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Topological magnetic textures in magnetic topological insulators
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The surfaces of intrinsic magnetic topological insulators (TIs) host magnetic moments exchange-coupled to
Dirac electrons. We study the magnetic phases arising from tuning the electron density using variational and
exact diagonalization approaches. In the dilute limit, we find that magnetic skyrmions are formed, which bind to
electrons, leading to a skyrmion Wigner crystal phase while at higher densities spin spirals accompanied by chiral
one-dimensional channels of electrons are formed. The binding of electrons to textures raises the possibility of
manipulating textures with electrostatic gating. We determine the phase diagram capturing the competition of
intrinsic spin-spin interactions and carrier density and comment on the possible application to experiments in
magnetic TIs and spintronic devices such as skyrmion-based memory.
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I. INTRODUCTION

Topological materials, topological excitations, and topo-
logical quantum effects have become a very active research
frontier in condensed matter physics. Manifestations of topol-
ogy in momentum space include the integer quantum Hall
effect [1], Chern insulators [2], and topological insulators
(TIs) [3,4]. In real space, topological order parameter con-
figurations such as vortices, monopoles, and skyrmions are
ubiquitous in spin systems and magnetism [5–11]. In particu-
lar, magnetic skyrmions have been the focus of much recent
study, spurred by their observation in room-temperature mate-
rials [12–14], stability [15–17], and suitability in spintronics
for next-generation memory devices [18].

Both momentum-space and real-space topology can play
crucial roles in magnetic topological insulators, where Dirac
electrons interact with topological spin textures associated
with magnetic moments [19–21]. Recently, the stoichiometric
compound MnBi2Te4, a TI containing a periodic sublattice
of Mn2+ ions with magnetic moment 5μB (where μB is the
Bohr magneton), was synthesized and studied for the first time
[22,23], opening the new field of intrinsically magnetic TIs.
The compound comprises alternating quintuple layers of the
topological insulator Bi2Te3 and ferromagnetic (FM) MnTe
bilayers. A single septuple layer (SL) thin film exhibits ferro-
magnetic order. The exchange coupling between FM-ordered
magnetic moments and Dirac surface electrons on the adjacent
TI layer can open up a gap at the Dirac point and give rise
to nontrivial topology in momentum space, characterized by
quantized Chern number [24]. The resulting Chern insulator
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and zero-field quantum anomalous Hall state have recently
been observed in transport measurements on exfoliated few-
layer Mn-Bi-Te flakes.

Unlike TIs with randomly doped magnetic impurities, in-
trinsic magnetic TIs are stoichiometric compounds containing
a lattice of magnetic atoms coupled to topological electrons.
This feature not only promises a magnetic ordering and quan-
tum anomalous Hall effect at temperatures as high as 50 K
[25,26] but also opens the exciting possibility of magnetic
control of topological electronic properties and electrical con-
trol of magnetic order. In particular, magnetic textures such as
spirals and skyrmions can arise at surfaces and interfaces from
the chiral Dzyaloshinskii-Moriya (DM) interaction [27–29]
due to broken inversion symmetry. Magnetic TI surfaces pro-
vide a platform of this kind. This motivates us to consider the
effect of real-space magnetic structures on topological Dirac
electrons, which may enable manipulating magnetic domains
and textures by electric currents and electrostatic gating.

Motivated by recent advances in magnetic TIs and
skyrmion physics, we study the magnetic phenomena arising
from doping Dirac electrons. We focus separately on the cases
of (a) a single added electron, (b) low carrier density, and (c)
high carrier density. We predict the formation of skyrmion
textures with localized Dirac modes for cases (a) and (b) and
the formation of stripes with one-dimensional (1D) channels
of chiral modes for case (c). Because the ground-state mag-
netic order parameter depends on carrier density, we obtain
electrically tunable skyrmion and stripe phases whose periods
vary with density.

As a potential application, we envision that intrinsic mag-
netic TIs can open the path for a memory device storing
information using magnetic skyrmions in a low-carrier-
density material. The use of skyrmions for information storage
has been reported in magnetic metals, where the exchange
interaction couples itinerant electrons and localized spins.
However, due to the large carrier density of metals, a large
current density is required to drive skyrmions in writing and
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reading out data, which results in Joule heating and consid-
erable power consumption. This drawback can be alleviated
by working with skyrmions in a low-carrier-density, bulk-
insulating material such as a magnetic TI. As we shall show,
a skyrmion in a magnetic TI carries tightly bound electric
charge. Under the right conditions, these charged skyrmions
are the only charge carrier at low doping. Therefore a rela-
tively small current is sufficient to drive the skyrmion motion.

Model. For the Hamiltonian of the 2D surface of a magnetic
TI describing Dirac electrons coupled to a dense array of N
classical spins �S = (Sx, Sy, Sz ) we take

H = He + HeS + HS, (1)

where the first two terms,

He = vF

∑
k

ĉ†
k(kxσ

y − kyσ
x − EF )ĉk (2)

and

HeS = − J√
N

∑
k,q

ĉ†
k+q

�Sq · �σ ĉk, (3)

are a Rashba Hamiltonian for massless Dirac electrons and an
exchange interaction, respectively. The last term consists of
intrinsic spin interactions, including a ferromagnetic exchange
interaction, DM interaction, Zeeman field, and out-of-plane
anisotropy, namely,

HS = −A
∑
r,i

�Sr · �Sr+ei + D
∑
r,i

[
ei × (�Sr × �Sr+ei

)]
z

− �B ·
∑

r

�Sr − K
∑

r

S2
zr (4)

where z is the out-of-plane direction. We have chosen a nor-
malization so that S2

r = 1. The form of the DM interaction
above is appropriate for a lattice with Cnv symmetry, favoring
the formation of spirals rotating along the wave vector (Néel
type), as opposed to orthogonal to the wave vector (Bloch
type).

The phase diagram of the magnetic moments without cou-
pling to electrons has been studied both theoretically [17,30]
and experimentally [8,9,31,32]. With vanishing Zeeman field
and anisotropy, the ground state of HS is a periodically mod-
ulated spiral texture with wave vector q ∼ D/A and Néel
wall-like rotation. With increasing anisotropy, the spiral de-
generates into a system of domain walls which is energetically
favorable over the uniform state when

√
D2/AK is above a

threshold. Turning on an out-of-plane Zeeman field penalizes
the large areas of antiparallel spins, resulting in a phase transi-
tion to a skyrmion crystal (SkX) above a critical field and to a
uniform state above a higher critical field. As the temperature
is increased the spiral or SkX order is destroyed.

We now consider the exchange coupling between localized
spins and topological surface electrons. As we shall show
below, the interplay between magnetic and electronic degrees
of freedom leads to (1) a carrier-density-dependent magnetic
phase diagram and (2) chiral electronic states. Furthermore,
the exchange coupling is capable of driving the formation of
charged skyrmions at small electron doping, and Coulomb
repulsion is capable of leading to a skyrmion Wigner crystal
(SWX).

The remainder of this paper is organized as follows. In
Sec. II we study the formation of skyrmion textures from
doping a single electron and the formation of a SWX for a very
dilute density of electrons. In Sec. III we study the stripe phase
which forms at finite density using exact diagonalization and
discuss the 1D channels of chiral modes bound to the stripes.
We then present a phase diagram of competing stripe orders
when HeS and HS are both important, and in Sec. IV we
conclude.

II. SKYRMION FORMATION

Equation (4) has a uniform ground state �Sr = ±ẑ when
the direct exchange interaction dominates, and the coupled

electrons form two bands at energies ±
√

J2 + v2
F |k|2. At

charge neutrality, the lower band is filled, and the addition of
another electron incurs an energy cost of 2J unless a nontrivial
texture forms. Equation (4) is known to support skyrmions
as excitations, so we investigate the electron spectrum in the
presence of a skyrmion. We plot this spectrum in Fig. 1(a). We
observe midgap bound states, indicating the possibility that
the system will spontaneously form a skyrmion to accommo-
date the extra electron and a skyrmion Wigner crystal for a
very dilute density of electrons [Fig. 1(b)].

Let us work in the strong-J limit, neglecting energy costs
associated with HS . As a variational approach, we consider a
50 × 50 square lattice hosting a skyrmion texture and add a
single electron to the charge-neutral state. Then we compare
the total energy with that of the uniform state with a single
added electron. We take a tight-binding approximation for He

suitable for the lattice, which we describe in Appendix B; it
has a single Dirac cone at k = 0. We choose a momentum
cutoff |k| < kUV to indicate the region of linear dispersion.
We parametrize the skyrmion profiles, shown in Fig. 2, using
the following ansatz:

(Sx, Sy, Sz ) = (w + w̄,−i(w − w̄), 1 − |w|2)
1 + |w|2 ,

w(x, y) = eiγ bα+β

z̄αzβ
, z = x + iy. (5)

This parametrization was chosen for its compact description
of a four-parameter family of skyrmion profiles: γ adjusts
the in-plane spin orientation (we set γ = π for a Néel-type
skyrmion), b sets the radius, α − β is the vorticity, and α + β

defines the sharpness of the domain wall. For example, a
hard-wall magnetic bubble of radius b is recovered by taking
α = β → ∞. Indeed, any smooth magnetic texture can be
captured by some smooth function w(x, y). Skyrmion textures
resulting from holomorphic w, a special case, were discussed
in Ref. [33], and a one-parameter family of skyrmions [34]
is recovered by taking α = 0, β = −1, γ = π/2. Higher-
winding skyrmions, multiple skyrmions, or even a skyrmion
crystal can be achieved by taking appropriate sums of the
above ansatz. Such a sum may be preferable to the typical
sinusoidal ansatz when the core size of the skyrmions is uncor-
related with their spacing, as in the skyrmion Wigner crystal
we discuss shortly.

In Fig. 2 we show that the system prefers to form a
Néel skyrmion (with vorticity 1) to accommodate the extra
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FIG. 1. (a) Top: Illustration of an intrinsic magnetic TI. In the case of MnBi2Te4 the alternating layers consist of the TI Bi2Te3 and magnetic
layer MnTe. The magnetic layer can host real-space topological textures such as Néel skyrmions, shown in (b). Bottom: Spectrum of Dirac
electrons coupled to Néel skyrmion texture with radius b = 10 lattice spacings and shape parameters α = 3/2, β = 1/2 [Eq. (5)] plotted
against total (spin + orbital) angular momentum, showing a branch of chiral midgap bound states. (b) Top: Néel skyrmion textures with radii
b = 1, 5, and 10 lattice spacings and the same shape parameters. Bottom: Magnitude of spin-up component of the smallest |E | Dirac bound
state in the presence of the corresponding texture.

electron assuming a cutoff kUVa consistent with a Dirac cone
dispersion, where a is the lattice spacing. A Bloch skyrmion
would be favored for a non-Rashba spin-orbit coupling. The
added electron binds to the skyrmion with the profiles we
numerically determined in Fig. 1. The radius b of the skyrmion
satisfies a � b � 1/kUV. The cutoff dependence indicates that
in real materials for which the Dirac cone is a low-energy
approximation, the full dispersion may be relevant in de-
termining skyrmion size. For instance, from angle-resolved
photoemission spectroscopy (ARPES) data [22] for MnBi2Te4

the surface states’ Dirac cone remains a good low-energy
approximation up to kUV ∼ 0.05 Å−1, beyond which the bulk
bands are important. Since a ≈ 4 Å, our numerics would yield
a skyrmion texture of b/a ∼ 3, an extended object comprising
∼10 Mn atoms. We note that although using the family of
textures in Eq. (5) shows that in principle a skyrmion forms,
we have not optimized over all skyrmion shapes. Moreover,
for real materials the direct spin-spin interactions, including
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FIG. 2. Left: Skyrmion profiles θ (r), where θ = 0 corresponds
to +ẑ, for the shape parameters shown [cf. Eq. (5)]. Right: The cutoff
kUV below which a skyrmion of the given radius becomes favorable
upon doping a single electron. (Distances are measured in lattice
spacings.)

the ferromagnetic exchange and DM interaction, may also
help to stabilize skyrmions and affect their size.

Let us approximate the spectrum of Dirac modes in the
presence of a skyrmion. Working in polar coordinates, we
consider the skyrmion of radius b

(Sr, Sθ , Sz ) =
⎧⎨
⎩

(0, 0,−1) r < b
(−1, 0, 0) b < r < b + δ

(0, 0, 1) r > b + δ

(6)

with δ � b. This is an idealized approximation to the
skyrmions shown in Fig. 1. Dirac bound states are localized
near b, with a half-integer angular momentum m satisfying
|m|vF /b � J . We solve the continuum Dirac equation in detail
in Appendix A. We find midgap energies

E ≈ mvF /b − δJ2 f (Jb/vF )/vF , (7)

where f is a bounded, positive function of the skyrmion size
whose explicit form is given in Eq. (A16). Thus a small in-
plane component δ > 0 results in a downward spectral shift,
breaking particle-hole symmetry. This provides another way
to understand why skyrmion formation is favorable.

The binding of Dirac modes to skyrmions was previously
studied in Refs. [19,20]. Reference [19] studied the general
relations between magnetic textures and their induced electric
charge, as well as their motion in an electric field (see also
Refs. [35,36]). Reference [20] studied the simplified case of
a step-function out-of-plane skyrmion profile and found that
the charged skyrmion is only energetically favorable with an
external magnetic field due to particle-hole symmetry at zero
field. However, realistic skyrmion profiles are smooth and
contain an in-plane region, which breaks particle-hole sym-
metry. Our results show that for realistic profiles with broken
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particle-hole symmetry, charged skyrmions may be favorable
even at zero external field.

The binding of charges to skyrmions is also seen in the
quantum Hall ferromagnet, for instance, at the filling factor
ν = 1. In this state, the Coulomb repulsion favors the spon-
taneous polarization of electron spins, and doping the ν = 1
ferromagnet leads to electrically charged skyrmion textures
[37–39]. The quantum anomalous Hall state in intrinsic mag-
netic topological insulators differs from the quantum Hall
ferromagnet in several key aspects. First, its ferromagnetism
comes from the ordering of local magnetic moments (with
∼5μB per Mn atom in the case of MnBi2Te4), rather than the
spins of low-density charge carriers. Second, spin-momentum
locking in the Dirac surface states of a magnetic topological
insulator leads to a strongly anisotropic magnetic response
to the exchange field: An out-of-plane field opens a gap at
charge neutrality, while an in-plane field does not. Therefore
the Chern-Simons effective theory for quantum Hall ferro-
magnets cannot be applied to describe the skyrmion physics
in magnetic topological insulators.

Very dilute limit. Since the large-S local magnetic moments
are treated as classical, the skyrmions and Dirac electrons
bound to them are immobile. When the density of added elec-
trons is sufficiently low, the Coulomb repulsion is expected to
drive a Wigner crystal phase of charged skyrmions. There are
two distinct length scales in this phase: the lattice constants
of the SWX, set by the density of doped electrons, and the
skyrmion size, set by the exchange coupling and the spin
susceptibility of Dirac electrons. The first length scale can
far exceed the second. We emphasize that the SWX proposed
here is driven by Wigner crystallization of charged skyrmions.
This mechanism is similar to the SWX phase observed in the
lightly doped ν = 1 quantum Hall ferromagnet [40–42], but
different from the skyrmion crystal phase in helimagnets that
is driven by DM interaction.

III. STRIPE PHASES

In this section we consider a finite electron density above
charge neutrality. We work with the same tight-binding model
(Appendix B) and the strong-J limit so that electrons actively
dictate the ground state. We find that the ferromagnetic state
is unstable to a state with spatially modulated magnetization
above a critical electron density, as shown in Fig. 3(a). Above
the transition the preferred wave vector is ∼2kF .

Let us comment on the band structure of Dirac electrons
in the presence of a spiral phase. We expect a network of 1D
modes localized along the regions where spins are in plane
[43], as in Fig. 3(c). To see this, let us focus on a single such
region, which we take along the y axis, and approximate the
spin texture in the vicinity as

�S(x, y) = (1, 0, qx). (8)

The normalization S2 = 1 is maintained to linear order in x.
Solving the corresponding continuum equation

[vF (−i∂xσ
y − kyσ

x ) − J (σ x + qxσ z )]ψ = Eψ, (9)

we obtain the bound state

ψky (x, y) = Ceikyye− Jqx2

2vF (1,−1)T (10)
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FIG. 3. (a) Ground-state (g.s.) sinusoidal Néel spiral of He +
HeS , characterized by wave vector q in the x direction, as a function of
doping. The slope ∼2kF for the underlying dispersion. A 103 × 500
lattice with unit spacing and cutoff kUV = π/20a was used. (b) Spec-
trum along the red line of the inset mini Brillouin zone (BZ) for
Dirac electrons in a sinusoidal Néel spiral of wavelength ma in the
x direction (here, m = 20, J = 0.5). Conduction band states descend
to form midgap bound states localized in the x direction. Localization
leads to nearly flat bands in the kx direction, with dispersion tuned by
J . (c) Magnitude of spin-up component of E = 0 Dirac bound states
in the presence of the spin spiral above. The velocities are indicated
by long arrows.

with linear dispersion E = −sgn(q)(vF ky + J ). This state is
Gaussian localized in the x direction over a length ∼√

vF /Jq.
It follows that in the presence of a spiral texture �S =
(cos qx, 0, sin qx), well-localized, approximately degenerate
chiral modes form when J/vF 	 q, in which case Eq. (8) is a
valid approximation.

In Fig. 3(b) we plot the full spectrum of Dirac electrons in
a Néel spiral texture to show that the linear branch of chiral
modes descends into the gap from the conduction band, giv-
ing another picture for why a spiral state becomes favorable.
Moreover, a spiral state in the appropriate limit would exhibit
highly anisotropic conductance; the conductance would be
much greater in the y direction due to the 1D channels of
bound states. Examples of such bound states are shown in
Fig. 3(c).

Since the exchange coupling J is small compared with
the bandwidth of TI surface states (on the order of eV),
the leading-order effect of J on the spin degrees of free-
dom is to modify the spin-spin interaction through the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism. The
effective Hamiltonian for the array of spins, after integrating
out the electrons, is given by

Heff = −
∑
qab

χab
tot (q)Sa

−qSb
q, (11)

where

χab
tot (q) = J2χab

eS (q) + χab
S (q). (12)

The spin susceptibility χtot(q) is a 3 × 3 Hermitian ma-
trix whose largest eigenvalue and corresponding eigenvector
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FIG. 4. The largest eigenvalue χeS (q) of the spin susceptibility
defined in Eq. (11). The dominant peak shifts discontinuously away
from q = 0 at a critical kF a ≈ 0.54. The transition occurs at a point
in the Brillouin zone where a Dirac cone is a good approximation
to the dispersion of the 103 × 500 lattice model (a = 1). Left and
right insets display the inter- and intraband spin susceptibilities,
respectively. The 2kF peak is entirely due to the latter, and the UV
dependence is captured entirely in the former.

describe the wave vector and polarization of the ground-state
spin texture. The first contribution is derived from second-
order perturbation theory in Ja/vF , while the second term can
be read off from HS when the Zeeman field is absent. Their
explicit forms are given in Eqs. (13) and (18). In the strong-J
limit we drop χS and focus only on χeS . The latter can can be
written as U †χ̃U with U being a 3 × 3 unitary effecting a π/2
rotation about ẑ and

χ̃ab(q) = −1

2N

∑
k,s1,s2

fk,s1 − fk+q,s2

ξks1 − ξk+q,s2

F a
ks1;k+q,s2

F b
k+q,s2;ks1

(13)

with ξks = s|vF |k − EF and fks = [1 + eβξks ]−1 being the
Fermi distribution [44]. The F a are given by

F x
k1s1;k2s2

= sgn(vF )

2
(s1eiθk1 + s2e−iθk2 ), (14)

F y
k1s1;k2s2

= −i
sgn(vF )

2
(s1eiθk1 − s2e−iθk2 ), (15)

F z
k1s1;k2s2

= −1

2
(1 − s1s2ei(θk1 −θk2 ) ), (16)

where eiθk = (kx + iky)/k.
In Fig. 4 we plot the dominant eigenvalue χeS (q) of the spin

susceptibility varying the electron doping kF (taking vF = 1).
A square lattice with lattice constant a is used as a UV com-
pletion. The plot has a peak at q = 0 for small doping which
trades dominance with a peak at q = 2kF at some critical
kF . This corresponds to the transition from a uniform state
to a 2kF spiral, in accord with Fig. 3(a). The corresponding
eigenvector describes a spiral texture with Néel wall-like ro-
tation. For a non-Rashba spin-orbit coupling a Bloch wall-like
rotation is favored. Figure 4 is also consistent with a skyrmion
state comprising a sum of multiple magnitude-2kF wave

vectors, because χeS is radially symmetric up to isotropy-
breaking terms originating from the underlying lattice.

We refer to Eq. (13) with s1 = s2 as the intraband suscep-
tibility and with s1 = −s2 as the interband susceptibility. The
interband susceptibility is a UV divergent contribution (cut off
by the lattice spacing) which occurs even when the chemical
potential is zero and depends weakly on q. The intraband sus-
ceptibility is independent of the UV cutoff and dominated by
Fermi surface contributions. These are both plotted in Fig. 4
(insets).

To see how the SWX phase fits into the picture presented
in this section, we remark that the presence of two length
scales in the SWX phase at low doping leads to multiple peaks
in the Fourier transform of its magnetic structure, and the
largest peak is at wave vector q = 0. Thus the closest single-
wave-vector approximation is the uniform state, consistent
with Figs. 3(a) and 4 in the low-density regime. Higher-order
effects in the perturbative expansion in the exchange coupling
J , higher harmonics in q, and the inclusion of Coulomb repul-
sion are needed to fully capture the SWX phase.

Intermediate regime. We have previously worked at strong
coupling, neglecting the effects of intrinsic magnetism. Now
we allow the couplings of HS and HeS to be of the same
order. The dominant eigenvalue of the total spin susceptibil-
ity [Eq. (12)] determines the ground-state properties of the
system, where χeS was discussed in the previous section and
χS can be read off from HS in the case of zero Zeeman field.
Since a square lattice was used for χeS , we use the same for χS ,
although the only UV sensitivity will come from the interband
susceptibility of χeS , which affects the transition from q = 0
to q = 2kF . Thus we have

HS |B=0 = −
∑

ab

χab
S (q)Sa

−qSb
q (17)

with χS (q) given by

χ xx
S = χ

yy
S = A(cos qxa + cos qya), (18a)

χ zz
S = A(cos qxa + cos qya) + K, (18b)

χ xz
S = (

χ zx
S

)∗ = iD sin qxa, (18c)

χ
yz
S = (

χ
zy
S

)∗ = iD sin qya, (18d)

χ
xy
S = χ

yx
S = 0. (18e)

In terms of a rescaled coupling

d2 = 2D2/AK (19)

the dominant eigenvalue of χS is peaked at q = 0 for d < 1
and at

q0 = tan−1(
√

d4 − 1/
√

2d2A/K + 1)/a (20)

for d � 1 if q is taken along an axis of symmetry. The
ground state of the system is a spin texture with wave vector
q = 0, 2kF , or q0, determined by the peak of the dominant
eigenvalue of χtot. This competition yields the phase diagram
shown in Fig. 5, plotted in the (d, kF ) plane with A = K =
0.1, J = 0.5.

This phase diagram exhibits several interesting features.
Increased electron doping expands the q = q0 phase, thereby
acting as an “effective DM interaction,” an effect noted in
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FIG. 5. Phase diagram describing Dirac electrons coupled to
spins as the electron density and DM interaction are varied [within
(�d, �kF a) = (0.15, 0.04)] with A = K = 0.1, J = 0.5, and a = 1
on a 100 × 100 lattice. The spins exhibit stripe orders at wave vectors
q = 0, 2kF , and q0 [defined in Eq. (20)], as determined by the spin
susceptibility peak.

recent works [45,46]. The line q0 = 2kF broadens into the
RKKY phase with increasing exchange coupling J . When J
vanishes, this phase vanishes, and the q = 0 and q0 phases
are separated by the transition at d = 1. In the opposite limit
J 	 A, K , the q = q0 phase vanishes, and we recover the
transition in Fig. 4 as a function of kF . We note that for weak
exchange coupling J , one expects these phases to be stripe
orders (single q) rather than multiple q because for J = 0 the
stripe phase is known to be the ground state at zero external
field.

IV. DISCUSSION

We have investigated the phases of an array of magnetic
moments coupled to Dirac electrons upon tuning the electron
density, motivated by intrinsic magnetic TIs subject to elec-
trostatic gating.

We found that at very dilute densities, electrons bind to
magnetic skyrmions, and we conjecture that an SWX results;
at higher densities the SWX gives way to spin spirals bound
to chiral electron channels. The DM interaction resulting from
broken inversion symmetry is essential for the formation of
skyrmions and stripes. Tuning the DM interaction and electron
density reveals a phase diagram of stripe orders captured
in Fig. 5. The interplay of real-space magnetic structures
and topological Dirac electrons suggests the manipulation of
magnetic domains and textures by electric currents, and elec-
trostatic gating is possible with low dissipation, an attractive
prospect for skyrmion-based information devices.

An interesting future direction is the study of the effects
of skyrmion and spiral phases on transport phenomena and
quantum oscillations. In a skyrmion crystal phase the Berry
flux attached to each skyrmion should lead to topological
density-of-states (DOS) oscillations which impact all physical

observables [47]. The emergent orbital magnetic field of the
nontrivial spin textures leads to a topological contribution
in the Hall resistivity ρxy(B), observed in Mn2CoAl thin
films [48], Mn-doped Bi2Te3 quintuple layers [49], and cor-
related oxide thin films [50,51] at low temperatures. However,
anomalous features in Hall resistivity could originate from
surface and bulk ferromagnetism instead of skyrmion physics
[52]. We leave the precise form of the contributions from
topological magnetism to physical observables to future work.
We hope that the magnetic phase transitions predicted in
this paper may spark further interest in magnetic topological
insulators.

Note added. Recently, two related works on spin textures
in magnetic topological insulators have appeared [53,54].
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APPENDIX A: DIRAC ELECTRONS BOUND
TO A SKYRMION

Here, we find the bound-state spectrum of Dirac electrons
in the presence of a skyrmion spin texture. The spin texture is
defined on a lattice, but it is convenient to take a continuum
approximation

He =
∫

ψ†Hψ, H = vF (kxσ
y − kyσ

x ) − J �S · �σ . (A1)

First we consider an idealized skyrmion of radius b, with

Sz(r) =
{−1 r < b
+1 r > b

(A2)

and Sx = Sy = 0. In radial coordinates and setting vF = J =
1, we may write

H = σ θ (−i∂r ) + 1

r
σ r (−i∂θ ) − Szσ z. (A3)

It is convenient to define � = √
re− i

2 σ z (θ+ π
2 ), which satis-

fies

�−1(σ r, σ θ , σ z )� = (−σ y, σ x, σ z ), (A4)

and consider the isospectral Hamiltonian

H′ = �−1H� = σ x(−i∂r ) − 1

r
σ y(−i∂θ ) − Szσ z. (A5)

Since H′ has no explicit θ dependence, we replace (−i∂θ ) with
a half-integer angular momentum m. Note that m is a half-
integer because � changes the azimuthal boundary conditions
from periodic to antiperiodic. We would like to solve[

σ x(−i∂r ) − m

r
σ y − Sz(r)σ z

](
f1

f2

)
= E

(
f1

f2

)
. (A6)
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Acting with (−i∂r ± i m
r ) on the top and bottom row, we get

− f ′′
2 + m(m − 1)

r2
f2 = (E2 − 1) f2, (A7)

− f ′′
1 + m(m + 1)

r2
f1 = (E2 − 1) f1, (A8)

respectively, away from r = b. These can be solved as

f2(x) = √
x
[
αJm− 1

2
(−ix) + βYm− 1

2
(−ix)

]
, (A9)

f1(x) = −s
√

x

√
1 + sE

1 − sE

[
αJm+ 1

2
(−ix) + βYm+ 1

2
(−ix)

]
(A10)

with x = r
√

1 − E2, Sz(r) = s = ±1, and α, β undetermined.
There are several constraints on physical solutions, such as
convergence of

∫
dθdx x2| f |2 and conservation of probability

current. Solutions in r > b are restricted by convergence to
have β = −iα and take the form

f2(x) = α′im+ 1
2
√

xKm− 1
2
(x), (A11)

f1(x) = α′im− 1
2

√
1 + E

1 − E

√
xKm+ 1

2
(x). (A12)

Solutions in r < b are restricted by conservation of prob-
ability current at the origin (all m) or convergence (for |m| >

1/2) to have β = 0 and take the form

f2(x) = α′′√x(−i)m− 1
2 Im− 1

2
(x), (A13)

f1(x) = α′′
√

1 − E

1 + E

√
x(−i)m+ 1

2 Im+ 1
2
(x) (A14)

using Jν (−ix) = (−i)νIν (x). Continuity at x0 = b
√

1 − E2

fixes α′ and the energy:

1 = 1 + E

1 − E

Im+ 1
2
(x0)Km− 1

2
(x0)

Im− 1
2
(x0)Km+ 1

2
(x0)

. (A15)

This is a transcendental equation we can solve to get the
bound-state spectrum for any angular momentum m and ra-
dius b. The bound states have E ≈ m/b with great accuracy
for large b and some deviation at small b. They exist only for
|m| � b. Importantly, they are localized near the radial domain
wall r = b.

Indeed, one could have approximated this spectrum to
great accuracy with the ansatz of a −1 eigenspinor of σ y.
Then one finds f1, f2 ∼ exp[−Sz(r)r] from Eq. (A6), imply-
ing that f1, f2 are exponentially localized near b. This allows
the approximation m/r ≈ m/b to reproduce the bound-state
spectrum.

This approximation is useful when we consider what hap-
pens upon introducing a small radial in-plane region to the
spin texture, i.e., a region (b, b + δ) in which Sz = 0 and Sr =
±1. Keeping in mind our choice of � in Eq. (A4), we observe
that this is captured by the perturbation θ (r − b)θ (b + δ −

r)(∓σ y + σ z ). Since ( f1, f2)T is an approximate −1 eigen-
spinor of σ y, we find a uniform m-independent spectral shift
in first-order perturbation theory, breaking particle-hole sym-
metry. To leading order in δ,

�E ≈ ∓δ
4b2e−2b

(4b2 + 2) cosh 2b − 4b sinh 2b − 1
. (A16)

We confirmed the shift by full analytical solution.
For comparison, we investigate the bound states of

Schrödinger electrons in the same idealized skyrmion texture,
Eq. (A2), with Hamiltonian

H = 1

2μ

(
k2

x + k2
y

)
σ z − J �S · �σ . (A17)

In radial coordinates, replacing −i∂θ with angular momentum
m and taking an s eigenstate of σ 3, the Schrödinger equation
becomes

1

2μ

[
−∂2

r − 1

r
∂r + m2

r2
− J

]
f = sE f (r < b), (A18)

where f is the nonzero component of the spinor. The solution
is oscillatory and peaked near the origin rather than at b.
For r > b the solution decays. This sharply contrasts with
Dirac bound states, which are exponentially peaked at b. An
energetics analysis for a Schrödinger electron with spin-orbit
coupling in the presence of a skyrmion texture was carried out
in Ref. [40].

APPENDIX B: TIGHT-BINDING MODEL FOR NUMERICS

Numerical calculations were performed using a tight-
binding approximation to Eq. (2), with an additional term to
avoid fermion doubling. On a square lattice of lattice constant
a, we took

He+HeS = vF

∑
r

i

2a
ĉ†

r [σ y(ĉr+x̂ − ĉr−x̂ )−σ x(ĉr+ŷ − ĉr−ŷ)]

− vF

∑
r,e=x̂,ŷ

1

2a
ĉ†

rσ
z(2ĉr − ĉr+e − ĉr−e)

− J
∑

r

ĉ†
r �Sr · �σ ĉr. (B1)

We set a = vF = 1 throughout. In Figs. 1 and 2 we solved
the spectrum of He + HeS above on a 50 × 50 lattice in
the presence of the skyrmion textures shown. We plotted the
bound states and the momentum cutoff kUV below which the
skyrmions are favorable to the uniform state. In the interacting
case the momentum cutoff is implemented by keeping states
within a certain range determined by kUV around charge neu-
trality. A similar procedure was used in Figs. 4 and 3 although
y-translation invariance was leveraged to use a 1000 × 500
lattice and no kUV was used in Fig. 4.
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