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Experimental results on the phase transfer from structured beams to parametric light, generated by inducing
four-wave mixing in an atomic gas, are reported. Near-infrared, Mathieu, and Gaussian pump beams yield
a blue coherent Mathieu electromagnetic field and an infrared beam. Two complementary techniques enable
full characterization of the up-converted modes. The unambiguous and efficient phase heritage of these com-
plex quasipropagation invariant modes to up-converted photons is demonstrated. The presented data enable a
quantitative study of dynamical variables related to Mathieu beams. These include elliptic angular momentum,
a generalization of the orbital angular momentum of light, which is also up-converted through the nonlinear
process.
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I. INTRODUCTION

Four-wave mixing (FWM) in atomic gases is one of
the most promising nonlinear processes for generating light
with tailored classical and quantum properties. Exquisite
control over the output optical frequency as well as its po-
larization and orbital angular momentum (OAM) offers new
perspectives for developments in applied and fundamental
contemporary physics. In particular, FWM in the diamond
configuration can generate light with frequencies that are dif-
ficult to produce with common lasers [1–4]. In addition, the
transfer of OAM from the pump beams to the atoms [5], and
its retrieval [6], has introduced a new perspective of structured
light interacting with matter. Conversion of Laguerre-Gauss
beams via FWM has shown that OAM can be a valuable
dynamical variable for the implementation of quantum engi-
neering protocols using atomic gases [7–9]; the topological
charge m of an optical vortex is transferable within the
|m| � 30 range [9] and the experiments evidence that the
two spontaneously emitted photons in a FWM process may
be entangled in this variable [10]. These correlations involve
high-dimensional Hilbert spaces useful for enhanced quan-
tum information management [11–13], with applications in
quantum memories and imaging [14,15], atom trapping and
guiding [16,17], atomic state preparation [18], interaction-
free measurements [19], and quantum telecommunications
protocols [20]. Less studied alternatives to OAM are the
dynamical properties resulting from the symmetry of other
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structured optical fields [21–25]. An example is the ideally
propagating invariant Mathieu beams with elliptic-cylindrical
symmetry [21,26], which carry elliptic angular momentum
(EAM), which is determined by the ellipticity of the corre-
sponding coordinate system, the parity of the beam, and its
order [21–24]. Elliptic angular momentum is a generalization
of OAM for finite ellipticity. The paraxial analog of Math-
ieu beams is Ince-Gauss (IG) beams. Laguerre-Gauss modes,
which may carry well-defined OAM, correspond to the limit
of zero-coordinate-system ellipticity; in the limit of infinite el-
lipticity IG beams become Hermite-Gauss modes [27]. Thus,
the ellipticity is an additional parameter to control the classical
and quantum correlations of electromagnetic fields that can be
implemented using beams with elliptical symmetry. Currently,
most theoretical analyses of such correlations are made in
terms of OAM [28,29].

In this work we report experiments on EAM transfer
from Mathieu pump beams to up-converted light via FWM
in an atomic gas. We demonstrate the transfer of the com-
plex phase structure from a near-infrared quasipropagation
invariant Mathieu beam to a coherent blue beam. Analysis
of the pump and the parametric light in their Fourier and
configuration spaces enables a full quantitative characteriza-
tion of the process. With these procedures it is possible to
make a compact description of the up-converted modes by
using geometric parameters of the adequate coordinate sys-
tem. More importantly, our results show the transfer of the
EAM-associated dynamical variable from the pump beams to
the up-converted electromagnetic fields.

II. MATHIEU BEAMS AND ELLIPTIC
ANGULAR MOMENTUM

We begin by revising the general properties of Mathieu
beams. Mathieu elementary modes can be written in terms of
scalar wave functions �(�r, t ), which in turn result from the
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superposition of plane waves through their frequency α(ω)
and angular S (θ�k, ϕ�k ) spectra,

�(�r, t ) =
∫

dω α(ω)
∫

d3k δ(ω − c|�k|)ei�k·�r−iωtS (θ�k, ϕ�k ).

(1)
The angular spectrum of Mathieu waves

SM (θ�k, ϕ�k; a, q) = AM;a,q(ϕ�k )δ(sin θ�k − κ⊥c/ω)
|cos θ�k|
sin θ�k

(2)

is expressed by solutions of the Mathieu equation [21]

(
d2

dϕ2
�k

+ a − 2q cos 2ϕ�k

)
AM;a,q(ϕ�k ) = 0, q =

(hκ⊥
2

)2
.

(3)
Elliptic coordinates, which simplify the description of Math-
ieu beams, exhibit two foci separated by a distance 2h in
any plane transverse to their main propagation direction.
The accessible values of the constant a [Eq. (3)] are dis-
crete, even in free space, and define the order of the modes
when set in increasing sequence. Mathieu elementary modes
can be chosen to have a well-defined parity. They are then
denoted by ce(ϕ�k ; a, q) and se(ϕ�k; a, q) for even and odd
solutions, respectively. The δ factor in Eq. (2) guarantees
cylindrical symmetry in the field by restricting the partici-
pating plane waves to those sharing a common modulus κ⊥
of their transverse wave vector. Nevertheless, actual realiza-
tions of Mathieu beams involve a conic-shell volume within
wave-vector space derived by replacing the δ distribution by a
properly normalized Gaussian distribution [30],

δ(sin θ − κ⊥c/ω) → 1

(cσ/ω)
√

2π
e−(sin θ−κ⊥c/ω)2/2(cσ/ω)2

,

(4)
with waist σ .

The transverse vectors �r±
⊥ defining the foci in an elliptic

coordinate system give rise to natural evaluation points for
optical angular momentum along z. A group theory analysis
shows that the natural dynamic variable, i.e., the EAM of
an optical Mathieu field [21–24], is defined by an operator
L̂2

z involving the geometric average of the standard angular
momentum operator L̂z± = [(�r − �r±) × i �∇]z,

L̂2
z =

(
1

2
[L̂z+L̂z− + L̂z−L̂z+] − h2

2
∇2

⊥

)
, (5)

where ∇2
⊥ = ∂2

x + ∂2
y . The scalar Mathieu wave function

�aq(�r, t ) satisfies

L̂2
z �aq(�r, t ) = a�aq(�r, t ), (6)

which gives a dynamical interpretation of the parameter a.
The classical analog of L̂2

z is essential for understanding
the mechanical evolution of confined particles in elliptic bil-
liards [31] and that of microparticles immersed in elliptic
optical tweezers [24,32]. This dynamic variable is also similar
to an integral of motion for a single electron moving in the
field of two fixed nuclei [33].

III. FOUR-WAVE-MIXING UP-CONVERSION

Standard discussions about the expected quantitative prop-
erties of photons generated from nonlinear processes are
based on phase-matching conditions. Within a perturbative
analysis and for the FWM process under consideration,
the steady-state amplitude for spontaneous emission of
microwaves with electric fields ECML(�r)e−iωCMLt and blue pho-
tons with ECBL(�r)e−iωCBLt is proportional to the functional

F[ �ECML, �ECBL]

=
∫ ∞

−∞
dt ei(ωCML+ωCBL )t

∫
d3r �d∗

CML

· �E∗
CML(�r) �d∗

CBL · �E∗
CBL(�r)�p1 (�r, t )�p2 (�r, t ) fA(�r, t ), (7)

where �dCML and �dCBL are the dipole moments of the atomic
transitions in the spontaneous decays, fA(�r, t ) is the atomic
density, and the Rabi frequencies �p1,p2 (�r, t ) encode the
space-time structure of the pump beams. For ideal monochro-
matic p1 and p2 beams and assuming fA(�r, t ) = fA(�r), the
temporal integral yields

ωp1 + ωp2 = ωCML + ωCBL, (8)

with frequency ωCML (ωCBL) in the microwave (blue) region.
The classical [34] and quantum [35] descriptions of elec-

tromagnetic fields can be carried out using diverse structured
modes as a basis. In quantum optics, they must be normalized
according to Einstein’s quantization rule. In general, the ex-
perimental scenario determines the most adequate basis set for
a description of the relevant electromagnetic modes. For the
case of FWM in a quasihomogeneous medium, a functional
maximization of |F[ �ECML, �ECBL]| with respect to the �ECML

and �ECBL fields would allow identification of the optimal
basis for a compact description of the converted photons,
given the spatial structure of the pump beams. For idealized
plane waves �p1,p2 (�r) = ei(�k1,2·�r−ω1,2t )|�p1,p2 |, F[ �ECML, �ECBL]
is maximized by converted plane waves with propagation
vectors satisfying

�kp1 + �kp2 = �kCML + �kCBL. (9)

Another relevant example corresponds to idealized Bessel
pump beams with topological charges m1,2 and wave numbers
kz1,z2 along z. Then F[ �ECML, �ECBL] is maximized for converted
Bessel photons fulfilling

kz1 + kz2 = kzCML + kzCBL, (10)

m1 + m2 = mCML + mCBL. (11)

The phase-matching conditions can be interpreted as conser-
vation laws valid in homogeneous and isotropic environments:
Eq. (8) for energy, Eq. (9) for linear momentum, and Eq. (11)
for OAM in the case of linearly polarized beams exhibiting a
helical dislocation.

Note that both Bessel and plane waves constitute a com-
plete basis set for the description of electromagnetic fields.
Any of them can be used to describe a FWM process. The role
of phase-matching conditions for complex electromagnetic
fields written in terms of plane waves can be understood as
follows. Each component of the electric field is expressed
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in terms of their angular spectra [Eq. (1)]. Normalizing the
electromagnetic mode in the quantum realm gives rise to a
factor that can be absorbed in the frequency spectrum coeffi-
cient α(ω). The amplitude F[ �ECML, �ECBL] is then written as a
continuous superposition of four photon processes where any
single term has the structure

αp1 (ω1)Sp1

(
θ�k1

, ϕ�k1

)
αp2 (ω2)Sp2

(
θ�k2

, ϕ�k2

)
α∗

CML(ω3)

× S∗
CML

(
θ�k3

, ϕ�k3

)
α∗

CBL(ω4)S∗
CBL

(
θ�k4

, ϕ�k4

)
× ei(�k1+�k2−�k3−�k4 )·�re−i(ω1+ω2−ω3−ω4 )t . (12)

Integrated in time and space, each product gives rise to phase-
matching conditions similar to Eqs. (8) and (9). The modulus
of Eq. (12) yields the probability of generating single pho-
tons with frequencies and wave vectors ω3,4 and �k3,4. This
probability is proportional to the product of the moduli of
the angular spectra involved. It is this dependence on the
angular spectra that supports the heritage of phase structure
in the FWM process. Note that the individual probabilities
could be measured by a selective detection of photons with
the corresponding (ωi, �ki ) properties.

An alternative scheme is to incorporate the boundary con-
ditions established by a given experimental setup to select
the most natural basis for describing the experimental out-
comes. In this article we report on the heritage of even and
odd Mathieu modes from pump to up-converted light through
a FWM process in an atomic gas. The electronic structure
of alkali-metal atoms allows the implementation of an ef-
fective four-level system that can be populated cyclically in
a diamond configuration. Figure 1(a) depicts its realization
in the experiments reported here: It is based on the ladder
5S1/2 → 5P3/2 → 5D5/2 transition of 87Rb excited by 780-
nm (p1) and 776-nm (p2) light. In this case, the frequencies
generated by the cascade decay are separated by an order of
magnitude [1]. The 5D5/2 has a dominating decay path to
the 6P3/2 state giving rise to a 5-μm electromagnetic field.
This is followed by a 6P3/2 → 5S1/2 decay that fluoresces at
420 nm. The field radiated from the latter can be readily colli-
mated and power optimized with an appropriate choice of the
pump polarizations and frequency detunings δ1 and δ2 [3,36].
In the experiments depicted here structured collimated blue
light (CBL) was generated by a Gaussian p1 beam; Mathieu-
Gaussian modes were encoded on p2, taking into account
previous results on phase structure heritage in wave-mixing
experiments involving this diamond configuration [37].

Since in our experimental setup the pump beams are
quasimonochromatic, satisfy the paraxial condition and are ar-
ranged collinearly, a reasonable ansatz is to take the converted
modes as Ince-Gauss fields with a well-defined parity. Some
consequences of doing so are direct. Up to Gouy-like phases,
the electric field of the pump beams has a harmonic evolution
eikzz. Then Eqs. (8) and (10) should be approximately satisfied.
Therefore, the up–and down–converted photons are emitted
in a quasicollinear configuration. The transverse structure of
the p1 Gaussian beam is a superposition of plane waves with
|�k⊥| centered at the zero value and the transverse structure
of the p2 Mathieu beams has a finite |�k⊥| center. Addi-
tionally, the up-converted photons have a wider range of
available wave vectors than the down-converted photons. So

FIG. 1. (a) Implemented FWM diamond scheme. Two near-
infrared beams p1 and p2 excite a ladder transition that generates
far infrared (CML) and blue (CBL) optical fields when atoms de-
cay to their ground state. (b) Schematics of the experimental array.
The pump light is prepared on the left and right sides. Both pump
beams are overlapped for interaction with the atoms located inside
an oven. Both p2 and the CBL are analyzed with complementary
metal-oxide semiconductor (CMOS) cameras 1 and 2. Labels denote
optical elements as follows: λ/2, half waveplate; PBS, polarizing
beam splitter cube; SLM, spatial light modulator; AF, annular filter;
IF, interference filter; λ/4, quarter waveplate; L, Fourier lens; and
CMOS, analysis camera.

the down-converted modes are expected to have a Gaussian-
like structure with a soft transverse configuration, while
the up-converted photons are compactly described within a
Mathieu-Gauss (MG) basis.

IV. EXPERIMENT

Our experimental apparatus is illustrated in Fig. 1(b). The
two pump beams are delivered by optical fibers from their
respective saturated spectroscopy setups (not shown). On the
right, the p1 Gaussian profile is expanded to a 4 mm diam-
eter. On the left, p2 is expanded to a 24 mm diameter for
approximating a plane wave. At this stage, both pump beams
are linearly polarized. The desired Mathieu mode is imprinted
on p2 using a spatial light modulator (SLM) following the
method proposed in Ref. [38]. Notice that for even and odd
Mathieu beams, the corresponding transverse phase is either
φ� = 0 or φ� = π since the Mathieu functions are real. The
first telescope on the p2 path was used to match the p1 di-
ameter and to spatially filter its remaining Gaussian structure
with the annular filter. The second telescope has unitary am-
plification and extends the quasi-invariant propagation of the
generated MG beam. Both p1 and p2 beams are combined at
interference filter IF1 and sent through a 75-mm-long spec-
troscopy cell with a natural rubidium mix.

In these experiments we kept p1 locked to the 5S1/2, F =
2 → 5P3/2, F = 3 transition (δ1 = 0); although local maxima
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FIG. 2. Illustrative experimental Fourier rings and their corre-
sponding measured (dots) and theoretical (continuum line) angular
spectra of (a) and (b) even and (c) and (d) odd Mathieu-Gauss beams
with order n = 4. Images in red were taken from the Fourier plane of
p2 MG modes. The transverse wave vector κ⊥ is measured using the
data obtained from the images in the left column, while the q param-
eter of the Mathieu modes is inferred from the data corresponding to
the right column images.

of the CBL power were found at δ2 = ±6 MHz, most of the
experiments were done with p2 resonant to the 5P3/2, F =
3 → 5D5/2, F = 4 transition. Further CBL power optimiza-
tion is possible with larger values of both δ1 and δ2 [36],
albeit coherence may be lost [39]. Optimization of the CBL
power demands minor adjustments on the bichromatic beam
alignment that are systematically different according to the
mode parity. Two precautions enabled us to obtain reliable
data even with relatively low pump power (7 mW for both
beams): making sure that both dipole transitions were cyclic
by setting the same circular polarization on p1 and p2 [3]
and achieving their maximum overlap by applying the Boyd
criterion [40]. The data presented below were obtained at
an atomic temperature of 80 ◦C. Based on absorption exper-
iments in the D1 line of 87Rb, we estimate this is equivalent to
an atom density of approximately 7.4 × 1010 cm−3.

V. MEASUREMENTS IN WAVE-VECTOR SPACE

As shown in Fig. 1(b), a polarizing beam splitter is located
right before the oven to enable sampling of the p2 intensity
structure by blocking p1. Its Fourier plane is readily captured
by locating a lens L1 at its focal length from CMOS-1. Sim-
ilarly, the undesired light for imaging the up-converted light
is removed by interference filter IF2 and its Fourier space is
imaged with CMOS-2 assisted by lens L2. Figure 2 shows the
data obtained by this technique. Figures 2(a) and 2(c) show the
Fourier rings corresponding to two illustrative examples of p2

beams imprinted with even and odd MG modes, respectively.
Both cases have order n = 4 and an ideal κ⊥ = 32.4 mm−1

imprinted by the SLM. Figures 2(b) and 2(d) show the Fourier
rings of the corresponding up-converted light. The standard
procedure to measure κ⊥ is to divide the ring average radius
by f λ, where f is the focal length of the Fourier lens and λ

is the wavelength of the beam [41]. The width of the rings
σ [Eq. (4)] is also measured. We write κ⊥ ± σ to report the
results. For the even mode shown in Figs. 2(a) and 2(b),
κ

p2
⊥ = 32.4 ± 0.3 mm−1 and κCBL

⊥ = 32.2 ± 0.8 mm−1. Sim-
ilar numbers were measured from the odd mode depicted in
Figs. 2(c) and 2(d). We found consistency in the results for
several input modes and external conditions such as temper-
ature and detuning of the p2 beam. These data confirm our
hypothesis that the up-converted, rather than down-converted,
beam inherits most of the transverse momentum k⊥.

The Fourier space can be used to measure the q parame-
ter of the Mathieu modes, which can be extracted from the
angular dependence of the data in Fig. 2. As an example,
we show in Fig. 2(a) the normalized angular dependence for
the even-mode rings on p2 and in Fig. 2(b) that of the up-
converted blue light. To measure q, a fit looking for an optimal
angular Mathieu function is performed. An even Mathieu
angular function of order 4 is the natural ansatz for these
cases. Up to a proportionality constant related to the square

FIG. 3. Configuration space images of the beams depicted in
Fig. 2. All beams shown occupy MG modes of order n = 4: (a) and
(c) intensity profile of experimental p2 even and odd beams and
(b) and (d) respective up-converted profiles. From these images we
extracted the interfocal distance 2h, which gives rise a second method
to measure the parameter q of the Mathieu modes. The intensity is
normalized to its maximum value in each case.
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TABLE I. Measured half interfocal distance h, transverse wave vector κ⊥, and geometrical factor q for the Mathieu pump p2 beam and
the up-converted light depicted in Figs. 2 and 3. The q has been evaluated using the h measured from the configuration space images, while
q′ has been obtained from the Fourier space images. From them, the characteristic constants a and a′ are numerically estimated. The notation
for a variable x ± �x takes into account not just the systematic errors, but also the information arising from the finite width of the rings in
wave-vector space whenever it is necessary.

Even Mathieu mode Odd Mathieu mode

Parameter p2 CBL p2 CBL

h (mm) 0.28 ± 0.01 0.29 ± 0.01 0.28 ± 0.01 0.28 ± 0.01
κ⊥ (mm−1) 32.4 ± 0.3 32.2 ± 0.8 32.4 ± 0.3 32.6 ± 0.8
q 20.7 ± 2.2 22.0 ± 3.0 19.9 ± 2.3 20.2 ± 2.9
q′ 20.6 ± 1.7 21.4 ± 1.0 20.8 ± 1.5 20.3 ± 1.0

a 27.5 ± 0.4 27.6 ± 0.2 15.7 ± 0.7 15.2 ± 1.2
a′ 27.6 ± 0.3 27.8 ± 0.1 15.0 ± 0.7 15.4 ± 0.4

root of the intensity and an angular shift intrinsic to the beam
orientation, the resulting q parameters are qp2 = 20.6 ± 1.7
and qCBL = 21.4 ± 1.0, so the characteristic values that deter-
mine L̂2

z are ap2 = 27.6 ± 0.3 and aCBL = 27.8 ± 0.1 for the
p2 and the CBL mode, respectively. Thus, with this analysis,
it is confirmed that the up-converted Mathieu mode inherits
from p2 both its geometric parameter q and its elliptic angular
momentum L̂2

z .

VI. MEASUREMENTS IN CONFIGURATION SPACE

In the configuration space we find a promising alter-
native for measuring geometrical properties such as 2h, a
parameter directly involved in the definition of L̂2

z [Eq. (5)].
Figures 3(a) and 3(c) show images taken by CMOS-1 without
L2; Figs. 3(b) and 3(d) show the up-converted beam pro-
file without the Fourier lens. The images were also taken
for even and odd Mathieu modes of order 4. To measure
2h, we first allocated the semimajor axis of the elliptic
mode and then identified the intensity maxima and minima.
These parameters were fit to ideal beam expectations. For the
beam depicted in Fig. 3(a) we found hp2 = 0.28 ± 0.01 mm.
By inserting this value, together with the κ⊥;p2 previously
measured, into Eq. (3) we can compare both methods for
measuring the parameter q, which yields 20.7 ± 2.2 in this
case. We performed the same measurement over the FWM
transferred structure yielding hCBL = 0.29 ± 0.01 mm and
qCBL = 22.0 ± 3.0 mm. For comparison, Table I gathers all
the mode parameters measured with the two methods.

VII. CONCLUSION

We have demonstrated that complex quasipropagation in-
variant modes can be up-converted through a FWM process
in atomic gases. For this, we introduced theoretical and ex-
perimental methods giving quantitative insight into the pump
and the generated light. Intensity and phase structure analy-
ses, in both Fourier and configuration spaces, are established

methods in nonlinear optics using crystals. As we have
shown, they offer a promising alternative for research involv-
ing atomic gases as well. We investigated on the structure
transfer from infrared (776 nm) to blue (420 nm) light. This
analysis allowed us to measure parameters giving a compact
description of the pump and up-converted light in terms of
Mathieu-Gauss modes. Both the transverse wave vector mod-
ulus κ⊥ and the geometric parameter q were confirmed to have
the same values within error bars for the p2 and the parametric
blue light. The characteristic parameter a, which determines
the order of even and odd Mathieu modes, and the value for
the optical elliptic angular momentum L̂2

z were also inferred.
Our data give conclusive evidence that L̂2

z is inherited together
with the other light characteristics. We have demonstrated
transfer of EAM; we have shown that dynamical variables
other than linear momentum and orbital angular momentum
can be transferred to photons using nonlinear optics phenom-
ena in atomic gases. Equivalent transfer is expected for other
structured light fields with different symmetries. Therefore,
this work provides a foundation for exciting research activity
on the design of light sources with classical and quantum co-
herence, frequency bandwidth, and polarization control using
atomic gases.
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Competition between amplified spontaneous emission and the
four-wave-mixing process, Phys. Rev. A 35, 1648 (1987).

[41] J. W. Goodman, Introduction to Fourier Optics, 3rd ed.
(Roberts, Greenwood Village, 2005).

033170-7

https://doi.org/10.1364/AO.49.006903
https://doi.org/10.1364/JOSAB.34.001016
https://doi.org/10.1103/PhysRevA.35.1648

