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Pseudoconservative dynamics of coupled polariton condensates
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Open-dissipative systems obeying parity-time (PT ) symmetry are capable of demonstrating oscillatory
dynamics akin to the conservative systems. In contrast to limit cycle solutions characteristic of nonlinear systems,
the PT -symmetric oscillations form a continuum of nonisolated orbits. However, precise sculpturing of the
real potential and the gain-loss spatial profiles required for establishing of the PT symmetry is practically
challenging. The optical devices, such as lasers, exhibit relaxation dynamics and do not operate as the PT -
symmetric systems. Here we demonstrate how these constraints can be overcome. We predict that a pair of
optically trapped polariton condensates (a polariton dimer) can be excited and operated in the oscillating regime
typical of the isolated systems. This regime can be realized in the presence of both dissipative and conservative
coupling between the condensates and can be maintained at an arbitrary external pump intensity. Every orbit
is characterized by a frequency comb appearing in the spectrum of a dimer in the presence of the conservative
nonlinearity. Our results pave the way for the creation of the optical computing devices operating under the
constant-wave external pumping.
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I. INTRODUCTION

The general principles of quantum mechanics state that the
Hamiltonian of an isolated system is a Hermitian operator.
This way, the values of the energy form the entirely real
spectrum and the corresponding eigenstates are linearly
independent and mutually orthogonal. The real-valuedness
of the energy means that the eigenstates are stationary and
live infinitely long, while their mutual independence implies
that arbitrary coherent superpositions of them are possible.
These principles stand behind the idea of a quantum bit whose
information capacity is manifested by ability of storing and
processing superposition states. The classical description of
such systems leads to the concept of continuum of trajectories,
which evolve conserving the phase volume. This corresponds
to the conservation of unit cumulative probability in the
quantum case.

The situation changes dramatically if the system interacts
with the surrounding environment. The interaction typically
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results in the energy dissipation and it leads to the destruction
of the superposition states. At the mean-field level, this phe-
nomenon can be captured by considering the total evolution
operator as a non-Hermitian one. Its eigenenergies are com-
plex, in general, and the stationary superposition solutions are
impossible since the amplitude of at least one state decays
with time. For this reason, the open systems have been consid-
ered unsuitable for sustaining steady-state superpositions until
the pioneering work of Bender and Boettcher [1], who opened
the door to the room of pseudo-Hermitian physics. They have
shown that a certain class of open systems, whose Hamiltoni-
ans are invariant under combined parity P̂ and time-inversion
T̂ operations, have entirely real-valued energy spectra. Later,
the theory of PT -symmetric systems was developed and
extended towards the more general concept of pseudo-
Hermiticity [2,3]. The eigenstates of the PT -symmetric
Hamiltonian are not orthogonal but skewed [4]. Nevertheless,
these systems are capable of supporting superposition states as
it was revealed for the first time in the oscillations dynamics
of light in the coupled optical waveguides [5].

For a PT -symmetric system the Hamiltonian commutes
with the joined PT operator [Ĥ, P̂T̂ ] = 0. Since for a
two-level system the time inversion corresponds to complex
conjugation and the parity corresponds to the exchange of
some pair of possible basis states, the PT symmetry implies
the parity of Hermitian and the antiparity of the anti-Hermitian
part of Ĥ. Therefore, if one state dissipates, this dissipation
must be balanced by the pumping of the other state with
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precisely the same rate. This exact balancing of the gain and
losses appears to be a challenging task in practice.

The principles of PT symmetry were successfully imple-
mented in diverse physical settings including optomechanics
[6–8], cold atoms [9], metamaterials [10], etc. However, the
most fertile platform is optics, where balancing gain with
losses can be easily realized by sculpturing of the spatial
distribution of the complex refractive index [5]. In particular,
the concept of PT symmetry was successfully applied to the
light transmission problems revealing many nontrivial effects
such as nonreciprocal propagation [11,12], unidirectional in-
visibility [13], and loss-induced transparency [14].

Another important class of applications is PT -symmetric
lasers where the effect of spontaneous breaking of PT sym-
metry [15] was employed for assisting single-mode lasing
[16–19]. In contrast to the transmission problems, in lasers
the gain-loss balance is typically sacrificed to the domi-
nation of the gain which is a key condition of lasing. In
the steady-state regime, the excess of the gain is compen-
sated by the gain-saturation effect [11,19]. The latter is the
nonlinear phenomenon and thus precludes PT -symmetric
systems from the formation of the linear superposition states
[20–22]. For these reasons, the gain-loss systems operating
above the lasing threshold are typically devoid of pseudo-
Hermitian dynamics: the simultaneous excitation of several
eigenstates with arbitrary proportions of their populations is
forbidden.

In this paper we demonstrate that an engineering of the
gain-saturation mechanism is capable of endowing the gain-
loss system with the behavior typical to the isolated or open
PT -symmetric systems. In particular, we demonstrate the
existence of a continuum of periodic solutions in the driven-
dissipative system operating above the lasing threshold.

As a model system, we consider the condensate of ex-
citon polaritons excited in an optical trap which represents
a versatile example of the driven open system characterized
by the self-excitation threshold. The pump and decay are
inherent attributes of the polariton condensates. Manifestation
of the non-Hermitian properties of the exciton polaritons are
typically associated with transition from the weak to strong
coupling regime [23]. In this case the PT symmetry estab-
lishes between the excitons and microcavity photon mode
[24] which can lead to the nontrivial oscillatory behavior
[25]. The PT symmetry between the spatially or spectrally
discriminated condensates requires engineering the trapping
potential and the spatial gain-loss distribution. In particular,
various configurations were suggested for implementation of
PT symmetry with coupled polariton condensates. They in-
clude lattices [26], coupled micropillars [27], and double-well
systems [28,29]. These studies, however, do not account for
an important peculiarity of the polariton systems which is
connected with the coupling mechanism. The coupling be-
tween polariton condensates is entirely complex in contrast
to the PT -symmetric optical systems, for which the coupling
is purely real, typically.

For the sake of clarity, we start with a comparison of
the conservative and pseudo-Hermitian dissipative systems. In
the following section, we show that the oscillatory dynamics
stems from the superposition of two states with different fre-
quencies. In both conservative and pseudo-Hermitian systems,

the real eigenvalue spectrum of the Hamiltonian sustains con-
tinuum of the persistent time-periodic solutions.

II. ISOLATED VS OPEN DIMER

Let us consider an isolated system comprised of two mu-
tually coupled subsystems ψ1 and ψ2 (the dimer). When the
modes are in resonance and the coupling J is symmetric and
real (Josephson), the Hamiltonian reads as

ĤJ = Jσ̂x, (1)

where σ̂i with i = {x, y, z} are the Pauli matrices and the
energy of each mode is set to zero. In this case there are
two supermodes: the symmetric ψs = C(1, 1)ᵀ and the an-
tisymmetric ψa = C(1,−1)ᵀ states, where C is an arbitrary
constant. In what follows, bold symbols denote vectors: ψ =
(ψ1, ψ2)ᵀ. As follows from the Schrödinger equation (h̄ = 1)

i∂tψ = ĤJψ, (2)

there is also a continuum of superposition states

ψ = ψs exp (−iωst ) + ψa exp (−iωat + iς ), (3)

where ωs,a = ±J are the real eigenfrequencies of ĤJ and ς is
an arbitrary phase shift. The occupations of the supermodes,
given by the norms ‖ψs‖ and ‖ψa‖, can be taken in arbitrary
proportions. These solutions are revealed by the beatings of
the bare mode populations with the period π/J .

A continuum of the oscillating states (3) also follows from
the stability properties of the fixed-point (FP) solutions ψs and
ψa. The relevant Jacobian matrix coincides with ĤJ . There-
fore, its eigenvalues are real as well and the FPs are centers
[30]. It implies that in the phase space, FPs are encircled with
an infinite number of neutrally stable periodic trajectories. For
the two-mode system, the phase space can be conveniently
parametrized with three-dimensional Stokes vector S whose
components are Si = (ψ†σ̂iψ). In this case the FPs locate at
Sx = ±|S|, while the oscillating states draw circular trajecto-
ries around them [see Fig. 1(a)].

FIG. 1. Dynamics of the isolated (a) and the open PT -
symmetric (b) dimers. Green dots indicate the Stokes vector positions
at the stationary states. Color lines are the trajectories corresponding
to different starting points which are indicated by the dots of the same
color. In (b) the ratio γ /J = −0.4 is used.
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The prototypical example of the PT -symmetric driven-
dissipative dimer [15] is described by the Hamiltonian

ĤPT = ĤJ + iÂ = Jσ̂x + iγ σ̂z, (4)

where iÂ = iγ σz is the anti-Hermitian part stemming from
the open nature of the system. The eigenenergies of (4),
λ1,2 = ±

√
J2 − γ 2, are real at |J| > |γ | (in the opposite case

the PT symmetry is broken spontaneously [5,14]). The cor-
responding eigenstates ψPT

ss = C( ± exp(±iξ ), 1)ᵀ with ξ =
arcsin(γ /J ) in the Stokes space locate at

SPT = |C|2(±√
1 − γ 2/J2,−γ /J, 0

)ᵀ
. (5)

It is straightforward to demonstrate that for any Hamilto-
nian composed of the Hermitian and the anti-Hermitian parts
akin to (4), the real energy spectrum implies a specific
symmetry of the eigenvectors ψss. Namely, ψss must obey
〈Â〉ss = (ψ†

ssÂψss) = 0. For Hamiltonian (4), it yields a re-
quirement of the symmetric occupation of the modes in the
PT -symmetric phase Sz = 0. This is indeed the case for the
eigenstates (5). Besides, this condition can be considered as a
PT -symmetry criterion in the systems governed by the more
complex Hamiltonians including those which account for the
nonlinear effects [22].

As long as the fixed points (5) are centers too, there is
a continuum of superposition solution analogous to (3). The
corresponding closed trajectories of the Stokes vector are
shown in Fig. 1(b). Since these solutions are constructed from
the symmetric states (5), the trajectories are also symmetric
with respect to the plane Sz = 0. Therefore, the PT symmetry
of the state is preserved on average: The cumulative expecta-
tion value of the anti-Hermitian operator Â along any closed
trajectory C of the Stokes vector vanishes,

∮
C (ψ†Âψ)dl = 0,

where dl is an element along C.
Note that the existence of the oscillating solutions, which

can be considered as a fingerprint of a superposition state,
has been repeatedly observed in the driven-dissipative systems
[31–36]. However, these oscillations are typically limit cycles
(LC), whose trajectories in the phase space are isolated in a
sense that any deviation from it relaxes back to the original
periodic orbit.

III. PT SYMMETRY OF THE POLARITON DIMER

In what follows we focus on the condensate of exciton
polaritons created by a nonresonant laser. The mean field
dynamics of this system is described by the driven-dissipative
Ginzburg-Landau equation for the condensate order parameter
�(r). The pump is tuned above the semiconductor band gap,
which means that it can not gain the condensate state directly.
Instead, it excites incoherent excitons which then relax their
energy and momentum and scatter to the coherent condensate
[37]. The rate of this scattering is governed by the density
n(r) of the excitonic reservoir which obeys the rate equation
∂t n = P − (γr + R|�|2)n. Here P is the pumping rate and
γr describes the reservoir decay. The presence of the feed-
back term R|�|2n leads to the depletion of reservoir at large
polariton densities. This constitutes the presence of the gain
saturation effect for the coherent polaritons.

The reservoir evolution can be traced out in the adiabatic
limit, which implies that the reservoir dynamics is fast as

compared to the condensate evolution [38]. In this case the
pump-saturation effect can be captured in the density depen-
dence of the condensate loss rate which corresponds to the
appearance of the nonlinear dissipative terms in the Ginzburg-
Landau equation (see Appendix A for details).

We assume that polaritons are localized in a trap created
by a spatially modulated pump P(r) or the external potential
Vp(r). In a set of the trap eigenmodes ϕi(r) we choose two
isolated states, such that the whole phase space of the problem
can be reduced to the dynamics of these states. The modes
interact with each other when the spatial profiles of P(r) or
Vp(r) are perturbed. This interaction provides the linear cou-
pling required for establishing of the PT -symmetric regime.

Then, in a two-mode approximation �(r) = ψ1(t )ϕ1(r) +
ψ2(t )ϕ2(r) with

∫ |ϕ1,2|2dr = 1 after integrating out spatial
degrees of freedom, the condensate dynamics is described by
the following equation for the spinor ψ(t ):

i∂tψ = Ĥψ − iνN̂βψ + χ N̂αψ, (6)

where the first term is a linear Hamiltonian

Ĥ = ĤPH + iW =
(

ε + iγ J + iκ
J + iκ −ε − iγ

)
+ iW (7)

characterized by the gain (loss) asymmetry parameter γ , the
net gain W , the eigenenergy half-difference ε, and the real
coupling parameters J and κ. It is crucial that the coupling
between polariton condensates is entirely complex [39]. This
contrasts with the pure optical PT -symmetric systems such
as coupled waveguides or microcavities which are typically
characterized by either real [5] or purely imaginary [20,40]
coupling constants. The coexistence of the Josephson and
dissipative couplings crucially affects the properties of po-
lariton condensates in planar microcavities [32,39,41]. Note
that the model (6) represents a prototypical description of the
system of coupled nonlinear oscillators and covers the fields
far beyond the realm of nonequilibrium condensates.

The last two terms in (6) contain the nonlinear operator

N̂η =
(

η1|ψ1|2 + |ψ2|2 0
0 η2|ψ2|2 + |ψ1|2

)
, (8)

where η stands for α = (α1, α2)ᵀ or β = (β1, β2)ᵀ. The cross-
phase modulation coefficients for both modes are set to 1 by
rescaling the nonlinear parameters ν and χ . The strength of
the self-phase modulation effect is governed by the eigen-
mode’s spatial structure (see Appendix A).

The gain-saturation effect is governed by the non-
Hermitian nonlinear term in Eq. (6). It stems from the
depletion of the reservoir density above the threshold which
balances the growth of the condensate population. The
Hermitian nonlinearity arising from the polariton-polariton
interactions is described by the last term in Eq. (6).

First, we neglect the nonlinear effects. The dissipative
coupling κ obstructs PT symmetry of (7) as long as its anti-
Hermitian part is not antisymmetric with respect to the mode
permutation. Nevertheless, at the specific detuning, namely,

ε = −κJ/γ , (9)

the eigenenergies of (7),

λ1,2 = iW ±
√

J2 − γ 2
√

1 + κ
2/γ 2, (10)

033187-3



CHESTNOV, RUBO, NALITOV, AND KAVOKIN PHYSICAL REVIEW RESEARCH 3, 033187 (2021)

are real provided that

W = 0, (11a)

|J| > |γ |. (11b)

The second requirement coincides with the PT -symmetry
existence condition. When it holds, the condition (11a) defines
a threshold level of pumping below which Im(λ1,2) < 0 and
there is a single stationary state with S = 0.

A real energy spectrum implies that at the threshold the
Hamiltonian ĤPH = Ĥ(W = 0) possesses pseudo-Hermitian
properties. Although it does not commute with the PT oper-
ator, ĤPH can be mapped to the conventional PT -symmetric
Hamiltonian (4) with the use of the unitary rotation [42,43]

R̂ = exp (iσ̂yθ/2)

=
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
, tan(θ ) = κ/γ , (12)

which implies ĤPT = (κ̃/γ )R̂−1ĤPHR̂, where κ̃ =√
γ 2 + κ

2. Therefore, we define the generalized Hermitian

parity operator ˆ̃P = R̂σ̂xR̂−1 = (γ σ̂x − κσ̂z )/κ̃ for

which [ĤPH, ˆ̃PT̂ ] = 0. Thus, the Hamiltonian ĤPH is
P̃-pseudo-Hermitian [22,43].

The Stokes vectors of the eigenstates of ĤPH can be imme-
diately obtained rotating (5) on the angle θ about the Sy axis:

SPH = |C|2
(

±
√

1 − γ 2/J2√
1 + κ

2/J2
,−γ /J,∓κ

√
1 − γ 2/J2

γ
√

1 + κ
2/J2

)ᵀ

.

(13)

Using the threshold pump as it is required by the condition
(11a) is impractical because of the strong quantum fluctu-
ations of the order parameter. That is why polariton lasers
typically operate at W > 0. In this regime, the linear dynam-
ics predicts an exponential growth of the total occupation.
However, even in this case the P̃T -symmetric dimer retains
its underlying symmetry. Since the net gain W drives the
dimer symmetrically, it affects the length but not the direction
of the Stokes vector, which turns out to be the same as at
W = 0. Therefore, it is convenient to resort to the unit-state
vector s = S/|S| for which the expectation value of the anti-
Hermitian operator vanishes,

〈ÂPH〉 = γ sz + κsx = 0, (14)

as it occurs for the stationary states (13). This phenomenon is
known as a passive (or quasi-) PT symmetry [14,44] and can
be revealed in any open system with the loss-rate imbalance
between the subsystems [15].

IV. PSEUDO-HERMITIAN DYNAMICS OF POLARITON
CONDENSATE ABOVE THE THRESHOLD

A. Nonlinear phase diagram

The saturation of the gain prevents an unbounded growth
of the state norm at W > 0. Besides, it fixes the total occu-
pation S of the supermodes which now is not arbitrary but
dictated by the requirement of a balance between the saturated
gain and dissipation. This constraint is expected to rule out

the continuum of superposition states with variable super-
mode occupations. However, it is possible to demonstrate that
the parity-time-symmetric system is capable of supporting
a continuum band of oscillating solutions provided that the
gain-saturation mechanism is properly engineered.

In what follows it will be convenient to recast the nonlinear
problem (6) in the Stokes vector basis:

∂t S = [S × B] + ES + �S, (15)

where

B = (2J, 0, 2ε + χ [(α1 − α2)S + (α1 + α2 − 2)Sz])
ᵀ,

(16a)

E = (2κ, 0, 2γ − ν[(β1 − β2)S + (β1 + β2 − 2)Sz])
ᵀ,

(16b)

� = 2W − ν[(β1 + β2 + 2)S + (β1 − β2)Sz]. (16c)

From now on we assume that the P̃T symmetry of ĤPH is
preserved and focus on the impact of the nonlinear effects.

Equation (15) has either two or four FP solutions. In addi-
tion to two trivial solutions FP1 and FP2 originating from the
linear eigenstates (13), a couple of symmetry-breaking FPs
appear at the strong pumping when the Hermitian nonlinearity
dominates. These states are typically characterized by a large
extent of the population imbalance Sz/|S|.

Besides, the numerical analysis of Eq. (15) reveals the
oscillating solutions. Realization of the particular regime
depends crucially on the strength and the structure of the
nonlinear interactions. In what follows, we assume a symme-
try between the self-phase modulation coefficients in Eq. (8),
η1 = η2. Moreover, since the nonlinear dissipation arises from
the condensate-density dependence of the reservoir occupa-
tion n ∝ |�|2, this term is expected to have the same structure
as the Hermitian nonlinearity. Thus, we take α1 = α2 = β1 =
β2 = η.

A phase diagram on the (η,W ) plane is shown in Figs. 2(a)
and 2(b). Here we fix J = 1 rescaling the time in Eq. (15)
and set χ = 1 which is equivalent to the normalization of the
state amplitude. A variation of the gain W with the given
nonlinear dissipative coefficient ν renders the strength of the
nonlinear effects. Therefore, we keep the value of ν fixed
to ν = 0.2 without loss of generality. The structure of the
phase diagram depends crucially on whether the Josephson
and dissipative coupling parameters are of the same or of the
opposite signs. Here we consider J/κ > 0, while the opposite
case is described in Appendix C.

The oscillating solutions exist at η � 1 as it is shown in
Fig. 2(a), which demonstrates a probability that the dimer re-
sides on the periodic orbit starting to grow from a small initial
seed with a random pseudospin orientation. There are two
types of periodic solutions. The first one is realized at weak
pumping W in the vicinity of η = 1. Note that the domain of
its existence is reflected across the line η = 1 upon changing a
sign of J/κ. For this state, the Stokes vector precesses around
the trivial fixed points FP1,2 akin to the superposition states
realized in the linear PT -symmetric system [see Fig. 2(e)].
This orbit, however, is isolated in the phase space indicating
that it is a LC attractor. The LC of the second type always
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FIG. 2. Dynamics of the nonlinear pseudo-Hermitian dimer.
(a) A phase diagram illustrating the limit cycle (LC) formation
probability, for J = 1, κ = 0.1, χ = 1, ν = 0.2, γ = 0.5, ε obeys
condition (9). The dimer is excited starting from the noisy initial
conditions. The data were averaged over 50 realizations for each
point. (b) The chart of attractors on the (η,W ) plane. The false color
encodes the number of stable fixed-point (SFP) states of the dimer
while the hatched domains contain a stable LC. The inset shows the
magnified region from the lower-left corner. (c) The local extrema
of the sz component plotted against η at W = 0.5. The blue points
correspond to SFPs, the vinous characterize the trajectory of the LC,
the orange ones demonstrate multiple realizations of the neutrally
stable orbits at η = 1. (d) The expectation value of the anti-Hermitian
operator ÂPH averaged over the stable spin trajectory at W = 0.5.
The inset shows the vicinity of η = 1 for different values of the
net gain. (e), (f) The spin trajectories on the unit sphere for three
different regimes indicated by the yellow stars in (b): the LC (e),
multiple nonisolated orbits corresponding to different starting points
(f), coexistence of two FP attractors reached from different initial
conditions (g).

exists at η > 1. Its trajectory passes near the symmetry-
breaking fixed point (see Appendix D).

This analysis also demonstrates the presence of the large
domains where several stable attractors coexist. Figure 2(b)
shows the regions of multistability between two FPs [see
Fig. 2(g) for the example of the relevant dynamics], three FPs,
and between a single FP and a stable LC solution. The latter
regime corresponds to the gradient colors in the probability
map, Fig. 2(a).

The phase diagram indicates an exceptional role of the
case of equal self- and cross-phase modulation coefficients
η = 1. It corresponds to the switching between the FP and LC
regimes. Besides, in its vicinity, the dynamics demonstrates
a slowing-down phenomenon when the time needed for a

perturbed state to return to the stable attractor diverges. Fig-
ure 2(c) shows a bifurcation diagram for a fixed net gain and
varying self-to-cross-phase modulation ratio η. The diagram
contains a collection of the local extrema of the normalized
population imbalance sz = Sz/S for the attractors. The FP
solutions are discontinuously transformed to the LC solution
as η exceeds 1. It turns out that exactly at η = 1 there is
a continuum of oscillating trajectories. The orange points in
Fig. 2(c) correspond to multiple realizations of the periodic
solutions starting from random initial conditions. The exam-
ples of the relevant trajectories on the surface of the unit
sphere are shown in Fig. 2(f).

The continuum of periodic orbits is a fingerprint of
the pseudoconservative dynamics. The parity-time-symmetric
properties of these states can be examined with the use of
the P̃T -symmetry criterion (14). For all stable attractors,
the expectation value of the anti-Hermitian part of the linear
Hamiltonian 〈ÂPH〉 vanishes as η approaches 1 [see Fig. 2(d)].
This result holds for any value of net gain parameter, as it is
shown in the inset. Note that for the periodic solutions, 〈ÂPH〉
was averaged over the spin trajectory.

B. Pseudoconservative dynamics at the equal self- and
cross-phase modulation coefficients

The surprising behavior at the equal cross- and self-phase
modulation coefficients can be attributed to the specific sym-
metry of the nonlinear terms. The net gain W pumps the
dimer symmetrically, which results in the passive PT sym-
metry in the unsaturated regime. The gain-saturation effect
ruins the symmetry of the state if the relevant nonlinear term
has a different symmetry. However, at η = 1 the dissipative
nonlinearity depends solely on the total number of particles
S [see Eq. (8)], i.e., it shares the same symmetry as the gain
term. That is why it is not detrimental to the pseudo-Hermitian
properties of the system. The conservative nonlinearity in this
case governs evolution of the global phase of the dimer but
disappears from Eq. (15). As a result, the nonlinear terms enter
Eq. (15) only via the � parameter which affects the length but
not the orientation of the Stokes vector.

That it is why it is reasonable to recast Eq. (15) with the
use of the normalized vector s. At η = 1 it yields

∂t s = [s × b], (17)

where the components of the effective magnetic field b are

bx = −2(J + γ Sy), (18a)

by = 2(γ Sx − κSz ), (18b)

bz = −κ

γ
bx. (18c)

Since the problem is devoid of both the net gain and the
nonlinear parameters after the normalization, it has the same
stationary solutions (13) (with |C| = 1) as the linear P̃T -
symmetric Hamiltonian ĤPH.

Equation (17) predicts precession of the Stokes vector
about the effective magnetic field. The precession frequency
|b| is not constant because bi are governed by the instanta-
neous position of the Stokes vector. However, the direction of
the vector b is conserved dynamically. It is straightforward
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FIG. 3. Pseudoconservative dynamics above threshold. Preces-
sion of the Stokes vector s about the effective magnetic field b whose
direction coincides with the vector SB. The Stokes vector trajectory
is shown by the yellow circle. The possible positions of the SB vector
are indicated by the red arc which belongs to the plane inclined by the
angle θ with respect to the (sx, sy ) plane. The parameters are J = 1,
κ = 0.25, χ = 1, ν = 0.2, W = 0.5, η = 1, γ = 0.75, ε obeys (9).

to demonstrate that the polar υ or the azimuthal ζ angles
of b (see Fig. 3) are the integrals of motion of Eq. (17).
The existence of the conserved quantities indicates that the
dynamics is conservative. Therefore, the stationary solutions
(13) can not be attracting FPs [30].

Since the orientation of b is fixed by the initial position
of s, the Stokes vector follows the circular trajectories on the
Bloch sphere (see Fig. 3). The positions of the centers of these
circles are given by the vector

SB = b(b · s)/|b|2. (19)

Obviously SB is an integral of motion too. With the use of
(18) and (19) we obtain a parametric equation which defines

all possible positions of SB:

S2
B = − J

γ
SBy, (20)

where SBy = SBby/|b| stands for the projection of SB on the
sy axis. Equation (20) defines the circle in the plane turned
on θ about the sy axis. The radius of this circle is J/2γ

while its center is located at (0,−J/2γ , 0) (see the red arc
in Fig. 3). The circle crosses the point of origin, where SB = 0
and the Stokes vector follows the great circle of the Bloch
sphere. Also, it intersects the surface of the Bloch sphere
at the fixed points (13). In-between, the normalized Stokes
vector precesses along a circular trajectory whose radius can
be varied continuously from zero (at the FPs) to unity (at the
origin) depending on its initial position. Thus, the ensemble
of possible trajectories of the Stokes vector spans the entire
Bloch sphere.

The presence of the pseudospin precession can be revealed
in the condensate emission spectrum (see Fig. 4). In the
pseudoconservative regime, the spectrum has a structure of
a frequency comb. This contrasts to the spectral shape of the
linear superposition state (3). The formation of the frequency
comb is a consequence of the nonmonotonous rotation of the
Stokes vector about the time-dependent magnetic field (18).
Interestingly, in contrast to the LC regime, the relative strength
of the spectral components is not fixed but depends on the tra-
jectory on which the dimer resides. The spectra corresponding
to the adjacent periodic orbits are shown in Fig. 4(a). Close to
stationary solutions, there is one considerable peak originat-
ing either from FP1 (the red curve) or FP2 (the blue curve).
Away from the FPs, the spectrum has two strongest peaks
and several equidistant multiplets. The intensity accumulated
in the multiplets increases in the strong pump regime due to
the contribution of the parametric processes triggered by the
conservative nonlinearity. When switching the dimer between
two FP solutions, the positions of the strongest peaks remain
fixed but their relative weights vary.

The weights of the lines corresponding to FPs
can be defined as the total intensity |S1,2(ω)|2 =
| ∫ ψ1,2(t ) exp(−iωt )dt |2 concentrated in the spectral line.
The weights extracted from the numerical simulations

FIG. 4. (a) The emission spectrum S2(ω) for different initial positions of SB vector. The corresponding trajectories of the Stokes vector are
illustrated in the inset. The red and the blue curves correspond to FP1 and FP2. (b) The weights of the spectral components originating from
the fixed points FP1 (solid lines) and FP2 (dashed lines) for the spectra shown in (a). An angle ϕ on the horizontal axis parametrizes initial
position of SB as it is shown in the inset. (c) The breaking of pseudo-Hermiticity in the linear regime χ = 0 triggered by the increase of the
gain asymmetry γ . The remaining parameters are fixed except for the detuning ε whose value is being tuned continuously in order to satisfy
the P̃T -symmetry condition (9). The parameters are the same as in Fig. 3.
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FIG. 5. (a) The sketch of a ring-shaped microcavity capable
of supporting of the pseudo-Hermitian dynamics of the polariton
condensate. (b) Spatial distribution of the ridge-shaped complex po-
tential Vp(r) originating from the metallic fringes on the top. Similar
potentials can be also induced optically with use of a spatio-optical
modulator.

are shown in Fig. 4(b). Since the P̃T operator breaks
the inversion symmetry between the modes, one has to
distinguish the spectra S1(ω) and S2(ω) emitted by different
modes although the corresponding dynamics are qualitatively
similar. Figure 4(b) demonstrates that the occupation of
the stationary solutions can be tuned continuously at the
fixed system parameters. In practice, it can be done with the
coherent pulse driving the system at the frequency of the
stationary solution. The numerical simulations of this effect
are presented in Appendix B.

Note that the oscillating solutions disappear if the con-
ditions (9) and (11) are violated. In particular, it happens
if the pseudo-Hermiticity of ĤPH is spontaneously broken
at |γ | > |J| [see Fig. 4(c)]. The multicomponent spectrum
(with two dominating linear eigenstates) exists below the
symmetry-breaking threshold, γ � J . However, at γ > J , the
dimer resides to the single stable FP.

V. DISCUSSION

In this section we discuss possible experimental realiza-
tions of the predicted pseudoconservative dynamics. Several
conditions imposed onto both linear and nonlinear coupling
and detuning of dimer modes narrow down the range of
available systems where the effect could be observed. The
condition on the anti-Hermitian nonlinear operator form (8)
is satisfied in cavities with periodic complex potentials that
can be induced by metallic fringes on the top of the cavity
[45]. Alternatively, a periodic complex potential can be cre-
ated by a spatially inhomogeneous optical pumping achieved
with use of spatio-optical modulator [46]. The corresponding
two-mode basis in this case is the pair of counterpropagating
plane waves with wave vectors ±π/a with a being the poten-
tial period (see Fig. 5). However, the condition on the linear
coupling (9) is out of reach as the dimer detuning ε is absent
due to the symmetry of the system. On the other hand, this
symmetry can be externally broken, moreover, the real and
imaginary parts ε and γ can be controlled independently.

The asymmetry γ of the effective pumping can be in-
duced by pseudodrag effect [47] caused by motion of exciton
reservoir, pumping the condensate through bosonic stimulated
scattering. This motion, in turn, can be imparted either by
electric current in proximity due to Coulomb forces or by

incoherent optical pumping of excitons. In the vicinity of the
condensation threshold for one of the doublet states the pump
asymmetry can be estimated as γ = 4πγcλ

2
thkr/a, where λth

is the exciton reservoir de Broglie wavelength, kr is its mean
wave-vector value, and γc is the cavity loss rate.

The real energy splitting ε can be induced by the motion of
the potential acting upon the condensate of polaritons. The
rotation of the optically induced potential in the case of a
finite-size ring configuration [see Fig. 5(a)] would be one way
to break the symmetry between clockwise and anticlockwise
current solutions. Alternatively, stirring potential similar to
those used for rotating excitons [48] can be imposed by pe-
riodic alternation of voltage at the metallic overlayer fringes.
Regardless of realization, the energy splitting can be estimated
as ε = 2π h̄v/a, where v is the potential shift velocity.

Finally, the coupling matrix elements J = w/π and κ =
u/π are controlled by the amplitudes of real and imaginary
parts of the periodic effective potential Vp(r) [see Fig. 5(b)].
The linear condition (9) then transforms into the condition on
the reservoir and the potential motion characteristics:

krv = − a2uw

8π4h̄γcλ
2
th

. (21)

VI. CONCLUSIONS

The PT symmetry endows open systems with the dynam-
ics which can be naturally expected for their isolated coun-
terparts. However, the most important practical applications
of this phenomenon take advantage of the symmetry-broken
phase to the detriment of the pure PT -symmetric regime
[11–14,16–18]. Our findings demonstrate that the dynamics
typical of the isolated systems can be efficiently reproduced
in a driven-dissipative system composed by two quantum
states characterized by different gain (or loss) rates. This
implies a combination of the passive PT symmetry with
the specifically engineered mechanism of the gain saturation.
The behavior of the normalized state vectors possesses all
the phenomenology of the conservative dynamics. In contrast
to the conventional PT symmetry, the discussed phenom-
ena can be realized at an arbitrary level of pumping of a
driven-dissipative system, such as a polariton laser above the
threshold. Predicted oscillatory solutions mimic superposi-
tion states in what concerns their suitability for a coherent
manipulation. The driven optical systems operating in the
pseudoconservative regime may serve as a platform for the
implementation of computational devices [49] which inherit
advantages of the driven-dissipative platform including long
coherence time, high tunability, and coherent optical control.
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APPENDIX A: TWO-STATE ANSATZ

The spinor equation (6) can be obtained from the
two-dimensional model of the trapped exciton-polariton con-
densate. We use the driven-dissipative model [50] which
describes the mean-field dynamics by the Ginzburg-Landau
equation for the order parameter �(r) coupled to the kinetic
equation for the density n(r) of incoherent excitons:

i∂t� =
(

− 1

2m
∇2 + Vp(r) + grn

)
�

+ i

2
(Rn − γc)� + gc|�|2�, (A1a)

∂t n = P(r) − (γr + R|�|2)n. (A1b)

Here h̄ = 1, m is the polariton effective mass, gc and gr

describe the interaction of polaritons between themselves and
with incoherent excitons, respectively, R is the rate of scatter-
ing from the reservoir to the condensate, γc characterizes the
cavity losses, and γr stands for the reservoir relaxation rate.

Equation (A1b) is excluded by assuming that the reservoir
relaxation γr is fast. This approximation corresponds to the
conditions of the recent experiments [34]. In this case, the
reservoir density follows instantly the variation of the conden-
sate distribution such as n(r) ≈ P(r)/γr − P(r)R|�(r)|2/γ 2

r .
When substituted in (A1a), this expression yields the non-
linear dissipative term which corresponds to the relaxation
rate governed by the condensate density. Then we use the
two-level ansatz for the condensate order parameter:

�(r) = ψ1(t )ϕ1(r) + ψ2(t )ϕ2(r), (A2)

where the mode distribution functions obey the normalization
conditions

∫ |ϕ1,2|2dr = 1. We substitute the ansatz (A2) into
(A1a) and integrate out spatial degrees of freedom assuming
that the overlapping integrals

∫
ϕiϕ

∗
j dr are small compared

to unity which implies that the modes are nearly orthogonal.
This procedure yields two coupled equations for the mode
amplitudes:

i∂tψ1,2 = [ε1,2 + i/2(W1,2 − γc)]ψ1,2 + (J + iκ)ψ2,1

+χ
(
α1,2|ψ1,2|2 + |ψ2,1|2

)
ψ1,2

−iν
(
β1,2|ψ1,2|2 + |ψ2,1|2

)
ψ1,2, (A3)

where

ε1,2 = − 1

2m

∫
ϕ∗

1,2∇2ϕ1,2dr +
∫

ϕ∗
1,2V (r)ϕ1,2dr,

where V (r) = Vp(r) + grP(r)

γr
,

J + iκ = − 1

2m

∫
ϕ∗

1∇2ϕ2dr +
∫

ϕ∗
1V (r)ϕ2dr,

W1,2 = R

γr

∫
P(r)|ϕ1,2(r)|2dr, (A4)

ν = R2

γ 2
r

∫
P(r)|ϕ1(r)|2|ϕ2(r)|2dr,

χ =
∫ [

gc − P(r)Rgr/γ
2
r

]|ϕ1(r)|2|ϕ2(r)|2dr,

α1,2 =
∫

[gc − P(r)Rgr/γ
2
r ]|ϕ1,2(r)|4dr∫

[gc − P(r)Rgr/γ 2
r ]|ϕ1(r)|2|ϕ2(r)|2dr

,

β1,2 =
∫

P(r)|ϕ1,2(r)|4dr∫
P(r)|ϕ1(r)|2|ϕ2(r)|2dr

.

Defining the gain asymmetry parameter γ = (W1 − W2)/4,
the net gain W = (W1 + W2)/4 − γc/2, and the energy de-
tuning ε = (ε1 − ε2)/2, we recast (A3) in the form of the
spinor equation (6) with the linear Hamiltonian (7).

APPENDIX B: PSEUDOCONSERVATIVE DYNAMICS IN
THE PRESENCE OF THE TIME-DEPENDENT RESERVOIR

So far, we assumed the presence of the gain asymmetry
between the uncoupled modes which is required to fulfill
the PT -symmetry criteria when the coupling parameter is
complex. However, the pseudoconservative dynamics can also
occur in a dimer with identical gain parameters W1 = W2 =
Wp provided that the loss rates are different, γc1 
= γc2. The
required asymmetry of the loss rates can be achieved with the
use of various approaches for the spatial loss engineering [51].
A replacement of the unequal individual gains with the un-
equal losses has no effect on the pseudo-Hermitian dynamics
predicted by Eq. (6). The Hamiltonian (7) retains its form with
the new definitions for the asymmetry γ = (γc2 − γc1)/4 and
the net gain W = Wp/2 − (γc1 + γc2)/4 parameters.

The key assumption made in the main text is that the gain
saturation occurs with no retardation. For the trapped polari-
ton condensate, it implies that the reservoir instantly adjusts
to the changes of the condensate density. It is instructive to
demonstrate that the retardation of the gain-saturation mecha-
nism can have no impact on the existence of the continuum of
periodic solutions.

Here we account for the influence of the reservoir dy-
namics on the parameter range when adiabatic elimination
is impossible. The gain-saturation effect is described by the
term Rn|�|2 [see Eq. (A1b)] which accounts for the scattering
from the reservoir to the condensate. Substituting n(r, t ) =
N (r, t )nr (t ), using the two-mode ansatz for the condensate
density, and assuming the loss-rate asymmetry between the
uncoupled modes, we obtain the model which explicitly ac-
counts for the time dependence of the reservoir population:

i∂tψ = ĤPHψ + iWψ + gnrψ, (B1a)

∂t nr = P0 − γrnr − R̄nr‖ψ‖, (B1b)

where P0 = ∫
P(r)dr, the net gain is governed by the reser-

voir density W ≡ W (n) = R̄nr (t )/2 − (γc1 + γc2)/4. Here
we assumed that

∫
N (r)|ϕ1(r)|2dr = ∫

N (r)|ϕ2(r)|2dr = Q.
The value of Q governs the effective rate of the exciton
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FIG. 6. Switching between the neutrally stable pseudospin tra-
jectories. The dynamics is governed by Eqs. (B1) which account for
the presence of the reservoir. (a) The pseudospin projections on the
Bloch sphere with a unitary radius. Blue, orange, and green circles
correspond to the stable rotation of the pseudospin while the red lines
indicate the trajectories when the external coherent field is switched
on. The corresponding mode populations |ψ1|2 and |ψ2|2 are shown
on (b) and (c), respectively. Two coherent pulses F (t ) illustrated in
(d) drive mode ψ1 at t = 64 and 170. Time is measured in units of
the inverse Josephson coupling strength |J|−1. The amplitudes of the
first and the second pulses are F0 = 0.35|J| and 0.75|J|, respectively.
The duration of both pulses is τ = 2|J|−1. Other parameters of the
model (B1) are P = 250, γr = 20, κ = 0.2, J = −1, ε = −κJ/γ ,
γc1 = 2.5, and γc2 = 5.5, where all energies are measured in units of
|J|.

scattering to the condensate R̄ = RQ. The last term in
Eq. (B1a) stems from the condensate interaction with the
hot excitons from the reservoir. The effective strength of this
interaction is g = grQ.

Equation (B1a) can be transformed to the Stokes vector
basis. The result is equivalent to Eq. (15) but with B =
2(J, 0, ε)ᵀ and E = 2(κ, 0, γ )ᵀ. The reservoir enters the
equation in the effective gain parameter � = 2W = R̄nr (t ) −
(γc1 + γc2)/2 only. However, the evolution of the normalized
Stokes vector s does not depend on � and thus on the reservoir
dynamics as well. Hence, even in the presence of the time-
dependent reservoir, the behavior of s is governed by Eq. (17),
where the effective field b is independent of W . Note that this
result is valid at any reservoir relaxation rate γr .

The presence of the continuum of periodic orbits can be
also demonstrated by introducing the coherent pumping pulse
F (t ) which drives a single-mode triggering switching between
stable trajectories. In particular, we take it as a Gaussian
pulse of the duration τ , which drives the mode ψ1 at the
time moment t0, F (t ) = F0 exp[−(t − t0)2/2τ 2]. The relevant
dynamics is demonstrated in Fig. 6.

APPENDIX C: PHASE DIAGRAM AT NEGATIVE
JOSEPHSON-TO-DISSIPATIVE COUPLING RATIO

Figure 2 demonstrates a typical example of the phase dia-
gram. It illustrates different types of bifurcations which occur
in the P̃T -symmetric system with saturated gain. The used
parameter space is chosen to highlight the impact of the non-
linear effects. The positions of the domain boundaries depend
on the parameters of the linear Hamiltonian (7) as well. In
particular, the abrupt changes occur if one inverts the sign of
the Josephson-to-dissipative coupling ratio. An example of the

FIG. 7. (a) A phase diagram illustrating the limit cycle formation
probability. All the parameters are the same as in Fig. 2, but κ =
−0.1. The dimer is excited starting from the noisy initial conditions.
The data were averaged over 50 realizations for each point. (b) The
chart of attractors on the (η,W ) plane.

phase diagram for this case is shown in Fig. 7. As in the main
text, we assume that the P̃T symmetry of ĤPH holds.

We keep following the convention that the periodic tra-
jectories which encircle the trivial FPs are called LCs of
the first type. The LC of the second type has the trajectory
which passes around the symmetry-breaking FPs. When the
Josephson J and the dissipative κ couplings have different
signs, the LC of the first type occurs at η < 1 in contrast to the
case J/κ > 0 shown in the main text. However, the location
of the LC of the second type remains unaffected if the sign of
the relation J/κ is inverted.

APPENDIX D: NONLINEAR DYNAMICS OF THE
PARITY-TIME-SYMMETRIC DIMER

Here we give an extended description of the nonlinear
dynamics of the P̃T -symmetric dimer discussed in the main
text. For the sake of clarity, we focus on the case of positive
ratio of the Josephson-to-dissipative coupling. Figure 8(a)
demonstrates the very same chart of attractors on the (η,W )
plane which is shown in Fig. 2(b) but with the examples of
the Stokes vector evolution in every domain. The domains
on the chart are distinguished by the type and the number of
stable attractors. The number of FPs which are stable against
small perturbations varies from zero to three. Besides, there
are two types of stable LCs whose existence domains do
not overlap for the considered parameters. However, as the
strength of dissipative coupling κ approaches J , the boundary
of the LC of the first type shifts towards larger values of W .
In this case, both LCs can coexist at the same parameters. In
such multistability domains, formation of the particular state
depends on whether the initial position of the Stokes vector
resides in its basin of attraction or not.

Three scenarios of the dimer evolution were illustrated
in Figs. 2(e), 2(f), and 2(g). The most important one corre-
sponds to the rotation on a circular trajectory which belongs
to the continuous band of closed orbits in the pseudoconser-
vative regime [see Fig. 2(f)]. This regime is destroyed at any
η 
= 1. In particular, above η = 1 the Stokes vector slowly
approaches a single stable LC (of the first kind) which is a
final state regardless of the initial pseudospin position [see
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FIG. 8. Nonlinear dynamics of the P̃T -symmetric dimer. (a) The
chart of attractors on the (η,W ) plane for the same parameters as in
Fig. 2(b). (b)–(g) The scenario of approaching stable attractors in
different dynamical regimes indicated by the yellow stars on (a). The
green dots correspond to the FP solutions. The orange orbits indicate
the trajectories of the stable LCs.

Fig. 2(e)]. With the further increase of η a subcritical Hopf
bifurcation (the yellow line in Fig. 8 between the vinous and

the gray domains) changes stability of one of the trivial FP so-
lutions and gives birth to the unstable LC. In this case, the LC
of the first type coexists with the nodal point [see Fig. 8(b)].
The unstable LC then moves towards the stable one as either
W of η increase. When they collide (the dashed-dotted line in
Fig. 8), the stable LC solution disappears while the trivial FP
remains the only stable attractor.

At strong gain W , a couple of symmetry-broken FPs ap-
pear in the saddle-node bifurcation. It increases the total
number of stable attractors by one. Reaching either of two
stable FP solutions in this regime is shown in Fig. 2(g). With
the further increase of the gain, the stable symmetry-broken
state changes to an unstable spiral surrounded by a small
isolated closed orbit. This is the LC of the second type, whose
existence domain is indicated by the hatched area in the upper-
right corner of Fig. 8(a). The relevant dynamics of the Stokes
vector is illustrated in Fig. 8(c). The dimer either resides on
the LC or approaches the nodal point depending on its initial
position. The orbit of the LC expands as the gain increases
further. At large W , it touches the saddle symmetry-broken
FP and disappears in the homoclinic bifurcation leaving the
trivial nodal point a sole stable solution.

Our numerical analysis did not reveal the presence of the
stable LC solutions below η = 1. Instead, there are a plethora
of stable FPs. In particular, in the vicinity of η = 1, there are
two trivial FPs which stable simultaneously [see Fig. 8(d)].
Away from η = 1, one of the trivial FP losses is stability giv-
ing birth to the large domain where a single nodal point exists
[see Fig. 8(e)]. An appearance of the symmetry-broken states
brings another stable attractor [see the domain in the lower-
right corner of Fig. 8(a) and an example of the corresponding
dynamics in Fig. 8(f)]. The most exotic case is realized when
the symmetry-broken states appear at high imbalance of the
self- and cross-phase modulation coefficients and at weak gain
[the orange domain in the inset of Fig. 8(a)]. In this case, both
trivial and a single symmetry-broken solutions are stable [see
Fig. 8(g)].
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