν

λμλ∗
νGμ,ν = 1, (5)

where we introduce Gμ,ν = 〈φμ|φν〉 the Gram matrix char-
acterizing the overlap between states. Second, we take each
Gaussian state to be pure and normalized leading to the
constraint on each covariance matrix (�μ)2 = −1. The sets
of parameters obeying these constraints form the variational
manifold. Our aim is to find the state |ψ0〉 that minimize the
energy within this manifold.

Before turning to the full minimization problem, we first
consider the following simpler problem. Given a set of Gaus-
sian states {|φμ〉} we wish to find the amplitudes {λμ}, which

1We follow the convention that Greek indices run over the labels of
the states forming the ansatz (i.e. α, β · · · ∈ 1 . . . R), while latin in-
dices run over the Majorana operator labels (i.e. k, l, · · · ∈ 1, . . . 2N).

2Of course, one may choose a (larger) set of S orthogonal Gaussian
states |ων〉 such that span{|φμ〉} ⊆ span{|ων〉}; however, this would
jeopardize the computational efficiency since in general S 	 R.

minimize the energy E = 〈ψ |H |ψ〉. These optimal ampli-
tudes, leading to a normalized state with the lowest energy
within the subspace, can be obtained by diagonalizing the
Hamiltonian projected onto the subspace spanned by the set
of Gaussian states. This leads to the generalized eigenvalue
problem [12,15]

hλ = EGλ (6)

where h is the R × R matrix with elements hα,β = 〈φα|H |φβ〉.
In the case of orthogonal states G = 1 and this reduces to a
regular eigenvalue problem. This standard result will be at the
core of the minimization approach introduced in Sec. III as
we will alternate between updating the amplitudes by solving
Eq. (6) and updating the covariance matrices assuming fixed
amplitudes.

III. PROJECTED EQUATIONS OF MOTION
FOR ENERGY MINIMIZATION

A generic approach for finding the ground state of a quan-
tum system is imaginary time evolution. Starting from an
initial state |ψ〉 and evolving according to the imaginary time
Schrödinger equation

∂τ |ψ〉 = −[H − Eψ ]|ψ〉, (7)

where Eψ = 〈ψ |H |ψ〉, allows to reach the ground state in the
τ → ∞ limit as long as the initial state has finite overlap
with the ground state. In the case where |ψ〉 is a variational
state, the equations of motion must be projected back onto
the part of the variational manifold orthogonal to |ψ〉 in order
to best approximate the dynamics of the system and preserve
the norm of the state. Different methods were introduced to
perform this projection [27]. In the case of the time-dependent
variational principle (TDVP), this projection requires the in-
version of the Gram matrix of the tangent states (obtained by
taking the derivative of |ψ〉 with respect to each variational
parameter), which can be very large [13]. For the parametriza-
tion considered in this paper, this does not appear to be a
scalable approach as it would require repeated operations on
matrices of dimension RN2 × RN2 leading to an O(R2N6)
numerical complexity.

In this section, we instead derive simplified projections of
the imaginary time equation of motion for the SGS states. Our
approach can be understood as a parametrized energy descent.
We derive equations of motion for the covariance matrices
�μ as a function of an external parameter s such that the
energy E (s) = 〈ψ (s)|H |ψ (s)〉 decreases monotonically and
converges to a local energy minima as s → ∞. As we do
not pretend the followed approach to be sufficient to recover
the system dynamics, we denote the evolution parameter as
s to distinguish the resulting equations from imaginary time
(denoted τ above).

A. Path of energy descent

As eluded to at the end of Sec. II, at any instant s, one
can separate the Hilbert space in two instantaneous sub-
spaces, where one (referred to as “parallel subspace” below)
is spanned by the set {|φμ(s)〉} of Gaussian states form-
ing the ansatz, and the other is the orthogonal complement
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(“orthogonal subspace” below). The energy minimization in
the parallel subspace is easily performed by choosing ampli-
tudes satisfying Eq. (6) and we will thus focus here on the
orthogonal subspace assuming fixed amplitudes.

We consider as a starting point the imaginary time
Schrödinger equation. However, instead of projecting on a
subspace orthogonal to the instantaneous state |ψ (s)〉 leading
to Eq. (7), we project onto a subspace orthogonal to the set
{|φμ(s)〉} of Gaussian states

∂s|ψ (s)〉 = −�⊥(s)H |ψ (s)〉, (8)

where we have introduced the projector

�⊥(s) = 1 −
∑
α,β

|φα (s)〉[G−1(s)]α,β〈φβ (s)|. (9)

The inverse Gram matrix in the above equation ensures that
(�⊥)2 = �⊥ and is necessary since the Gaussian states con-
sidered are generally nonorthogonal (but linearly independent,
insuring that G is nonsingular). This equation of motion pre-
serves the norm of the state since �⊥(s)|ψ (s)〉 = 0 leading to
∂s〈ψ (s)|ψ (s)〉 = 0.

The projection in Eq. (8) constitutes a first approximation
to the equations of motions and its justification is twofold.
First, assuming optimal state amplitudes, any dynamics low-
ering the energy should be orthogonal to the instantaneous
parallel subspace. However, the resulting equation of motion
is only approximate due to the additional implicit projection
onto the Gaussian state manifold. This projection will become
explicit through the use of the Wick theorem in Sec. III B.
Second, the projection to the orthogonal subspace ensures that
the different Gaussian states do not collapse to a single state.
Indeed, without it, all states would collapse to a mean-field
approximation of the ground state independently.

Inserting the definition of the ansatz into the projected
equation of motion Eq. (8), we obtain∑

μ

λμ∂s|φμ〉 = −
∑

μ

λμ�⊥(s)H |φμ(s)〉. (10)

In order to move forward, we decouple the equation of mo-
tions of the different Gaussian states by postulating that there
exists an effective Hamiltonian Bμ such that

∂s|φμ〉 = −Bμ|φμ〉, (11)

and which satisfies Eq. (10). Upon inspection, one can find
that

Bμ = wμ�⊥H |ψ〉〈ψ | + H.c. (12)

decouples the equations, with wμ a complex scalar. Tak-
ing wμ = [λμλ̃∗

μ]−1, with the renormalized amplitude λ̃μ =
〈φμ|ψ〉, satisfies Eq. (10) confirming the validity of the
decoupling scheme. Although this is not a unique choice,
this approach ensures a monotonic decrease of energy, i.e.,
∂s〈ψ |H |ψ〉 � 0, upon simultaneous integration of Eq. (11) for
all states.

More generally, ensuring a path of energy descent upon
the evolution of a given state |φμ〉 leads to the constraint
Re[wμλ̃∗

μλμ] > 0. Hence, taking wμ = λ̃μλ∗
μ/|λ̃μλμ|, possi-

bly up to a real and positive multiplicative factor for each state,

is sufficient to decrease the energy of the variational state upon
evolution.

This decoupling scheme is the second major approximation
to the equations of motion used in this paper. While exact for
a generic many-body basis, the decoupling is approximate in
the case where the evolution is projected on a constrained
variational manifold. As is shown numerically in Secs. IV
and V, the optimization nevertheless converges towards the
ground state.

B. Equation of motion for the covariance matrices

In order for the above equations of motion to be use-
ful, there must exist an efficient numerical implementation
of them. We now derive the counterpart of Eq. (11) in the
covariance matrix (CM) formalism.

Taking the derivative of the CM, as defined in Eq. (3), with
respect to the evolution parameter s we obtain (taking k �= l)

∂s�
μ

k,l = −〈φμ|ickcl |∂sφμ〉 + c.c., (13)

where c.c. denotes the complex conjugate. Inserting Eq. (11)
and the definition of �⊥ one obtains after some algebra

∂s�
μ

k,l = i
∑

β

λβλ̃∗
μwμ

[
〈φμ|ckclH |φβ〉

−
∑

γ

〈φμ|ckcl |φγ 〉[G−1h]γ ,β

]
+ c.c. (14)

In the special case of a rank 1 ansatz, Eq. (14) falls back onto
the equation of motion for imaginary time evolution in the
GHF approximation as derived for example in Ref. [23].

We now specialize to the quantum impurity model with
quartic interacting defined in Sec. II A. In order to rewrite the
differential equation purely as a matrix equation, we introduce
the complex skew-symmetric matrices [12]

�α,β = [i(�α − �β ) − 21](�α + �β )−1, (15)

which allows to compute easily matrix elements between
different Gaussian states 〈φβ |ckcl |φα〉 = iGβ,α�

α,β

k,l (k �= l ).
More generally matrix elements involving n distinct Majorana
operators are proportional to the Pfaffian of an n × n sub-
matrix of �α,β (see Appendix A for complete expressions).
Similarly to GHF, we introduce generalized Fock matrices

Fα,β

k,l = Ak,l + 6
∑
m,n

Uk,l,m,n�
α,β
m,n, (16)

which for α = β (�α,α = �α) falls back on the standard Fock
matrix for GHF [23].

With these definition, the matrix differential equation for
each CM takes the form

∂s�
μ =

∑
β

λβλ̃μwμ

[
i2Gμ,β[�β,μ, Fβ,μ]

+ 2Gμ,β (�β,μFβ,μ�β,μ + Fβ,μ) (17)

− hμ,β�β,μ +
∑

γ

Gμ,γ [G−1h]γ ,β�γ ,μ

]
+ c.c.,
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where the first and second line are respectively reminiscent of
the equation of motion for real and imaginary time evolution
of a Gaussian state [23]. The third line ensures normalization
and cancels in the case R = 1. We have verified numerically
that Eq. (17) preserves the norm and the purity of the state,
which requires

(∂s�
μ)�μ + �μ(∂s�

μ) = 0, (18)

due to the constraint �2 = −1 for a pure state. Equation (17)
constitutes one of the main results of this paper.

C. Numerical implementation

In order to find a good approximation of the ground state,
we alternately evolve the covariance matrices for a small step
s → s + δs and update the amplitudes by solving Eq. (6). The
computational complexity of each of these steps is O(R2N3)
(assuming R � N). Since in each step, each Gaussian state
can be evolved separately, one can easily parallelize over
them and achieve a significant speedup. Appendix B presents
additional details on the numerical implementation.

As an aside, we note that considering P interaction terms
with m > 4 Majorana operators could, in the worst case,
lead to additional operations of computational complexity
O(PR2N2m3). However, in the case of a quantum impurity
model where m, P � N , this should not affect the scaling of
the overall computational complexity of the method. We note
that the above estimate is an upper bound on the complexity
obtained by calculating the right-hand side of Eq. (14) sep-
arately for each term of weight m and each matrix element.
Taking advantage of the skew-symmetric matrix structure of
the CM might allow further algorithmic improvement. For ex-
ample, in the case of P = N2 quadratic operators (m = 2) the
naive estimate lead to complexity O(R2N4) while the matrix
formulation of Eq. (17) is reduced to O(R2N3).

In order to reduce the risk of converging to a local energy
minima, we use in the remainder of this paper the following
strategy. Starting from the mean field (GHF) solution we
gradually increase the rank of the ansatz by 1 after every n
iterations. The additional Gaussian state is chosen by applying
a random special orthogonal transformation Q to one of the
current states of the ansatz with a high amplitude. For n
sufficiently large and ||Q − 1||F sufficiently small we have
found numerically this approach to converge towards a good
approximation of the ground state. This approach is needed
due to our choice of optimal amplitudes at each step of the
algorithm. If all states are added at once, there is a strong risk
to converge to a solution where some of the amplitudes vanish,
effectively leading to an approximate ground state of a lower
rank.

IV. ANDERSON IMPURITY AND THE SCREENING CLOUD

As a benchmark of the method, we study real-space prop-
erties of the single impurity Anderson model (SIAM) [18].
This well-known model was previously studied numerically
using a multitude of methods including NRG [28] and DMRG
[29,30]. We will use the latter method to benchmark our
results and confirm their validity.

We consider a 1D lattice where the SIAM Hamiltonian
takes the form H = H0 + HI , with

H0 = −t
L−1∑
r=2

(d†
r−1dr + H.c.) − μ

L−1∑
r=1

nr, (19)

describing a bath of L − 1 free fermions with hopping param-
eter t and chemical potential μ, and the impurity Hamiltonian

HI = −t ′(d†
0 d1 + H.c.) + εd n0 + Un0,↑n0,↓. (20)

Here, d† are fermionic creation operators, nr = d†
r dr =∑

σ d†
r,σ dr,σ is the number operator, and when omitted, spin

indices are summed. The hopping between the impurity (site
0) and the first site of the lead is t ′ and U > 0 is a repulsive
interaction. We focus on the particle-hole symmetric point at
half-filling where εd = −U/2 and μ = 0.

In the strong interaction limit U > t ′, charge fluctuations
are suppressed on the impurity site creating an effective spin
1/2 impurity. The Hamiltonian then maps to the Kondo model
with effective (weak) coupling strength J = 8�/U , where
� = (t ′2)/t is the broadening of the impurity energy level by
the leads [31]. The ground state is then a singlet state formed
by the impurity spin and the collective spin of a delocalized
so-called Kondo cloud of electrons from the leads. One can
associate to the cloud a length scale ξK ∼ vF /TK where vF is
the Fermi velocity and

TK ∼
√

U� exp
(
−πU

8�

)
(21)

is the Kondo temperature estimated using the perturbative
renormalization group [32].

A. Convergence and comparison to DMRG

As a first test of the convergence of the method, we com-
pute the variance of the Hamiltonian in the variational ground
state,

δ2
H = 〈ψ |(H − 〈H〉)2|ψ〉, (22)

where 〈H〉 = 〈ψ |H |ψ〉. Figure 1(a) presents δ2
H as a function

of the ansatz rank and for different number of iterations of
the variational minimization (see Sec. III C) for a system
size L = 500. The variance δ2

H should converge to zero as
the variational state converges to an eigenstate of the system
(δ2

H = 0 for any eigenstate of H). We estimate in Fig. 1(b) the
converged ground-state energy E∗ using a linear extrapolation
of the variational energy as δ2

H → 0 for δ2
H � 2 × 10−5.

As a second test of the validity of our variational SGS
state results, Fig. 2 compares the energies obtained using the
SGS ansatz to energies obtained using state-of-the-art DMRG
simulations [33]. In both cases, we plot the results as a func-
tion of the refinement parameter of the ansatz, which is R
for the SGS ansatz and the bond dimension m for DMRG.
For the parameters considered, which were chosen to span
similar computation times, the SGS-based method reaches
lower energies than DMRG.

B. Screening cloud—Spin-spin correlation

To better check the validity of the variational solution,
we calculate the ground-state equal-time spin-spin correlation
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FIG. 1. (a) Convergence of the variance of the Hamiltonian δ2
H

[Eq. (22)] as a function of the number of iterations n per Gaussian
state (see main text). (b) Extrapolation using a linear fit (dashed-
black curve) of points with δ2

H < 2 × 10−5. The obtained intercept,
E∗ = −635.3490861, estimates the energy of the ground state up to
a precision given by the standard error of the fit σE∗ = 4 × 10−7. We
consider a system of length L = 500 at the particle-hole symmetric
point (μ = 0, εd = −U/2) with interaction strength U = t = 1 and
coupling U/� = 5.

function between the impurity and the sites along the lead

C(r) = 〈S(0) · S(r)〉, (23)

where the spin operator is S(r) = 1
2

∑
s,s′ d†

r,sσs,s′dr,s′ .
From a low-energy expansion of the bath operators [34]

away from the impurity (kF r 	 1, with kF the Fermi wave

FIG. 2. Convergence of the ground-state energy obtained from
(a) DMRG and (b) the SGS ansatz respectively as a function of the
bond dimension m and the rank of the SGS ansatz. Dashed-black
horizontal line is the lowest energy obtained using DMRG. The
ground-state energy estimate E∗ is obtained from the extrapolation
of Fig. 1(b). Parameters and legend correspond to those of Fig. 1.

FIG. 3. Comparison of the spin-spin correlation function C(r)
calculated using DMRG (dashed curves) and the SGS ansatz (solid
curves). (a) Odd sites and (b) even sites. The mean-field solution
(R = 1, blue-solid curve) is absent from panel (b) as Ce(r) is iden-
tically zero up to numerical precision. (c) Integrated correlation
function as defined in Eq. (25). See Fig. 1 for parameters.

vector), the correlation function is expected to be the sum of
uniformly decaying and oscillating functions

C(r) = CU (r) + C2kF (r) cos(2kF r) (24)

where, at zero temperature, CU (r) and C2kF (r) are smoothly
decaying functions. As we focus on a half-filled lattice where
kF = π/2a (with a the lattice constant), the correlation func-
tion is the sum of uniform and staggered (cos(2kF r) →
(−1)r) contributions.

Figure 3 compares the correlation functions computed us-
ing the approximate ground states obtained with SGS ansatz
and DMRG. To plot more easily the highly oscillating func-
tion C(r), we introduce the correlation function on the even
(e) and odd (o) sites, denoted as Ce(r) and Co(r), respectively.
For the odd sites [Fig. 3(a)], the uniform and staggered parts
of the correlation function are both negative, leading to a
larger amplitude than the even sites [Fig. 3(b)] where the
contributions have opposite signs. Focusing first on the odd
sites, the mean-field solution (R = 1, solid blue curve) differ
qualitatively from the higher-precision DMRG results as ex-
pected. Modestly increasing the rank of the SGS ansatz, we
recover the same behavior as high-precision DMRG. Small
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discrepancies between the two methods are observed far from
the impurity where the amplitude of the correlation function
is small. These differences are consistent with the expected
precision of both methods and we expect that further increas-
ing the values of m and R would reduce these differences.
Similarly, for the even sites, both methods agree close to the
impurity. Notably, the DMRG results shows a change of sign
of Ce(r) far from the impurity. This effect has been previously
observed in other DMRG studies of the SIAM [29,30] and
appears to disappear as the bond dimension of the MPS is
increased. No such effect is observed for the SGS state, thus
suggesting that this feature in the DMRG results is an artifact
of the truncation of the MPS bond dimension.

As a final comparison between methods, we consider in
Fig. 3(c) the integrated correlation function

�(x) = 1 +
x∑

r=1

C(r)

C(0)
, (25)

which allows characterization of the screening cloud of the
impurity [29]. In the ground state, the total spin S2

tot is ex-
pected to be zero for even L, leading to the sum rule �(L −
1) = 0. While this sum rule is not explicitly enforced, it is
approximately respected and the violation converges towards
zero as the rank of the ansatz is increased [�(L − 1) ≈ 2 ×
10−6 for R = 16]. To conclude this section, we use the SGS
ansatz to study the screening cloud of the Anderson impurity
for a large system of L = 1000 sites and different coupling
strengths � = (t ′)2/t . Figure 4(a) shows −Co(r) for three
different couplings between the impurity and the bath. In the
Kondo regime, the correlation function Co(r, �) is expected to
collapse to a universal function C̃(r/ξK ) through the relation
C̃(r/ξK ) = ξK (�)Co(r, �) with ξK (�) a coupling-dependent
length scale. Figure 4(b) present the scaling collapse of ten
different curves for the odd distances from the impurity
Co(r).3 As expected from previous numerical studies [28]
and analytical calculations [34] the scaled correlation func-
tion decays following a power law C̃(r/ξK ) ∝ (r/ξK )−ν with
a crossover in the exponent ν near r/ξK = 1. From power-
law fits, we extract the exponents ν ∼ 0.76 for r � ξK and
ν ∼ 1.84 for r 	 ξK . Given the sensitivity of the results of
the fit on the range of parameters considered, this results
are consistent with the previously established scenarios of a
crossover from ν = 1 to ν = 2 near r ∼ ξK .

Finally, Fig. 4(c) presents the impurity screening length
scale as extracted using three different methods. First, the
parameters ξK (�) were obtained from the scaling collapse
of the correlation function Co(r, �) (blue disks). Second, as
a comparison, we also plot the length scale ξc(�) (orange
crosses) at which the integrated correlation function falls be-
low a given threshold:

�(ξc) = c (26)

3The scaling collapse is obtained by minimizing the square of the
distance on a log-log scale between the numerical data points and a
polynomial fit to ξK (�)Co(r) as a function of r/ξK (�) for all � values
considered.

FIG. 4. (a) Spin-spin correlation function of a SIAM with L =
1000 (ansatz Rank R = 14) on odd sites for coupling strengths � =
1.0 (dark-blue curve), � = 0.2 (orange curve) and � = 0.1 (green
curve). (b) Scaling collapse of Co(r). Dashed (dotted)- black curve
is a fit of the form A(r/ξK )−ν to the data with r > 10ξK (r < ξK/2),
with exponent ν ≈ 1.84 (ν ≈ 0.76). (c) Length scales ξK extracted
from the scaling collapse of panel (b) (blue disks), ξ0.1 extracted
from the integrated correlation function [orange crosses, cf Eq. (26)]
and ξK,S extracted from the scaling collapse of the impurity entropy
(green squares). See Sec. IV C for a discussion of the impurity
entropy. Black dashed line is a fit of the expected functional form
A exp[πU/8�] to

√
U�ξK (�). As ξK (�), ξ0.1(�), and ξK,S are related

up to a scaling parameters, we set ξK (1/5) = ξ0.1(1/5) = ξS,K (1/5).
To reduce finite-size effect we append to the end of the bath an
additional LW = 20 sites with an exponentially decreasing hopping
parameter tn = �−nt with � = 1.2 and t = 1.

for a threshold parameter c ∈ (0, 1) [29]. Although simpler,
this second method has the disadvantage of being sensitive
to finite-size effects and convergence, as illustrated by the
saturation of ξ0.1 (orange crosses) for smaller couplings. These
effects are reduced in the case of the scaling collapse approach
as it takes into account the correlation function calculated at
all odd sites. As a third method, we show the length scale
ξK,S (�) (green square) obtained from the scaling collapse of
the impurity contribution to the entanglement entropy (near
the impurity). This method will be described in the following
section. As scaling collapse methods determine the screening
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length only up to a global prefactor, we scale the data sets
such that all three methods result in the same length scale for
1/� = 5.

In the Kondo regime (�/U � 1), we verify that the length
scale follows the expected scaling of Eq. (21) with the pref-
actor obtained through a fit (dashed black line) to the blue
disks. In the regime of intermediate coupling strength all
methods follow the expected exponential scaling. Away from
this regime, in the case of weak Kondo coupling (U 	 �),
different level of sensitivity to finite-size effect and conver-
gence lead to an underestimated screening length compared
to the expected exponential scaling. Similarly, in the strong
coupling regime (U ∼ �) the mapping from the SIAM to the
Kondo model is no longer valid and deviations are expected.

C. Impurity entropy

As a second probe of the SGS variational ground state, we
consider the contribution of the Anderson impurity to the en-
tanglement entropy. This quantity offers a different approach
to study the screening cloud of an impurity [35–38].

We consider a bipartition of the sites in subsystems A and
B and compute the second Rényi entropy

S2(A, |ψ〉) = − log Tr
(
ρ2

A

)
, (27)

where ρA = TrB|ψ〉〈ψ | is the reduced density matrix for sub-
system A. Throughout, subsystem A is formed of the l first
sites of the lead and the impurity. While in the case of a
single Gaussian state the entropy can easily be computed
from the decomposition in normal modes of the covari-
ance matrix [39,40], the presence of coherences between the
different Gaussian states forming the ansatz in the density
matrix modify this calculation. In Appendix C we use the
fermionic coherent state formalism [41] to derive expressions
of S2(A, |ψ〉) for an SGS state of arbitrary rank.

Even though S2 differs from the more common von Neu-
mann entropy S1, many of the same universal properties can
be extracted. In particular, using conformal field theory (CFT)
calculations, the constant contribution of the boundary to the
entropy was shown to be independent of the order of the Rényi
entropy at criticality (see, e.g., Refs. [42,43]). In addition the
form of the leading corrections to the scaling of the entropy
with subsystem size l due to irrelevant boundary operators
was shown to be independent of the order n of the Rényi
entropy [44,45].

As for the correlation function in Sec. IV B, for a lattice
model at half-filling, the entanglement entropy is the sum of a
uniform and a staggered contribution,

S2(l, �, L) = SU
2 (l, �, L) + (−1)l SA

2 (l, �, L). (28)

The uniform and staggered contributions to the entropy can be
extracted using a local polynomial interpolation [36]. The im-
purity entropy Simp(l, �, L) is then obtained by the subtraction

Simp(l, �, L) = SU
2 (l, �, L) − S0,U

2 (l, L) (29)

where S0,U
2 (l, L) is the uniform part of the entropy in the

absence of the impurity. To make the calculation of Simp more
explicit, Fig. 5(a) presents the raw data for a system of length
L = 400 and � = 1/12. The corresponding impurity entropy

FIG. 5. (a) Raw data for the Rényi entropy S2(A) with (blue
disks) and without (orange crosses) the impurity (L = 400, � =
1/12, R = 8). Solid curves are the uniform part of the entropy
extracted using a local polynomial interpolation [36]. (b) Impurity
entropy for different coupling strengths. Dashed-red curve corre-
sponds to the subtraction of the green and red curves of panel (a).
(c) Scaling collapse of Simp close to the impurity. To reduce finite-size
effects, we consider only the first 25 sites. See Fig. 4(c) for the
extracted screening length ξK,S (�).

Simp is the dashed-red curve in Fig. 5(b). As expected, for
small couplings (� � 1) and close to the impurity (l � ξK ),
Simp ∼ ln(2) indicating the entanglement of the impurity with
the lead. Consistent with Fig. 4(c), the characteristic length
scale over which the Simp decays increases as � is reduced.

To extract more quantitatively the screening length ξK ,
we again consider a scaling collapse of the data. The impu-
rity entropy was previously found to be amenable to scaling
using [35]

Simp(l, �, L) = Simp

(
l

ξK (�)
,

l

L

)
. (30)

Figure 5(c) shows this scaling collapse where, focusing on
points near the impurity where (l � 25 and L = 400), we
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consider l/L ∼ 0. The correlation length extracted from the
collapse ξK,S (�) is shown in Fig. 4(c) (green squares ξK,S). In
the regime where the mapping from the SIAM to the Kondo
model is valid (U/� 	 1) and ξK � L, we obtain a good
agreement between the different methods to extract the Kondo
screening length.

V. TWO-CHANNEL KONDO EFFECT

As a second application of the variational method, we
consider the two-channel Kondo (2CK) impurity model. We
focus on the symmetric regime where the impurity is coupled
with the same strength J to both channels. In this regime,
the presence of a second channel of free electrons lead to
very different ground-state properties from the single channel
case and the physics of the model includes an intermediate
coupling fixed point with non-Fermi liquid behavior [19].

We focus on the ground state of the lattice version of the
symmetric two-channel Kondo Hamiltonian

H2CK = −t
L−1∑

α, j=2

(d†
j−1,αd j,α + H.c.) + HJ + HBC, (31)

where α = 1, 2 is the channel index, HJ is the coupling be-
tween the impurity spin and the channels of free fermions
and HBC accounts for the choice of boundary condition away
from the impurity. We consider directly an antiferromagnetic
spin-spin interaction of coupling strength J > 0 between the
impurity spin and the first site of each channel:

HJ = J
∑

α=1,2

Simp · Sα (1), (32)

where Sα (r) = 1
2

∑
s,s′ d†

r,α,sσs,s′dr,α,s′ is the fermionic spin
operator. As the SGS ansatz is fermionic, we take the impu-
rity to be a fermionic site with fixed single-occupancy.4 We
also introduce the unitless coupling parameter g ≡ ρ0J with
ρ0 = 1/4t the density of state at the Fermi Level.

For finite-size systems, the two-channel Kondo model is
known to exhibit important differences between the case
where the total number of sites is even or odd [20]. In order to
preserve the symmetry between the two channels and have an
even number of sites (including the impurity), we introduce
an additional site at the opposite end of the chain (creation
operator f †) coupling the two channels,

HBC = −t
∑

α=1,2

( f †dL−1,α + H.c.), (33)

leading to a total of 2L sites in the model.

Intermediate coupling fixed point and screening cloud

The 2CK model exhibits an intermediate coupling fixed
point, as well as a duality between the weak and strong cou-

4As the charge of the fermionic impurity is conserved by H2CK ,
the ground state of this model with a fermionic impurity will be
the same as in the case where the system is explicitly projected to
the single-occupancy subspace (spin-1/2 impurity). We have verified
numerically that charge fluctuations at the impurity site vanish in the
variational ground state.

FIG. 6. Uniform part of the spin-spin correlation function K (r)
[see Eq. (34)] on a symmetric log axis. A sign change of the cor-
relation function can be observed for g ∼ 0.7 consistent with the
crossing of the 2CK intermediate coupling fixed point (see main
text). Each channel is half-filled with hopping parameter t = 1/2 and
L = 200 sites. An SGS variational state with rank R � 25 is used for
all coupling strengths. The shaded area indicate the linear part of the
symmetric logarithmic vertical axis. A sequential color scale is used
to identify curves from weak (g = 0.15, top purple curve) to strong
(g = 1.5, bottom yellow curve) coupling regimes. A single marker is
used to further identify each curve.

pling regimes [46]. In order to explore this physics in the SGS
variational ground state, we consider the spin-spin correlation
function

K (r) =
∑

α=1,2

〈Simp · Sα (r)〉, (34)

where r is the distance to the impurity and α is the channel
index. We separate again the correlation function in a uniform
and a staggered part K (r) = −KU (r) − cos(2kF r)K2kF (r).

Figure 6 shows the uniform part of the correlation function
KU (r) for various unitless coupling strengths g = 0.15 − 1.5
on a symmetric logarithmic axis. Considering first KU close
to the impurity, we observe a reduction of correlations as
the coupling strength is increased. In absolute value, |KU (r)|,
reaches a minimum for g∗ ∼ 0.7 followed by a sign change
of KU (r) near the impurity. We associate this point where
correlations are minimal (smallest screening cloud) as the
intermediate coupling strength fixed point of the 2CK model.
This result is in agreement with previous NRG results for the
Kondo temperature T2CK [46].

In the weak coupling regime (g � g∗), the Kondo screen-
ing length of the 2CK model is to leading order ξ2CK ∝ e1/g

[34,46]. In order to extract ξ2CK (g), we use a scaling collapse
of K (r). We focus on the staggered part of the correlation
function in the weak coupling regime where correlations are
larger. To limit finite-size effects, we consider only correla-
tions up to a distance L/2 from the impurity.

Figure 7(a) presents a scaling collapse following the same
procedure as in Sec. IV. For g = 0.15 − 0.75, all correlation
functions can be collapsed on a universal scaling function
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FIG. 7. (a) Scaling collapse of K2kF (r), the staggered part of the
spin-spin correlation function for various unitless coupling strengths
g = 0.15 − 0.75, with L = 200 and, to limit finite-size effects, r �
L/2. Black dashed (dotted) is a fit of the form A(r/ξK )−ν to the data
far (close) to the impurity with exponent ν = 1.58 (1.04). (b) Screen-
ing length ξ2CK extracted from the scaling collapse. Orange line is
∝ e1/g with the proportionality factor set by scaling the first point of
the curve.

exhibiting a crossover between two different power laws near
r ∼ ξ2CK . Using power-law fits, we obtain the exponent ν =
1.04 near the impurity and ν = 1.58 far from the impurity
(dotted and black dashed lines). An exponent ν < 2 is co-
herent with the expected non-Fermi liquid behavior of an
overscreened multichannel Kondo model. In particular, for
r 	 ξ2CK the scaling K2kF (r) ∝ (r/ξ2CK )1.5 was calculated in
Ref. [34].

The extracted screening length ξ2CK (g) is shown in
Fig. 7(b) and compared to the expected exponential scaling
(orange curve). Small deviations from the expected expo-
nential behavior is expected for smaller values of g where
finite-size effects become important (ξ2CK � L). This result
is also in agreement with previous DRMG calculations for
an effective spin chain representation of the symmetric 2CK
model where ξ2CK was extracted from a scaling collapse of the
impurity entanglement entropy [20].

VI. CONCLUSIONS

In this paper, we have developed a practical method for
finding the variational ground state of an impurity prob-
lem using a coherent superposition of fermionic Gaussian
states ansatz. The approach has a computational complexity
O(R2N3), thus scaling polynomially with the rank R of the
ansatz and the number of fermionic modes N . Combined with
the favorable scaling of the accuracy with rank R, as guaran-
teed by the results of Ref. [12], this gives a powerful approach

to study the ground state of quantum impurity models. In
particular, the approach is independent of spatial locality or
lattice connectivity, allowing for more flexibility than methods
such as DMRG. In addition, its implementation is highly
parallelizable allowing for further speed improvements.

In order to verify the method we have first studied the
single impurity Anderson model. Comparing the ground-state
energy obtained using DMRG to the one obtained using
the SGS ansatz, we have shown that an SGS state of rank
R ∼ 6 can rival with high-precision DMRG calculations with
a large bond dimension m = 3000. Further increasing the
ansatz rank up to R = 16 allows to improve the precision of
the ground-state energy estimate by an order of magnitude.
To demonstrate the quality of the variational ground state,
we have also carefully examined the spin-spin correlation
functions and the impurity entanglement entropy, and found
excellent agreement with analytical and previous numerical
results.

To highlight the potential of the method, we have also stud-
ied the two-channel Kondo model. Studying again a spin-spin
correlation function, we found signatures of the intermediate
coupling fixed point in the form a sign change of the uniform
part of the correlation function, and were able to confirm the
expected exponential scaling of the Kondo screening length.
We find a power-law decay of the correlation function far from
the impurity with exponent ν ≈ 1.58, which is close to the
expected non-Fermi liquid behavior with exponent ν = 1.5
predicted by CFT calculations [34]. These results showcase
the power of the SGS ansatz for the study of real-space proper-
ties of multichannel impurity models, a space of applications
previously ill-covered by current standard numerical methods.

An open problem is whether there are computationally
efficient ways of extracting the impurity Green’s function
(in real or imaginary time or frequency) within this class of
ansatz states. Such a method would allow this approach to be
integrated as impurity solver in embedding methods, such as
the dynamical mean-field theory, which requires the impurity
Green’s function to achieve self-consistency. Furthermore, it
appears possible to further reduce the scaling of the method
by replacing the Gaussian covariance matrices by Gaussian
fermionic matrix product states [47], which could in princi-
ple further reduce the scaling with the number of fermionic
modes N .
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APPENDIX A: OVERLAP AND MATRIX ELEMENTS
OF FERMIONIC GAUSSIAN STATES

To make the description in this paper self-contained, we
will now summarize the formulas needed for calculating over-
laps and matrix elements of nonorthogonal Gaussian states.
These formulas are used to obtain the final form of the pro-
jected equation of motions Eq. (17) in Sec. III B. Derivations
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of these formulas and extensions to the case of orthogonal
states can be found in Ref. [12].

Let |φ1〉, |φ2〉 be two nonorthogonal Gaussian states. Using
Eq. (3), these states can be described by covariance matrices
�1 and �2. In term of these real skew-symmetric matrices, the
norm of the overlap of the states is

|〈φ1|φ2〉|2 =
∣∣∣∣Pf

[
�1 + �2

2

]∣∣∣∣. (A1)

As discussed in Sec. II B, the covariance matrix formalism
describes Gaussian states up to a global phase factor. In order
to calculate overlaps between arbitrary Gaussian states, one
need to fix this gauge degree of freedom. Following Ref. [12],
we fix the phase of each state with respect to a reference state
|φ0〉 such that 〈φ0|φμ〉 = |〈φ0|φμ〉| where μ = 1, 2 . . . With
this gauge freedom fixed, the overlap of arbitrary Gaussian
states can then be computed as

〈φ1|φ2〉 = Pf
[

1
2 (�1 + �2)

]
Pf

[
1
2 (�1,2 + �0)

]
√

Pf
[

1
2 (�1 + �0)

]
Pf

[
1
2 (�2 + �0)

] , (A2)

where we introduced the complex skew-symmetric matrix

�1,2 = [i(�1 − �2) − 21](�1 + �2)−1, (A3)

and the denominator of Eq. (A2) is 〈φ0|φ1〉〈φ2|φ0〉. This ex-
pression is used to calculate the Gram matrix G needed for
solving Eq. (17).

Similarly, the Wick theorem for Gaussian states can be
extended to compute matrix elements of arbitrary product of
Majorana operators. Taking a product of Majorana operators
with distinct indices I = i1, i2, . . . in, the matrix element is

〈φ2|ci1 ci2 . . . cin |φ1〉 = 〈φ2|φ1〉Pf[i�1,2(I )], (A4)

where �1,2(I ) is a n × n submatrix of �1,2 obtained by taken
the row and columns corresponding to the indices in I. Fi-
nally, in order to compute Eq. (17), one needs to calculate
the matrix elements of the Hamiltonian defined by Eqs. (1)
and (2). Using Eq. (A4) and taking advantage of the skew-
symmetric structure of A and U , the matrix element hα,β =
〈φα|H2 + H4|φβ〉 is given by

hα,β = Gα,βTr[Fβ,α�β,α], (A5)

where we introduced the matrix [23]

Fβ,α

k,l = Ak,l + 3
∑
m,n

Uk,l,m,n�
β,α
m,n. (A6)

We note that the interaction part of Eq. (A6) differs by a factor
of 2 from the matrix F defined in Eq. (16). This difference is
in agreement with the GHF results (R = 1 case) obtained in
Ref. [23].

APPENDIX B: NUMERICAL SOLUTION OF EQ. (17)

In this Appendix, we provide additional details on the nu-
merical implementation of the variational method. There are
two main approaches to solving Eq. (17) numerically. The first
is to solve the equation using a generic differential equation
solver, for example taking to first order

�μ(s + δs) = �μ(s) + δs∂s�
μ(s), (B1)

with δs the step size. The drawback of this approach is that the
accumulation of small numerical errors due to the finite step
size will rapidly lead to covariance matrices, which do not rep-
resent normalized and pure states. One must then frequently
correct the normalization by decomposing the covariance ma-
trix in the canonical form

�μ = R
N⊕

j=1

(
0 λ j

−λ j 0

)
RT , (B2)

with R a real orthogonal matrix and rescaling the coefficients
λ j to unity.

A second approach is to rewrite Eq. (B1) as an orthogonal
transformation [23]

�μ(s + δs) = R(s)�μ(s)RT (s) + O(δs2), (B3)

with the orthogonal matrix

R(s) = exp

{
δs

2
[�μ(s), ∂s�

μ(s)]

}
, (B4)

where we used (�μ)2 = −1 and neglected terms quadratic
in δs. This second approach is numerically more expensive
than the former due to the required matrix exponentiation.
However, it preserves normalization up to machine precision.
Our numerical experiments showed this second approach to
perform better in some cases as it allows for taking larger time
steps and one need not frequently correct the normalization of
the covariance matrices using costly canonical form decom-
position.

APPENDIX C: ENTANGLEMENT ENTROPY
OF SGS STATES

In this Appendix, we derive the expression used to com-
pute the order 2 Rényi entropy S2(|ψ〉, A) in Sec. IV C. We
consider a bipartition of an SGS state |ψ〉 in parts A and
B. Defining the density matrices ρα = |φα〉〈φα|, the reduced
density matrix for subsystem A is

ρA = TrB(|ψ〉〈ψ |) =
∑
α,β

λαλ∗
β

TrB[ραρβ]

Gα,β

, (C1)

since the states in the SGS ansatz are nonorthogonal and thus
Gα,β = 〈φα|φβ〉 �= 0. In order to evaluate Eq. (C1), we expand
the density matrix in a fermionic coherent state basis [41].
The derivation is sketched below with the final result given by
Eq. (C16).

Using Eq. (C1), the Rényi entropy of order 2 of an SGS
state is

S2(|ψ〉, A) = − ln

{ ∑
α,β,γ ,δ

T α,β

γ ,δ

}
, (C2)

where we introduced the rank-4 tensor

T α,β

γ ,δ = λαλ∗
βλγ λ∗

δ

Gα,βGγ ,δ

Iα,β

γ ,δ , (C3)

which obeys the relations T α,β

γ ,δ = (T β,α

δ,γ )∗ and T α,β

γ ,δ = T γ ,δ

α,β

and where Iα,β

γ ,δ = TrA(TrB(ραρβ )TrB(ργ ρδ )) . The final result,
as a function of the covariance matrices of the Gaussian states,
is given by inserting Eq. (C28) in the above equation.
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1. Coherent state operator expansion

Setting first the required notation, we introduce for each
fermionic mode the coherent states

|η〉i = (1 − ηid̂
†
i )|0〉i, 〈η|i = 〈0|i(1 − d̂iηi ), (C4)

where ηi, ηi (i = 1, . . . N) are Grassman variables obeying the
usual algebra

η2
i = η2

i = 0

ηiη j = −η jηi,

ηiη j = −η jηi.

(C5)

To lighten the notation we introduce the states |η〉 = ⊗
i |η〉i

and 〈η| = ⊗
i〈η|i, as well as the shorthands η · η = ∑

i ηiηi

for products and dNη = ∏N
j=1 dη jdη j for differentials. In ad-

dition, we make the dependency on barred variables implicit
such that F (η, η) → F (η).

Following the results of Ref. [41], any operator O can be
represented by the integral

O =
∫

dNη χ (O, η)F (η), (C6)

where χ (O, η) is the characteristic function of the operator

χ (O, η) = Tr[OD(η)], (C7)

and the operator F (η) is

F (η) =
∫

dNψ e
1
2 η·η−ψ ·ψ+ψ ·η−η·ψ |ψ〉〈−ψ |. (C8)

Following the language of quantum optics D(η) = exp{d† ·
η − η · d} is the fermionic analog of the bosonic displacement
operator.

In this paper, the operator O in Eq. (C6) is the density
matrix of a fermionic Gaussian state [26,39]

ρ = 1

2N

N∏
j=1

(1 − iλ jb2 j−1b2 j ), (C9)

with the canonical modes b j = ∑
i Ri, jci with R ∈ SO(2N ).

The rotation matrix R and the eigenvalues λ j are defined
through the normal form decomposition of the covariance
matrix introduced in Eq. (B2). Using this decomposition and
rewriting the displacement operator in this canonical basis, the
trace in Eq. (C7) can be evaluated mode per mode leading to
the characteristic function

χ (ρ, η) = exp

{−i

2
(ηT ηT )V T

N �VN

(
η

η

)}
, (C10)

where the 2N × 2N matrix VN makes the rotation of the
Grassman operators from a complex fermion basis to a real
Majorana basis:

V1

(
η1
η1

)
= 1

2

(
η1 + η1

i(η1 − η1)

)
. (C11)

The characteristic function Eq. (C10) allows to relates the
Grassman variable representation used, e.g., in Refs. [12,26]
to expressions involving the density matrix through Eq. (C6).

2. Reduced density matrix

We now turn to deriving the necessary expressions for eval-
uating numerically Eq. (C1). To this end, we need to compute
partial traces of the form TrB(ραρβ ), where TrB is the partial
trace over subsystem B, which is composed of NB modes such
that N = NA + NB.

Denoting states and Grassman variables associated with
the subsystem by a subscript, the partial trace in the coherent
state basis takes the form

TrB(ραρβ ) =
∫

dNBψB e−ψB·ψB〈−ψB|ραρβ |ψB〉. (C12)

Using Eq. (C6) and noting that the F operator is separable
such that F (η) = F (ηA)F (ηB), we obtain

TrB(ραρβ ) =
∫

dNη χ (ρα, η)F (ηA)
∫

dNλ χ (ρβ, λ)

× F (λA)K (ηB, λB) (C13)

where we introduced the kernel

K (ηB, λB) =
∫

dNBψB e−ψB·ψB 〈−ψB|F (ηB)F (λB)|ψB〉.
(C14)

Using Eq. (C8) and evaluating the resulting Gaussian integral
we obtain

K (ηB, λB) = 2NB exp
{

1
2 (ηB · λB − λB · ηB

}
, (C15)

where we used for example 〈−ψ |η〉 = exp(−ψη).
Inserting Eq. (C15) in Eq. (C13), we now isolate the inte-

grals over subsystem B

TrB(ραρβ ) =
∫

dNAηAdNAλA F (ηA)F (λA)�α,β (ηA, λA)

(C16)

with the effective characteristic function for the subsystem A

�α,β (ηA, λA) =
∫

dNBηBdNBλB χ (ρα, η)χ (ρβ, λ)K (ηB, λB).

(C17)

In order to take advantage of the structure of Eq. (C11),
we formalize the basis change of Eq. (C11) by introducing
the new Grassman variables θi = ∑

j (VN )i, j (η, η) j with the
differentials transforming as dη jdη j = −i

2 dθ2 j−1dθ2 j . Using
˜(·) to indicate functions with arguments in the rotated basis,

Eq. (C17) takes the form

�̃α,β (θA, φA) =
(−1

2

)NB
∫

DθBDφBχ̃ (ρα, θ )χ̃ (ρβ, φ)eθT
B ·φB ,

(C18)

where DθB = ∏2N
j=2NA+1 dθ j . In the case NB = N , i.e., when

tracing over the whole system, we recover the result of
Ref. [26].

Introducing the block structure of the covariance matrix

�μ =
(

�
μ
A �

μ
AB

�
μ
BA �

μ
B

)
(C19)
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where �A, �B are skewsymetric and �AB = −�T
BA, one can evaluate the Gaussian integrals resulting in

�̃α,β (θA, φA) = 2−NB Pf
[
M (α,β )

B

]
exp

{
− i

2
(θT

A φT
A )

[(
�α

A 0
0 �

β
A

)
+ �

α,β
A

](
θA

φA

)}
, (C20)

where we introduced the 4NJ × 4NJ skewsymmetric matrices (J ∈ {A, B})

Mα,β
J =

(
�α

J i1
−i1 �

β
J

)
, �

α,β
A =

(
�α

AB 0
0 �

β
AB

)[
Mα,β

B

]−1
(

�α
AB 0
0 �

β
AB

)T

. (C21)

Finally, one can transform back to the original basis to obtain �(ηA, ηA, λA, λA), by taking θA = VN (ηA, ηA) and φA = VN (λA, λA).

3. Trace of product of reduced density matrices

Building on the results of the previous section, we now turn to the calculation of the trace needed to evaluate Eq. (C3).
Dropping the subscript A when there is no confusion and using Eq. (C16) the trace of the product of reduced density matrices
takes the form

Iα,β

γ ,δ =
∫

dNAηdNAλdNAξdNAν �α,β (η, λ)�γ,δ (ξ, ν)K(η, λ, ξ, ν), (C22)

where we introduce the function

K(η, λ, ξ, ν) =
∫

dNAψ e−ψ ·ψ 〈−ψ
∣∣F (η)F (λ)F (ξ )F (ν)|ψ〉. (C23)

Inserting the definition of F and performing five Gaussian integrals, one obtains

K(η, λ, ξ, ν) = 2NA e
1
2 (η·λ−λ·η)e

1
2 (ξ ·ν−ν·ξ )e

1
2 (η·ν−ν·η)e

1
2 (λ·ξ−ξ ·λ)e

1
2 (ξ ·η−η·ξ )e

1
2 (ν·λ−λ·ν). (C24)

As all the coherent states have been eliminated, we rotate back to the real Majorana basis introduced in Eq. (C18) such that

Iα,β

γ ,δ = 2−4NA

∫
DθDφDθ ′Dφ′ �̃α,β (θ, φ)�̃γ ,δ (θ ′, φ′)K̃(θ, φ, θ ′, φ′). (C25)

Grouping the variables such that � = (θ, φ), � = (θ ′, φ′) and inserting Eqs. (C20) and (C24)

Iα,β

γ ,δ = 2NB

8N
Pf

[
Mα,β

B

]
Pf

[
Mγ ,δ

B

] ∫
D�D� e�T X� exp

{−i

2

[
�T

(
Mα,β

A + �
α,β
A

)
� + �T

(
Mγ ,δ

A + �
γ,δ
A

)
�

]}
, (C26)

where we introduced the matrix, which couple the � and � variables

X =
(−12NA 12NA

id2NA −12NA

)
. (C27)

Performing the final Gaussian integrals, we obtain

Iα,β

γ ,δ = 2NB

8N
Pf

[
Mα,β

B

]
Pf

[
Mγ ,δ

B

]
Pf

[
Mγ ,δ

A + �
γ,δ

A

]
Pf

[
Mα,β

A + �
α,β
A + σ

δ,γ

A

]
, (C28)

with the matrix

σ
δ,γ
A = −X

(
Mγ ,δ

A + �
γ,δ
A

)−1
X. (C29)

We note that Eq. (C28) is symmetric under the exchange of indices (α, β ) ↔ (γ , δ) as required for a trace. This can be more
explicit by considering the expression for the Pfaffian of a matrix with a block structure

Pf
[
Mγ ,δ

A + �
γ,δ

A

]
Pf

[
Mα,β

A + �
α,β
A + σ

δ,γ

A

] = Pf

[(
Mα,β

A + �
α,β
A iX

−iX Mγ ,δ
A + �

γ,δ
A

)]
. (C30)

Although numerically more costly, the RHS of Eq. (C30) presents the advantage of making no assumption about the existence
of the matrix inverse (Mγ ,δ

A + �
γ,δ

A )−1. Together with Eq. (C2), Eq. (C28) allows to compute the order 2 Rényi entropy of an
SGS state of arbitrary rank.
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