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Long-wavelength fluctuations and dimensionality crossover in confined liquids
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The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three- to a
two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional hexatic phase only
occurs in liquids confined to a monolayer. Here, we demonstrate that the dimensionality crossover is apparent
in the lateral size dependence of the relaxation dynamics of confined liquids, developing a Debye model for the
density of vibrational states of confined systems and performing extensive numerical simulations. In confined
systems, Mermin-Wagner fluctuations enhance the amplitude of vibrational motion—or the Debye-Waller
factor—by a quantity scaling as the inverse gap width and proportional to the logarithm of the aspect ratio, as a
clear signature of a two-dimensional behavior. As the temperature or lateral system size increases, the crossover
to a size-independent relaxation dynamics occurs when structural relaxation takes place before the vibrational
modes with the longest wavelength develop.
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I. INTRODUCTION

The phase behavior and dynamics of liquids confined in slit
geometries are affected by the competition of several length
scales. Indeed, for a liquid confined in a slit of dimension
L × L × H , the lateral length L and gap width H � L inter-
fere with bulk-liquid length scales, such as the typical distance
between the particles, a0 = ρ−1/3, and the structural correla-
tion length, ξbulk � 10, e.g., as estimated from the decay of the
radial distribution function [1–3]. The competition between H
and ξbulk induces a cascade of confinement-induced ordering
transitions [2,4–6] and a solidlike behavior interpreted as a
signal of a first-order transition [7,8] or, more recently [9–11],
as a continuous glass transition. For molecular liquids in
very narrow confinements, length scales associated with the
anisotropic molecular structure [1,12–14] and the details of
the interaction between the molecules and the confining walls
also play a role.

The rich and system-dependent phase behavior of confined
systems makes difficult rationalizing the crossover from three
to two dimensions focusing on its gap size dependence. In-
deed the hexatic phase, which is a phase with short-ranged
translational order and long-ranged bond-orientational order
only occurring in two-dimensional systems, has been only
reported for H � a0 in Lennard-Jones systems [15]. In this
extremely confined limit, the occurrence of a two-dimensional
behavior is in line with the observed decoupling of the lateral
and transverse degrees of freedom [16,17].
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The size dependence of the relaxation dynamics of con-
fined liquids offers an alternative and unexplored approach
to investigate the dimensionality crossover. Indeed, two-
dimensional systems differ from their three-dimensional
counterpart because Mermin-Wagner [18] long-wavelength
(LW) fluctuations make their relaxation dynamics size de-
pendent [19–25]. This alternative approach is also conve-
nient as Mermin-Wagner fluctuations are always present in
two-dimensional systems; conversely, the two- and the three-
dimensional phase behaviors do not qualitatively differ in all
systems [26–28].

In this paper, we demonstrate that confined systems have
a relaxation dynamics depending on the lateral size L, as
two-dimensional ones, and rationalize the dimensionality
crossover clarifying how this L dependence varies with the
gap width H and relaxation time. We find that, in the solid
regime, confinement enhances the asymptotic value of the
mean-square displacement, or Debye-Waller factor, by a fac-
tor scaling as (1/H ) ln(L/H ). A similar enhancement of the
mean-square displacement occurs in the liquid phase. Liquids,
however, exhibit a dimensionality crossover as size effects
vanish above a characteristic H-independent system size fixed
by sound velocity and relaxation time. We further clarify that
our predictions apply to both molecular and colloidal liquids
through the investigation of experimentally relevant confine-
ment settings.

II. DEBYE’S DOS IN CONFINEMENT

We develop a Debye-like model for the vibrational density
of states (DOS) of confined amorphous solids to rationalize
the size dependence of their dynamical properties. In con-
finement, the length scales L and H and the transverse sound
velocity cs fix two characteristic frequencies, ωL = 2πcs/L
and ωH = 2πcs/H . ωL is the smallest possible phonon
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FIG. 1. (a) Schematic illustration of the Debye density of states of quasi-2D systems, Eq. (1). (b) Low-frequency cumulative density of
states of confined solids with lateral length L = 80 and different gap sizes H . (c) The data in (b) collapse when plotted vs ωH and vertically
scaled, for H > ξbulk � 10. (d) Mean-square displacement at T = 0.005 and H = 10, for different L values. (e) The asymptotic DW grows
logarithmically with the lateral size L, with a slope scaling as 1/H (inset). Errors are smaller than the symbol size.

frequency. The physical role of ωH is understood consider-
ing that phonons with ω < ωH, which have a wavelength
larger than H , do not fit along the transverse direction.
Hence ωH separates the spectrum into a low-frequency region,
ωL < ω < ωH, where excitations are essentially two dimen-
sional, and a high-frequency region, ωH < ω < ωD, with ωD

being the Debye frequency, where excitations are three dimen-
sional. In the Debye approximation, the density of states is

D(ω) =
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D(ω) is schematically illustrated in Fig. 1(a). We remark that
we have restricted the above investigation to the transverse
modes, which are of greater relevance to our purposes as
having a smaller frequency. The longitudinal modes can be
similarly described.

The vibrational density of states allows us to evaluate
the asymptotic value of the mean-square displacement, or
the Debye-Waller factor (DW), averaging the contributions
kBT/mω2 of the different modes. To highlight the depen-
dence on the different length scales involved, we write ωD =
2πcs/λD, finding
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The three-dimensional (3D) limit, DW3D � 3kBT
mω2

D
, and the

two-dimensional one, DW2D = 2kBT
mω2

D
ln( L

H ), are recovered for
H → L � λD and for H → λD � L, respectively.

In quasi-2D systems, L � H � λD, Eq. (3) is approxi-
mated by

DW � DW3D

{
1 + λD

H

[
ln

( L

H

)
− 1

]}
. (4)

Hence we predict that in confined systems the DW grows log-
arithmically with L, as in 2D, with a slope decreasing as 1/H .
We remark here that, as long as H � λD, the DW grows as H
decreases at constant L, e.g., as the system becomes more con-
fined. This occurs because, as H decreases, a larger fraction of
the phonon spectrum becomes effectively two dimensional.

III. NUMERICAL DETAILS

We validate our theoretical prediction, and explore the
effect of confinement on the liquid phase, via exten-
sive molecular dynamics simulations [29] of the stan-
dard A : B of 80 : 20 Kob-Andersen (KA) Lennard-Jones
(LJ) mixture [30], where particles interact via the po-
tential Vαβ (r) = 4εαβ [( σαβ

r )12 − ( σαβ

r )6 + Cαβ ], and εAB =
1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, σBB = 0.88σAA, α, β ∈
{A, B}. The potential is truncated at rc = 2.5σαβ , and Cαβ

enforces V (rc) = 0. The mass of the particles m, εAA, and σAA

are our unit of mass, energy, and distance, respectively. We
first thermalize the system in the isothermal-isobaric (NPT)
ensemble, at P = 1.0, allowing the box size to vary only in
the lateral dimensions. Production runs are then performed in
the constant-energy–constant-volume (NVE) ensemble. The
number of particles depends on L and H and varies between
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FIG. 2. The dependence of the average density on the gap width,
at T = 0.35, when periodic boundary conditions are used in the con-
fining direction. Confinement does not strongly influence the average
density, in the range of gap widths we have considered. The radial
distribution function, shown in the inset for H = 20 and L = 20 at
T = 0.35, approaches 1 at ξbulk/2 � 5.

103 to 106. We average the dynamical data over at least four
independent runs.

We monitor the relaxation dynamics studying the mean-
square displacement, 〈�r2(t )〉 = 1

N

∑
�r2

i (t ), where �ri is
the displacement of particle i at time t , and the self-scattering
function, Fs(k, t ) = 1

N 〈∑N
j=1 eik·�r j (t )〉, where k is the wave

vector of the first peak of the static structure factor of bulk sys-
tems. The relaxation time τ is defined by Fs(k, τ ) = 1/e. We
further investigate the dynamics using the cage-relative mean-
square displacement and self-scattering function [20–22,31].
These are defined as above, with the displacement of particle
i replaced by its cage-relative counterpart, �CRri = �ri −
1
ni

∑
j �r j , where the sum is over all neighbors of particle

i at time t = 0. We identify the neighbors via the Voronoi
construction.

We consider three different confinement approaches. First,
we use periodic boundary conditions in the confining direc-
tion, which is an approach that is useful to avoid layering
as well as to compare with the theoretical predictions. When
using this approach, the density is essentially constant, ρ =
1.1775(5), as we illustrate in Fig. 2(a). In the figure we also
show that, for larger H values representative of the bulk
limit, the radial distribution function becomes constant for
r � ξbulk/2 � 5.

Secondly, we confine the system between flat walls. In this
case, the interaction between particles of type i = A, B and
the walls is given by a LJ potential with energy scale εii and
length scale σii, truncated in its minimum. In the presence of
flat walls, the density sensibly decreases with H , and layering
occurs, as shown in Fig. 2(b).

Finally, we perform simulations of systems confined be-
tween rough walls. In this case, we first thermalize at the
desired state pressure large samples, using periodic boundary
conditions in all directions, and then freeze the positions of
all particles whose height is outside the interval [0 : H]. When
using rough walls, we work at fixed density rather than at fixed
pressure.

IV. CONFINED AMORPHOUS SOLIDS

We study the density of states of confined amorphous solid
configurations generated by minimizing the energy of config-
urations equilibrated at low temperature. We fix the pressure
of these low-temperature configurations to P = 1 by adjusting
the lateral size, which slightly fluctuates around L = 80. We
considered several H values, so that the number of particles
ranges from 36 000 to 150 000. We further use periodic bound-
ary conditions in all spatial directions to prevent structural
inhomogeneities due to layering, hence allowing for a more
transparent comparison with the theoretical predictions. The
effect of walls is discussed in Sec. VI.

We evaluate the low-frequency end of the vibrational
spectrum of the generated energy minima via the direct
diagonalization of their Hessian matrix. To compare the nu-
merical results with our theoretical prediction of Eq. (1),
schematically illustrated in Fig. 1(a), we focus on the fre-
quency dependence of the cumulative distribution C(ω) =∫

D(ω)dω. Due to the large lateral size of our systems [32],
we observe gaps at low frequency, as predicted by linear
elasticity [33]. Figure 1(b) also demonstrates that C(ω)/ω2

is constant at small frequencies and increases above an H-
dependent crossover frequency which, according to Eq. (1),
should scale as ωH ∝ cs/H . Indeed, when plotted versus ωH ,
and vertically scaled, the data collapse up to their crossover
point, as we illustrate in Fig. 1(c). The figure also supports the
ω2 to ω3 crossover for the cumulative distribution suggested
by the theoretical model.

We remark that the data collapse of Fig. 1(c) breaks for
small H . To rationalize this observation, we investigate in
Fig. 2 the gap size dependence of the density and the radial
correlation function of a low-temperature solid configuration.
We observe that the density is almost H independent, for
H � 5, and that the radial correlation function approaches
the ideal gas limit at r � 5. This allows us to estimate the
structural correlation length of the bulk solid, ξbulk � 10. We
thus understand that, in Fig. 1(c), no collapse occurs for small
H as confinement interferes with the structural correlation
length of the system.

We further validate our theoretical prediction for the de-
pendence of the DW of amorphous solids on the relevant
length scales L and H , Eq. (4), performing simulations at a
low-temperature value at which structural relaxation is negli-
gible. In this limit, the mean-square displacement approaches
a constant DW value at long times, as illustrated in Fig. 1(d)
for H = 10. Figure 1(e) shows that this limiting DW grows
as the logarithm of the lateral size L, with a slope scaling as
1/H , in agreement with the predictions of Eq. (4).

V. CONFINED LIQUIDS

Having ascertained that LWs influence the behavior of
confined solids, we now demonstrate that they similarly affect
the relaxation dynamics of quasi-2D supercooled liquids. To
this end, we investigate the size and temperature dependence
of the mean-square displacement and self-scattering function
at the wave vector of the peak of the static structure factor
of bulk systems. Figures 3(a) and 3(b) show that the transient
solidlike response revealed by the mean-square displacement
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FIG. 3. Long-wavelength fluctuations in confined amorphous solids. (a) Mean-square displacement and (b) self-scattering function, at
three different values of the temperature. We fix H = 10 and show, at each temperature, results for 10 � L � 320. (c) The relaxation time
decreases as the lateral size increases, while the cage-relative relaxation time is L independent. (d) The relaxation time decreases as the
gap size decreases, particularly for H � ξbulk, while the cage-relative relaxation time is H independent. The relaxation times in (c) and
(d) are divided by their respective values at L = 10 and at H = 30, to facilitate their comparison. In (c) and (d), errors are smaller than the
symbol size.

and the self-scattering function becomes less apparent as the
system size decreases. This size dependence is more apparent
at low temperature, where the transient solidlike behavior is
manifest.

We prove that this observed size dependence originates
from LW fluctuations by comparing the L dependence of the
relaxation time τ and of the cage-relative (CR) relaxation time
τCR. Cage-relative quantities, indeed, are insensitive to collec-
tive particle displacements and hence filter out the effect of
LWs [20–22]. In Fig. 3(c), we observe that, while the standard
relaxation time decreases logarithmically with L, the CR one
is L independent. These results closely parallel those observed
in strictly two-dimensional systems [19–25] and demonstrate
that LW fluctuations sensibly affect the structural relaxation
dynamics of confined liquids.

In Fig. 3(d), we further show that the relaxation time τ de-
creases as the gap width is reduced and a larger fraction of the
vibrational spectrum becomes effectively two dimensional.
This dynamical speedup is particularly relevant for H < ξbulk,
indicating that the structural changes induced by such strong
confinement promote LW fluctuations. This is consistent with
the observation of a significant increment in the density of
low-frequency modes for H = 5, in Fig. 1(b). The gap inde-
pendence of the cage-relative relaxation time, also illustrated
in Fig. 3(d), confirms our interpretation, namely, that the H-
induced speedup originates from LW fluctuations.

We quantitatively investigate the dimensionality crossover
focusing on the mean-square displacement 〈�r2(t )〉. In the
solid phase, 〈�r2(t )〉 approaches an asymptotic DW value
on a time scale tLW ∝ ω−1

L ∝ L. The asymptotic value of
the DW grows as ln L/ f (L), with f (L) a slowing increasing
function of L, corresponding to the denominator of Eq. (3).
In the liquid phase, therefore, we expect a crossover in the
time dependence of the mean-square displacement at a time

tLW. Figures 4(a) and 4(b) demonstrate that such a crossover
occurs at tLW � 0.3L, for T = 0.38. At the same tLW, similar
crossovers occur at all temperatures.

When LW fluctuations dominate the dynamics, as in the
solid phase, 〈�r2(tLW )

ln L 〉 ∝ 1/ f (L) decreases with L. We there-
fore assume LW fluctuations to become negligible at L values
at which 〈�r2(tLW)〉 grows faster than ln L. When this oc-
curs, irreversible relaxation events rather than large-amplitude
oscillations dominate the diffusivity. In Fig. 4(b) we indeed
observe that 〈�r2(tLW)〉/ ln L is not monotonic in L, de-
creasing with L when LWs are relevant (solid symbols) and
increasing when they are not (open symbols). This behavior
allows us to identify crossover L values, which we have ver-
ified not to depend on the gap width. This study leads to the
L-T diagram of Fig. 4(c). The system-size-dependent dynam-
ics characteristic of two-dimensional behavior occurs at low
temperature and small lateral size and disappears as either
the lateral length or the temperature increase. We remark that
while this diagram does not depend on the confinement width
H , size effects gradually fade away as 1/H , as in the solid
phase, and hence become not appreciable at large H .

We exploit the size independence of the cage-relative
relaxation time to rationalize this observed dimensionality
crossover. Indeed, vibrational excitations cannot last more
than the cage-relative relaxation time, as on this time scale
the structure of the system sensibly changes, as particles
change neighbors. Since the vibrational modes influencing
the structural relaxation dynamics are those that have time to
develop, we expect the crossover between a two-dimensional
size-dependent relaxation dynamics and a three-dimensional
size-independent relaxation dynamics to occur at

L

τCR(T )
= αcs, (5)
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FIG. 4. Dimensionality crossover in confined liquids. (a) The mean-square displacement exhibits a crossover between two different regimes
at a time tLW � 0.3L (dash-dotted line). Dashed lines are polynomial fits used to estimate the mean-square displacement at the crossover
time (circles). Data are for T = 0.35 and different L values. (b) The mean-square displacement at the crossover time grows faster than ln L
(open symbols), above a characteristic T -dependent lateral system size. When this occurs, structural relaxation rather than LWs dominate the
diffusivity, and hence the system has a 3D-like behavior. (c) State points with an effective two-dimensional behavior according to the analysis in
(b) are illustrated as open circles. Diamonds, conversely, identify those having a three-dimensional behavior. Stars correspond to the prediction
of Eq. (5), L = αcsτCR(T ), with α � 0.018. The interpolating solid line is a guide to the eye. All panels refer to H = 10. Supplemental Fig. S4
shows that the results are insensitive to changes in the gap width.

with cs being the transverse sound velocity and α being
a constant. In other words, size effects disappear for L >

αcsτCR(T ), as the system relaxes before the lowest size-
dependent mode develops. This theoretical prediction well
describes the data of Fig. 4(d).

VI. EFFECT OF SMOOTH AND ROUGH WALLS

Our theoretical analysis and numerical simulations demon-
strate that LW fluctuations affect the dynamics of confined
liquids. However, so far we have described simulations
obtained using periodic boundary conditions in all spatial
directions; one might wonder, therefore, whether LWs also
play a role in the experimentally relevant setup of liquids
confined between two parallel walls at a separation H . To
address this question, we investigate the relaxation dynamics
of the KA LJ binary mixture confined between two atomically
smooth flat walls. Since the walls prevent diffusion along the
transverse direction, we focus on particle motion in the lateral
directions, effectively defining two-dimensional mean-square
displacement and self-scattering function. We find that, under
wall confinement, the relaxation dynamics has the typical size

dependence induced by LW fluctuations, the caging regime
becoming less apparent as L increases, as we illustrate in
Figs. 5(a) and 5(b).

The structural changes induced by the walls, however,
strongly affect the relaxation dynamics, as evidenced by the
H dependence of the standard and CR relaxation times, which
we illustrate in Fig. 5(c). For H � ξbulk, both relaxation times
decrease as the system becomes more confined; this is, we
believe, the combined effect of layering and the reduction in
the average density induced by the confinement, which we
illustrate in Fig. 6.

Importantly, we observe in Fig. 5(c) that for H � ξbulk,
while the relaxation time decreases as the gap width is re-
duced, the cage-relative relaxation sharply increases. This
increase in the CR relaxation time is in qualitative agree-
ment with the many previous investigations reporting an
increase in the viscosity of molecular liquids under con-
finement [1,9,11,34,35]. Indeed, we remind the reader that
viscosity and cage-relative relaxation time are related [25,36].
This observed decoupling demonstrates that smooth walls
do not kill the LWs, but rather make their effect more
apparent.

FIG. 5. Long-wavelength fluctuations in slit geometries. (a) The transverse mean-square displacement and (b) the self-intermediate
scattering function for supercooled liquids with various transverse length scales 10 � L � 320 at the same perpendicular length scale H = 10.
(c) Width dependence of the relaxation time and of the cage-relative relaxation time for a L = 40 system. Errors are smaller than the symbol
size. The inset is a schematic diagram of the confining geometry.

033172-5



YANG, LI, AND CIAMARRA PHYSICAL REVIEW RESEARCH 3, 033172 (2021)

FIG. 6. Dependence of the average density on the gap width, at
T = 0.35, for a system confined between flat walls at a separation
H . The density decreases as the gap width decreases. Flat walls,
furthermore, induce layering, as we illustrate in the inset by plotting
the density at a distance h from a confining wall.

While smooth walls do not kill LWs, rough walls strongly
suppress them. Indeed, we show in Fig. 7 that the relaxation
dynamics of liquids confined between rough walls does not
depend on the lateral system size. We remark that for very
large gap widths the effect of the boundary should become
negligible, and hence LW fluctuations should play a role.
Since the influence of LWs on the dynamics scales as 1/H ,
however, their effect in this large-H limit may be not easily
appreciated. We expect variations [13] in the roughness of
the confining walls and the wall-liquid interaction potential
to only qualitatively affect the observed phenomenology.

VII. CONCLUSIONS AND EXPERIMENTAL RELEVANCE

The confinement-induced enhancement of the DW de-
scribed by Eq. (3) is an equilibrium property not affected
by the underlying microscopic dynamics, equally valid for
molecular and colloidal solids. In the supercooled regime,
the signatures of LW fluctuations conversely depend on how
much the system moves along the phase-space directions of
the low-frequency modes before particles rearrange. Since
the size of this displacement depends on the microscopic
dynamics and is smaller if the system moves diffusively,
rather than ballistically, we expect the influence of confine-
ment to be more relevant at the molecular scale rather than
at the colloidal scale. Nevertheless, we remind the reader that
LWs are observed in experiments [22,23,25] and simulations
[25] of two-dimensional colloidal systems; our predictions
concerning the role of LW fluctuations in confined systems
therefore apply to both molecular and colloidal systems.

For the effect of LW fluctuations to be experimentally
visible, however, the roughness scale of the confining walls
must be smaller than the size of the particles. Rough walls,
indeed, affect the motion in the lateral dimensions and kill the
LW fluctuations, as we have shown in Fig. 7. The requirement
of smooth confining walls is not a technical limitation. Walls
that are de facto flat at the molecular scale exist [10], and
it is undoubtedly possible to confine large colloidal particles

FIG. 7. Mean-square displacement (a) and self-scattering func-
tion (b) of systems confined between rough walls, at H = 2 and
H = 4. These quantities are evaluated focusing on the behavior of the
central layer of particles. The relaxation dynamics does not depend
on the lateral length or system size N , indicating that the rough walls
kill the LW fluctuations.

between walls that are flat at the particle scale. In colloidal
experiments, however, one should ascertain that no particles
stick irreversibly to the walls, effectively making them rough,
e.g., as observed in Refs. [37,38]. Hence our predictions
are experimentally testable both in confined molecular liq-
uids, e.g., comparing the size dependence of the viscosity
and of structural relaxation time, and in confined colloidal
systems, e.g., comparing the standard and cage-relative relax-
ation times.

Our results show that confined systems exhibit a gradual
dimensionality crossover controlled by the gap width and the
temperature, which is appreciable when investigating the lat-
eral size dependence of the dynamics. The physics of confined
liquids is thus richer than previously realized. These findings
might be relevant to a variety of applications involving micro-
and nanofluidics, e.g., lab-on-a-chip devices, where particles
flow in confined geometries.
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