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Quantum-mechanical force balance between multipolar dispersion
and Pauli repulsion in atomic van der Waals dimers
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The structure and stability of atomic and molecular systems with van der Waals (vdW) bonding are often de-
termined by the interplay between attractive dispersion interactions and repulsive interactions caused by electron
confinement. Arising due to different mechanisms—electron correlation for dispersion and the Pauli exclusion
principle for exchange repulsion—these interactions do not appear to have a straightforward connection. In this
paper, we use a coarse-grained approach for evaluating the exchange energy for two coupled quantum Drude
oscillators and investigate the mutual compensation of the attractive and repulsive forces at the equilibrium
distance within the multipole expansion of the Coulomb potential. This compensation yields a compact formula
relating the vdW radius of an atom to its multipole polarizabilities, R,qw = 4, a,z/ "D where [ is the multipole
rank and A, is a conversion factor. Such a relation is compelling because it connects an electronic property of
an isolated atom (atomic polarizability) with an equilibrium distance in a dimer composed of two closed-shell
atoms. We assess the accuracy of the revealed formula for noble-gas, alkaline-earth, and alkali atoms and show
that A; can be assumed to be universal constants. Besides a seamless definition of vdW radii, the proposed
relation can also be used for the efficient determination of atomic multipole polarizabilities solely based on the
corresponding dipole polarizability and the vdW radius. Finally, our work provides a basis for the construction
of efficient and minimally empirical interatomic potentials by combining multipolar interatomic exchange and

dispersion forces on an equal footing.

DOI: 10.1103/PhysRevResearch.3.033181

I. INTRODUCTION

Noncovalent interatomic and intermolecular interactions
represent one of the key factors that determine the physic-
ochemical properties of molecules and materials across
chemistry, biology, and materials science [1-4]. Noncova-
lent interactions are traditionally classified in a perturbative
formalism, from which electrostatics, induction, Pauli (ex-
change) repulsion, and van der Waals (vdW) dispersion arise
as the leading contributions from the first two orders of
perturbation theory. From the perspective of computational
modeling, the individual terms are usually treated with dif-
ferent effective approaches. Especially the methods used to
describe Pauli repulsion and vdW dispersion typically rely
on fundamentally different physical models. The vdW disper-
sion represents a major part of long-range electron correlation
forces arising from Coulomb-coupled instantaneous quantum
fluctuations of the electronic charge distribution [5-10]. Com-
mon (semi)local approximations to density-functional theory
(DFT), representing one of the main workhorse methods in

*ornella.vaccarelli@uni.lu
alexandre.tkatchenko @uni.lu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2021/3(3)/033181(15) 033181-1

atomistic modeling, neglect long-range correlation forces and
thus do not account for vdW interactions. In recent years, an
intense effort has been devoted to develop robust approaches
to address this challenge [11-16]. Although a unified vdW
functional valid for all kinds of systems is still under construc-
tion [17], significant progress has been achieved to include
dispersion interactions in the form of nonlocal (vdW) den-
sity functionals [18-21]. Furthermore, coarse-grained vdW
models have shown great success in describing dispersion
interactions at lower computational costs [22-26]. Among
them, the quantum Drude oscillator (QDO) model [27-33]
has been firmly established as an efficient and accurate ap-
proach for modeling and understanding vdW interactions
[32-38]. Within this approach, each QDO models an atom or
a molecule, representing the effective, localized response and
polarization fluctuation of its valence electrons. The success
of the coupled-oscillator model is exemplified by its excellent
description of the electronic response properties of atoms and
molecules. In a continuous formalism, with one oscillator at
every point in space, coupled oscillators can describe any
response allowed by quantum field theory and thus model the
response of arbitrary molecules or materials [39,40]. In the
common practical coarse-grained formalism, with each oscil-
lator representing one atom, the QDO framework reproduces
the leading-order behavior of the electronic polarizability of
atoms [41], providing an accurate and reliable description of
polarization effects in molecules and materials [42,43]. More-
over, the QDO model allows one to describe excess electrons
in matter [28] and to reproduce dispersion-polarized electron
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densities [38] as well as Coulomb interactions between dipo-
lar quantum fluctuations [44].

Extending the applicability of the QDO framework towards
a more complete and systematic description of noncovalent
interactions necessitates the incorporation of the exchange-
induced repulsion [45]. Recently, we made a first step in
this direction by evaluating the exchange energy between two
QDOs within the dipole approximation of the Coulomb poten-
tial [46]. Here, we take the next natural step by constructing
a common coarse-grained approach for the multipolar dis-
persion and exchange interactions in vdW-bonded atomic or
molecular dimers.

It is important to embed our developments of coarse-
grained models into the broader context given by the theory
of intermolecular interactions for systems composed of nuclei
and electrons [1], which states that the equilibrium geome-
try of two vdW-bonded atoms or molecules is governed by
an interplay of several interactions. The generalized Heitler-
London (GHL) theory [47] offers one of the most compact
schemes for the interatomic energy decomposition. In the
GHL approach, isotropic closed-shell atoms only experience
mutual exchange-repulsion and dispersion forces. Another
very successful scheme to describe intermolecular interac-
tions and analyze their complex interplay is based on the
symmetry-adapted perturbation theory (SAPT) decomposi-
tion [48-50]. The higher-level SAPT methods, while being
computationally expensive, approach a “gold standard” ac-
curacy [51] comparable to the coupled-cluster method with
single, double, and perturbative triple excitations [CCSD(T)]
for small molecules. Within second-order SAPT, which is the
most practical approach, one obtains six contributions [1,45]:
(i) electrostatics, E{.); (ii) exchange, E("; (iii) induction,
Ei(nzd) ; (iv) exchange induction, Ee(f_)md; (v) dispersion, Eéizs)p;
and (vi) exchange dispersion, Ee(f_)dis . Here, the superscripts
“(1)” and “(2)” denote the order ofp the perturbation theory
required to derive the corresponding term. In the case of
neutral and isotroyic fragments, the two induction contribu-
tions, Ei(li‘) and Eéf_ind, practically compensate each other [52].
Then, the problem reduces to four remaining terms, which
still yield significant contributions to the interaction energy for
noble-gas dimers [53]. On the other hand, the Tang-Toennies
(TT) model [54], relying just on the exchange-repulsion and
dispersion-attraction interactions, is known to reproduce the
binding energy curves of closed-shell dimers with high ac-
curacy and efficiency [55]. Recently, an extension (TT2) of
this model was proposed [56] to accurately describe noble-gas
dimers also at relatively short internuclear distances. Based on
the concepts of the GHL theory for interatomic interactions
[47], the TT model can be considered as one of the most
compact yet accurate models for closed-shell vdW dimers.
According to the discussion in Ref. [47], the simplicity of
the TT potential arises due to the used analytical asymptotic
form of the exchange energy obtained by the surface integral
method [57,58]. Since this method is known to deliver the
same asymptotic result [59] as the approach based on the
multipole expansion of the perturbing potential [60,61], the
latter can be used as an alternative way to construct com-
pact TT-like potentials. This idea is supported by our recent
study [46], which established a quantum-mechanical scaling

law, o o R/, between the atomic dipole polarizability and
the vdW radius from the force balance between exchange
repulsion and dispersion attraction at the equilibrium distance.
The corresponding analysis in Ref. [46] was based on the
consideration of these two forces stemming from the dipo-
lar term in the multipole expansion [2,3] of the interatomic
Coulomb potential. Subsequently, we have derived [62] the
proportionality coefficient, which finally led to the relation
o) = (dmeg /ag)oz;/ SRZdW, as expressed in terms of the vac-
uum permittivity €y, the Bohr radius ag, and the fine-structure
constant ¢t y. Such a relation is not trivial because it connects
an electronic polarizability of an atom with an equilibrium
distance in a dimer composed of two closed-shell atoms.

In this paper, we build on our previous study by going be-
yond the dipole approximation and considering further terms
in the multipole expansion of the interatomic Coulomb po-
tential. This is performed for both exchange and dispersion
interactions between closed-shell systems described within
the QDO model. To this end, we investigate the balance
between the two types of forces, which yield the dominant
contributions in vdW-bonded systems. For atomic dimers
at the vdW equilibrium distance, this allows us to study a
term-by-term compensation of the attractive (dispersion) and
repulsive (exchange) forces for each contribution in the mul-
tipole expansion of the full Coulomb interaction between the
QDOs. This mutual compensation yields a relation between
atomic multipole polarizabilities and the vdW radius as first
empirically obtained in Ref. [46]. The presented relation en-
ables a practical and seamless determination of vdW radii as
an effective atomic length scale from atomic polarizabilities.
From the opposite perspective, the generalized relation also
allows one to obtain atomic polarizabilities across the periodic
table and at arbitrary multipole rank based on (pretabulated)
vdW radii and without the need to resort to the otherwise chal-
lenging direct computation of electronic response properties.
Altogether, our results deliver deeper insights into the connec-
tion between Pauli repulsion and dispersion attraction—two
forces which appear at different orders of SAPT. The exis-
tence of a quantum-mechanical relation between the two main
contributions to the vdW interaction energy at the equilibrium
distance reveals a strong connection between exchange and
correlation effects and should have implications for achieving
an improved understanding of the stability of vdW-bonded
matter.

II. METHOD: QUANTUM DRUDE OSCILLATORS

Let us consider two vdW-bonded atoms, A and B, separated
by a distance R, and describe them within the QDO model, as
illustrated in Fig. 1. Each of the two QDOs representing atoms
has three effective parameters—mass p, charge ¢, and char-
acteristic frequency w—which are parametrized to reproduce
three atomic observables {«, Cg, Cg} [33]:

0= M=%, qg=vpora, (1)

3n Otl w Cg
where the Drude (quasi)particle and the related nucleus have
charges (—¢g) and g, respectively. The conditions of Eq. (1) use
the dipole polarizability «; and the dominant dispersion co-
efficients C¢ (induced-dipole—induced-dipole interaction) and
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FIG. 1. Schematic representation of two QDOs separated by the
distance R = |R|. The black and white spheres represent the two
Drude particles and fixed nuclei, respectively. The Coulomb inter-
actions between the two QDOs (gray arrows) and the harmonic
intra-QDO potentials (blue arrows) are explicitly highlighted with
their connection to Egs. (2) and (4).

qA4B
‘R*I‘l +I‘2|

Cs (induced-dipole—induced-quadrupole interactions) in order
to parametrize this powerful model, able to efficiently repro-
duce long-range forces and electronic response properties of
atoms and molecules.

The Hamiltonian of the interacting QDOs is given by H =
Hy + V, where V is the interaction and Hy = hy + hp consists
of the unperturbed QDO Hamiltonians

ha(r) = —(W*/2p4) V5 + (Hawy /2)r?,
hg(r) = —(F*/2up)V; + (upwz/2)(x —R)*.  (2)
The corresponding wave functions are given by
HA®A 1'2

Ya(r) = (,uAa)A/nh)% e~

Yp(r) = (upwp/Th)" e~ G ER)?

3

The full Coulomb interaction between the two QDOs is

V_CIA(]B{l 1 1 1 }
C4me|R IR—ri+1r] [R-r| [R+n)

where r; and r; are the coordinates of the Drude particles
measured from the corresponding fixed nuclei. The Coulomb
interaction can be written as a multipole expansion as [63]

V= Z Vo=Vi+Vo+V34+V4+Vs+-.., (5)

n=1,2,...

where V, o« R"""*? with R = |R|. Furthermore, n = I, +
Ip — 1, where Iy and I refer to the rank of the multipole
moments of the two interacting QDOs. Here, we restrict
our consideration to the first five terms in the multipole
expansion of Eq. (5). The first term, V; o« R™3, corre-
sponds to the dipole approximation of the Coulomb potential,
Vi = Vaip = %((r}g” —W), describing the dipole-
dipole (d-d) electrostatic interaction (I4 = /g = 1). The higher
terms arise from the dipole-quadrupole (d-q) interaction for
V5 o« R, dipole-octupole (d-0) + quadrupole-quadrupole
(g-q) interactions for V3 oc R™>, dipole-hexadecapole (d-h)
+ quadrupole-octupole (q-0) interactions for V4 o« R=%, and
dipole-triakontadipole (d-t) 4+ quadrupole-hexadecapole (q-
h) + octupole-octupole (0-0) interactions for Vs o« R~ . The

formulas for V,, with n =2, 3, 4, and 5, are given in
Appendix A. Within the next section, we consider the multi-
polar contributions to the dispersion and exchange interaction
between two QDOs. The analytical formulas are derived in
the most general form valid in any system of units, whereas
we employ atomic units (a.u.; with 4mey = /i = 1) to present
our numerical results in Sec. III D.

III. RESULTS

A. Dispersion interaction

The multipole expansion has been the starting point for
quantum-mechanical perturbation calculations of the vdW
dispersion interactions of Coulomb-coupled Drude oscilla-
tors [15,28,64]. Owing to this approach, the vdW dispersion
energies can be expressed in terms of the atomic multipole
polarizabilities (with / = 1,2, ...)

2 -1
AN =D/ &
= = 6
%= ®1.Qp0 <,ua)2) l (2,ua) ©

by using the series expansion [33]

; atal Th Iyl
EAB,dlspZ_ Z ’]};4’318|2 4IA 152 [_ AlBWAWR iI’ (7)
- (4mep)” | 4 (laws + lpwp)

where T}f’B,B represents the multipole-multipole interaction
tensor. We remark that 7};“313 above has been obtained using
a spherical harmonic expansion of the Coulomb potential
instead of the Cartesian multipolar potential described in Ap-
pendix A. Both expansions yield equivalent results [65,66]. In
the Supplemental Material of Ref. [33], the following spheri-
cal components of this tensor were given:

ITi11* = 6R™°,
Ty 51* = 28R™1°,

ITi2)* = 15R™S,
' (8)
|T5,|* = TOR™'°,

For our derivations here, we further introduce the higher-order
coupling components via a generalized expression of the mul-
tipolar interaction tensor,

Iy Ip
|7}?53’25 Z Z |T}AW!AJEW!B(R)|2' &)

ma=—ly mp=—lg

This tensor is derived based on the approach of Ref. [67]
used by some of us in Ref. [68] as well. Popelier et al. [67]
employed the relation

oy [Glat2+ D!
Tty R) = =D\ [ =27 51015

« la I Ih+1p
ny nmp

—(ma + mg)
X IIA-HB, —(mA+l713)(R)7 (10)

where the expression in the large parentheses is a Wigner’s 3-j
symbol [69] and the irregular normalized spherical harmonics

are
1[ m(l) V I )lm(e?¢)' (11)
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The spherical harmonics are defined as [69]

(I —m)!
(I + m)!
where P;"(cos 6) are the associated Legendre polynomials. If
we assume now that the distance between two atoms is along

the z axis, R = (0,0, R), then cos® = 1. Due to P*(1) =
3m.0 , one can then easily obtain

2l +1

Yim(0,¢) = P"(cos0)e™,  (12)

20+1 (1 —
" 0. 0) Y0, §) = 2T LEZM

Consequently, we have

m=+l¢ 2
Sy Iy I+l
Qly+2+ 1! Y (;2 _ljn A 0 B)
|70 |2 _ m=—l
botsl (214)! (21g)! R2UaHs+D) ’
(14)

where I¢ = {ls, if [y <l Ip, if Ip < l4}. Now we use the
following property of Wigner’s 3-j symbols [69]:

Ji+ j2

i1 + jo +my +m)(j1 + jo — my — mp)!

as)

CAn (+m)!
|
v
ny ny

which gives us

m=+I¢
Z (Ua+1p)!(Ia+1p)!
Ua+m) (g —m)(lg+m)!(Ig—m)!

AB |2 _ m=—I¢
| | R2Us+1p+1) (16)

Obviously, [T/* |* = |T;*% |?. Therefore it is enough to de-
rive the components W1th lA lp. This means that

milA(z _5, 0)<ZA + lB> <lA + lB)

lB—m

R2Ua+l+1) - 4D

where the factorials have been rewritten in terms of the bino-

mial coefficients (}) = k), 71- Then, we obtain

Ty 41> = 45R™"2,
|T53)* = 210R™12,
|T33]° = 924R™4,

|Ti.51* = 66R™"4,
|T54]° = 495R™14, (18)

in addition to the results of Eq. (8). With the above expres-
sions, the first few multipolar contributions to the dispersion
energy between two oscillators become

ABdisp _ 3k, » hoswp
1(d—d) 2R N Y s
EAB,disp__15k . _hoswp o hwawg
2(d—q) wA+2 wg 1—2 s + wp
EAB,disp B thwB A B fla)Aa)B
3d-0) — R‘O 3a) 30 3% )
A + 3wp wa + wp
pABdis _ 35k2 o howawg
3(q-9) RIO @ &y ws + 603
pABdis _ 45k 4 p hoswp 4 p hosop
4d=h) — "o |9 % T 4oy |
R wa + dowp dws + wp
pABaip _ 31SK[ g hoawp 4 p_loawp
4(q—0) RI2 2 32wA+3wB 3 2—360A+20)B s
pABdisp _ 165k; g hwswp 4 g hosop
sd-0 = T Hpi4 fos 15 tosais |
WA wp wA + wp

) — (_1)]1 Jat+my+my ,
—(my +my) 2j1+2j2+ DG +m)!Gr — m)!(a + m2)!(j2 — ma)!

(

i 495k? hwsw hoso
Efg = gt | oded — ST e st T,
q R14 wy + 2(,()3 2(,()A + wp
ESA(B’diSP _ 693k2 A B fl(,()A(,()B (19)
0—0) R14 0303 wa +wB

where k, = (4meg)~! is the Coulomb constant.
Based on the above formulas, we can now rewrite the
dispersion energy in its conventional expansion [1,33]

CAB

EABd® — 3 — =, (20

n=1,2,...

AB.dis
En 1Sp — Z
n=1,2,...

where C{5,, are the dispersion coefficients and all the

contributions to EfP% P, with n up to 5, are given by

Eq. (19). Equation (20) arises from second-order perturba-
tion theory with the multipole expansion of the Coulomb
potential, as an interaction potential between spherically sym-
metric atoms. The leading term is the dipole-dipole (d-d)
interaction, E;"> " o« R, stemming from the dipolar po-
tential, Vg R 3. The higher-order terms in the multipole
expansion of the Coulomb interaction yield the dispersion
energies EAB disp o R8, E3AB’diSp x R0, EfB‘diSP x R12,
and EX° aip o R~ coming, respectively, from the instan-
taneous dipole-quadrupole (d-q); dipole-octupole (d-o) and
quadrupole-quadrupole (g-q); dipole-hexadecapole (d-h) and
quadrupole-octupole (g-0); and dipole-triakontadipole (d-t),
quadrupole-hexadecapole (q-h), and octupole-octupole (0-0)
interactions. For noncentrosymmetric molecules, Eq. (20)
would have terms with odd powers in R starting with oc R~7
[1]. However, here we restrict our consideration to vdW-
bonded atoms assumed to possess closed valence-electron
shells with a spherically symmetric charge density, for which
the dispersion terms proportional to R~?+1D withi € N, van-
ish.

B. Exchange-repulsion interaction

The above derivation of the dispersion energy was per-
formed for the general case of two QDOs with arbitrary
parameters; however, the description of the exchange repul-
sion between two QDOs is more delicate. The exchange
interaction should obviously be present for two different
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QDOs, as caused by the Pauli repulsion between electrons
constituting the two Drude particles. Nonetheless, in order
to construct the exchange interaction, one needs to deal with
indistinguishable particles, a concept that requires generaliza-
tion for two Drude particles possessing different parameters.
Our starting assumption is that the exchange energy should
be proportional to the overlap integral S between the wave
functions of two different QDOs, similar to the case of two
identical Drude particles [46]. This assumption was recently
employed [70] for a simplified generalization of the coarse-
grained dipole-dipole exchange energy of a homonuclear
dimer, E(e(j‘_d) ~ kngS/ZR, derived in Ref. [46]. The authors
of Ref. [70] have simply replaced the overlap integral S of
two identical QDOs by its counterpart obtained for different
QDOs and shown that already such a simplified treatment
improves their computational scheme for vdW dispersion in-
teractions. However, due to the coarse-grained treatment of
valence electrons within the QDO model, care needs to be
taken for the most general definition of the exchange energy
between QDOs. This is a subject of our ongoing studies. Here,
we follow the approach of Ref. [46] and derive multipole
contributions to the exchange energy of two identical QDOs.

Formally, we consider two indistinguishable Drude par-
ticles (4 = s = pup, @ =wp = wp, and g = g4 = gp) as
bosons assuming that they represent closed valence shells with
vanishing total spin. Therefore the total wave function of a
dimer should be written as a permanent

<
/2

By employing the Heitler-London perturbation theory
[71,72], the exchange energy for two identical vdW-bonded
QDOs at their equilibrium distance becomes well approxi-
mated with its exact asymptotic result given by the exchange
integral [46]

I = (Ya )YV [Ya(r)Ppr)). (22)

The evaluation of Eq. (22) with the expansion of Eq. (5) re-
sults in multipole contributions to the exchange energy, where
each of them is directly proportional to the overlap integral
defined as

W(r;, rp) = [(Ya(r)Ye(r) + Ya(r)yp(r)].  (21)

S = |(Walyp)? = e 5F. (23)
For the dipole-dipole contribution, V; oc R~3, we obtain
kngS
ex = —, 24
1(d—d) R 24

which reproduces the result of Ref. [46]. Now, we evaluate
further contributions going beyond the dipole approxima-
tion. For the dipole-quadrupole interaction, described by the
second term, V, oc R™*, in the multipole expansion of the
Coulomb potential, we derive

x 3k.q>S

-0 T TR (25)

Then, the next term, V5 o R™>, has two contributions,
Viw—o) and V3(q_q), related to the dipole-octupole and the
quadrupole-quadrupole interaction [3,73], respectively. The

corresponding exchange integrals are obtained as

o _ kd’S
a0 = g o6
o 3ke.q>S h h?

B0 = SR I_Rzﬂw TR )

Further on, we have two contributions from V, o R, the
dipole-hexadecapole (d-h) and the quadrupole-octupole (q-0)
interaction. The related exchange integrals are

s = 5keq*S (1_ 3 9K )
- 2 4,22 ]’
16R Rpno R*pu*w @7

. sk
4(q—o) — 8R

Finally, for the dipole-triakontadipole (d-t), quadrupole-
hexadecapole (q-h), and octupole-octupole (0-0) interactions,
from Vs o R~7, we obtain

o 3k.q*S 15A 105K
5@-0 = TyeR " Ruo RY20?)
5k.q*S
;?070) = 16R ’ (28)

J keS¢ Th 35h° 215

Sa-h ™ 3R ( 4R?uw  AR*u?w?  2ROu3w? )
According to Egs. (24) and (25), J3{y_, is larger than Ji§_,
for all interatomic distances. This is in contrast to the disper-
sion contributions, where E ]d(';p_d) clearly dominates at large
distances. Such a nonmonotonic behavior of the multipole
contributions, as we obtain here for the exchange energy, was
also found in Ref. [74] for the multipole expansion of the
exchange-dispersion energy.

Now, we will use the derived dominant multipole contribu-
tions to the dispersion and exchange energies, in order to study
the balance of the corresponding forces at the equilibrium
distance in homonuclear dimers.

C. Force balance between multipolar dispersion
and exchange contributions

The equilibrium geometry of atomic or molecular systems
is dictated by the condition that the net forces acting on
each atom vanish. Therefore, for two atoms or molecules
separated by a distance R, this condition is determined by
Fiet(Req) = —VRE01(R)|r=r,, = 0, where R, represents the
equilibrium distance and Eyy is the total interaction energy.
The structure, stability, and dynamics of vdW-bonded atomic
dimers are governed by the interplay between the dispersion
and exchange interactions [47]. This means that at R = Req
the two respective forces have to mutually compensate each
other. In what follows, we consider such a compensation by
going beyond the dipole approximation for the interaction,
in order to obtain higher-order multipole contributions to the
attractive and repulsive forces.

At the equilibrium distance, Req = 2Rqw, in homonuclear
dimers composed of two identical Drude particles (u = uy =
up, w =ws = wpg, and g = g4 = gp), the exchange force
can be well approximated by the expression F'™* &~ —Vg J™,
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according to Ref. [46] and our discussion above. In addition,
at the internuclear distances comparable to or larger than the
equilibrium one, R > /h/puw [46]. Then, the corresponding
multipole contributions to the exchange force are obtained as

e ahwS (&)2 A 3a1fiwS (@)2
=0 " 2Ure)\ 1 /7 2D T 44men) \ R

o L Q1hoS uw\? oL dafioS fpw\?
3d—0) ™ 2(4neo)<7) SRR U U 8(47160)<_> ’
Fex - SahwS (ﬂ)z x - SahwS (Ey
Y- T 6(dme)\ B )T T T Bdge)\ R
x L JonhoS poN? o DohoS uw\?
5@-n ™ 16(47160)(7) ’ (7) ’
x . dathoS po\?

S(0~0) ™ 16(471’60)(_) '

From Eq. (19) we calculate the multipole contributions to the
dispersion force (for homonuclear dimers)

@ ™ 34 e)

(29)

disp 9 01 fiw disp __ _40a1_a2ha)

-0 2RT(4meg)?” YT RO(4mep)?’

disp 1050 0300 disp 1750520(_2ha)

30 T T R 4reg? 34D T T R (4reg)?
sl _ _216a1a4f1w phsw 1512003 0h@
4= T R (4e)2’ HATO T RBB(4grey)?
pap _ _38Soasho gy 4620aayfio

S@-0 7 T RIS(4peg)2 3@ T T RIS(47e)?

. 4851 azazhiw
disp __ 393
5(0—0) — R15(47'[6())2 ' (30)

At R = Req, the attractive and repulsive forces should cancel
each other. Within the dipole approximation, from the force
balance, Fﬁfgd) + F4_q) = 0, one obtains

—90[1 = <&>267%R§‘1. 31
@reRl,  \h

This formula not only expresses a relation between «; and
Ryaw = Req/2 but also contains the QDO parameters p and
, which are not uniquely defined for atoms. To obtain a for-
mula connecting atomic parameters Ryqw and o, we rewrite
Eq. (31) as

9, e—(Rvdw/(fQDo)2

= , (32)
25(4m€0)R] 1 GéDO

where ogpo = +/fi/21uw is the spatial variance or spread of
a QDO. Within the QDO model, ogpo describes an effective
atomic length, which corresponds to the Bohr radius in the
case of the hydrogen atom [75]. According to Ref. [46], the
ratio Ryqw /0qpo decreases with increasing ogpo, and the fac-
tors oo and e~ Fav/7e0)* in Bq. (32) compensate each other.
This compensation allows the QDO model to approximately
capture the constant behavior of the ratio o /R! y, confirmed
empirically for many atoms [46]. Therefore, within the QDO
model, the relation between the vdW radius and the dipole
polarizability can be expressed as

Ruaw = A (no, Ruaw) ), (33)

where the proportionality coefficient, as a function of the
product pw and the vdW radius, is given by

3% B oworlgy \ 7
<—e'1”) e

AMw EA ,R = ——
| 1(nw, Ryaw) 3are)” \ i

As was discussed in Ref. [46], this coefficient can be also
written in terms of the radial volume

; 4 (h\"
v, = / ¥ no(r) dr = ﬁ(u_w) (35)

occupied by the ground-state charge density of the QDO,

no(r) = |Wo(r)|?> = (ﬁ)%e‘%’z, and its value at the vdW
radius, ng(Ryqw ), as

v 3 A\ i
A= Sl w[(?) V‘} -9
0 1no(Rvaw)V;

Taking into account that A; was found to be essentially a
constant for 72 atoms in the periodic table [46], Eq. (36)
suggests a relation between an atomic volume and the electron
charge density at the vdW radius.

The results of Egs. (34) and (36) are based on taking into
account only the first term, V; R73, in the expansion of
Eq. (5) for the Coulomb potential. However, it is well known
that at least two further terms, Vo o R~ and V5 o« R™>, are
important to properly describe the binding curves of vdW-
bonded atomic dimers [55]. Therefore, here we consider an
extension of Eq. (33) by including the higher-order multipole
terms from the expansion of the Coulomb potential. To this
end, we evaluate the individual multipole contributions to
the dispersion and exchange forces given by Egs. (29) and
(30), respectively, at the equilibrium distance of vdW-bonded
dimers. Based on the empirical findings of Ref. [46], the
mutual compensation of multipolar dispersion and exchange
forces can ultimately be represented by the general expression

Ruaw = Al o), 37

which extends Eq. (33) to the multipole polarizabilities, «;.
One can also rewrite Eq. (37) in the following way:

ar = (Ryaw JAM)"" (38)

where each multipole polarizability is expressed in terms of
the vdW radius. This allows one to obtain ¢; either from Rygw
or ay, for an arbitrary /. Since first-principles calculations of
higher-order polarizabilities are computationally demanding
[76], our finding provides an alternative way to approximate
multipole polarizabilities.

Based on the expressions for the multipolar dispersion
and exchange forces, we can now also explicitly calculate
the proportionality coefficients A/ = A;(uw, Ryaw). As a
particularly helpful example, we can consider the force bal-
ance condition for the dipole-multipole interaction, i.e., the
Fiia—z@y terms of Egs. (29) and (30) with z(1) = d, z(2) = q,
z(3) =0, z(4) = h, and z(5) = t. The resulting proportion-
ality coefficients of this series can be cast into a compact
generalized formula

2 _4
3-1) wR2
AR _ Dl 7(I+URW h w thdw 70+ 39
L vaw \ o € , (39)
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lz,f'Zt(I_H) for [ ={1,2,3} and their QDO counterparts A?DO =

Rffdfw / aiggg Y forl = {1, 2, 3, 4, 5} vs the proportionality coefficients Af“’) forl = {1, 2, 3, 4, 5} given by Eq. (39). For alkali and alkaline-earth
elements, we use R§§fw from the recent database of Batsanov [85]. For noble-gas atoms and hydrogen, missing in Ref. [85], the reference vdW
radii are taken from Refs. [24,86], respectively. The QDO parameters {g, i1, w} are set according to Eq. (1), to reproduce o' as well as the
homoatomic dispersion coefficients Cs and Cg. The three fitted quantities together with the reference quadrupole (oX") and octupole (a")
polarizabilities are taken from Refs. [46,80] for the noble gases (He, Ne, Ar, Kr, Xe), from Refs. [77,78] for the elements in group I (H, Li,
Na, K, Rb, Cs), and from Ref. [79] for the elements in group II (Be, Mg, Ca, Sr, Ba). The QDO multipole polarizabilities are obtained from
Eq. (6), where a]QDO = o due to the QDO fitting procedure [33] leading to A?DO = A" The average values (A;) are calculated based on

the results of the noble-gas atoms. The standard deviation o = \/ 1/N Y, (A)[X] — (A;))? and its mean absolute relative deviation (MARD),

TABLE I. Comparison between the reference ratios Al = R /o

1/N Yy |A/[X] — (A))|/(A;), are also reported. All quantities are in atomic units (MARD in percent).

Atom ARf ARt AR ARPO ARPO ARPO AP0 AR A Ak A A AL©
He 2.53 243 2.24 2.53 2.48 2.32 2.17 2.05 2.33 2.10 1.93 1.82 1.74
Ne 2.53 2.44 2.26 2.53 2.53 2.38 2.24 2.12 2.57 227 2.07 1.94 1.85
Ar 2.52 2.44 2.27 2.52 2.51 2.37 2.23 2.11 2.33 2.18 2.06 1.96 1.89
Kr 2.55 2.47 2.29 2.55 2.55 2.40 2.26 2.14 2.35 2.22 2.10 2.01 1.94
Xe 2.54 245 2.27 2.54 2.52 2.37 2.23 2.10 2.28 2.20 2.10 2.02 1.96
H 2.50 2.40 2.19 2.50 243 2.26 2.11 2.09 2.06 1.97 1.88 1.80 1.75
Li 2.40 2.49 2.33 2.40 2.48 2.38 2.26 1.99 2.50 241 2.29 2.20 2.14
Na 2.53 2.55 2.40 2.53 2.56 243 2.30 2.17 2.50 242 2.32 2.23 2.17
K 2.54 2.54 241 2.54 2.55 242 2.28 2.20 2.53 247 2.38 2.29 2.23
Rb 2.61 2.58 2.46 2.61 2.60 2.46 2.31 2.22 2.58 2.57 2.42 2.34 2.27
Cs 2.65 2.58 2.48 2.65 2.62 2.46 2.31 2.22 2.62 2.56 2.46 2.38 2.31
Be 2.51 245 2.34 2.51 2.47 2.32 2.17 2.05 222 2.17 2.08 2.01 1.96
Mg 2.49 2.42 2.32 2.49 2.45 2.29 2.15 2.03 2.25 2.21 2.13 2.07 2.01
Ca 2.55 2.44 2.39 2.55 2.50 2.33 2.18 2.06 2.38 2.34 2.26 2.19 2.13
Sr 2.61 249 243 2.61 2.55 2.37 2.22 2.09 245 241 2.32 2.25 2.19
Ba 2.59 242 241 2.59 2.51 2.34 2.18 2.05 2.48 2.44 2.36 2.28 2.22
(A7) 2.54 245 2.27 2.54 2.52 2.37 2.23 2.10 2.37 2.19 2.05 1.95 1.88
o 0.05 0.06 0.08 0.05 0.05 0.05 0.06 0.06 0.15 0.16 0.17 0.17 0.18
MARD (%) 1.60 1.80 3.90 1.60 1.61 1.87 2.20 2.47 541 7.13 8.88 10.14 11.05
with the [-dependent rational constants D; = % D. Assessment of our formalism for atoms

Equation (39) generalizes Eq. (34) and shows an additional
factor of Ri;’v;l)/ 7D arising for / > 1. It is worth noting that
the derived A} within the QDO model formally still contain
Ryaw. The values for A} calculated from Eq. (39), however,
remain almost constant for any choice of realistic parame-
ters (cf. Table I) as was also observed for the corresponding
empirical proportionality factors [46]. Moreover, in terms of
the quantities related to / = 1, the above expression can be
simplified even further

D,

2
)R (A1)
D

Afw = ( vdW (40)
The general formula given by Eq. (39) allows us to ob-
tain the proportionality coefficients A/ for every order in
the dipole-multipole interactions, even without deriving fur-
ther multipolar contributions to the dispersion and exchange
forces.

The presented findings based on the dipole-multipole in-
teraction can be generalized via the force balance at each
order of the multipole expansion as we highlight for the
quadrupole-quadrupole and octupole-octupole interactions in
Appendix B. Alternatively, one can use the general expression
for the QDO multipole polarizabilities given by Eq. (6), in or-
der to derive A?D 0 — Ryaw /aiggg D by means of Eq. (37). A
comparison between the two approaches to the proportionality
coefficients A; is given in the following section.

In the previous sections, we have presented a coarse-
grained approach to describe dispersion and exchange interac-
tions between two closed-shell atoms within the QDO model.
Here, we examine the applicability of the presented formulas
and apply them to analyze the ratio between the vdW radius
and multipole polarizabilities for atoms, thus demonstrating
the validity of the scaling law of Eq. (37) obtained within
the QDO model. Our analysis will be focused on hydrogen,
noble gases from He to Xe, alkali atoms from Li to Cs, and
alkaline-earth elements from Be to Ba. To this end, the atomic
multipole polarizabilities, o, are either taken from high-level
ab initio calculations in the literature [77-79], o', or calcu-

lated by means of Eq. (6), otlQDO. We determine ¢, 1, and w for
each atom by means of Eq. (1), using accurate reference data
for the set {oz{ef, Ce, Cg} [46,77-80], as explained in Sec. II.
Here, due to the fact that the QDO parameters are set to
reproduce the dipole polarizability, we have a?DO = o, for
all considered atoms.

While eventually it would be interesting and important
to extend our analysis to a broader set of atoms and small
molecules, we are not aware of a comprehensive set of accu-
rate data for atomic and molecular multipole polarizabilities.
Accurate ab initio reference calculations of «; in general
require demanding computational approaches with sophisti-
cated treatment of electron correlation effects and, especially
with increasing order [, large and diffuse basis sets [76,81,82].
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As a result, calculating converged multipolar polarizabilities
is difficult, a problem which is further enhanced by the numer-
ical aspects associated with finite-field derivative techniques
as used in such calculations. Experimental determination, on
the other hand, is subject to origin and orientational dependen-
cies as well as a strong influence of thermal effects [76,83,84],
which can introduce considerable uncertainties—in particular,
with increasing system size or multipole order.

To apply the derived formulas, a set of reference vdW radii,
Ri‘fjfw, is required. In the case of alkali as well as alkaline-earth
elements, these radii are taken from the recent database of Bat-
sanov [85]. For noble-gas atoms, missing in Ref. [85], we use
the database of Bondi [86], which provides often used values
of vdW radii for group 18 of the periodic table. In addition,
for hydrogen, we use R%fw = 3.1 a.u. from Ref. [24], where
it was theoretically estimated based on the atomic charge
density. This value was shown to work well for the relation
between the atomic dipole polarizability and vdW radius in
Ref. [46].

Both the vdW radii of Batsanov and those of Bondi are
extracted from experimental crystallographic structural data.
However, it is important to mention that a straightforward
definition of the vdW radius is only possible for noble-gas
atoms as inert elements with closed valence shells. For other
atoms, Rygw is evaluated by considering a variety of differ-
ent molecular crystal structures and extracting neighboring
atom-atom distances, where each atom belongs to a different
closed-shell molecule. This definition is especially subtle for
chemical elements with spin-polarized valence shells, such as
alkali atoms, which can form bonds with different spin states.
Therefore one has to keep in mind that existing vdW radii are
just statistical quantities for most chemical elements.

First, we analyze the empirical proportionality constants

AFT = R/t @1

based on the reference data of R,gw and the atomic dipole
(a?ef), quadrupole (agef), and octupole (agef) polarizabilities
[46,77-80]. The results are shown in Table I, for the chosen
test set of 16 chemical elements.

For noble gases, A}ef is essentially constant, and, in line
with Ref. [46], we find (Arl“‘f) = 2.54 a.u. Moreover, this
result is further specified in the form of the unified for-
mula Ryaw (1) = (ab/4men)” (1/ap)** )" with ap and
ay denoting the Bohr radius and the fine-structure constant,
respectively [62]. Using Hartree atomic units, this can be
further simplified to Ryaw (1) ~ (137)*?' «;”7, which gives
an appropriate proportionality factor of 2.55 a.u., in excellent
agreement with the empirical value of (A™). For the higher-
order multipoles, we obtain (A}") =2.45 a.u. and (AY!) =
2.27 a.u. The resulting values for A;ef remain close to the
average values determined for noble-gas atoms for all the
atoms shown in Table I, where as a general trend alkali-metal
atoms show the largest deviation with an average relative
deviation of 4.3% (compared with 2.4% for alkaline-earth
metals and 0.5% for noble gases). The alkali atoms possess
a relatively weakly bound and, therefore, highly polarizable
single valence electron. This feature and the different possible
spin states of alkali atoms in molecular solid-state systems
arguably allow the vdW radii observed for alkali metals to

Ryaw/o2/?1 A Rvaw/q}/14 Ryaw/?2/35
Brnfalfl, o i e O
' 9 RV(IVV/(‘Q./(S})O AR”I“V/“ls/(lgm) \Y N“'“/“i é;m
2.6} g B g 0B
—I—I—.—.—.—. o |
24F ]
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t 24f
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S
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FIG. 2. The ratios Rvdw/aiﬁzt(l+l) listed in Table I are shown
(filled symbols) with respect to the “universal” values A; = 2.54 a.u.,
A; =245 au., and A3 = 2.27 a.u., represented with blue, red, and
green solid lines, respectively. By contrast, the ratios Ryqw /"‘12,/(271()15 b
(open symbols) are plotted with respect to the constant values ob-
tained from the QDO polarizabilities, AgDO =2.52 au., AgDO =
2.37 au., AP = 2.23 au., and AS”® = 2.10 a.u., shown with red,
green, fuchsia, and light blue dotted lines, respectively. The noble
gases are shown in the yellow box, the elements of group I are shown
in the light blue box, and the elements of group II are shown in the
light green box. The error bars represent the relative errors R.E. =
|A;[X] — A;|/A; of each species X, where A, are the universal values

expressed in Eqgs. (42) for the ratios Ryqw /a%Zﬁl“) and in Eqgs. (43)

2/7(1+1
for Rvdw/al’{n()o ).

change widely, causing the largest deviation for the empirical
constants Af"'f from their average values, as also illustrated in
Fig. 2.

Overall, the observed deviations in A;ef stay within 4%
(=0.1 a.u.) for all considered species except for Cs and Rb,
which show a slightly higher average relative deviation of 6.3
and 5.5%, respectively. Hence we suggest that the coefficients
A;ef can be considered as universal constants for the studied
atomic species. Taking the average values A; = (A?ef) for
the noble-gas atoms, we can thus write the unified relations
between the vdW radius and the dipole, quadrupole, and oc-
tupole polarizabilities,

Raw(@) =Aja/", A =254au,
Ruaw(w) =A )", Ay=245au, (42)

Ruw(es) =Asaf", Ay=227au.,

which are equivalent to the empirical relations reported in
Ref. [46]. The relations obtained above can be used for at
least three different purposes. First, the vdW radius of atoms
can now be calculated given any single multipolar atomic po-
larizability. This polarizability can correspond to a free atom
or an atom in a molecule or material [24]. The vdW radius
can then be used for a conceptual understanding of an atom
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in its environment or for practical calculations of the vdW
energy [17,24]. Second, given the dipole polarizability, one
can accurately determine multipole polarizabilities (at least
up to octupole) from Eq. (42). In fact, this approach is sub-
stantially more reliable for atoms than using the QDO model
for multipole polarizabilities. A third application would be
the possibility to determine atomic multipole polarizabilities
from calculated or measured atomic vdW radii. A potential
downside of this application is that a small error in the vdW
radius would result in a large error for multipole polarizabili-
ties, according to Eq. (42).

The quantity Rygw(c;) defined in Eq. (42) represents an
effective vdW radius expressed in terms of the multipolar
polarizability. To demonstrate the validity of this new defi-
nition for the vdW radius, Fig. 3(a) compares the results for
Ruaw(e) = Ay’ with I = (1, 2, 3} to the reference val-
ues, Rf,%fw. There is an excellent correlation between Ryqw (a1)
and its reference value for all considered elements, with a
maximum relative error R.E. = |Rygw(a;) — R} dw| /Rf,%fw of
0.91% for the noble gases, 2.74% for alkaline-earth (group II)
elements, and 5.90% for hydrogen and alkali metals (group I).
The increasing errors when going from alkaline-earth to alkali
metals are related to the increase in the statistical errors of
Rr‘:‘jw stemming from the increasingly complicated evaluation
of the vdW radii based on experimental crystal-structure data.
Indeed, this evaluation becomes less accurate for elements
with more pronounced metallic properties [85,87]. Comparing
groups I and IT of the periodic table, the statistical errors in
R, of the alkaline-earth elements are smaller since they
have a closed s-electron shell, which makes their behavior
closer to that of the noble gases with completely closed va-
lence shells.

Although the dipole polarizability o is known with
high accuracy for many chemical elements in the periodic
table, the accurate determination of higher-order multipolar
polarizabilities is more involved. Indeed, Fig. 3(a) shows an
increase in the maximum R.E. for Rygw (a2) (within 0.99% for
noble gases, 1.48% for group I, and 5.14% for group II) and,
subsequently, for Rygw(a3) (within 1.39% for noble gases,
6.60% for group I, and 8.62% for group II). This analysis is
validated in Fig. 2 as well, where we compare the average
valuesA; =2.54a.u.,A, =2.45a.u., andA3 = 2.27 a.u. with
the relative ratios Ryaw/«; 2/10+1) ,forl ={1, 2, 3}.

It is also noteworthy that reference values for higher-order
polarizabilities are rather limited in the literature, with the
exception of hydrogen, the only element in the periodic table
for which the multipole polarizability o' is known analyti-
cally [88]. Therefore we employ the multipole polarizabilities
obtained within the QDO model by means of Eq. (6). No-
tably, the QDO coefficients A?D 0 /ozz/ 70D for [ =
{1,2,3,4, 5}, are practically constant for all noble gas atoms,
which leads to the QDO set of relations

R?J%?(al) = (A?DO) . (A®0) =254 2.,

vdW V(@) = ( O) 2/21’ <AQDO> =252au,
REBO(as) = (AP al*,  (A9™) =237 au.,
RO () = (AT) >, (AQ™°) =223 au,
ROW (as) = (AF°) ", (AS°)=2.10au.  (43)
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FIG. 3. The vdW radius as a function of the multipole polariz-
abilities, Rygw (o) = A; alz/ 7D obtained by means of (a) Egs. (42)
and (b) Egs. (43), is presented, taking into account that
RSP“(,) (or1,0p0) = Ryaw (@1 rer ), in comparison to the reference values
Rfdfw [24,85,86] for three classes of species: Noble gases (in yellow),
H + alkali-metal atoms (group I, in blue), and alkaline-earth atoms
(group II, in green). The vdW radii are shown (a) for the reference
[33,77-79] multipole polarizabilities o ref, X2 ref, and oz (blue,
red, and green filled symbols) and (b) for the QDO multipole polar-
izabilities Q7 QDO ¥3,QD0Os ¥4,QDO> and Q5 .QDO given by Eq (6) (red,
green, fuchsia, and light blue open symbols). The insets show the
relative errors, R.E. = |Ryqw(a;) — Rredwl/Riede, for the noble gases
(yellow box), the alkali metals + hydrogen (light blue box), and
the alkaline-earth elements (light green box). In addition, the mean
values of the relative errors, (R.E.), are reported in the legends, for
each considered multipole order.

These results are shown in Fig. 3(b), where a good agree-
ment between R?dw (o) and R, is observed for [ =
{2, 3, 4, 5}, in addition to the case of | =1, for which we have
RVQ(?“? (or1,0p0) = Ryaw (@1 ref ). We note that the QDO model is
constructed, by definition, on the dispersion coefficients, and
the QDO polarizabilities (with [ > 1) are underestimated for
the noble-gas atoms with respect to the reference data [33].

Consequently, the QDO proportionality coefficients (ASDO) =

2.52 a.u. and (A?D O) = 2.37 a.u. are overestimated with re-
spect to the determined “universal” values A, = 2.45 a.u. and
Az = 2.27 a.u., as also shown in Fig. 2. Therefore one can
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expect that the higher-order QDO coefficients, (A?DO) =2.23

a.u. and (A?D O) = 2.10 a.u., are also overestimated.

To further assess the scaling law of Eq. (37), we com-
pare the resulting empirical constants with the proportionality
coefficients A)"”, obtained by means of Eq. (39). Table I sum-

marizes the results for A*” compared with A®" and ARP°.
Considering the noble-gas atoms only, we find the following
averaged values:

(Alll'w) =2.37 a.u., (szl.a)> =2.19 a.u., (Aé“”) =2.05a.u.,
(Af:w> =1.95 a.u., (A';Lw> = 1.88 a.u., (44)

which shall serve as the suggested values of A}"”. The mean
absolute relative deviations from this reference across all
considered elements are 0.15 a.u. (5.41%) for the dipole-
dipole term, 0.16 a.u. (7.13%) for the dipole-quadrupole term,
0.17 a.u. (8.88%) for the dipole-octupole term, 0.17 a.u.
(10.14%) for the dipole-hexadecapole term, and 0.18 a.u.
(11.05%) for the dipole-triakontadipole term in the multi-
pole expansion. Hence A;“" do not remain constant among
all considered elements, in contrast to the respective atomic
proportionality constants A", The deviations between the two
sets of coefficients amount to 0.17 a.u. (6.6%) for A, 0.25 a.u.
(10.3%) for A, and 0.21 a.u. (9.4%) for A3, where the derived
A" are always lower than the empirical reference values
A}ef. In both cases, we consistently observe a decrease in
the average values and an increase in the standard deviations
with increasing multipole order. Interestingly, the standard
deviations among A" and A?DO are comparable to each other
but considerably smaller than o shown in Table I for the corre-
sponding A;". Hence the simplifications in the coarse-grained
description of valence electrons within the QDO model and
its parametrization lead to a less accurate determination of
the proportionality coefficients, based on Eq. (39), than their
indirect evaluation based on the QDO multipole polarizabil-
ities calculated by means of Eq. (6). However, even AlQDO
obtained for noble gases still show noticeable deviations from
a constant behavior. It is unclear yet what aspect of atoms
makes Af‘“’f behave as universal constants for different chemi-
cal elements. Nevertheless, we expect the clarification of this
question to be crucial for the eventual improvement of the
QDO model.

Finally, we calculate the ratio Rygqw/ alz/ "D for the hydro-
gen atom, taking into account the known analytical expression
of its multipole polarizabilities given in Ref. [88] as o) =
(47reo)a(2)l“(21 + D! +2)/2%1, and compare it with the
proportionality coefficients A?DO, which are obtained from
a;.gpo provided by Eq. (6). As shown in Fig. 4, the cur-
rent QDO parametrization yields quite accurate results for
dipole, quadrupole, and octupole orders but then exhibits an
increasing overestimation of the proportionality constant with
increasing multipole rank /. Given that the vdW radius is
fixed at its reference value [24], this reflects the fact that the
QDO model predicts underestimated multipolar polarizabil-
ities [33]. In order to improve the model, a possible future
step is to use highly accurate theoretical or experimental
reference data for the quadrupole polarizability instead of
the dispersion coefficient Cg in the parametrization scheme,
which would increase the accuracy of the higher-order «; gpo
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FIG. 4. The coefficients A; = R.gw /oz,z/ 70+ for hydrogen: The
analytical solution A}, from the multipole polarizabilities afl =
(4neo)a(2)’“(21 + D! +2)/2%1 [88], where ay is the Bohr radius,
is shown (blue filled circles) in comparison to the results of the
QDO model, A,QDO (blue open circles), which are obtained from a?DO

calculated by means of Eq. (6).

values. Consequentl(g/, such new parametrization would yield
smaller values of A; PO, providing better agreement with the
reference data and improving the relations between multipole
polarizabilities and the equilibrium distance in vdW-bonded
atomic dimers. Figure 4 also shows that the A?D © curve pro-
duces a slight deviation in the general trend of the reference
proportionality coefficients at [ = 2. This kink stems from the
nonmonotonic behavior of the multipole contributions to the
exchange energy, where J5(_,, is larger than Jij;_) (see our
discussion at the end of Sec. 111 B).

One possible explanation for the difference between the
polarizabilities of the QDO model and the hydrogen atom is
the contribution of excitations to continuum states in the latter
case. The QDO model has no continuum states and can only
effectively describe such excitations. Despite the observed de-
viations in the higher-order multipole polarizabilities and the
corresponding proportionality coefficients, the QDO approach
allowed us to verify the scaling relation Rygw alz/ 7([+1),
which is remarkably valid for atoms.

IV. DISCUSSION AND SUMMARY

We have presented a coarse-grained description of the
repulsive force due to the Pauli principle and attractive dis-
persion forces between two closed-shell atoms or molecules.
Our formalism is based on two interacting quantum Drude
oscillators, for which the dispersion and exchange-repulsion
energies up to an arbitrary order in the multipole expansion of
the Coulomb potential were derived. The obtained formulas
can be employed for constructing and rationalizing effective
interaction potential models, as well as for finding new scaling
laws between electronic and geometric properties of atoms
and molecules.

As a practical illustration of our theory, we investigated
a mutual compensation between the repulsive exchange and
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attractive dispersion forces for each term in the multipole ex-
pansion. The results confirm and extend the recently proposed
relations [46] between atomic multipole polarizabilities, o;,
and the van der Waals radius, R,qw. The generalized scaling
law, Ryaw = A; 0(12/ 7(”1), is compelling because it connects
an electronic response property of a single atom (atomic
multipole polarizability) with the equilibrium distance in a
homonuclear dimer.

Let us enumerate some of the potential applications of the
formulas presented in this paper and possible future research
directions:

(i) First and foremost, the relation between atomic vdW
radius and atomic polarizabilities, Ryqw = A; alz/ 7(l+1), dis-
penses with the need to indirectly measure vdW radii. Once
the polarizability is calculated for a free atom or an atom
in a molecule or material, the vdW radius can be computed
from the formula above. Subsequently, the vdW radius can
be used as a proxy for an atomic size, as an effective radius
in interatomic vdW potentials, or in damping functions for
vdW-inclusive electronic-structure calculations. We remark
that in quantum mechanics, many possible definitions can be
made for an effective atomic size. Our derivations provide
a definition of the atomic vdW radius in terms of observ-
able quantities—atomic multipole polarizabilities. Obviously,
a more detailed comparison of calculated vdW radii with
experiment would be welcome by measuring effective vdW
radii in a wide set of systems and comparing the measured
radii to first-principles calculations and our formulas.

(i1) Our formula allows a straightforward and accurate cal-
culation of atomic multipole polarizabilities from the dipole
polarizability. Given «; and the universal values of A}ef ob-
tained in this paper, any multipole polarizability can now
be calculated as a function of these two parameters. This
is especially important given the high computational cost of
calculating multipole polarizabilities from first principles of
quantum mechanics. Going further, it would be interesting
to assess different recursive relations between «; and ;1
polarizabilities based on the QDO model and the definition
of the vdW radius.

(iii) Our analytical results allow calculating multipole
polarizabilities «; for an arbitrary value of /. Such data be-
come increasingly important in coarse-grained models, which
describe the molecular response by increasingly larger frag-
ments. For example, one might want to describe the response
of a protein, where one QDO models the response of each
amino acid. Similar to electrostatics, where higher multipoles
become of growing importance when increasing the fragment
size, the polarization response follows the same trend. Hence

J

we expect our formulas to play a key role in the development
of coarse-grained models for chemical and biological matter.

(iv) While most of the results in this paper were presented
for homonuclear dimers, an accurate combination rule is al-
ready known for computing equilibrium distances, RZ?, in
heteronuclear dimers [46]

RAP =2 % Ail(@n + am) /217 (45)

This formula allows the calculation of equilibrium distances
in heteronuclear closed-shell dimers solely based on the
knowledge of atomic polarizabilities of each atom. The
derivation of such combination rules from first principles re-
quires generalizing the Pauli principle to QDOs with different
parameters, and future work on this subject is needed..

(v) The determination of R?B for two atoms A and B
from their dipole polarizabilities provides a way to con-
struct generalized Tang-Toennies-type potentials [47,54-56]
that require only one adjustable parameter: The equilibrium
interaction energy E.q. It remains to be investigated whether
the asymptotic dispersion coefficients could be connected to
Eeq, allowing one to construct parameter-free Tang-Toennies-
type interatomic potentials for closed-shell systems.

(vi) Last but not least, the relation between R,qw and the
polarizability could be used to develop a more general and
more accurate parametrization of the QDO model. Namely,
the universality of Aff coefficients holds for atoms, but it is
not such a good approximation within the QDO model itself.
One could enforce the obtained relation, Rygw = A; alz/ 7(l+1),
using universal values A;, to hold on average for the QDO
model during the parametrization procedure. This is a direc-
tion of our current study.

Ultimately, the close connection between vdW attraction
and Pauli repulsion unveiled in this paper paves the way for
the construction of efficient coarse-grained models for the
description of the exchange-repulsion interaction in atomic
and molecular systems. Together with the well-established
success of the QDO model in describing vdW dispersion, our
results also provide the basis for constructing consistent and
minimally empirical models for interatomic and intermolecu-
lar forces.
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APPENDIX A: MULTIPOLE EXPANSION OF COULOMB POTENTIAL

Here, we present the contributions V,, to the multipole expansion of the Coulomb potential given by Eq. (5).

3qaqs
Vaa-o = —p1

qaqs
Vid-o) = R

3qaqs
Viq-o = AR

{ — 5(1’1-R0)21‘2-R0 + (l‘% — 21‘1~l’2)l’2'R0 + rl'Ro[ - I'% +2r;-r; + 5(r2'R0)2]},
{5r1-RoraRo[3(r] +13) — 7(r1-Ro)* — 7(r2'Ro)*| = 3ry-ra[r] + 13 — 5(r;-Ro)* — 5(r2-Ro)? ]},

{2(r1'r2)> = 20r; Rory-rora-Ro — 5(r-Ro)*[15 — 7(r2-Ro)*] + ri[r; — 5(r2-Ro)*]}
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TABLE 1I. The proportionality coefficients A5, A5¢ = and A5, ALC | in comparison to the empirical reference values A} =

Rif{w /oz,z_/rZél“) . The used values of Riffw, {u, }, and {0 rer, @3 e} are the same as in Table I. The MARD is given in percent, whereas all
the other quantities are in atomic units.

Atom AL Al ALf AL ALe At
He 2.10 1.95 2.43 1.93 1.82 2.24
Ne 2.27 2.09 2.44 2.07 1.94 2.26
Ar 2.18 2.08 2.44 2.06 2.01 2.27
Kr 2.22 2.13 2.47 2.10 2.08 2.29
Xe 2.20 2.14 245 2.10 2.13 227
H 1.97 1.89 2.40 1.88 1.87 2.19
Li 2.41 2.36 2.49 2.29 2.34 2.33
Na 2.42 2.40 2.55 232 241 2.40
K 2.47 2.49 2.54 238 2.54 2.41
Rb 2.57 2.55 2.58 2.42 2.60 2.46
Cs 2.56 2.62 2.58 2.46 2.69 2.48
Ba 2.17 2.14 2.45 2.08 2.16 2.34
Mg 2.21 2.22 2.42 2.13 2.27 2.32
Ca 2.34 2.39 2.44 2.26 2.46 2.39
Sr 2.41 2.47 2.49 232 2.54 2.43
Ba 2.44 2.54 2.42 2.36 2.63 2.41
(Ar) 2.19 2.08 2.45 2.05 2.00 2.27
o 0.16 0.22 0.06 0.17 0.40 0.08
MARD 7.13 11.49 1.80 8.88 13.74 3.90
_ Oqays 3 2 2 4
Va@-n) = W(%(l‘rRo) ri-ry +42r7(r;-Ro)°r2-Ro — 63(r1-Ro)'r2 Ry
+ 3r1Ro[r] — 4rir;-r; — 14r3(r;-Ro)* + 21(r2-Ro)*] + r2Ro{ — 3r] + 4r; 13 [3r; — 7(r2Ro)*]}),
5qaq
Vig—o) = 4R6B (= 7(r1Rp)*[13 — 9(r2-R)*] + 21(r1-Ro)*r2-Ro[r3 — 211>
— 3(1’2~R0)2] + 1'2'R0{6l'%l'1-1‘2 — 6(1‘1’1’2)2 + l'%[ — 31’% + 7(1'2~R0)2]}
+ 3r; Rofri{[r; — 7(r2R0)*| + 2r1-ro[ — 15 + 1102 + 7(12:R)*]}).
3
Vs—t = Z?;]B {5r102[r} + 15 — 14r7(r;-Ro)* + 21(r;-Ro)* — 1413 (r>-Ro)?
+ 21(r2-Ro)*] — 7r;-RoraRo[5(r] + 13) — 30r7(r;-Ro)” + 33(r;-Ro)* — 30r3(r2-Ro)* + 33(r2-Ro)*]},
15gaq
Vsqon) = 16AR7B{ — 168(r1-R)’r; -1ar2-Rg — 21(r;-Ro)*[1} — 11(r,-Rp)?]
— 4(1‘1 ~I'2)2[I'% + r% — 7(I'2-R())2] + 561'1 'R()l'] 'I'21'2~R0[I'% + r%
2
— 3(r2Ro)*| = ri[13(r 4+ 13) — 7(r} +2r3) (r2-Ro)” + 21(r2'Ro)*]
2
+ 7(r1-Ro)*[20715 + 13 + 4(r1-12)” — 18(r7 + 13)(12-Ro) ™ + 33(r2-Ro)*]},
Vo o) = 2049 3 421 R 2r, Ry + 3 7(r1-Ro)*[r2
5(0—0) = W( (r;-r2)° — 42r;-Ro(r;-r2)°r2-Ro 4 31112 { — 7(r1-Ro)*[13
— 9(r;Ro)*| + 173 — 7(r2:Ro)*]} — 21r;-Rora Ro{ri[r3 — 3(r2-Ro)*] + (r1-Ro)*[ — 313 + 11(r2-Ro)*]}).
APPENDIX B: FORCE BALANCE FOR THE proportionality coefficients Ag—q) = Azg—q) (1w, Ryaw) and
QUADRUPOLE-QUADRUPOLE AND A3(0—0) = A3z(o—0)(Lw, Ryaw) for the quadrupole-quadrupole
OCTUPOLE-OCTUPOLE INTERACTIONS and octupole-octupole interactions, which correspond to

the ratios Rvdw/ag/ 2l and Rvdw/a;/ 1 respectively. Ac-

I der to d trate that the f bal i lid
n order to demonstrate that the force balance is vali cording to Eq. (6), one has @ = (3/4)(i/pw)e and

for each term in the multipole expansion, we calculate the
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a3 = (5/4)(h/puw)*a;. By employing the aforementioned
two relations and considering the quadrupole-quadrupole

and octupole-octupole terms in Egs. (29) and (30),
we derive
1 7 5 2/2] 1 h 2/7 4;LwR2
N _ —1/21 YW
Axgg) = <_1024) R qw (M_w) e 2 (BI)
and
4851\ R\ ey
Auw — (=== R™ /14 e ZvdW ) B2
3(0—0) < 8 192> vdW ) e (B2)

These two expressions can be compared with the coefficients
A4 and A5”, expressed by Eq. (39). The results are shown
in Table II, where we compare the results obtained from
Eq. (39) with those obtained from quadrupole-quadrupole and
octupole-octupole interactions, expressed by Egs. (B1) and

(B2), respectively. Remarkably, we found a good agreement
between the proportionality coefficients Ay and A5¢ ) with
respect to the ratio of the vdW radius over the quadrupole

polarizability, and between AY“ and A5(_ with respect

1/14
to Rf,‘sz/o%/ref. For the noble gases, the mean values are

(Ag(’gf ) =2.08 au. and (A3¢_ ) = 2.00 a.u. with a devia-
tion 0? 6.3% for the quadrupole-quadrupole interaction and
8.7% for the octupole-octupole interaction. In both cases,
the mean values obtained form the high-multipole terms
(quadrupole-quadrupole and octupole-octupole) differ most
from the universal values A, = 2.45 a.u. and A3 = 2.27 a.u.
with respect to the ones obtained from dipole-quadrupole and
dipole-octupole interactions. Moreover, the error for (Ag‘(‘g_o))
is bigger than that for (A5 ). This means that, as expected,
the lower-order contributions in the multipole expansion are
more accurate with respect to the higher-order terms.
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