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Tensor network states have been a very prominent tool for the study of quantum many-body physics, thanks to
their physically relevant entanglement properties and their ability to encode symmetries. In the last few years, the
formalism has been extended and applied to theories with local symmetries too—lattice gauge theories. In order
to extract physical properties (such as expectation values and correlation functions of physical observables) out
of such states, one has to use the so-called transfer operators, the local properties of which dictate the long-range
behavior of the state. In this paper we study transfer operators of tensor network states (in particular, projected
entangled pair states) of lattice gauge theories, and consider the implications of the local symmetry on their
structure and properties. In particular, we study the implications on the computation of the Wilson loop—a
nonlocal, gauge-invariant observable which is central to pure gauge theories, the long-range decay behavior
of which probes the confinement or deconfinement of static charges. Using the symmetry, we show how to
simplify the tensor contraction required for computing Wilson loop expectation values for such states, eliminate
nonphysical parts of the tensors, and formulate conditions relating local properties (that is, of the tensors) to their
decay fashion.
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I. INTRODUCTION

In recent years, tensor network states [1] have been a
very prominent tool, rooted in quantum information science,
for the study of quantum many-body systems and especially
strongly correlated physics. In particular, matrix product
states (MPSs) [2,3] enable one to study numerically and
analytically physically relevant states, e.g., ground states of
local many-body Hamiltonians (that is, states exhibiting an
entanglement entropy area law). In higher spatial dimensions,
MPSs generalize to projected entangled pair states (PEPSs)
[3,4]. These are useful for the description of strongly corre-
lated physics in two spatial dimensions and more.

PEPSs (and MPSs) are constructed out of the contraction of
local building blocks (tensors). They satisfy, by construction,
the entanglement entropy area law (focusing on the physi-
cally relevant part of the Hilbert space) and allow the state
to depend on very few local parameters, hence making it
feasible for computations (compared with arbitrary states in
the exponentially large Hilbert space). Furthermore, they also
allow one to encode symmetries already on the single tensor
level. By properly parametrizing the local tensors, a global
symmetry of the whole PEPS under a symmetry group can be
imposed [5,6]. This way, one can generate families of ansatz
states in which the symmetry group of the studied model is
encoded by construction.
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While originally used mostly in the context of condensed
matter physics, MPSs and PEPSs have recently been extended
to the study of particle physics too—in particular, to lattice
gauge theories, aiming at solving long standing open, non-
perturbative questions of the standard model, such as the
confinement of quarks [7]. Due to its running coupling [8],
quantum chromodynamics (QCD), which allows one to use
perturbation theory in high energy scales (collider physics)
thanks to asymptotic freedom, is strongly interacting in low
energies, preventing the use of perturbative methods. Lattice
gauge theories (LGTs) [7] have been introduced to overcome
this difficulty, first as tools for lattice regularization of gauge
invariant field theories. They quickly became a very suc-
cessful numerical approach. Combined with quantum Monte
Carlo it has been applied to nonperturbative QCD computa-
tions, such as the hadronic spectrum [9]. However, quantum
Monte Carlo does not allow for the direct observation of
real time dynamics, and faces the fermionic sign problem
in several important physical scenarios, not allowing one to
probe some of the interesting exotic regions of the QCD phase
diagram [10], and this requires the use of other methods, with
tensor networks being one such approach. The tensor network
framework for lattice gauge theories has been rapidly growing
in the last few years.

For 1 + 1-dimensional systems, MPSs have already been
extensively used. This does not only include abstract formal-
istic descriptions of MPSs with a local symmetry [11,12] or
benchmarks of models that can be treated in other ways, such
as, but not only, the Schwinger model [13–20]. Successful nu-
merical studies of lattice gauge theories in 1 + 1 dimensions
have been carried out even in scenarios which face the sign
problem when approached with conventional methods (such
as real time evolution [21–23] and finite density [24–27]).
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This was done for both Abelian and non-Abelian models—see
[28] and references therein for a discussion of that.

The application of tensor networks to higher-dimensional
lattice gauge theories has been discussed as well in the
last few years [29–38]. From the rather more abstract, or
formalistic, point of view, gauging mechanisms which lift
globally invariant PEPSs to locally invariant ones by adding
a gauge field and entangling it to the matter properly were
introduced and discussed [39,40]. For a parallel approach in
the action formalism—tensor field theory—which uses tensor
networks (but not tensor network states), see [41] and refer-
ences therein.

In this paper, we will focus on a particular gauging
mechanism—the one introduced in [40] and used mostly with
fermionic matter, for creating gauged Gaussian fermionic
PEPSs [31,32]: special PEPS constructions which allow for
the description of fermionic matter coupled to dynamical
gauge fields. Their construction may be seen as a minimal
coupling procedure on the level of states, which is not pos-
sible in general but could be done in the context of PEPSs
[42]. While in general numerical computations are hard and
challenging for PEPSs in two spatial dimensions and more,
it has been shown that, when this particular construction is
used, the PEPS may be contracted efficiently (allowing one
to extract physical information) when combining with Monte
Carlo methods which do not suffer from the sign problem
[33]. Variational Monte Carlo then allows one to find ground
states of lattice gauge theory Hamiltonians when such states
are used as ansatz states, which has already been demonstrated
and benchmarked for a pure Z3 lattice gauge theory in 2 + 1
dimensions [37].

A question that has to be asked when a PEPS is studied is
how physical information can be extracted from the contracted
state—computation of expectation values of observables and
correlation functions. Thanks to the special structure of MPSs,
one may introduce a mathematical object called a transfer
matrix (or operator) [43] to compute efficiently expectation
values of observables and correlation functions. This may be
extended to two-dimensional PEPSs, by first contracting the
rows, obtaining effectively a chain of the rows which is an
MPS, and considering its transfer matrix [44]. In this paper,
we will study such transfer operators of lattice gauge theory
PEPSs in two space dimensions.

Gauge theories are special in the sense that they exhibit
a local symmetry, responsible to mediating local interactions
between the matter fields. This symmetry gives rise to many
local constraints. All the physical states are invariant under
gauge transformations—local transformations parametrized
by the elements of the so-called gauge group. As a result,
only gauge invariant observables and correlation functions—
those which are invariant under local transformations—give
rise to nonvanishing expectation values. Thus, LGT PEPSs
admit a very special structure manifested in the local tensors
[30,39,40]; in this paper, we focus on the implications of the
local symmetry on the transfer operators, and hence aim at us-
ing the symmetry to simplify the PEPS contraction, focusing
on pure gauge theories (that is, without dynamical matter).

In such scenarios, closed flux loops—usually referred to
as the operators which create them, Wilson loops [7]—are
perhaps the most important observables (and almost the only

possible gauge invariant ones). The decay rule of large Wilson
loops in pure gauge theories serves as probes for confine-
ment of static charges: area law decay implies confinement,
while a perimeter law implies a deconfined (Coulomb) phase.
Confinement implies a gapped, disordered phase, while de-
confined phases are massless and ordered [45]. The local
ingredients of the Wilson loop are not gauge invariant—
only their combination along the nonlocal path preserves the
symmetry. This means that when computing it for a gauge
invariant PEPS the transfer operator formalism must be ex-
tended and modified, requiring the inclusion of various types
of transfer matrices which construct this nonlocal observable.
The different building blocks will also have special properties
[32], dictated by the special local symmetry, which will affect
the behavior of the Wilson loop and its decay.

In this paper, we will study the properties of transfer oper-
ators of gauge invariant PEPS. We will see how the symmetry
affects the properties of the local tensors, and that thanks to
it some parts of the tensors may be excluded and ignored
when a contraction is done (e.g., when combined with some
numerical methods). We will also see how that affects the
Wilson loop’s decay—that is, how local properties of the
tensors dictate the decay of large Wilson loops.

Note that PEPSs have been previously used for the compu-
tation of Wilson loop expectation value in various cases—Z2

string nets [46,47], as well as U (1) [31] and SU (2) [32] toy
models; here we derive a general framework based on transfer
matrix arguments and demonstrate with particular construc-
tions.

We begin with briefly reviewing important preliminaries
from group theory and lattice gauge theory, in Sec. II; we
move on to formulating gauge invariant PEPSs and reviewing
their symmetry properties, in Sec. III; in Sec. IV we introduce
the transfer operators—after a brief review of their general
properties, we formulate the flux-free transfer operators for
LGT PEPSs, study their properties, and use them to calcu-
late the norm; Sec. V focuses on the contraction of Wilson
loop expectation values for LGT PEPSs, studying the rele-
vant transfer operators and deriving conditions for area and
perimeter decay laws; finally, in Sec. VI, we give an explicit il-
lustration, including both analytical and numerical arguments,
for a Z2 lattice gauge theory.

Throughout this paper the Einstein summation convention
(on doubly repeated indices) is assumed unless stated other-
wise; with the only exception of irreducible representation
indices, the summation of which should not be assumed.

II. MATHEMATICAL AND PHYSICAL PRELIMINARIES

A. Groups, transformations, and representations

Consider a group G, which is either a finite or a compact
Lie one. Each group element g ∈ G may be represented by
different unitary matrices D j (g), labeled by the group’s ir-
reducible representations (irreps) j; the dimension of these
matrices is referred to as the irrep dimension, dim( j) [e.g.,
2 j + 1 for SU (2)].

In the Hilbert space H of some quantum mechanical the-
ory, we would like to consider transformations parametrized
by the elements of G. To do that, for each g ∈ G we introduce
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a unitary operator θg, and define it by its action on a basis
state of the form | jm〉. j labels the irreducible representa-
tions of G and m is an index labeling all states within this
representation—that is, all the states that may be mixed by the
transformations θg that act block diagonally on the irreps:

θg| jm〉 = | jm′〉D j
m′m(g). (1)

We can hence express θg as

θg =
⊕

j

D j
mn(g)| jm〉〈 jn| (2)

and therefore the dimension of the irrep j, dim( j), is also
the dimension of H j , the Hilbert subspace spanned by | jm〉,
which we call a multiplet. The Hilbert space may be seen as a
direct sum of multiplet subspaces:

H =
⊕

j

H j . (3)

In general, quantum Hilbert spaces may contain more than one
multiplet carrying the same irreducible representation.

These transformations are sometimes referred to as right
transformations, since they mix the multiplet elements | jm〉,
when seen as the components of a dim( j) dimensional vector,
via right matrix multiplication, as shown in (1). One can also
introduce the left transformations:

θ̃g| jm〉 = D j
mm′ (g)| jm′〉. (4)

Note that the left transformations are not independent from the
right ones: for each g ∈ G one may find h such that θ̃g = θh.
We introduce the left transformations separately nevertheless
since they will be mathematically convenient later when the
PEPSs are constructed.

When G is a compact Lie group, its elements may be
uniquely identified in terms of group parameters or coordi-
nates φa; then, for each irrep j,

D j (g) = exp
[
iφa(g)T j

a

]
; (5)

the parameters φa(g) depend on the group element, while the
generators T j

a depend on the representation. The latter form a
set of matrices with dimension dim( j), satisfying the group’s
Lie algebra [

T j
a , T j

b

] = i fabcT j
c (6)

where fabc are the group’s structure constants. One may also
introduce the abstract generators, Ja, which are block diagonal
in the representations,

Ja =
⊕

j

(
T j

a

)
mn| jm〉〈 jn|, (7)

satisfying the algebra

[Ja, Jb] = i fabcJc (8)

too.
The states | jm〉 are eigenstates of mutually commuting

operators: the j quantum numbers(s) labeling the irreducible
representation (and hence the multiplet) are eigenvalues of
the Casimir operators which commute with all the generators;
within the representation, the states are labeled by the eigen-
values of a maximal set of mutually commuting generators

(Cartan subalgebra)—m. Similarly, when the group is finite, j
labels the irreducible representation while the m numbers are
obtained from the simultaneous diagonalization of a maximal
set of commuting transformations.

All the irreps of Abelian groups are one dimensional and
thus no m indices are required. In the ZN case, the N different
irreps are labeled by the integers j = 0, . . . , N − 1, which
label the group elements g = 0, . . . , N − 1 too, with D j (g) =
exp(i 2π

N jg). In the U (1) case the group elements are labeled
by one parameter as well, φ ∈ [0, 2π ); the representations are
labeled by integers j ∈ Z; D j (φ) = exp(i jφ); and T j = j1.

As a non-Abelian example, consider SU (2), the irreps of
which are labeled by j that are non-negative integers and half
integers. The dimension of each representation is dim( j) =
2 j + 1, and the 2 j + 1 within the multiplet are labeled by
m = − j, . . . , j. There are three generators, satisfying the
Lie algebra with fabc = εabc—the antisymmetric (Levi-Civita)
symbol with a, b, c = 1, 2, 3. The generators in this case are
sometimes called the spin or angular momentum components,
and then a, b, c = x, y, z. The j = 0 (trivial) representation is
one dimensional, with the singlet state |00〉. The next rep-
resentation, j = 1/2, is two dimensional (m = ±1/2), with
generators proportional to the Pauli matrices, T j=1/2

a = σa/2.
In this case, there is a single Casimir operator, J2 = JaJa, com-
muting with one generator at most (the Cartan subalgebra is of
size 1). Conventionally it is taken to be the z or 3 component
of the angular momentum, and thus for SU (2)

J2| jm〉 = j( j + 1)| jm〉,
Jz| jm〉 = m| jm〉. (9)

B. Lattice gauge theory basics

Just like gauge theories in the continuum, LGTs describe
the interaction of matter particles through gauge fields. In the
lattice case, the matter fields reside on the lattice sites, while
the gauge fields, mediating the interactions between matter
particles, are on the links. One can either discretize both space
and time [7], as used for Euclidean Monte Carlo computa-
tions, or discretize only space while keeping time continuous
[48]. The latter corresponds to the Hamiltonian formulation
widely used in the context of quantum simulation and tensor
networks, including in this paper. Since we consider Hamilto-
nian lattice gauge theory in 2 + 1 dimensions, our lattice will
be two dimensional. As this paper focuses on the pure gauge
case and matter fields are absent, all the degrees of freedom
will reside on the links. We will review the basic ingredients
of such models following the conventions of [49,50].

1. Local Hilbert spaces

Consider a two-dimensional lattice, the sites of which are
labeled by vectors of integers x ∈ Z2. êi denote the unit vec-
tors pointing in directions i = 1, 2, and any link is classified
by two numbers, (x, i), standing for the beginning of the link
and the direction to which it emanates, respectively. Each
link (x, i) hosts a local gauge field Hilbert space Hgauge(x, i),
which can be spanned by group element states {|g〉}g∈G labeled
by the gauge group elements. These states form a basis of
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Hgauge, with the orthogonality relation

〈g′|g〉 = δ(g′, g), (10)

where δ(g′, g) is the Kronecker delta if G is finite, and a Dirac
delta distribution in the compact lie case—denoting the Haar
measure of G by dg:∫

dg′ f (g′)δ(g′, g) = f (g). (11)

Unlike in the multiplet case, here the right and left
transformations are independent of one another, as group mul-
tiplications: we introduce two sets of unitary operators, �g

and �̃g, parametrized by the elements of the gauge group G,
which implement right and left group multiplications (respec-
tively) on the group element states:

�g|h〉 = |hg−1〉,
�̃g|h〉 = |g−1h〉. (12)

The space Hgauge can also be spanned by the dual repre-
sentation basis, the states of which are labeled by | jmn〉— j is
an irrep and m, n are identifiers within it. In a sense, using the
multiplet states introduced previously,

| jmn〉 = | jm〉 ⊗ | jn〉 (13)

or

Hgauge =
⊕

j

H j ⊗ H j (14)

where H j is the dim( j) dimensional subspace spanned by the
| jm〉 multiplet states. We read this equation as a decomposi-
tion of the link’s Hilbert space into a direct sum of products
of multiplets of the groups on the left and right of the link,
sharing the same irrep. Here one copy of each irreducible
representation is used at most; one in the full, Kogut-Susskind
case [48], but it is also possible to choose (for example, for
reasons of feasibility of computation or experimental imple-
mentation) to truncate the sum and not include all the irreps in
several ways [49,51] as we will discuss later.

In the nontruncated case, using the Peter-Weyl theorem and
the group’s Fourier transform [49], the transition between the
two bases is given by

〈g| jmn〉 =
√

dim( j)

|G| D j
mn(g) (15)

where |G| is the group’s volume. In the representation basis,

�g| jmn〉 = | jmn′〉D j
n′n(g),

�̃g| jmn〉 = D j
mm′ (g)| jm′n〉.

(16)

In the compact Lie group case, one can introduce two
sets of transformation generators, left and right—La and Ra,
respectively, such that

�g = exp[iφa(g)Ra],

�̃g = exp[iφa(g)La], (17)

satisfying the algebra

[Ra, Rb] = i fabcRc, [La, Lb] = −i fabcLc, [Ra, Lb] = 0.

(18)

Note that if the group is Abelian there is no difference
between left and right operations and the indices m, n do not
exist. Therefore, there R = L ≡ E . Thus, in the U (1) case, for
example, we have group states labeled by the single compact
parameter |φ〉 and representation states labeled by the single
integer | j〉, related through the Fourier series formula

〈φ| j〉 = 1√
2π

ei jφ (19)

and the representation states | j〉 satisfy

E | j〉 = j| j〉. (20)

For ZN , similarly, we obtain the discrete Fourier series for-
mula

〈g| j〉 = 1√
N

ei2π jg/N . (21)

In the SU (2) case, since the group is non-Abelian, the sit-
uation is more complicated. There are (2 j + 1)2 | jmn〉 states
for each j—e.g., one singlet state |000〉 for j = 0, and four
j = 1/2 states, | 1

2 ,± 1
2 ,± 1

2 〉. The group is parametrized by the
three Euler angles α, β, γ , and

〈α, β, γ | jmn〉 =
√

2 j + 1

8π2
D j

mn(α, β, γ ). (22)

The Hilbert space in this case is that of a rigid rotator [48,52].
The right and left operators Ra and La correspond to the
generators of its rotations in the space and body frames of
reference. These two sets of generators commute, and give
rise to the same total angular momentum (eigenvalue of the
Casimir operator) since it is a rotation scalar quantity which
does not depend on the frame of reference [53,54]. Therefore,

J2| jmn〉 ≡ R2| jmn〉 = L2| jmn〉 = j( j + 1)| jmn〉,
Lz| jmn〉 = m| jmn〉,
Rz| jmn〉 = n| jmn〉. (23)

2. Local gauge invariance

At each site x, and for each group element g ∈ G, we
introduce the gauge transformation

�̂g(x) = �̃g(x, 1)�̃g(x, 2)�†
g(x − ê1, 1)�†

g(x − ê1, 2) (24)

which transforms all the four links intersecting at x with
respect to the same group element—the outgoing links with
the left transformation, and the ingoing ones with the inverse
right one. The outgoing links, the beginning (left) side of
which connects to x, undergo a left rotation, while the ingoing
ones, connected through their end (right) side to x, undergo an
inverse right rotation.

A gauge invariant state |ψ〉 satisfies

�̂g(x)|ψ〉 = |ψ〉, ∀x ∈ Z2, g ∈ G (25)

(see Fig. 1) and similarly, for a gauge invariant operator O,

�̂g(x)O�̂†
g(x) = O, ∀x ∈ Z2, g ∈ G (26)
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FIG. 1. Gauge transformations act on the four links around a
vertex with a particular set of unitary transformations parametrized
by the same group element g ∈ G.

(one can extend it to the case of static charges [52] which
we do not discuss here). In a lattice gauge theory, only gauge
invariant states and operators are considered physical.

If G is a compact Lie group, we can formulate the gauge
transformations �̂g(x) in terms of their generators

Ga(x) = La(x, 1) + La(x, 2) − Ra(x − ê1, 1)

− Ra(x − ê2, 2). (27)

Gauge invariance is then formulated in terms of the Gauss
laws

Ga(x)|ψ〉 = 0, ∀x ∈ Z2, a (28)

(once again, excluding static charges [52]).
We call this eigenvalue equation the Gauss law, since Ga(x)

can clearly be seen as the divergence of electric fields—La and
Ra—on a site. For physical states—the ones which satisfy the
local constraints (25)—the divergence of electric fields is zero.
It is very apparent in the U (1) case, where it takes the explicit
form

(E (x, 1) + E (x, 2) − E (x − ê1, 1) − E (x − ê2, 2))|ψ〉
≡ ∇ · E(x)|ψ〉 = 0, ∀x ∈ Z2, a. (29)

In non-Abelian cases, the divergence involves left and right
electric fields, which is related to the charge carried by non-
Abelian gauge bosons [48] (e.g., the color charged gluon vs
the electric neutral photon).

3. Wilson loops

Since we deal with gauge invariant states, it is expected
that the expectation values of non-gauge-invariant operators
will vanish. Thus, when classifying the phases and behavior
of gauge theories one needs to consider only gauge invariant
observables and correlation functions.

One option, for the compact Lie group, is to compute
expectation values of electric field operators and functions
thereof (and only of Casimir operators if the group is non-
Abelian). Another possible gauge invariant observable is the
loop variable, and in particular Wilson loops [7].

On the local link Hilbert spaces we introduce the group
element operators:

U j
mn =

∫
dgD j

mn(g)|g〉〈g|. (30)

FIG. 2. A Wilson loop: rectangular loop of electric flux. On links
in the positive directions (pointing rightwards and upwards, here on
the lower and right edges of the loop) the group element operator U
is used; on links in the negative directions (pointing leftwards and
downwards, here on the left and upper edges of the loop), U † is used.

U j is a matrix of dimension dim( j) × dim( j), the elements
of which are operators acting on the link’s gauge field Hilbert
space, Hgauge [on each link 
 we can define such operators
U j

mn(
)]. Even though they are Hilbert space operators, all the
elements of U j commute—one can see in the definition above
that they are all diagonal in the same basis. The matrix ele-
ments of U j mix with respect to the transformation properties
of the j representation,

�gU
j

mn�
†
g = U j

mn′D
j
n′n(g),

�̃gU
j

mn�̃
†
g = D j

mm′ (g)U j
m′n, (31)

and, in the compact Lie case,[
Ra,U j

mn

] = U j
mn′

(
T j

a

)
n′n,[

La,U j
mn

] = (
T j

a

)
mm′U

j
m′n. (32)

Let us take some closed path C on the lattice. We define
the Wilson loop operator W (C) as the ordered contraction of
group element operators along this closed path, that is,

W j (C) = Tr

(∏

∈C

U j (
)

)

= U j (
1)m1m2U
j (
2)m2m3 · · ·U j (
L )mLm1 . (33)

It is a trace over the product of the group element operators
U , seen as matrices, ordered along the closed path C with
length L (which is simply the number of links along the path).
Depending on the orientation of the path, one may have to use
U † instead of U , on half of the links along the path—those
pointing leftwards or downwards (see Fig. 2). For simplicity,
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we will omit the j indices below, but obviously the same irrep
must be used along the path, otherwise the matrix product is
ill defined. Consider U (1) with j = 1 as an example; there,

W (C) = exp

(
i
∑

∈C

φ(
)

)
(34)

with half of the phases with a minus sign, according to their
orientation.

In order to consider the action of the group element op-
erators on representation states, we use the Clebsch-Gordan
series and coefficients 〈JM jm|KN〉 [55] and obtain

U j
mm′ |JMM ′〉

=
√

dim(J )

dim(K )
〈JM jm|KN〉〈KN ′|JM ′ jm′〉|KNN ′〉; (35)

that is, the action of the group element operator U j on a state
with representation J yields states with all representations
which are obtained by combining j and J (more precisely,
fusing the two irreps together). Acting with a loop operator
hence excites the representations along the loop with respect
to that rule. One may truncate the Hilbert space in the repre-
sentation basis: as long as all the irreducible representations
used are taken completely and connected by nonzero Clebsch
Gordan coefficients when j is added, one may use (35) to
define a U j operator acting on that truncated space. The trans-
formation properties (16), (31), and (32) will still hold [49],
which may make it convenient for some numerical approaches
(or quantum simulation implementations [56]) but, since the
group structure will be lost, the group element basis will no
longer be defined, making, in particular, (30) and the Fourier
transform (15) invalid.

In most cases, rectangular Wilson loops are considered. We
denote by W (R1, R2) a rectangular loop sized R1 × R2 (see
Fig. 2). Very large Wilson loops of pure gauge theories are a
probe for confinement (or deconfinement) of static charges,
as introduced by Wilson in [7] (see also [45,57,58]). In a
confining phase,

− log 〈W (R1, R2)〉 ∝ R1R2 (36)

for R1, R2 � 1 (area law), while in a deconfined phase

− log 〈W (R1, R2)〉 ∝ R1 + R2 (37)

for R1, R2 � 1 (perimeter law).
In [59], Creutz introduced the parameter

χ (R1, R2) = − log

(
W (R1, R2)W (R1 − 1, R2 − 1)

W (R1 − 1, R2)W (R1, R2 − 1)

)
(38)

for the detection of static charge confinement. In the general
case of

〈W (R1, R2)〉 = W0e−κAR1R2−κP (R1+R2 ), (39)

for large R1, R2, the area factor κA (called the string tension),
should it exist, is the most dominant one. The Creutz parame-
ter χ filters out the contributions of the constant prefactor W0

and the perimeter coefficient κP, and thus within a confining
phase, χ (R1, R2) → κA > 0 for R1, R2 � 1, while in a decon-
fining one it converges to zero.

III. GAUGE INVARIANT PEPSs

In this paper, we use the lattice gauge theory PEPS formal-
ism of [33,40], with slightly different notations (and restricted
to the pure gauge case). First of all, let us review it.

A. Review of the PEPS construction

Each site x ∈ Z2 of our square, periodic lattice is at the
intersection of four legs. The outgoing ones are in the right and
up directions, while the left and down directed legs are con-
sidered ingoing. We wish, as usual with PEPSs, to construct
a physical lattice state describing different physical degrees
of freedom located on different sites. Each such degree of
freedom is described by a local physical Hilbert space: if we
had matter, we would fix a physical matter Hilbert space to
each lattice site. Here, however, the gauge fields are our only
physical degrees of freedom, and they reside on the links.
Thus, with each lattice site x we associate two physical Hilbert
spaces, located on the outgoing legs. We refer to them as the
side (Hs) and top (Ht ) physical Hilbert spaces.

These are local gauge field Hilbert spaces (note that the
word local here has to do with being defined on a single
link, not with the gauge symmetry being local)—that is, either
the full Hgauge spaces introduced in Eq. (14), or truncated
versions thereof containing only some representations. When
truncating, it is important to make sure that all the | jmn〉 for
an included j are present, otherwise no gauge invariance can
be imposed, as explained above [40,49].

When constructing a PEPS, in order to connect the local
physical building blocks to one physical quantum state, one
has to introduce auxiliary or virtual degrees of freedom, on
top of the physical ones given by the model we study. These
are used merely for the purpose of contraction. On each of the
four legs we introduce an auxiliary or virtual Hilbert space,
Hr,Hu,Hl ,Hd for the right, up, left, and down going legs,
respectively. They are spanned by group multiplet states of
the form | jm〉, as defined in Eq. (3). One may include all such
multiplets, truncate, or include several copies of the same mul-
tiplet, which allows one to increase the number of variational
parameters; but once again, all the states within a multiplet
included must be present, and the representations used in the
physical spaces must be included (though possibly with a
higher multiplicity). For more details about that, refer to [40]
where the general construction of such states is discussed.

On each site, we construct the physical-virtual state

|A〉 = Ajsmsns; jt mt nt
jr mr ; jumu; jl ml ; jd md

× | jsmsns; jt mt nt 〉| jrmr ; jumu; jlml ; jd md〉
∈Hs × Ht × Hr × Hu × Hl × Hd (40)

where the first ket refers to the physical states and the sec-
ond refers to the virtual ones (see Fig. 3). The coordinate
x was omitted for simplicity, but the Hilbert spaces are all
associated with particular sites and, in general, the tensors
Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
may depend on the position, although we

will focus on translationally invariant PEPSs and thus they
will be independent of x.
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FIG. 3. The building blocks of the PEPS: on the left, the site ten-
sors A (40), with the physical legs s, t and the virtual ones r, u, l, d .
In the middle, the link projectors, B1,2 (41), connecting the outgoing
legs r, u with the ingoing legs l, d of the next sites, to the right
and above, respectively. On the right, the contracted PEPS |ψ〉 (42),
obtained after the projection.

To contract the PEPS, on each link we introduce the maxi-
mally entangled states

|B1(x)〉 =
∑

j

| jm〉r,x| jm〉l,x+ê1
,

|B2(x)〉 =
∑

j

| jm〉u,x| jm〉d,x+ê2
. (41)

As usual, we construct our PEPS |ψ〉 by projecting the virtual
states on the legs onto the maximally entangled states:

|ψ〉 =
⊗

x,i

〈Bi(x)|
⊗

x

|A(x)〉. (42)

Note that
⊗

x
|A(x)〉 in both the physical and virtual spaces,

while
⊗
x,i

〈Bi(x)| is only virtual. Thus the result of this pro-

jection, |ψ〉, is still a quantum state, including only physical
degrees of freedom—the virtual, or auxiliary ones, are all
contracted: this is the standard way to contract PEPSs, and
a frequently used notation. The physical degrees of freedom
are now correlated, and in particular, thanks to maximally en-
tangling nearest neighbors, this guarantees the entanglement
entropy area law.

One still has some freedom to choose which maximally
entangled states to use; the ones that we picked here are
invariant under the following group transformations:

θ̃ r
g (x)θ l†

g (x + ê1)|B1(x)〉 = |B1(x)〉,
θ̃u

g (x)θd†
g (x + ê2)|B2(x)〉 = |B2(x)〉 (43)

[with θg, θ̃g defined in (1) and (4), respectively] as depicted
in Fig. 4. This allows one to construct states with a global or
local symmetry, as we shall now see.

B. Imposing the local symmetry

We want our PEPS |ψ〉 (42) to be gauge invariant as
in (25) with respect to the local gauge transformations de-
fined in (24). If the local physical-virtual states on each site

FIG. 4. The invariance properties of the links.

satisfy [40]

�̃s
g(x)�̃t

g(x)|A(x)〉 = θ l
g(x)θd

g (x)|A(x)〉,
�s

g(x)|A(x)〉 = θ̃ r
g (x)|A(x)〉,

�t
g(x)|A(x)〉 = θ̃u

g (x)|A(x)〉, ∀g ∈ G, (44)

where the physical Hilbert spaces are transformed using �, �̃

defined in (16), and the virtual ones using �, �̃ defined in
(1) and (4), respectively (see Fig. 5), then using the transfor-
mation properties of the maximally entangled states (43) one
obtains that |ψ〉 is gauge invariant.

In order to get a more intuitive picture of the symmetry
conditions (44), let us consider the compact Lie group case
again. Omitting the coordinate, since we deal with a single
coordinate x, let us denote the right and left generators of the
physical degrees of freedom by Rs/t

a and Ls/t
a . For the virtual

degrees of freedom we can also define such operators, but in
their case note that they do not commute, since they do not
act on separate degrees of freedom (| jm〉 states, unlike the
physical | jmn〉 states). The conditions (44) can be expressed,
using these notations, as Gauss laws:(

Ls
a + Lt

a

)|A〉 = (
Rl

a + Rd
a

)|A〉,
Rs

a|A〉 = Lr
a|A〉,

Rt
a|A〉 = Lu

a |A〉 ∀a. (45)

The first condition looks like the familiar physical Gauss
law. It implies that the two ingoing representations of the
virtual indices must combine to the same representation to
which the two physical representations combine: js ⊗ jt ∼
jl ⊗ jd . Therefore, the tensor Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
should be

proportional to the appropriate Clebsch-Gordan coefficients,
〈 jlml jd md | j1m1〉〈 j1m1| jsms jt mt 〉.

The other two conditions are different, identifying the right
constituents of the physical degrees of freedom with the vir-
tual states on the same legs. This implies that jr = js, ju = jt ,
mr = ns, and mu = nt ; Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
must be proportional

to δ js jr δ jt jt δns,mr δnt ,mu . Combining the first condition with the
other two, we can obtain a condition on the four virtual legs:
the elements of Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
must vanish, unless

jr ⊗ ju ∼ jl ⊗ jd . (46)

Examples for constructions satisfying that have been previ-
ously given [31,32,40,42]; let us just briefly comment on some
special cases. When the group is Abelian, only the irrep in-
dices remain and the Clebsch-Gordan coefficients are simply
Kronecker deltas. One can then formulate jr ⊗ ju ∼ jl ⊗ jd
in a very simple way. For U (1), for example, 〈 j1 j2|J〉 =
δ j1+ j2,J , and the ZN is the appropriate modular modification,
〈 j1 j2|J〉 = δ j1+ j2,JmodN . We thus obtain, in the U (1) case,
only tensor elements for which jr + ju − jl − jd = 0 may be
nonzero ( jr + ju − jl − jd = NZ for ZN ).

The same applies to non-Abelian groups as well, but since
physical states contain the (generally different) m, n quantum
numbers it is less simple. For SU (2), e.g., if we choose to
include only the j = 0, 1/2 representations, the only nonvan-
ishing tensor elements will be those with an even number of
virtual legs (ingoing or outgoing) with j = 1/2, such that a
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FIG. 5. The invariance properties of the tensors (44), allowing for a physical local (gauge) symmetry.

singlet can be formed by combining the contributions of all
four legs.

The only freedom left in the definition of Ajsmsns; jt mt nt
jr mr ; jumu; jl ml ; jd md

is to introduce some parameters f j
jr , ju, jl , jd

which only depend
on the representations, and we obtain [40]

Ajsmsns; jt mt nt
jr mr ; jumu; jl ml ; jd md

=
∑

j

f j
jr , ju, jl , jd

〈 jlml jd md | jm〉

× 〈 jm| jsms jt mt 〉δ js jr δ jt jt δns,mr δnt ,mu .

(47)

In the following, we will focus on PEPSs satisfying the
above symmetry properties, with no more than one copy of
each irrep in the virtual spaces. This may seem restrictive
when attempting to apply the states to real, physically relevant
Hamiltonians; here, however, we wish to consider the most
minimal constructions which capture the relevant symmetry
properties, allowing us to demonstrate our claims and results
as accurately as possible. When applied to Hamiltonians as
variational ansatz states the states may have to be generalized
indeed but in a straightforward way that does not affect the
properties we discuss here. For example, as was demonstrated
already in the Z3 case [37], several copies of the virtual rep-
resentations are required in order to use such PEPSs in order
to variationally find the ground states of the Z3 Hamiltonian.

One could also consider a more general PEPS construction,
in which such properties are only satisfied after blocking, for
effective sites and effective links. The symmetry conditions
described above will hold in this case too—for the blocked
tensor network, rather than the original, “microscopic” one,
and thus what we study here could easily be applied to such
cases too. A more general scenario would be with local matrix
product operator symmetries [4], but this is out of the scope
of this paper and requires its own, separate discussion.

C. Tensor notation

The projection (42) which generates the PEPS |ψ〉 can
simply be seen as a set of contraction rules for the virtual
indices of the tensors Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
, associating the indices

of r at x with those of l at x + ê1, as well as u at x with d at
x + ê2. Hence instead of looking at the local states |A〉 and
their projection onto the link states |Bi(x)〉, we may use, as
our basic local building block,

A = As1s2;t1t2
ruld |l〉〈r| ⊗ |d〉〈u||s1s2t1t2〉 (48)

where, for the sake of notation simplicity, r ≡
{ jr, mr}, u ≡ { ju, mu}, l ≡ { jl , ml}, d ≡ { jd , md}, s1 ≡
{ js, ms}, s2 ≡ { js, ns}, t1 ≡ { jt , mt }, t2 ≡ { jt , nt }, and
As1s2;t1t2

ruld ≡ Ajsmsns; jt mt nt
jr mr ; jumu; jl ml ; jd md

. In (48) the virtual states and
their projection are replaced by the matrix products of |l〉〈r|
along horizontal lines (with the positive direction from the

left to the right) and |d〉〈u| on the vertical lines (positive
direction—upwards). This sets the contraction rules of the
tensors As1s2;t1t2

ruld .
To illustrate, let us reduce to one space dimension and one-

dimensional PEPS—an MPS [43]. Each local tensor along the
one-dimensional system includes one physical leg, spanned
by states |p〉, and two virtual ones, on the left and right
direction. The state is thus parametrized by the tensors Ap

lr ,
and their contraction is simply a matrix multiplication of the
virtual indices along the system. For a periodic system with N
sites (the modification for open boundaries is straightforward)
the state takes the form

(49)

The PEPS contraction rules in two space dimensions are sim-
ply a two-dimensional generalization of the trace contraction
in the one-dimensional case.

The symmetry conditions (44) may also be expressed as
properties of the tensor Ajsmsns; jt mt nt

jr mr ; jumu; jl ml ; jd md
. For that, we intro-

duce the (reducible) representation matrices D(g) which are
direct sums of the irreducible unitaries D j (g); using them, the
symmetry condition (44) may be reformulated as

A
s′

1s2;t ′
1t2

ruld Ds′
1s1 (g)Dt ′

1t1 (g) = Dll ′ (g)Ddd ′ (g)As1s2;t1t2
rul ′d ′ ,

Ds2s′
2
(g)As1s′

2;t1t2
ruld = As1s2;t1t2

r′uld Dr′r (g),

Dt2t ′
2
(g)As1s2;t ′

1t2
ruld = As1s2;t1t2

ru′ld Du′u(g) ∀g ∈ G. (50)

IV. TRANSFER OPERATORS AND NORMS OF PEPSs

Before turning to the study of the transfer operator of our
gauge invariant PEPS, let us recall what the transfer operator
of a PEPS is. First, we briefly review the one-dimensional
MPS case [43]. We strictly focus on the translationally invari-
ant case, since this paper is aimed at translational invariant
systems; however, the general transfer matrix discussion may
be (and has been) generalized to the nontranslationally invari-
ant case.

A. Brief review of MPS transfer matrices

The transfer matrix of the MPS |ψ0〉 from (49) is defined
as

(51)
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it is a matrix with double valued indices, ll ′ to the left and
rr′ to the right. Thus, if l, r take D values each (i.e., the
virtual Hilbert spaces used for contracting the MPS are D

dimensional), E is a D2 × D2 matrix, acting on the D2 space
formed by the product of two copies of the virtual Hilbert
space. Using E , we can first write down the norm of the state:

(52)

For the computation of an expectation value of some operator O at site x, we will need to define

(53)

using which we may write

(54)

Suppose we wish to compute the two-point correlator of O1(x1) and O2(x2) (assuming for simplicity that x2 − x1 = R > 0),

F (x1, x2) = 〈O1 (x1) O2 (x2)〉 − 〈O1 (x1)〉 〈O2 (x2)〉 =
Tr

[
EO1E

R−1EO2E
N−R−1

]
Tr [EN ]

− Tr
[
EO1E

N−1
]
Tr

[
EO2E

N−1
]

Tr2 [EN ]

= −

×

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

2

(55)

We introduce the left and right eigenvectors of E , 〈wi|E =
〈wi|ρi and E |vi〉 = ρi|vi〉, sharing the same eigenvalues ρi

and satisfying the orthonormality relation 〈wi|v j〉 = δi j , and
expand E as

E =
∑

i

ρi|vi〉〈wi|. (56)

Let us sort the eigenvalues in a descending order and assume
that the largest one is nondegenerate, that is, |ρ1| > |ρ2| �
|ρ3| � . . .. Then, for N � 1, R � 1, one obtains that

F (x1, x2) ≈ ρ−2
1

∑
i>1

(
ρi

ρ1

)R−1

〈w1|EO1 |vi〉〈wi|EO2 |v1〉; (57)

the correlations decay exponentially, with a finite correlation
length ξ = −1/ log | ρ2

ρ1
|.

B. Transfer operators of PEPSs

The transfer matrix approach can be generalized to two-
dimensional PEPSs, such as the ones we consider here,
constructed in (42). We assume the system has periodic
boundary conditions—a torus of size N × N (generalizations
to other boundary conditions are straightforward). The local
transfer operator of a PEPS on a site is a map from two double
virtual Hilbert spaces, associated with the ingoing (left and
down) legs, to two other double virtual spaces, directed to the
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outgoing directions (right and up):

T̂ = Tll ′,rr′,dd ′,uu′ |ll ′〉〈rr′| ⊗ |dd ′〉〈uu′| (58)

(note that we use again a convention in which the input vectors are denoted by bras, in accordance with the matrix product
ordered from left to right in the positive system directions).

In full analogy with the one-dimensional case, the elements of the transfer tensor Tll ′,rr′,dd ′,uu′ are given by

(59)

The norm may be computed by properly contracting products of T̂ on all the lattice sites; in expectation values of observables,
the numerator may be computed by replacing T̂ at the relevant sites by

(60)

To compute correlations, we will first contract all the tensors along one dimension of the PEPS, converting it effectively to an
MPS [31,32,44] the transfer matrix of which can be defined as above. For example, the transfer matrix of a row of length N is
obtained by contraction along the horizontal direction,

Ê = Tl1l′1,r1r′
1,d1d′

1,u1u′
1
Tl2l′2,r2r′

2,d2d′
2,u2u′

2
· · ·TlN l′N ,rN r′

N ,dN d′
N ,uN u′

N Tr [|l1l′1〉 〈r1r
′
1|l2l′2〉 〈r2r

′
2| · · · |lN l′N 〉 〈rN r′N |]

× |d1d
′
1〉 〈u1u

′
1| ⊗ ... ⊗ |dNd′N 〉 〈uNu′

N | = Ed1d,1,...,dN ,d′
N ;u1u′

1,...,uN ,u′
N |d1d

′
1〉 〈u1u

′
1| ⊗ ... ⊗ |dNd′

N 〉 〈uNu′
N |

=

(61)

where

Ed1d,1,...,dN ,d ′
N ;u1u′

1,...,uN ,u′
N

= Ti1,i′1,i2i′2,d1d ′
1,u1u′

1
Ti2,i′2,i3i′3,d2d ′

2,u2u′
2
· · · TiN i′N ,i1i′1,dN d ′

N ,uN u′
N

.

(62)

Using E and similar transfer matrices which include
observables, one may use the entire MPS machinery for
computations of norms, expectation values, and correlation
functions. Naively, one may deduce that correlations in this
case decay exponentially as in the MPS case [43]. However,
unlike in the one-dimensional MPS case, here the transfer
matrix is a composite object with some internal structure,
which can lead to different results. It was shown in [60], for
example, that two-dimensional PEPSs can describe critical
physics, exhibiting power law contributions.

C. Flux-free transfer operators

Let us apply the above to the computation of the norm. For
that, consider the flux-free transfer operator, that is, the local
building block of the transfer matrix on a single site, with no
string (group element operator U j), T̂ , as defined in (58). We
calculate its elements using (59), and thanks to the symmetry
conditions (50) we obtain that for every g ∈ G(
θ l

g ⊗ θ̃†l ′
g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
T̂ = T̂ θ r

g ⊗ θ̃†r′
g = T̂ θu

g ⊗ θ̃†u′
g = T̂

(63)

[see Fig. 6(a)]. This implies that in (58) the outgoing vectors
|rr′〉 and |uu′〉 are both separately singlets under the action of
(θg ⊗ θ̃†

g )—that is, they are on-leg singlets, denoted by 〈0( jr )|
and 〈0( ju)| and defined as

|0( j)〉 = | jm jm〉. (64)

The ingoing legs |ll ′〉 ⊗ |dd ′〉, on the other hand, combine
together to a singlet under (θ l

g ⊗ θ̃†l ′
g ) ⊗ (θd

g ⊗ θ̃†d ′
g ):

〈 jlml jd md | j′lm
′
l j′d m′

d〉| jlml , j′lm
′
l〉 ⊗ | jdmd , j′d m′

d〉. We can
therefore conclude that the general structure of T̂ is

T̂ =
∑
{ j}

Tjl , j′l , jr ; jd , j′d , ju〈 jlml jd md | j′lm
′
l j′d m′

d〉| jlml , j′l m
′
l〉〈0( jr )|

⊗ | jd md , j′d m′
d〉〈0( ju)|; (65)

it is a map with two inputs and two outputs, which takes a
joint singlet (on both the ingoing legs) into two separate on-leg
singlets, on each outgoing leg alone [see Fig. 6(b)].

FIG. 6. The invariance properties of the transfer operator T̂
(a) and its map interpretation (b).
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D. Row transfer matrix and the norm

Suppose we wish to compute the norm, which involves
contracting the tensor product of T̂ everywhere. Each T̂ ob-
tains its inputs from the neighboring T̂ operators on its left
and bottom, the outputs of which are on-leg singlets: that is,
when the norm is computed, the inputs | jlml , j′lm

′
l〉〈0( jr )| on

the left leg and | jd md , j′d m′
d〉〈0( jr )| on the lower one are being

contracted with the outputs from neighboring sites—〈0( jr )|
and 〈0( ju)|, respectively. Thus, for the norm contraction it is
enough to focus only on a subset of the T elements, where
only on-leg singlets are allowed as input. Denoting by �0 =∑

j |0( j)〉〈0( j)| the projection operator onto on-leg singlets
|0( j)〉 = | jm jm〉, we define

(66)

(introducing a new notation which will be used for tiling
diagrams below, in which the legs are implicit). It takes the
simple form

τ̂0 =
∑
{ j}

(τ0) jl , jr ; jd , ju |0( jl )〉〈0( jr )| ⊗ |0( jd )〉〈0( ju)| (67)

where (τ0) jl , jr ; jd , ju = Tjl , jl , jr ; jd , jd , ju .
To see how this simplifies the contraction, let us consider

some illustrative examples. First, consider the ZN case, in
which (disregarding multiplicities) the virtual Hilbert spaces
are spanned by D = N basis states, corresponding to the j =
0, . . . , N − 1 irreps. Thus we will have N on-leg singlets, of
the form

|0( j)〉 = | j j〉. (68)

The tensor τ̂0 will thus contain N4 elements; having consid-
ered T without taking the symmetry into account, with two
N-dimensional legs per direction, we would have instead N8

tensor elements. That is, the number of elements that actually
need to be used for contraction is N4 times smaller. Next,
generalize to U (1), and suppose we truncate and allow for the
| j| � J for some J > 0. Then we will have once again on-leg
singlets of the form (68). There are D = 2J + 1 irreps in the
virtual Hilbert space, we have D on-leg singlets, and, similarly
to the ZN case, we obtain a reduction of D4: D4 elements in
τ̂0 which we need for the contraction, rather than the D8 in the
most general case.

The simplification is even bigger when we consider
non-Abelian groups, because the tensors τ̂0 only see the
representations and not the different m values within them.
For example, consider SU (2), with the smallest truncation,
containing the j = 0, 1/2 representations. This implies that
each virtual Hilbert space has dimension 3. Naively speaking,
T would be a tensor with 38 = 6561 elements. Reducing to
τ̂0, with only two on-leg singlets for the two irreps used,
the number of relevant elements decreases to 24 = 16, that

is, approximately 410 times less. If we wish to consider, a
little more generally, all the irreps of SU (2) between zero and
some J , the dimension of the virtual Hilbert spaces would be
D(J ) = ∑J

j=0(2 j + 1) = (J + 1)(2J + 1) (note that the sum
runs on both integer and half-integer values). Thus T has
D8(J ) = (J + 1)8(2J + 1)8 elements. However the number of
on-leg singlets is as the number of irreps, 2J + 1, and hence
τ̂0 is a tensor with (2J + 1)4 elements: the reduction factor is
(J + 1)8(2J + 1)4, which scales as J−12 for large cutoffs—a
very significant reduction.

To examine further the properties of τ̂0, let us consider
(τ0) jl , jr ; jd , ju as a matrix with the multivalued indices jl , jr and
ju, jd . If we assume horizontal-vertical reflection symmetry,
we find that it is a symmetric matrix:

(τ0) jl , jr ; jd , ju = (τ0) jd , ju; jl , jr (69)

Furthermore, it is a real matrix, since using (59), with the
restriction (67), we obtain that

(τ0) jl , jr ; jd , ju = Tjl , jl , jr ; jd , jd , ju

=
∑

{ j,m,n}

∣∣Ajsmsns; jt mt nt
jr mr ; jumu; jl ml ; jd md

∣∣2. (70)

Therefore, there exists an orthogonal matrix V , such that

τ0 = V �V † (71)

where � is a diagonal matrix with eigenvalues λμ. This allows
us to bring τ̂0 to the convenient form

τ̂0 =
∑

μ

λμM̂μ ⊗ M̂μ (72)

where

M̂μ =
∑
j1, j2

Vj1 j2,μ|0( j1)〉〈0( j2)|, (73)

one copy of which acts on the horizontal direction and the
other copy of which acts on the virtual one.

The real matrices {M̂μ} form an orthonormal set with re-
spect to the trace inner product. Since V is orthogonal, it is
straightforward to show that

Tr
[
M̂μM̂T

ν

] = δμν. (74)

Supposing our tensor includes D irreps, all the js take D
different values. Then there are D different on-leg singlets,
and the matrix τ0 is D2 × D2; thus, μ = 1, . . . , D2 and we
have D2 M̂μ matrices. They act on the D-dimensional space
spanned by the D linearly independent on-leg singlets |0( j)〉.
These matrices form a D2 linear space; we have shown that
M̂μ is an orthonormal set of D2 matrices within this space,
and thus it is an orthonormal basis and the M̂μ span the whole
space of D × D real matrices.

The row transfer matrix and the norm thus take the forms

(75)
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and

〈ψ|ψ〉 = Tr
[
ÊN

]
= Tr

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

= Tr

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

= Tr

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

=
∑

{µ(x,y)}

∏
x,y

λµ(x,y)

∏
y

Tr
[
M̂µ(1,y)M̂µ(2,y) · · · M̂µ(N ,y)

] ∏
x

Tr
[
M̂µ(x,1)M̂µ(x,2) · · · M̂µ(x,N )

]

(76)

E. Spectrum of the flux-free transfer matrix

We have used the fact that each leg of τ̂0 forms a singlet |0( j)〉; however, recall the symmetry properties of the tensor A out of
which the transfer operators were constructed, and the Gauss law satisfied by its four legs (46): jr ⊗ ju ∼ jl ⊗ jd . This implies
that ( jl ⊗ jr ) ⊗ ( jd ⊗ ju) must contain the single representation: the horizontal representations and the vertical ones must be
such that can fuse to a singlet together. As a consequence of that, elements of (τ0) jl , jr ; jd , ju the indices of which do not satisfy
it must vanish. This splits the matrix (τ̂0) jl , jr ; jd , ju into separate blocks which can be separately diagonalized, implying similar
block structure of the V matrices as well, splitting the M̂μ operators defined in (73) into different sets.

First, consider the so-called zero block B̂0 in which jl = jr as well as jd = ju. The elements of this block will be linear
combinations of products of horizontal and vertical on-leg singlet projectors:

B̂0 = (τ0) j j; j′ j′ |0( j)〉〈0( j)| ⊗ |0( j′)〉〈0( j′)|. (77)

The M̂μ operators derived from this block will be diagonal in the space of singlets; the block (τ0) j j; j′ j′ is a simple symmetric
matrix, diagonalizable by the orthogonal block V (0)

jμ , using which we obtain the diagonal operators

M̂ (0)
μ =

∑
j

V (0)
jμ |0( j)〉〈0( j)|. (78)

The next blocks are responsible to M̂μ which are off diagonal in the singlet space. In the U (1) case, for example, we will have
blocks for which jl − jr = ju − jd = ±k (for any integer k allowed by our tensors):

B̂±k = (τ0) j, j∓k; j′, j′±k|0( j)〉〈0( j ∓ k)| ⊗ |0( j′)〉〈0( j′ ± k)|. (79)

Let us choose, in our U (1) example, to include one copy of each irrep | j| � J (J may also be infinite). The matrix (τ0) jl , jr ; ju, jd
will have dimension (2J + 1)2. The zeroth block of τ̂ , B0 = (τ0) j, jk; j′, j′ , will be a 2J + 1-dimensional matrix (since there are
2J + 1 possible on-leg singlet states). The blocks Bk = (τ0) j, j∓k; j′, j′±k will each be 2J + 1 − |k|) dimensional (counting the
number of j values allowing for j − k and j + k values which agree with | j| � J), from k = ±1 until k = ±2J—altogether
2J + 1 blocks the dimensions of which add up, properly, to the right matrix dimension,

∑2J
k=−2J (2J + 1 − |k|) = (2J + 1)2.

Finally, since (τ̂0) jl , jr ; jd , ju is a symmetric matrix, we obtain that Bk = BT
−k , and write down the matrix in the block form

τ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lr / du |0( j)〉〈0( j)| · · · |0( j)〉〈0( j − k)| |0( j − k)〉〈0( j)| · · · |0(J )〉〈0(−J )| |0(−J )〉〈0(J )|
|0( j)〉〈0( j)| B0 · · · 0 0 · · · 0 0

...
...

...
...

...
...

|0( j)〉〈0( j − k)| 0 · · · 0 Bk · · · 0 0

|0( j − k)〉〈0( j)| 0 · · · BT
k 0 · · · 0 0

...
...

...
...

...
...

|0(J )〉〈0(−J )| 0 · · · 0 0 · · · 0 BJ

|0(−J )〉〈0(J )| 0 · · · 0 0 · · · BT
J 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(80)

(where the headers of the rows and columns denote the type of operators they connect with). This matrix can be easily blockwise
diagonalized, involving the diagonalization of J + 1 different blocks. Similar forms can be written also for other gauge groups
(later on, we will work out a detailed example for the Z2 case).
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Before moving on to the contraction of Wilson loops, we shall consider some simple illustrative cases of norm computation,
regardless of the gauge group. First, assume that all the blocks but the zeroth one vanish, and, on top of that, that the zeroth block
is diagonal, that is,

τ̂0 =
∑

j

λ j |0( j)〉〈0( j)| ⊗ |0( j)〉〈0( j)|; (81)

all the relevant M̂μ operators are projectors (the other ones do not contribute since they are associated with zero eigenvalues).
Then, it is easy to see that the transfer matrix is

Ê =
∑

j

λN
j |0( j)〉〈0( j)| ⊗ |0( j)〉〈0( j)| ⊗ · · · ⊗ |0( j)〉〈0( j)|. (82)

Then, the eigenvectors are product vectors of the same representation, 〈w j | = 〈0( j)| ⊗ · · · ⊗ 〈0( j)| with eigenvalues ρ j = λN
j ,

and the norm is

〈ψ |ψ〉 = Tr[ÊN ] =
∑

j

λN 2

j . (83)

Next, we keep the off-diagonal terms of the zeroth block zero, but allow for very small nonzero elements in the other blocks—
that is, significantly smaller (in absolute value) than the diagonal terms of the zeroth block. If D irreps participate in our state,
we have M̂μ = |0( jμ)〉〈0( jμ)| for μ = 1, . . . , D, with eigenvalues |λ1| � . . . � |λD| > 0, while, for some K > D, |λμ+1| �
. . . � |λμ+K | > 0 and there is some 1 � L � D for which |λμ+1| � |λL|. Then one may use perturbation theory to find the
spectrum of Ê . The nonperturbed part is

∑
μ�LλN

μ |0( jμ)〉〈0( jμ)| ⊗ |0( jμ)〉〈0( jμ)| ⊗ · · · ⊗ |0( jμ)〉〈0( jμ)|, giving rise to zeroth-
order eigenvectors as before, with corrections which are product vectors as well.

Now allow for nonzero weak o-diagonal elements in the zeroth block. Perturbation theory is still valid, keeping our
eigenvectors close to product states along the row. In fact, as long as the diagonal terms of the zeroth block are significantly
stronger (in absolute value) than the rest of the τ0 elements, this argument holds. As these other terms get larger and larger, the
perturbative description loses its validity and the eigenvectors get farther from being product states along the row.

This may be interpreted as the lack or the presence of long-range order: the farther we are from product states along the row,
the longer-ranged order we have. Since confinement has to do with disorder [45], we find here the first hint to detecting area law
from the transfer operators. As we shall see later on, indeed, the closer the transfer matrix eigenvectors are to product states, the
closer we are to an area law of the Wilson loop.

V. A TALE OF TILING: CONTRACTING WILSON LOOPS

After having computed the norms, we move further to the contraction of Wilson loop expectation values, which first requires
studying further local ingredients: the flux-carrying transfer operators.

A. Flux carrying transfer operators

Consider the transfer operators associated with sites carrying a straight flux line—that is, a group element operator U j (or
U j†) acting on either the horizontal or vertical direction, computed using (60):

(84)
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FIG. 7. Transformation rules of the straight flux carrying transfer operators: (a) [T̂→]J
MN —Eq. (85), (b) [T̂←]J

MN —Eq. (87), (c) [T̂↑]J
MN —

Eq. (88), and (d) [T̂↓]J
MN —Eq. (89).

Using the symmetry conditions (44) as well as the trans-
formation properties of the group element operators (31), we
obtain that for every g ∈ G(

θ l
g ⊗ θ̃†l ′

g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
[T̂→]J

MN = DJ
MM ′ (g−1)[T̂→]J

M ′N ,

[T̂→]J
MN

(
θ r

g ⊗ θ̃†r′
g

) = [T̂→]J
MN ′DJ

N ′N (g−1),

[T̂→]J
MN

(
θu

g ⊗ θ̃†u′
g

) = [T̂→]J
MN (85)

[see Fig. 7(a)]. That is, [T̂→]J
MN maps from a total 〈JM| on

both ingoing legs [with respect to (θ l
g ⊗ θ̃†l ′

g ) ⊗ (θd
g ⊗ θ̃†d ′

g )]

onto 〈JN | with respect to (θ r
g ⊗ θ̃†r′

g ) on the outgoing horizon-

tal leg and a singlet with respect to (θu
g ⊗ θ̃†u′

g ) on the outgoing
vertical leg [see Fig. 8(a)]. As in the flux-free case, that will
have implications on the structure of the [T̂→]J

MN operators.
Furthermore, the transfer operators [T̂→]J

MN form a mul-
tiplet for each J , the elements of which are mixed by the

FIG. 8. The straight flux line transfer operators as maps.

transformations. There is no problem with that, because in the
contraction of the Wilson loop we sum over the M, N indices
(matrix product and tracing of the U matrices). As usual, in
the Abelian case the multiplets are trivial and contain one
operator only, allowing us to give an intuitive illustration. For
example, let us consider U (1) with the fundamental represen-
tation j = 1; there, the transformations take the simple form

eiφ(El −El′ +Ed −Ed ′
)T̂→ = e−iφ T̂→, T̂→eiφ(Er−Er′ ) = e−iφ T̂→,

T̂→eiφ(Eu−Eu′
) = T̂→. (86)

For the inverse horizontal flux line, one obtains(
θ l

g ⊗ θ̃†l ′
g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
[T̂←]J

MN = [T̂←]J
MN ′DJ

N ′N (g),

[T̂←]J
MN

(
θ r

g ⊗ θ̃†r′
g

) = DJ
MM ′ (g)[T̂←]J

M ′N ,

[T̂←]J
MN

(
θu

g ⊗ θ̃†u′
g

) = [T̂←]J
MN (87)

[see Fig. 7(b)]—the difference from the right going flux is
not very big, and has to do mainly on the opposite flux
orientation: g instead of g−1 appears in the transformation,
and the beginning index M is now associated with the right
side rather than the left (similarly, N with the left rather than
the right), since the flux goes backwards. This corresponds
to transposition, and since the representations are unitary

D j
nm(g) = D j

mn(g−1)—i.e., the conjugate representation J . As
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a result, we denote the input of both legs as 〈JN | and the
output of the right leg as 〈JM|—vectors with a conjugate
transformation rule [see Fig. 8(b)].

In the vertical direction, we have(
θ l

g ⊗ θ̃†l ′
g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
[T̂↑]J

MN = DJ
MM ′

(
g−1

)
[T̂↑]J

M ′N ,

[T̂↑]J
MN

(
θ r

g ⊗ θ̃†r′
g

) = [T̂↑]J
MN ,

[T̂↑]J
MN

(
θu

g ⊗ θ̃†u′
g

) = [T̂↑]J
MN ′DJ

N ′N
(
g−1

)
(88)

[Fig. 7(c)] and(
θ l

g ⊗ θ̃†l ′
g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
[T̂↓]J

MN = [T̂↓]J
MN ′DJ

N ′N (g),

[T̂↓]J
MN

(
θ r

g ⊗ θ̃†r′
g

) = [T̂↓]J
MN ,

[T̂↓]J
MN

(
θu

g ⊗ θ̃†u′
g

) = DJ
MM ′ (g)[T̂↓]J

M ′N (89)

[Fig. 7(d)]. The input/output pictures, when looking at these
operators as maps, are shown in Figs. 8(c) and 8(d). Note that
when plugging the trivial representation into any of the results
for straight flux lines, that is, J = M = N = 0, T̂ is obtained.

There are many other options to consider, in which flux
line(s) go through a site. Here we only look at the ones
required for our counterclockwise Wilson loop contraction,
which implies naively that four further types of transfer op-
erators, for the corners, are required. However, we only need
one, as we shall see shortly when tiling the loop:

(90)

Its transformation properties may be similarly derived, result-
ing in(

θ l
g ⊗ θ̃†l ′

g

) ⊗ (
θd

g ⊗ θ̃†d ′
g

)
[T̂↘]J

MN = [T̂↘]J
MN ,

[T̂↘]J
MN

(
θ r

g ⊗ θ̃†r′
g

) = [T̂↘]J
MN ′DJ

N ′N (g−1),

[T̂↘]J
MN

(
θu

g ⊗ θ̃†u′
g

) = DJ
MM ′ (g)[T̂↘]J

M ′N ; (91)

the ingoing legs form a combined singlet, while both the
outgoing legs, separately, belong to the J representation (one
regular, one conjugate)—see Fig. 9.

B. Tiling the loop and projecting onto smaller spaces

Do we need to use all the elements of the transfer operators
for the Wilson loop contraction? The answer is no; we can
ignore some of them in the computation, while tiling the dif-
ferent building blocks together, thanks to the local symmetry
and the special properties it enforces on the states and the
transfer operators, just like we did in the case of the norm.
As discussed, each of the local transfer operators used for
the contraction, either with or without flux, can be seen as
a map between the two ingoing legs to the two outgoing ones.
While the ingoing legs form together a multiplet vector of
the group, the output is a product of two separate multiplet
vectors on the two outgoing legs [see Figs. 6(b), 8, and 9(b)].
The numerator of the Wilson loop expectation value requires
a particular tiling of the transfer operators, closing the loop.
Since the output to each direction forms a multiplet vector,
this will also be the input of the neighboring transfer operators
in the outgoing directions, and we can restrict all our transfer
operators by cutting off all the input options that could not be
realized within the Wilson loop tiling. This is done in a very
similar way to what we did in the norm computation, where
we defined τ̂0 (67) instead of T̂ .

Since our system is translationally invariant, let us identify
the lower left corner of the loop with the lower left corner of
our system. Let us consider the numerator of the expectation
value of the Wilson loop:

(92)
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FIG. 9. The lower left corner transfer operator: (a) transforma-
tion rules and (b) as a map.

where the trace is on both directions, assuming periodic
boundaries (similar results may be easily derived for open
boundary conditions); the J, M, N indices of the flux-carrying
transfer operators have been omitted for simplicity, but it is
assumed that they all carry the same irrep J (otherwise it
would make no physical sense) and that the M, N indices
are properly connected and summed over along the loop.
Using the mapping properties summarized in Figs. 6(b), 8,
and 9(b), we can write on each of the outgoing legs its output
representation—0, J , or J for the conjugate representations
used in the backwards fluxes cases. This immediately de-
termines onto which inputs the transfer operators should be
projected. Note that the lower right and both upper corners do
not seem right in the equation above; nevertheless these are
the right ingredients to be used, as explained below.

The tiling is composed of the following ingredients.
(1) Outside of the loop and within it, on sites through which

no flux lines pass, we use the flux-free transfer operator T̂ .
They only receive zero as inputs, and thus may be replaced by
τ̂0 from Eq. (66) in all these places.

(2) On the lower left corner, we use the [T̂↘]J , which,
thanks to receiving zero inputs on both directions from τ̂0

operators, may be replaced by

(93)

(3) Along the lower edge, until the next corner, we use
[T̂→]J . As the input of these operators is J from the left and
zero from below, they may be replaced by

(94)

using the on-leg projector �JM =∑
j, j′ |JM( j, j′)〉〈JM( j, j′)| (no summation on M) and

defining

|JM( j, j′)〉 = 〈JM jm| j′m′〉| jm j′m′〉. (95)

(4) When turning upwards, in the lower right corner, we
use [T̂↑]J : our tensors only contain physical degrees of free-
dom on the outgoing links; at this site the only physical leg
carrying flux is the one pointing upwards and therefore this

is the relevant transfer operator. Its input allows us to restrict
it to

(96)

(5) We go along with [T̂↑]J all the way up until the top right
corner, but with different input, introducing

(97)

(6) At the upper right corner, the fluxes only come from
the ingoing legs, and therefore the relevant transfer operator
is once again T̂ , projected this time onto

(98)

where �JN = ∑
j, j′ |JN ( j, j′)〉〈JN ( j, j′)| (no summation on

N) and

∣∣JM( j, j′)
〉 = 〈JM j′m′| jm〉| jm j′m′〉. (99)

(7) All the way to the left we proceed with [T̂←]J along the
upper edge. Until the next corner, and without including it, it
can be replaced by

(100)

(8) At the upper left corner we still use [T̂←]J but with
different inputs, projecting it to

(101)

(9) Finally, we go down with [T̂↓]J all the way to the
starting point, restricting it to

(102)

Just like in the case of τ̂0 compared with T̂ , these newly
introduced operators contain less tensor elements and simplify
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the contraction of the Wilson loop:

(103)

C. Decay of Wilson loops: Is an area law possible?

Now we have all the ingredients required for the computa-
tion of a Wilson loop the dimensions of which are R1 × R2,
and compute it using row transfer matrices, by contracting
first in the horizontal direction, within an N × N system with
periodic boundary conditions (torus).

We denote the transfer matrix corresponding to the first row
we contract (the one containing the lower edge of the loop) by

(104)

on top of it, there will be R2 − 1 rows with parallel vertical
flux lines, represented by

(105)

the top of the loop is represented the row transfer matrix we
define by

(106)

and all the remaining rows simply contribute Ê (we omit the
J, M, N indices for simplicity, assuming some given J for
the Wilson loop, and implicitly contracting over the M, N
indices). The expectation value of the Wilson loop may then

be written as

〈W (R1, R2)〉 =

Tr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tr

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=

Tr
[
Êb (R1) ÊR2−1

‖ (R1) Êt (R1) ÊN−R2−1
]

Tr [EN ]

(107)

It is very similar to the MPS expression used for computing
correlation functions (55) with one major difference. Due to
the local symmetry, in between the two rows closing the loop,
we need to use a different transfer matrix, Ê‖: the long-range
decay properties depend now on two different transfer matri-
ces, instead of one.

As stated in the beginning of this subsection, we have omit-
ted the M, N indices and we assume implicit summation over
them when contracting the loop. The Wilson loop contraction
consists of the contraction of 2(R1 + R2) indices, each taking
dim(J ) values—naively speaking, we would have to consider
dim2(R1+R2 )(J ) different contractions; however, the singular
values are independent of these indices and depend only on
the irrep J . Thanks to this symmetry, all the dim2(R1+R2 )(J ) are
equal, so it is enough to make one choice of the indices and
multiply the result by dim2(R1+R2 )(J ). This will be a perimeter-
law term, however in the presence of an area law term it will
not contribute in the large loop limit. Hence we focus below
on computing for one particular choice of the indices.

Consider the diagonalization of the two transfer matrices
which matter for the long-range properties:

Ê =
∑

i

ρi|vi〉〈wi|,

Ê‖(R) =
∑

i

ρ ′
i (R)|v′

i (R)〉〈w′
i(R)|. (108)

Once again, we sort the eigenvalues in decreasing order, but
in this case we do not care if the highest one is degenerate
(but assume the existence of a spectral gap): for some integers
K, K ′ � 1, |ρ1| = . . . = |ρK | > |ρK+1| � |ρK+2| � . . . and
|ρ ′

1(R)| = . . . = |ρ ′
K ′ (R)| > |ρ ′

K ′+1(R)| � |ρ ′
K ′+2(R)| � . . ..
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Let us use this to compute the expectation value of the Wilson loop (107) in the thermodynamic limit N � R2:

〈W (R1, R2)〉 = dim2(R1+R2 )(J )
ρ

N−R2−1
1 Tr

{[∑K
i=1|vi〉〈wi| + ∑

i>K

(
ρi

ρ1

)N−R2−1|vi〉〈wi|
]
Eb(R1)ER2−1

‖ (R1)Et (R1)
}

ρN
1 Tr

[∑K
i=1|vi〉〈wi| + ∑

i>K

(
ρi

ρ1

)N |vi〉〈wi|
]

→ dim2(R1+R2 )(J )

Kρ
R2+1
1

∑K

i=1
〈wi|Êb(R1)ÊR2−1

‖ (R1)Êt (R1)|vi〉 (109)

(we assumed that ρ1 = . . . = ρK ; the generalization for the case of different phases is straightforward).
We further assume that the loop is large, that is, R1, R2 � 1, allowing us to perform a similar simplification for E‖, and obtain

that in the thermodynamic limit, for large loops,

〈W (R1, R2)〉 → dim2(R1+R2 )(J )
ρ

′R2−1
1 (R1)

Kρ
R2+1
1

K∑
i=1

K ′∑
j=1

〈wi|Êb(R1)
∣∣v′

j (R1)
〉〈
w′

j (R1)
∣∣Êt (R1)|vi〉 (110)

[this holds only if
∑K

i=1

∑K ′
j=1〈wi|Êb(R1)|v′

j (R1)〉〈w′
j (R1)|Êt (R1)|vi〉 �= 0; if this condition is not fulfilled, the vectors |v′

j〉 and
〈w′

i| should not be seen as those corresponding to the highest eigenvalues, but rather as those with the highest eigenvalues for
which this condition is satisfied. We assumed here that ρ ′

1 = . . . = ρ ′
K ′ ; the generalization for the case of different phases is

straightforward].
Assuming rotational invariance, we could repeat the same procedure by contracting the columns first, to obtain

(111)

Both expressions must be equal; therefore, we deduce that

ρ
′R2−1
1 (R1)

K∑
i=1

K ′∑
j=1

〈wi|Êb(R1)
∣∣v′

j (R1)
〉〈
w′

j (R1)
∣∣Êt (R1)|vi〉 ∝ 1

ρ
R1+1
1

. (112)

But the more interesting question is whether ∂ρ ′
1(R)/∂R = 0 or not. If the largest eigenvalue of Ê‖(R) does not depend on R,

we obtain that

〈W (R1, R2)〉 → C̃

(
dim2(J )

ρ ′
1

ρ1

)R1+R2

(113)

with some constant C̃: perimeter law decay of the Wilson loop (unless ρ1 = ρ ′
1). On the other hand, an area law is possible if

ρ ′
1(R) ∼ �e−κR (114)

with κ > 0. Let us plug this expression into (111) and (112). We will obtain the equation

〈W (R1, R2)〉 → dim2(R1+R2 )(J )

K�ρ1

(
�

ρ1e−κ

)R1

e−κR1R2

K∑
i=1

K ′∑
j=1

〈wi|Êb(R2)
∣∣v′

j (R2)
〉〈
w′

j (R2)
∣∣Êt (R2)|vi〉

= dim2(R1+R2 )(J )

K�ρ1

(
�

ρ1e−κ

)R2

e−κR1R2

K∑
i=1

K ′∑
j=1

〈wi|Êb(R1)
∣∣v′

j (R1)
〉〈
w′

j (R1)
∣∣Êt (R1)|vi〉. (115)

Rotation invariance guarantees that

K∑
i=1

K ′∑
j=1

〈wi|Êb(R)
∣∣v′

j (R)
〉〈
w′

j (R)
∣∣Êt (R)|vi〉 ∼ C

(
�

ρ1e−κ

)R

(116)
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for some constant C, and we obtain, finally, for large Wilson
loops, that if ρ ′

1(R) ∼ �e−κR

〈W (R1, R2)〉 → C

K�ρ1

(
�dim2(J )

ρ1e−κ

)R1+R2

e−κR1R2 , (117)

exactly the same form of (39), with W0 = C
K�ρ1

, κA = κ , and
κP = log( ρ1

�dim2(J )
) − κ .

Therefore, we conclude that a perimeter law will be ob-
tained if the largest relevant (in terms of accessible through Êb

and Êt ) eigenvalue of Ê‖(R) is independent of R; an area law is
possible if it depends on R exponentially. Why only possible?
To see why this condition is necessary but not sufficient for
the area law to hold, let us consider the following scenario.

Previously, we made the assumption that the eigenvectors
of the flux-free transfer matrix should be close to product
vectors in order to make an area law possible. We also know
that the expectation value of the Wilson loop depends on
the zeroth flux transfer operators τ̂0 inside and outside the
loop, and some other, flux-carrying transfer operators along
the loop. Let us assume that we are, indeed, in a scenario
in which the eigenvalues of the transfer matrix are close to
product states. Denote as usual the highest eigenvalue of the
transfer operator by λ1. Then the norm, for a large system, will
roughly scale as λN 2

1 : each site contributes a single power of
λ1. This is the denominator of the expectation value formula.
In the numerator, we will have a contribution of λ1 for each
site outside the loop; within the loop, it depends.

If the flux carrying transfer operators along the loop take
us from the singlet subspace corresponding to λ1 to that of
another eigenvalue—denote it by λ′—we will have a contri-
bution of λ′ for each of the sites within the loop, and the
Wilson loop’s expectation value will scale as (λ′/λ1)A where
A is the area of the loop [E‖(R) ∝ λ′R]. However, if the flux
carrying transfer operators do not take us to another singlet
subspace with a different eigenvalue, we will not have an area
dependent contribution. In this case, the largest eigenvalue of
Ê‖(R) depends exponentially on R (through λ′R) but an area
law is not obtained, which shows us why this condition is
necessary but not sufficient.

On the other hand, if the eigenvectors of Ê are far from
product vectors, which means they are governed by some
collective, long-range effect, we cannot have area-dependent
contributions at all.

VI. ILLUSTRATION: THE Z2 CASE

To conclude and illustrate our discussion, we will show an
explicit example, where the gauge group is Z2. In this case,
the group Hilbert space on each link is two dimensional, with
representations labeled by j = +,−, which can be simply
seen as spins. The group element operators are Hermitian,
U = U † = X , and invert the spin,

X |±〉 = |∓〉, (118)

and the group operations � (no difference between left and
right in Abelian groups) are the identity operator as well as

Z|±〉 = ±|±〉. (119)

Gauge transformations are given by

�̂(x) = Z (x, 1)Z (x, 2)Z (x − ê1, 1)Z (x − ê1, 2). (120)

We would like to consider the most general PEPS with
translational and rotational invariance, with physical spaces
containing all the irreps and virtual ones containing a sin-
gle copy of each irrep (minimal construction—as explained
above, to consider real physical scenarios one will most likely
have to generalize in a straightforward manner and add more
copies, as was necessary in the Z3 demonstration of [42]).
Thus, the physical and virtual spaces will be the same, two-
dimensional spinlike spaces spanned by the representation
states |±〉. The state will be parametrized by the tensors Ast

lrdu,
with s, t, l, r, d, u = ±. The most general construction satis-
fying these conditions is given by

(121)

and the rest of the elements, which violate the symmetry,
vanish. If we consider the |+〉 states as flux-free states, and
the |−〉 as flux carrying, we can interpret α as the amplitude
of having no fluxes going through the site, β as the amplitude
of corner flux, γ as the amplitude of straight line fluxes, and δ

as the amplitude of two intersecting flux lines.
Here we will be interested in the properties of the transfer

operators constructed for such states, and the computation of
the Wilson loop expectation value.

A. Transfer operators

The transfer operator T̂ may be simply built using (58) and
(59).

Let us identify the elements of the vector space spanned by
the double legs of the transfer matrix. The on-leg transforma-
tions here admit the simple form θ ⊗ θ̃† = Z ⊗ Z for the only
group element which is not the identity. Since there are two
irreps, we will have two on-leg singlets,

|0(+)〉 = |++〉 ≡ |↑〉 ⊗ |s〉,
|0(−)〉 = |−−〉 ≡ |↓〉 ⊗ |s〉, (122)
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as well as two nonsinglets,

|1(+,−)〉 = |+−〉 ≡ |↑〉 ⊗ |n〉,
|1(−,+)〉 = |−+〉 ≡ |↓〉 ⊗ |n〉. (123)

Where the new notation introduced in the two equations above
factorizes the on-leg Hilbert space into the product of two spin
spaces; one detects whether the state is an on-leg singlet (s) or
not (n) and the other labels the two states within each of these
options by ↑ and ↓.

Using these states, we can write down all the relevant
transfer operators and their reductions. For example,

τ̂0 =|α|2|0(+)〉〈0(+)| ⊗ |0(+)〉〈0(+)| + |γ |2(|0(+)〉〈0(+)| ⊗ |0(−)〉〈0(−)| + |0(−)〉〈0(−)| ⊗ |0(+)〉〈0(+)|)
+|δ|2|0(−)〉〈0(−)| ⊗ |0(−)〉〈0(−)| + |β|2(|0(+)〉〈0(−)| + |0(−)〉〈0(+)|) ⊗ (|0(+)〉〈0(−)| + |0(−)〉〈0(+)|). (124)

We can simplify by writing it in the matrix form, as well as adopting the new notation introduced in (122) and (123):

τ̂0 =

⎛
⎜⎜⎜⎜⎜⎝

lr / du |↑〉〈↑| ⊗ |s〉〈s| |↓〉〈↓| ⊗ |s〉〈s| |↑〉〈↓| ⊗ |s〉〈s| |↓〉〈↑| ⊗ |s〉〈s|
|↑〉〈↑| ⊗ |s〉〈s| |α|2 |γ |2 0 0

|↓〉〈↓| ⊗ |s〉〈s| |γ |2 |δ|2 0 0

|↑〉〈↓| ⊗ |s〉〈s| 0 0 |β|2 |β|2
|↓〉〈↑| ⊗ |s〉〈s| 0 0 |β|2 |β|2

⎞
⎟⎟⎟⎟⎟⎠ (125)

where the block structure is clearly seen; the first one is the zeroth block, mixing only projection operators. It depends on
α, γ , δ—the amplitudes for which fluxes do not change directions, and thus the representations are not changed horizontally
and vertically on the state, and the on-leg singlets are not flipped on the transfer operators. The second block, where the
representation/singlet changes, depends on β—the turning (corner) flux amplitude. Furthermore, as the parameter γ has to
do with straight flux lines going through the site, we expect that the larger it gets, the farther the M̂μ operators derived from
the zeroth block are from projection operators, and the farther we are from an area law; indeed, as we see, it appears on the
off-diagonal terms of the zeroth block, and when γ = 0 the M̂μ operators of the zeroth blocks are projectors.

This matrix can be easily diagonalized as in (71), with the eigenvalues (not necessarily in descending order—this depends on
the values of the parameters)

λ1,2 = 1

2

(
|α|2 + |δ|2 ±

√(|α|2 − |δ|2)2 + 4|γ |2
)

,

λ3 = 2|β|2, λ4 = 0, (126)

with the diagonalizing matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ = 1 μ = 2 μ = 3 μ = 4

|↑〉〈↑| ⊗ |s〉〈s| u11(α, γ , δ) u12(α, γ , δ) 0 0

|↓〉〈↓| ⊗ |s〉〈s| u21(α, γ , δ) u22(α, γ , δ) 0 0

|↑〉〈↓| ⊗ |s〉〈s| 0 0 1√
2

− 1√
2

|↓〉〈↑| ⊗ |s〉〈s| 0 0 1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎠. (127)

Using all that, we obtain the operators M̂μ as defined in (73):

M̂1 = (u11(α, γ , δ)�↑ + u21(α, γ , δ)�↓),

M̂2 = (u12(α, γ , δ)�↑ + u22(α, γ , δ)�↓),

M̂3 = 1√
2
σx,

M̂4 = − i√
2
σy, (128)

where �↑ = |↑〉〈↑| and �↓ = |↓〉〈↓|. Since V is orthogonal, they form an orthonormal basis as in (74). M̂4 is irrelevant, since
λ4 = 0; the |s〉〈s| is also irrelevant since it multiplies everything, and hence we will omit it and refer to the operators M̂μ as two
dimensional. Note that as expected the first two ones, M̂1,2, having to do with the zeroth block, are diagonal, while the other ones
are not.
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Similarly, we can compute and write down the other relevant matrices. Note that since the fluxes have no orientation in our
case, τ̂→ = τ̂← ≡ τ̂− and τ̂↑ = τ̂↓ ≡ τ̂|. We thus require only six rather than eight further matrices. The first is

τ̂− =

⎛
⎜⎜⎜⎜⎜⎝

lr/du �↑ ⊗ |s〉〈s| �↓ ⊗ |s〉〈s| σ+ ⊗ |s〉〈s| σ− ⊗ |s〉〈s|
�↑ ⊗ |n〉〈n| αγ γ δ 0 0

�↓ ⊗ |n〉〈n| γα δγ 0 0

σ+ ⊗ |n〉〈n| 0 0 |β|2 |β|2
σ− ⊗ |n〉〈n| 0 0 |β|2 |β|2

⎞
⎟⎟⎟⎟⎟⎠ (129)

connecting operators acting on the nonsinglet subspace in the horizontal direction with ones acting on the singlet space in
the vertical one. The same block structure is apparent; the first block is a generalization of the zeroth block—still only
connecting projection operators, though acting on different spaces, and the second block changes the representations. As in
the τ0 case, the parameter γ is the one “spoiling” the area law: all the amplitudes of L̂μ operators which do not change the
on-leg singlet eigenvalue subspace are proportional to it. Once it is set to zero, when crossing a flux line the subspace will
change.

We can formally perform a horizontal-vertical singular value decomposition and obtain an expression of the form τ̂− =∑
μ ημK̂μ ⊗ L̂μ. Since the horizontal operators act only within the nonsinglet subspace and the vertical ones only within the

singlet subspace, we can represent K̂μ and L̂μ by two-dimensional matrices.
τ̂| is simply obtained by transposition,

τ̂| =

⎛
⎜⎜⎜⎜⎜⎝

lr / du �↑ ⊗ |n〉〈n| �↓ ⊗ |n〉〈n| σ+ ⊗ |n〉〈n| σ− ⊗ |n〉〈n|
�↑ ⊗ |s〉〈s| αγ γα 0 0

�↓ ⊗ |s〉〈s| γ δ δγ 0 0

σ+ ⊗ |s〉〈s| 0 0 |β|2 |β|2
σ− ⊗ |s〉〈s| 0 0 |β|2 |β|2

⎞
⎟⎟⎟⎟⎟⎠, (130)

and τ̂| = ∑
μημL̂μ ⊗ K̂μ.

Finally, let us consider the transfer operators of the four corners. We begin with the lower left corner:

τ̂� =

⎛
⎜⎜⎜⎜⎜⎝

lr / du �↑ ⊗ |s〉〈n| �↓ ⊗ |s〉〈n| σ+ ⊗ |s〉〈n| σ− ⊗ |s〉〈n|
�↑ ⊗ |s〉〈n| αβ γβ 0 0

�↓ ⊗ |s〉〈n| γ β δβ 0 0

σ+ ⊗ |s〉〈n| 0 0 βα βγ

σ− ⊗ |s〉〈n| 0 0 βγ βδ

⎞
⎟⎟⎟⎟⎟⎠ (131)

where in both dimensions we get a singlet input and obtain a nonsinglet output. Here, after performing the singular value
decomposition, we will also use two-dimensional operators acting only on the “spin space” since this corner operator connects
to the right s/n subspaces. The other corner operators are

τ̂� =

⎛
⎜⎜⎜⎜⎜⎝

lr / du �↑ ⊗ |s〉〈n| �↓ ⊗ |s〉〈n| σ+ ⊗ |s〉〈n| σ− ⊗ |s〉〈n|
�↑ ⊗ |n〉〈s| αβ γβ 0 0

�↓ ⊗ |n〉〈s| γ β δβ 0 0

σ+ ⊗ |n〉〈s| 0 0 βγ βδ

σ− ⊗ |n〉〈s| 0 0 βα βγ

⎞
⎟⎟⎟⎟⎟⎠, (132)

033179-21



EREZ ZOHAR PHYSICAL REVIEW RESEARCH 3, 033179 (2021)

τ̂� =

⎛
⎜⎜⎜⎜⎜⎝

lr / du �↑ ⊗ |n〉〈s| �↓ ⊗ |n〉〈s| σ+ ⊗ |n〉〈s| σ− ⊗ |n〉〈s|
�↑ ⊗ |n〉〈s| αβ γβ 0 0

�↓ ⊗ |n〉〈s| γ β δβ 0 0

σ+ ⊗ |n〉〈s| 0 0 βδ βγ

σ− ⊗ |n〉〈s| 0 0 βγ βα

⎞
⎟⎟⎟⎟⎟⎠, (133)

and

τ̂� =

⎛
⎜⎜⎜⎜⎜⎝

lr / du �↑ ⊗ |n〉〈s| �↓ ⊗ |n〉〈s| σ+ ⊗ |n〉〈s| σ− ⊗ |n〉〈s|
�↑ ⊗ |s〉〈n| αβ γβ 0 0

�↓ ⊗ |s〉〈n| γ β δβ 0 0

σ+ ⊗ |s〉〈n| 0 0 βγ βα

σ− ⊗ |s〉〈n| 0 0 βδ βγ

⎞
⎟⎟⎟⎟⎟⎠. (134)

Note that all the elements of the corner operators are proportional to either β or β, which is expected since β is the corner
parameter, and it would be impossible to close a loop in its absence.

B. Analytical example

Let us set, for simplicity, γ = 0. Consider τ0 (125) and the M̂μ operators derived from it (128). Let us set γ = 0; then we
simply have

M̂1 = �↑, M̂2 = �↓, M̂3 = 1√
2
σx, M̂4 = − i√

2
σy, (135)

as well as

λ1 = |α|2, λ2 = |δ|2, λ3 = 2|β|2, λ4 = 0. (136)

The choice of γ = 0 sets all the zeroth block M̂μ operators to projectors onto orthogonal states, and the flux-free transfer
matrix from (75) takes the form

Ê = |α|2N�↑ ⊗ · · · ⊗ �↑ + |δ|2N�↓ ⊗ · · · ⊗ �↓

+ |β|4
N−1∑
n=1

∑
m

|α|2(N−n−1)|δ|2(n−1)�↑ ⊗ · · · ⊗ �↑ ⊗ σx︸︷︷︸
m

⊗�↓ ⊗ · · · ⊗ �↓ ⊗ σx︸︷︷︸
m+n

⊗�↑ ⊗ · · · ⊗ �↑

+ |β|4
N−1∑
n=1

∑
m

|δ|2(N−n−1)|α|2(n−1)�↓ ⊗ · · · ⊗ �↓ ⊗ σx︸︷︷︸
m

⊗�↑ ⊗ · · · ⊗ �↑ ⊗ σx︸︷︷︸
m+n

⊗�↓ ⊗ · · · ⊗ �↓ + O(|β|8). (137)

If we further assume that |β| � |α|, |δ| we find ourselves in the perturbative case discussed above, and may use perturbation
theory for finding the eigenvectors of Ê . The zeroth, unperturbed part is in the first row of (137), from which we find two
approximate, zeroth-order eigenvectors,

〈w1| = 〈↑| ⊗ · · · ⊗ 〈↑|, 〈w2| = 〈↓| ⊗ · · · ⊗ 〈↓|, (138)

with zeroth-order eigenvalues

ρ1 = |α|2N , ρ2 = |δ|2N , (139)

which are the two highest ones. Let us set, without losing generality, |α| > |δ| (one can easily invert that in the following
discussion). The leading-order corrections to the eigenvalues will be second order (∝ |β|8) and to the eigenvectors will be of the
first order (∝ |β|4); we shall neglect them both. The norm of the state is then

〈ψ |ψ〉 = Tr[EN ] −→
N�1

ρN
1 = |α|2N 2

; (140)

that is, the torus is tiled with N 2 sites, each contributing a factor of |α|2 to the norm.
Let us now move on to the flux carrying transfer matrices. Looking at the straight flux ones τ̂− (129) and τ̂| (130), we see that

our choice of γ = 0 sets the zeroth block to zero. This implies that they will flip the local incoming spins in both directions—in
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particular in the direction orthogonal to the flux; i.e., the eigenspace of τ̂0 out of the loop will be connected to the orthogonal one
within the loop, eventually to give rise to an area law, unless |α| = |δ|. We see that

τ̂− = τ̂| = |β|2σx ⊗ σx (141)

(ignoring the n, s space for the reasons explained above)—inverting the spins in the orthogonal direction to the flux lines, that is,
changing indeed from the α to the δ sector and vice versa.

For the corners we get

τ̂� = αβ�↑ ⊗ �↑ + δβ�↓ ⊗ �↓ + βασ+ ⊗ σ+ + βδσ− ⊗ σ− ≡
∑

μ

ξ�,μĤ�,μ ⊗ V̂�,μ,

τ̂� = αβ�↑ ⊗ �↑ + δβ�↓ ⊗ �↓ + βδσ+ ⊗ σ− + βασ− ⊗ σ+ ≡
∑

μ

ξ�,μĤ�,μ ⊗ V̂�,μ,

τ̂� = αβ�↑ ⊗ �↑ + δβ�↓ ⊗ �↓ + βδσ+ ⊗ σ+ + βασ− ⊗ σ− ≡
∑

μ

ξ�,μĤ�,μ ⊗ V̂�,μ,

τ̂� = αβ�↑ ⊗ �↑ + δβ�↓ ⊗ �↓ + βασ+ ⊗ σ− + βδσ− ⊗ σ+ ≡
∑

μ

ξ�,μĤ�,μ ⊗ V̂�,μ. (142)

Let us consider the action of the lower row of the Wilson loop, Êb(R1) on the input state 〈w1| with the highest eigenvalue,
identifying without loss of generality, as usual, the origin of the torus with the lower left corner of the loop. We get

Êb(R1) = |α|2(N−R1−1)|β|2(R1−1)
∑
μ,ν

ξ�,μξ�,νTr
[
Ĥ�,μσ R1−1

x Ĥ�,ν�↑
]
V̂�,μ ⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸

R1−1

⊗V̂�,ν ⊗ �↑ ⊗ · · · ⊗ �↑︸ ︷︷ ︸
N−R1−1

+ . . . (143)

where the omitted terms either annihilate 〈w1| or are of negligible magnitude.
Some of the μ, ν configurations give rise to a zero trace. Others annihilate the input vector 〈wi|. There are only four possible

valid configurations.
(1) R1 is even, Ĥ�,μ = σ+, Ĥ�,ν = �↑, and thus V̂�,μ = σ+, V̂�,ν = �↑, and ξ�,μξ�,ν = |αβ|2.
(2) R1 is even, Ĥ�,μ = �↑, Ĥ�,ν = σ−, and thus V̂�,μ = �↑, V̂�,ν = σ+, and ξ�,μξ�,ν = |αβ|2.
(3) R1 is odd, Ĥ�,μ = �↑, Ĥ�,ν = �↑, and thus V̂�,μ = �↑, V̂�,ν = �↑, and ξ�,μξ�,ν = (αβ )2.
(4) R1 is odd, Ĥ�,μ = σ+, Ĥ�,ν = σ−, and thus V̂�,μ = σ+, V̂�,ν = σ+, and ξ�,μξ�,ν = (βα)2.
The leading terms of the output vector 〈w1|Êb(R) are product vectors, with 〈↓| entering the loop and 〈↑| out of it. The two

spins which are on the loop’s boundaries are either flipped or not, depending on the particular configuration from the list above.
We get for an even R1

〈w1|Êb(R1) = |α|2N
∣∣∣∣βα

∣∣∣∣2R1

⎛
⎝〈↓| ⊗ 〈↓| ⊗ · · · ⊗ 〈↓|︸ ︷︷ ︸

R1−1

⊗〈↑| ⊗ 〈↑| ⊗ · · · ⊗ 〈↑|︸ ︷︷ ︸
N−R1−1

+〈↑| ⊗ 〈↓| ⊗ · · · ⊗ 〈↓|︸ ︷︷ ︸
R1−1

⊗〈↓| ⊗ 〈↑| ⊗ · · · ⊗ 〈↑|︸ ︷︷ ︸
N−R1−1

⎞
⎠

(144)

and for an odd R1

〈w1|Êb(R1) = |α|2N
∣∣∣∣βα

∣∣∣∣2R1
[(

αβ∣∣αβ
∣∣
)2

〈↑| ⊗ 〈↓| ⊗ · · · ⊗ 〈↓|︸ ︷︷ ︸
R1−1

⊗〈↑| ⊗ 〈↑| ⊗ · · · ⊗ 〈↑|︸ ︷︷ ︸
N−R1−1

+
(

βα

|βα|
)2

〈↓| ⊗ 〈↓| ⊗ · · · ⊗ 〈↓|︸ ︷︷ ︸
R1−1

⊗〈↓| ⊗ 〈↑| ⊗ · · · ⊗ 〈↑|︸ ︷︷ ︸
N−R1−1

]
. (145)

We move on to the intermediate rows, with

Ê‖(R1) = |α|2(N−R1−1)|δ|2(R1−1)|β|4σx ⊗ �↓ ⊗ · · · ⊗ �↓︸ ︷︷ ︸
R1−1

⊗σx ⊗ �↑ ⊗ · · · ⊗ �↑︸ ︷︷ ︸
N−R1−1

+ . . . (146)

where, once again, the terms not included are either small enough or annihilate the input vector. The highest eigenvalue (in
absolute value) is

ρ ′
1(R) = |α|2(N−1)

∣∣∣∣β2

δ

∣∣∣∣2
∣∣∣∣ δα

∣∣∣∣2R1

, (147)

exponential in the distance R1, just as speculated in (114), with � = |α|2(N−1)| β2

δ
|2, and string tension κ = −2 log | δ

α
|, predicting

an area law behavior.
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This eigenvalue is fourfold degenerate (in absolute value). Denoting by |x = ±1〉 the eigenvectors of σx, with eigenvalues
±1, we get the four eigenvectors〈

w′x,x′
1 (R)

∣∣ = 〈x| ⊗ 〈↓| ⊗ · · · ⊗ 〈↓|︸ ︷︷ ︸
R1−1

⊗〈x′| ⊗ 〈↑| ⊗ · · · ⊗ 〈↑|︸ ︷︷ ︸
N−R1−1

, s.t.
〈
w′x,x′

1 (R)
∣∣Ê‖(R1) = xx′ρ ′

1(R)
〈
w′x,x′

1 (R)
∣∣ (148)

Note that since the transfer matrices Ê and Ê‖(R1) are hermitian, |vi〉 = |wi〉 and |v′
i (R)〉 = |w′

i(R)〉.
Connecting with the inputs (144) and (145) and using 〈↑|x〉 = 1/

√
2 and 〈↓|x〉 = x/

√
2 we obtain for an even R1

〈w1|Êb(R1)
∣∣v′x,x′

1 (R1)
〉 = |α|2N

∣∣∣∣βα
∣∣∣∣2R1

(〈↓|x〉〈↑|x′〉 + 〈↑|x〉〈↓|x′〉)

= 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

(x + x′) ≡ 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

feven(x, x′) (149)

and for an odd one

〈w1|Êb(R1)
∣∣v′x,x′

1 (R1)
〉 = |α|2N

∣∣∣∣βα
∣∣∣∣2R1

[(
αβ∣∣αβ

∣∣
)2

〈↑|x〉〈↑|x′〉 +
(

βα

|βα|
)2

〈↓|x〉〈↓|x′〉
]

= 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

[(
αβ∣∣αβ

∣∣
)2

+ xx′
(

βα

|βα|
)2

]
≡ 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

fodd(x, x′). (150)

We close the Wilson loop with Êt (R1), where we consider the leading terms which do not annihilate the input vectors
〈w′x,x′

1 (R)| or the output vector 〈w1|:

Êt (R1) = |α|2(N−R1−1)|β|2(R1−1)
∑
μ,ν

ξ�,μξ�,νTr
[
Ĥ�,μσ R1−1

x Ĥ�,ν�↑
]
V̂�,μ ⊗ σx ⊗ · · · ⊗ σx︸ ︷︷ ︸

R1−1

⊗V̂�,ν ⊗ �↑ ⊗ · · · ⊗ �↑︸ ︷︷ ︸
N−R1−1

+ . . . . (151)

Once again there are four possible cases.
(1) R1 is even, Ĥ�,μ = σ+, Ĥ�,ν = �↑, and thus V̂�,μ = σ−, V̂�,ν = �↑, and ξ�,μξ�,ν = |αβ|2.
(2) R1 is even, Ĥ�,μ = �↑, Ĥ�,ν = σ−, and thus V̂�,μ = �↑, V̂�,ν = σ−, and ξ�,μξ�,ν = |αβ|2.
(3) R1 is odd, Ĥ�,μ = �↑, Ĥ�,ν = �↑, and thus V̂�,μ = �↑, V̂�,ν = �↑, and ξ�,μξ�,ν = (αβ )2.
(4) R1 is odd, Ĥ�,μ = σ+, Ĥ�,ν = σ−, and thus V̂�,μ = σ−, V̂�,ν = σ−, and ξ�,μξ�,ν = (βα)2.
This implies that for an even R1

Êt (R1)|v1〉 = |α|2N
∣∣∣∣βα

∣∣∣∣2R1

⎛
⎝|↓〉 ⊗ |↓〉 ⊗ · · · ⊗ |↓〉︸ ︷︷ ︸

R1−1

⊗|↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
N−R1−1

+|↑〉 ⊗ |↓〉 ⊗ · · · ⊗ |↓〉︸ ︷︷ ︸
R1−1

⊗|↓〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
N−R1−1

⎞
⎠

(152)

and for an odd R1

Êt (R1)|v1〉 = |α|2N
∣∣∣∣βα

∣∣∣∣2R1
[(

αβ

|αβ|

)2

|↑〉 ⊗ |↓〉 ⊗ · · · ⊗ |↓〉︸ ︷︷ ︸
R1−1

⊗|↑〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
N−R1−1

+
(

βα

|βα|
)2

|↓〉 ⊗ |↓〉 ⊗ · · · ⊗ |↓〉︸ ︷︷ ︸
R1−1

⊗|↓〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
N−R1−1

]
, (153)

giving rise to, for an even R1,

〈
w′x,x′

1 (R1)
∣∣Êt (R1)|v1〉 = |α|2N

∣∣∣∣βα
∣∣∣∣2R1

(〈x|↓〉〈x′|↑〉 + 〈x|↑〉〈x′|↓〉)

= 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

(x + x′) = 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

feven(x, x′) (154)
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and for an odd one

〈
w′x,x′

1 (R1)
∣∣Êt (R1)|v1〉 = |α|2N

∣∣∣∣βα
∣∣∣∣2R1

[(
αβ

|αβ|

)2

〈x|↑〉〈x′|↑〉 +
(

βα

|βα|
)2

〈x|↓〉〈x′|↓〉
]

= 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

[(
αβ

|αβ|

)2

+ xx′
(

βα

|βα|
)2

]
= 1

2
|α|2N

∣∣∣∣βα
∣∣∣∣2R1

fodd(x, x′). (155)

We are finally ready to obtain the Wilson loop expectation value using the procedure of Sec. V C. We will have to slightly
modify it, since in our case the highest eigenvalue of Ê‖ is only degenerate in absolute value; for large loops in the thermodynamic
limit we thus modify Eq. (110) to

〈W (R1, R2)〉 = ρ
′R2−1
1 (R1)

ρ
R2+1
1

∑
x,x′

(xx′)R2−1〈w1|Êb(R1)
∣∣v′x,x′

1 (R1)
〉〈
w′x,x′

1 (R1)
∣∣Êt (R1)|v1〉

= 1

4

∣∣∣∣αδ

β2

∣∣∣∣2
∣∣∣∣ δα

∣∣∣∣2R1R2
∣∣∣∣β2

αδ

∣∣∣∣2(R1+R2 )∑
x,x′

(xx′)R2−1 f 2
p (x, x′) (156)

where p = even,odd is the parity of R1.
One can already clearly see the area and perimeter dependent parts. The only thing left to do is to complete the computation

of the sum, where four different cases have to be considered, corresponding to the parities of R1, R2. It is straightforward to

see that if the area is even (three of the four cases) the resulting number is 8, while if the area is odd the result is 8Re( αβ

|αβ| )
4.

Altogether we obtain, for large loops in the thermodynamic limit, for the |β| � |δ| < |α| and γ = 0 case, that

〈W (R1, R2)〉 =
⎧⎨
⎩2

∣∣αδ
β2

∣∣2∣∣ δ
α

∣∣2R1R2
∣∣ β2

αδ

∣∣2(R1+R2 )
, R1R2 is even

2
∣∣αδ
β2

∣∣2∣∣ δ
α

∣∣2R1R2
∣∣ β2

αδ

∣∣2(R1+R2 )
Re

(
αβ

|αβ|

)4
, R1R2 is odd

. (157)

The Creutz parameter (38) is nothing but the string tension:

χ = κ = −2 log

∣∣∣∣ δα
∣∣∣∣. (158)

We see that we have an area law, or a confining phase,
as long as |δ| �= |α|. While we excluded an equality in our
arguments above, indeed we will have no area law if these
two parameters are equal: then, the eigenvectors of Ê between
which the fluxes transfer will have the same eigenvalue which
does not allow for an area law, in full accordance with our
general discussion. If we switch γ on, it will have two effects:
one will contaminate the eigenvectors of the transfer matrix
Ê , taking them farther from product vectors until the area
law is broken, as well as introduce terms in the flux-carrying
transfer matrices that do not change the eigenvalue sector of
τ̂0—violating another area law criterion.

C. Numerical examples

We will now present a few more examples which are com-
puted numerically, using exact contraction, on a torus with
size N1 = 8 × N2 = 100. We considered different choices of
parameters to demonstrate different behaviors; for each, we
computed the expectation value of the Wilson loop for several
large loops. We extracted the parameters κA and κP as follows:
using the expression (39) for a Wilson loop, we may define a
function of R2 depending on R1 as a parameter:

f (R2) = − log 〈W (R1, R2)〉 = f1(R1)R2 + f0(R1). (159)

It is a linear function, which intersects with the vertical axis at

f0(R1) = κPR1 − logW0, (160)

the slope of which is

f1(R1) = κAR1 + κP. (161)

In the case of a perimeter law, the slope function will be
constant, f1(R1) = κP, and when plotting f (R2) for different
R1 values parallel lines will be obtained. In the case of an area
law, the lines will have different slopes. Thus, κA and κP may
be extracted by performing linear fits to the functions f1,2(R1).
Moreover, we have extracted the Creutz parameter too.

The first set of parameters we examine is α = 1, β =
0.1, γ = 0, δ = 0.95. This choice is within the perturbative
class studied above. It shows an area law, as can be seen
from Fig. 10 and the Creutz parameter χ = κ = −2 log | δ

α
| ≈

0.1025 (as shown in Fig. 11). The expected exponential de-
pendence of the eigenvalues of Ê‖(R) is demonstrated in
Fig. 12.

Next, let us consider another example which lies within the
perturbative regime: α = 1, β = 0.1, γ = 0, δ = 1. Here still
γ = 0 and β is very small, so the eigenvectors of Ê would be
product vectors, hence satisfying the first criterion for an area
law. However, the eigenvalues of τ̂0 are degenerate, implying
no area law (the second criterion is violated). The perimeter
law is clearly shown in Fig. 13, and, as one can see in Fig. 14,
the eigenvalues of Ê‖(R) have no dependence on R.

Finally, we consider a completely different case, where
α = 0.1, β = 0.1, γ = 1, δ = 0.3. For this choice of param-
eters, the previous perturbative treatment is not valid. The
eigenvalues associated with τ̂0 are

λ1 ≈ 1.05, λ2 ≈ −0.95, λ3 = 0.02, λ4 = 0 (162)
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FIG. 10. α = 1, β = 0.1, γ = 0, δ = 0.95, which lies within the
perturbative class discussed above, clearly shows an area law. It can
be seen qualitatively on the top, where − log〈W (R1, R2)〉 is plotted
as a function of R2 for three different values of R1—resulting in three
nonparallel lines. And if it is hard to detect the different slopes on the
top, the middle figure shows it more quantitatively: the slope function
f1(R1) ≈ 0.126R1 + 9.1078 has a nonzero slope κA ≈ 9.1078, and
its intersection with the vertical axis is κP ≈ 9.1078, the slope of the
function plotted on the bottom, f0(R1).

FIG. 11. Computation of the Creutz parameter χ (R1, R2) for α =
1, β = 0.1, γ = 0, δ = 0.95, for different values of R1 and R2. As
can be seen, the values converge to the predicted value (thanks to
the validity of the perturbative treatment in this parameter regime) of
−2 log | δ

α
| ≈ 0.1025.

associated with the operators

M̂1 ≈
(

0.6928 0
0 0.7211

)
,

M̂2 ≈
(−0.7211 0

0 0.6928

)
,

M̂3 = 1√
2
σx, M̂4 = − i√

2
σy; (163)

here, too, the most significant contributions are from the ze-
roth block with diagonal operators (the first two); however,
they are far away from being projectors, hence we do not
expect the eigenvectors of Ê to be anywhere close to product
vectors.

FIG. 12. In the perturbative case worked out analytically, α =
1, β = 0.1, γ = 0, δ = 0.95, the highest eigenvalue of the interme-
diate transfer matrix Ê‖(R) depends exponentially on the width R,
as can be seen from the logarithmic plot given above, where the
two highest eigenvalues (in absolute value, both degenerate in this
case) are plotted for all values of R. The symmetric shape is due
to the finiteness of the system (N = 8 in this case). For R � 4, the
eigenvector corresponding to highest eigenvalue connects with the
right input state, while for R � 4 the next ones are relevant—all due
to the symmetry. Also shown is a linear fit, computed with respect to
the parameters predicted using the perturbative treatment.
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FIG. 13. The α = 1, β = 0.1, γ = 0, δ = 1 case does not allow for an area law because of the degeneracy in the eigenvalues of τ̂0

corresponding to projection operators. The state shows a perimeter law, which can be seen qualitatively on the left, where − log〈W (R1, R2)〉
is plotted as a function of R2 for three different values of R1—resulting in three parallel lines. Quantitatively we see in the middle, where the
three slopes of the three lines are plotted, that they are equal: f1(R1) = κP ≈ 9.2103 is a constant function (κA = 0). On the right we see the fit
of f0(R1) ≈ 9.2103(R1 − 1).

Let as also consider the straight flux carrying transfer op-
erator τ̂− and to τ̂|. We find the singular values

η1 ≈ 0.4472, η2 = 0.02, η3 = η4 = 0, (164)

associated, in the flux direction, with the operators

K̂1 = − 1√
2

1, K̂2 = − 1√
2
σx,

K̂3 = − 1√
2
σz, K̂4 = − i√

2
σy, (165)

FIG. 14. The α = 1, β = 0.1, γ = 0, δ = 1 case does not allow
for an area law because of the degeneracy in the eigenvalues of τ̂0

corresponding to projection operators. This is also manifested by the
fact that the eigenvalues of the intermediate transfer matrix, Ê‖(R),
are completely independent of the distance R, as illustrated here.

FIG. 15. The α = 0.1, β = 0.1, γ = 1, δ = 0.3 case shows a
perimeter law, which can be seen qualitatively on the top, where
− log〈W (R1, R2)〉 is plotted as a function of R2 for three different
values of R1—resulting in three parallel lines. Quantitatively we see
on the bottom, where the three slopes of the three lines are plotted,
that they are equal.
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FIG. 16. Another probe for the perimeter law of the α =
0.1, β = 0.1, γ = 1, δ = 0.3 case is the zero Creutz parameter, as
plotted here (the plotted results are not exactly zero due to the fact
that our loops are not very large).

and, in the direction orthogonal to the flux, with the operators

L̂1 ≈
(−0.3162 0

0 −0.9487

)
, L̂2 = − 1√

2
σx,

L̂3 ≈
(−0.9487 0

0 0.3162

)
, L̂4 = − i√

2
σy, (166)

which imply that even if our eigenvectors were product vec-
tors (which they are not) the most prominent contribution,
coming from η1, would be diagonal in the subsector (as seen
from L̂1). Therefore all our area law criteria are violated.
Indeed, this set of parameters shows a perimeter law decay of
the Wilson loop, as can be seen in Fig. 15, in the zero Creutz
parameter (see Fig. 16) and in the eigenvalues of Ê‖(R) which
are independent of R (as shown in Fig. 17).

VII. SUMMARY

In this paper we have seen how local properties of two-
dimensional lattice gauge theory PEPSs, manifested in their
transfer operators (on-site) and matrices (rows), simplify their
contraction and dictate their long-range Wilson loop behav-
ior. We have related the area law with transfer matrices the
eigenvectors of which are product vectors—that is, a product
of local contributions of the transfer operators on each side,
manifesting the lack of long-range order, as expected for a

FIG. 17. In the perimeter law case of α = 0.1, β = 0.1, γ =
1, δ = 0.3, as expected, the eigenvalues of the intermediate transfer
matrix Ê‖(R) are independent of R.

disordered, confining phase. The perimeter law, appearing
in ordered phases, has to do with nonproduct eigenvectors,
where the separate sites contribute in a correlated, long-
ordered manner. These results may be used for detecting
phases of PEPSs used for pure gauge theory studies, and for
the design of PEPSs used as ansatz states for such scenarios.

One possible extension is the inclusion of dynamical
matter—which is different from the current paper both in the
mathematical sense (different structure of the tensors, imply-
ing different symmetry properties) and the physical one (in
that case, at least with fermionic matter as in conventional
standard model scenarios, the Wilson loop does not serve as an
order parameter for confinement any more). This could possi-
bly connect with the formalism of gauged Gaussian fermionic
PEPSs [31,32] which can be contracted using sign-problem
free Monte Carlo techniques [33,37] both for the study
of further examples and application to physical models of
interest.

Another important and relevant generalization is the exten-
sion to higher dimensions, where further geometry arguments
have to be taken into account, potentially containing many
further interesting physical and mathematical properties.
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