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Principles of low dissipation computing from a stochastic circuit model
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We introduce a thermodynamically consistent, minimal stochastic model for complementary logic gates built
with field-effect transistors. We characterize the performance of such gates with tools from information theory
and study the interplay between accuracy, speed, and dissipation of computations. With a few universal building
blocks, such as the NOT and NAND gates, we are able to model arbitrary combinatorial and sequential logic
circuits, which are modularized to implement computing tasks. We find generically that high accuracy can be
achieved provided sufficient energy consumption and time to perform the computation. However, for low-energy
computing, accuracy and speed are coupled in a way that depends on the device architecture and task. Our
work bridges the gap between the engineering of low dissipation digital devices and theoretical developments
in stochastic thermodynamics, and provides a platform to study design principles for low dissipation digital
devices.

DOI: 10.1103/PhysRevResearch.3.033169

I. INTRODUCTION

The last decade has seen an exponential growth in energy
consumption associated with information, communications,
and computing technologies. Such resource demands are not
sustainable, and thus there is a need to design devices with
reduced energetic costs. While the problem of computing
efficiency dates back to Landauer [1,2], with modern develop-
ments in stochastic thermodynamics, this problem is actively
being revisited [3,4]. The main goal of this paper is to bridge
the gap between developments in nonequilibrium statistical
physics and circuit engineering by proposing a model for
stochastic logic circuits that is thermodynamically consistent,
and thus amenable to physical analysis and constraints, but
simple enough to be extendable to complex computing tasks.
By treating thermal fluctuations in electron transport explicitly
at a mesoscopic scale, our model reproduces the behavior of
a robust circuit in the low-noise limit, but describes errors
accurately away from this limit. With this model we explore
the consequences of carrying out computations at low thermo-
dynamic costs and finite time, and provide design principles
for low dissipation computing devices.

State-of-the-art semiconductor devices are typically built
from metal-oxide-semiconductor field-effect transistors on the
scale of a few nanometers, enabling billions of transistors
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to be packed on a single chip. In order to mitigate heating
and large energy consumption burdens, it would be advanta-
geous to operate such small devices with small bias voltages;
however, as biases approach thermal scales, fluctuations in-
crease, which necessitates a careful treatment of thermal
noise [5,6]. The conventional treatment of thermal noise is
largely phenomenological and involves either a correction
to the power spectral density [7], or transformation of the
internal noise into external independent sources [8,9]. Such
models are typically valid only near equilibrium where the
fluctuation-dissipation theorem can be invoked to constrain
their functional form [10], whereas higher-order correlations
are needed in general to determine the full response [11–13].
While these models can provide insight into how thermal
noise may put a physical limit on the density of transistors
[14], their validity in nonlinear electrical networks operating
far from equilibrium is uncertain.

Stochastic thermodynamics provides a theoretical way to
move beyond an equilibrium description of thermal noise
and its impact on information processing [15]. While in-
formation theory provides limits on the accuracy of typical
communication [16,17], stochastic thermodynamics provides
generalized fluctuation-dissipation relationships, and places
limits on the work required to implement a physical process
in finite time and the spectrum of its fluctuations [18–22]. The
link between information theory and stochastic thermodynam-
ics has generated a wealth of expressions relating precision,
speed, and dissipation, including the thermodynamic uncer-
tainty relationships, speed limits, and fluctuation theorems.
For example, dissipation bounds the rate at which a sys-
tem transforms between different states [23–29]. Dissipation
also provides an upper bound for the precision of a current
[30–32]. A universal tradeoff between power, precision, and
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speed has been proposed for communication systems as well
[33]. These theoretical results have found application in many
biological processes that natively operate near thermal energy
scales [34–39]. Placed in the context of artificial computing,
these relationships have shed light on fundamental constraints
on the design of computing devices to minimize thermody-
namic costs [3,4,40–43].

While such theoretical results are general, to apply them to
the problem of computing design requires a realistic physical
representation of information processing, such as bit storage,
measurement, and erasure. Some success has been made with
nonlinear single-electron devices and Coulomb blockade sys-
tems [44–46], where the logical states are represented by the
presence of a few electrons. More recently, thermodynam-
ically consistent stochastic models have been proposed for
transistors and nonlinear electronic circuits using either the
continuous or discrete degrees of freedom [47–49]. For ex-
ample, two-terminal devices, such as tunnel junctions, diodes,
and metal-oxide-semiconductor (MOS) transistors, have been
modeled as bidirectional Poisson processes embedded in a
Markovian graph representing electron transfer [49]. While
such models can reproduce nonlinear current behaviors and
noise characteristics, the nonlinearity has to be encoded by
parametrizing the voltage dependence of the forward and
backward rates. In this paper, we adopt a different approach
where single logic gates are described by a tunnel junction
model on the mesoscopic scale, combined with a capaci-
tive circuit model for the charging and manipulation of the
device. In this case, nonlinearity emerges from many inter-
acting gates. Such an approach is able to describe electron
transport processes consistent with the fluctuation theorems
[50,51], but also consistent with the complementary metal-
oxide-semiconductor (CMOS) circuit platform used widely
in modern computing devices. Therefore, it provides an ideal
platform to study circuit behaviors with the tool of stochastic
thermodynamics.

In what follows, we demonstrate principles for low dis-
sipation computing by constructing a stochastic model for
logic circuits from a bottom-up approach. By working with
elementary linear components, we can build nonlinear circuits
that are thermodynamically consistent. We first introduce a
model for single gates, including the NOT gate and the NAND

gate, and discuss their physical properties. We then study the
collective behaviors of these basic components, including spa-
tial correlations within combinational circuits, and temporal
correlations within sequential circuits, where the emphasis
will be on circuit design principles. The logic circuits are
finally modularized and scaled up to a computing device to
illustrate how multiple components are synchronized to com-
plete a computing task. Throughout, the thermodynamically
consistent model enables a description of errors and dissipa-
tion.

II. MODEL FOR SINGLE GATES

Modern CMOS circuits implement logic functions by inte-
grating two different types of transistors differentiated by their
major charge carriers, so-called N-type and P-type transistors.
Here we choose a mesoscopic tunnel junction model to de-
scribe electron transport in a single gate [52]. The transistors

are modeled by two single-electron levels of energy εi with
i = N, P for the N-type and P-type transistors. The electrodes
are modeled by electron reservoirs with chemical potential
μ j with j = s, d, g denoting the source, drain, and gate, re-
spectively. Electron transfer among them is described by a
Markovian master equation, parametrized by transition rates
k ji that describe the exchange rate of an electron from site i to
j. The transition rates are chosen to satisfy a local detailed
balance condition, and thus guaranteeing thermodynamical
consistency,

k ji

ki j
= e−β(Ej−Ei ), (1)

where β = 1/kBT , kB is the Boltzmann constant, and T the
temperature of the device. The energy is described by either
the band energy for an electron in the transistor εi or a chemi-
cal potential μ j for an electron in an electrode. The condition
of local detailed balance is a prerequisite for the application of
stochastic thermodynamics, as it ensures a correct description
of dissipation away from equilibrium, and relaxation to a
Boltzmann distribution at equilibrium. While local detailed
balance models each microscopic transition as being ther-
mally mediated, emergent nonlinear behaviors resulting from
collections of transitions can take the system arbitrarily far
from equilibrium [53].

The energy levels of the transistors are controlled by an in-
put voltage denoted Vin. In the case of a field-effect transistor,
Vin refers to the gate voltage that switches the transistor on
and off. In the limit of high gate capacitance, Vin changes the
energy levels of the transistors approximately linearly [52]

εP = ε0
P + qVin, εN = ε0

N − qVin, (2)

where ε0
i=N,P are reference energies and q is the unit of electric

charge. The sign of the slope differentiates the N- and P-
type transistors with different charge carriers. In our model,
a voltage also uniquely determines the energetics of the elec-
trodes by modulating their chemical potentials μ j = −qVj .
Throughout, we will differentiate between two different types
of electrodes. The first type, including the source and drain
electrodes, is kept at fixed potentials Vs and Vd , respectively.
The second type, the gate electrode, satisfies a capacitive
charging model with a fluctuating voltage Vg for reading out
a gate. This is justified by the fact that in CMOS circuits, the
output of a single gate is usually used as the input of another
gate, in which case the two are connected through a capacitor.
The dynamics of Vg is described by the equation of motion

Cg
dVg

dt
= −Jg(t ), (3)

where Cg is the capacitance and Jg is the electron current
flowing into the electrode from the transistors. The constant
capacitance implies a quadratic energy for charging the elec-
trode E = CgV 2

g /2.
We adopt a semiclassical ballistic transport model for the

rate of transfer of an electron from an electrode into or out
of a transistor [54–56]. Such a description is valid in the weak
coupling limit between a transistor and an electrode relative to
the thermal energy, and for transistors that are small in scale
relative to the mean-free path of the electron. We restrict our
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analysis to single energy-level transistors, for which the cor-
responding transition rates between transistor i and electrode
j are

ki j = � f j (εi ), k ji = �[1 − f j (εi )], (4)

where f j (x) = [eβ(x−μ j ) + 1]−1 is the Fermi distribution. The
prefactor � is related to contact resistances and is chosen so
that the timescale of electron transitions is longer than the
timescale of thermal fluctuation, and thus the broadening of
energy levels due to the coupling is smaller than thermal fluc-
tuations. In making these assumptions to simplify our model,
we have neglected effects such as scattering within the tran-
sistor, delocalization between the electrode and the transistor,
and electron correlations, each of which can be incorporated
into our model as long as thermodynamical consistency is
retained.

Since we will be considering energy scales on the order
of thermal fluctuations at the room temperature, we use VT =
kBT/q ≈ 26 meV and β h̄ ≈ 25 fs as our units of voltage and
time, where h̄ is Planck’s constant. The voltage signal-to-noise
ratio Vd/VT in our model will be on the order of 10, which is
the prerequisite of low dissipation in the computing process
since the two are closely related. While this ratio is much
lower than the current technology, and requires delicate op-
eration of the device, it can be experimentally achieved by
designs such as the single-electron box [57,58]. We reference
potentials relative to the source voltage so that Vs = 0, and
take ε0

P = 0 and ε0
N = 1.5qVd so that there exists only one

independent energy parameter Vd . The transition rate constant
is chosen as β h̄� = 0.2 to ensure the weak coupling assump-
tion is valid [59]. To study the dynamics of the gates, we
use both the exact steady-state solution of master equation
when possible, and Gillespie simulations [60] to sample indi-
vidual trajectories. We set Cg = 200q/VT in order to separate
the timescales of capacitor charging from individual electron
transfer events, simplifying the Gillespie simulations. Details
of the numerical methods and the justification of the parame-
ters can be found in Appendix A.

A. NOT gate

The NOT gate, also known as the inverter, takes a single
binary input X , and generates its complement as the output
Y . The circuit diagram of the NOT gate, composed of two
transistors, is shown in Fig. 1(a). The N-type transistor is
connected to a lower source voltage Vs = 0 on its left, while
the P-type transistor is connected to a higher drain voltage Vd

to its right. Both transistors are controlled by an input voltage
Vin as in Eq. (2), which is treated as fixed in a single gate, while
the output voltage Vout is measured between the two transistors
from the capacitor voltage Vg, which evolves according to
Eq. (3). The kinetic diagram for our Markovian model is also
shown in Fig. 1(a). Electrons can move ballistically between
adjacent sites in the kinetic diagram according to a master
equation, the details of which can be found in Appendix A
[Eq. (A4)].

A NOT gate is typically characterized by its voltage transfer
curve (VTC), shown in Fig. 1(b). The VTC reports on the
average Vout in response to Vin in the long time limit. Gener-
ically, we find increasing Vin results in a decrease in Vout in

(a)

(b)

(c)

FIG. 1. Performance of a single NOT gate. (a) Circuit diagram
(above) and kinetic diagram (below) of an NOT gate, which is com-
posed of a N-type (left) and a P-type transistor (right). (b) Voltage
transfer curve of a NOT gate. (c) Channel capacity improves with
increasing drain voltage Vd .

agreement with the expected response of an inverter. However,
its behavior is dependent on the scale of the thermal noise
relative to Vd . The limiting values of Vout approach 0 and Vd

for Vin = Vd and 0, respectively, and sharpens between these
limits with increasing Vd . Both features result from tuning the
band energies of the two transistors in or out of resonance
with their respective electrodes, as the transistor band energies
depend on Vd through Eq. (2). Increasing Vd with Vin = 0
or Vd , increasingly suppresses current into the gate capacitor
from Vd or Vs. In the limit that current flows from only one

033169-3



CHLOE YA GAO AND DAVID T. LIMMER PHYSICAL REVIEW RESEARCH 3, 033169 (2021)

electrode with fixed voltage, the gate electrode would reach
an equilibrium state with that same voltage. The approach
to this limiting behavior is exponential, for example, for in-
creasing Vd � VT and Vin = 0, |Vout − Vd | ∼ exp[−Vd/2VT ].
The VTC is also symmetric around Vin = Vout = Vd/2, under
which condition the difference between the energy level of the
transistors and its connecting reservoirs is roughly the same
for the N-type and P-type transistors.

1. Performance as a computing unit

When used as a computing unit, our first concern is
whether our model generates the correct output with high
probability. We define a perfect gate or device as one that
generates a deterministic output according to the truth table,
e.g., Y should be the complement of X for a perfect NOT gate.
However, in the presence of noise, the deterministic output
becomes stochastic and subject to finite error rates. As can be
anticipated from the behavior of the VTC, in the limit of high
Vd/VT , or the low-noise limit, the performance of our model
approaches that of a perfect not gate, whereas the behavior is
nontrivial at smaller Vd .

The input and output signals are given as voltages in this
model, so we map them to binaries by

X =
{

0, Vin = 0
1, Vin = Vd

, Y =
⎧⎨
⎩

0, Vout � αVd

1, Vout � (1 − α)Vd

∅, otherwise
(5)

where ∅ represents an invalid result that cannot be desig-
nated and α represents an error tolerance with 0 < α � 1.
We choose α = 0.02 so that the resultant error is below 10−10

for Vd = 40VT as comparable to current technologies, but our
qualitative results are insensitive to this choice.

To characterize the accuracy of the gate, we define the error
rate ξ as the probability of observing an output different from
the perfect gate in a single shot. In the case of X = 0, the
error rate can be calculated from the empirical distribution of
Vout in steady state, as ξ (X = 0) = p[Vout < (1 − α)Vd |Vin =
0] = 0.36. A comprehensive characterization of the accuracy
that takes into account the error rate for both cases of X = 0/1
is the channel capacity

C = max
p(X )

I (X ;Y ), (6)

which is the highest information rate that can be achieved with
arbitrarily small error [16]. We compute C numerically from
the mutual information I (X ;Y ) between the input and output
at steady state as a function of Vd (see details in Appendix
B), as shown in Fig. 1(c). For a binary channel, the capacity
is between 0 and 1, with 1 corresponding to a perfect gate.
Here the capacity is computed to be C = 0.60 for a channel
operated at Vd = 5VT , given the slight difference between the
error rate for X = 0 or 1. While from the VTC the mean Vout is
influenced by both the source and drain electrode for finite Vd ,
we find its distribution to be Gaussian with variance 1/(βCg)
within the steady state Appendix A. This is expected from a
Boltzmann distribution, reflecting a proximity to equilibrium
despite the presence of persistent currents. To reach a higher
capacity, we need the average output Vout to approach the
limits 0 or Vd . This can be achieved by operating at a higher
Vd so that the leakage current flowing through the higher-

energy level transistor is even smaller. Given the Gaussian
statistics, asymptotically for large Vd the error scales as ξ ∼
exp[−βCgα

2V 2
d /2]

√
2π/βCg/αVd and the channel capacity

scales as C ∼ 1 − ξ (1 − log2 ξ ), consistent with Fig. 1(c).

2. Tradeoff among accuracy, speed, and dissipation

While the accuracy of the gate improves dramatically for
Vd � VT , its performance is compromised by significantly
increasing costs in computation time and energy consumption.
Upon receiving a distinct input signal, the gate requires time
to charge or discharge the capacitor to reach a steady-state
output signal. The average relaxation to steady state is shown
in Fig. 2(a) for an initially discharged capacitor with input
X = 0. The relaxation is monotonic and nearly exponential
but with characteristic decay time that depends on Vd . Under
this initial condition and input voltage, εN � μs, so that few
electrons can flow between the source and the capacitor. The
lower-energy level εP facilitates electrons to transfer from the
capacitor to the drain following the concentration gradient,
gradually building up a higher voltage.

We define the time it takes for Vout to reach (1 − α)Vd ,
the threshold voltage for Y = 1, as the propagation delay
time τp. While the threshold voltage increases linearly with
Vd , the average propagation delay τp grows exponentially.
The propagation delay time τp follows an inverse Gaussian
distribution [61] with a long exponential tail [Fig. 8(a)]. Note
that τp coincides with the time required for the error rate to
decay below 0.5. Figure 2(b) shows the decay of the error
rate with time for Vd = 5, 8, 10VT , scaled by the propagation
delay τp for each Vd . As the distribution of Vout remains Gaus-
sian, the time dependence of the error reflects the charging
of the gate capacitor, and specifically follows the evolution
of the mean Vout. While we consider the single-shot error, the
exponential scaling of τp with Vd implies that associating an
error rate with a time-averaged measurement of Vout would
yield a nonmonotonic relationship between the waiting time
to reach a set error threshold and Vd . For intermediate Vd , the
slower decorrelation time will cause waiting times to increase
with Vd , while for large Vd the suppressed fluctuations will
dominate and decrease waiting times.

When the gate is used repeatedly to process a sequence of
inputs X = {X1, X2, . . . , XN }, there is no need to re-initialize
the gate after each computation, and the residual charge on
the capacitor may help reduce the computational cost. We
call this a memory effect, which introduces temporal corre-
lation between consecutive data transmission processes. For
such an information channel with memory, the accuracy can
be characterized with the average information rate per data,
which is a generalization of the channel capacity [62], and
the detail of which can be found in Appendix C. Using this
metric, we find the memory effect plays a significant role at
intermediate τobs enhancing the robustness of transmission by
up to 30% Appendix C. For times much longer than τp, the
memory effect wears off and the information rate is set by the
channel capacity.

The energy consumption for a gate can be quantified with
the heat dissipated to the environment. From stochastic ther-
modynamics, the heat dissipation of the NOT gate during a
long observation time τobs can be computed by the product of
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(a)

(b)

(c)

FIG. 2. Tradeoff among accuracy, speed, and dissipation for a
single NOT gate. (a) Relaxation towards the steady state for a NOT

gate initialized with Vg = 0VT and X = 0. (b) The decay of the error
rate with time, scaled by propagation delay τp. (Inset) Propagation
delay as a function of Vd . (c) The heat dissipation is a nonmonotonic
function of Vd for finite observation time τobs. The gray dashed line
is the reversible limit CgV 2

d /2.

electron current and its conjugate affinity from two separate
pathways [48]:

	(τobs) =
∫ τobs

0
dt Js→N(μs − μg) + Jd→P(μd − μg), (7)

where Js→N is the electron current flowing from the source to
the N-type transistor, and Jd→P is the current from the drain
to the P-type transistor [Eq. (A5)]. In the process described
in Fig. 2(a), the pathway through the N-type transistor is
essentially blocked due to the high-energy level of εN, so the
main contribution in Eq. (7) is the second term in the sum.

This second term has a similar form as the work required to
quasistatically charge the capacitor from Vg = 0 to Vg ≈ Vd ,
and thus is close to CgV 2

d /2. This initial charging process is
the dominant contribution to the total heat dissipation over
short times, and represents the reversible limit of the NOT gate
[Fig. 8(c)]. Once the system reaches the steady state, there
is still a steady entropy production coming from the leakage
currents through both pathways, but the entropy production
rate within the steady state is much smaller and decreases
exponentially with Vd Appendix A. This is because the output
voltage Vout is very close to Vd , leaving the affinity across the
drain and the output nearly zero. Further, the corresponding
leakage current from the source to the output is small due to
the high-energy level εN. The contributions to 	(τobs) from
Vd implies that for each observation time τobs, there exists an
optimal Vd that minimizes 	(τobs), as confirmed in Fig. 2(c).
The minimum Vd shifts to the right with increasing time as
at higher Vd a larger contribution from the steady-state flux
counterbalances the higher heat dissipation during charging.

B. NAND gate

We have presented a Markovian model for the NOT gate,
which reproduces the performance of a perfect gate in the
limit of high Vd and for which there is a complex interplay
between energy consumption and time. Within the frame-
work presented, it is straightforward to construct an analogous
model of a NAND gate. A NAND gate takes in two binary inputs
XA, XB, and outputs Y = 0 only when both inputs are 1. As
shown in Fig. 3(a), the kinetic diagram, similar to the circuit
diagram, is composed of two P-type transistors PA, PB, and
two N-type transistors NA and NB. The energy levels of PA and
NA depend on the first input voltage Vin,A, while the energy
levels of PB and NB are controlled by the second input Vin,B

[Eq. (D1)]. More details on the model, including the definition
of the heat dissipation, can be found in Appendix D. The
two-dimensional VTC for Vd = 5VT is shown in Fig. 3(b),
which agrees with the truth table for a perfect NAND gate.

While the dynamical properties of the NAND gate are very
similar to the NOT gate, an asymmetry arises in the NAND gate
due to the different pathways in the kinetic diagram, which is a
feature absent in the NOT gate. Consider the three different in-
puts (XA, XB) = (0, 0), (1, 0), and (0,1) shown in Fig. 3(c) for
Vd = 5VT . While for a perfect NAND gate, these three inputs
should all correspond to the output Y = 1, the evolution of the
error rate ξ and its converged values in the steady state are not
exactly the same for finite Vd . In the case of (XA, XB) = (0, 0),
as both P1 and P2 have relatively low-energy levels, there are
two pathways to charge the capacitor, resulting in a faster error
decay rate. For the cases (XA, XB) = (0, 1) and (1,0), one of
the pathways is blocked due to the high-energy level of the P
transistor, so the error rate decays much slower reflecting the
slower charging of the capacitor. While the latter two cases
also differ slightly due to the asymmetry in N1 and N2, such
differences shrink drastically when we increase Vd to 8VT in
Fig. 3(d). The three cases now converge to similar error rates
in the steady state. In fact, as we further increase Vd , all such
asymmetries vanish, another example of which can be found
in Appendix D, where we plot the one-dimensional cut of the
VTC along the line Vin,A = Vin,B for different Vd . As in the
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(a)

(b)

(c)

(d)

FIG. 3. Dynamics of a NAND gate. (a) Circuit diagram (left) and
kinetic diagram (right) of a NAND gate. (b) Two-dimensional voltage
transfer curve at Vd = 5VT . (c), (d) Decay of the error rate with time
under three cases: (Xin,A, Xin,B) = (0, 0), (1, 0), and (0,1) for Vd =
5VT (c) and Vd = 8VT (d) for a NAND gate initialized with Vg = 0VT .

case of the NOT gate, our model behaves as a perfect NAND

gate as Vd approaches 1 eV. For clarification, we define the
propagation delay τp of a NAND gate as the time required to
reach the threshold αVd for the input (XA, XB) = (0, 1), which
is close to τp for the NOT gate of the same Vd .

III. LOGIC CIRCUITS

Equipped with a model for the NOT and NAND gates, we
now in principle have the tools to implement arbitrary logic

functions. While any logic function can be represented in
multiple ways, the topology of the circuit has an influence on
its accuracy and thermodynamic costs [43]. In the following
section, we first explore spatial propagation effects arising
from assembling multiple gates in a combinational circuit, and
then demonstrate memory effects arising from the feedback
loop in a sequential circuit. Understanding the behavior of
these basic computing circuits will be crucial to building up
a computing device.

For each logic circuit, which is itself a computing module
made up of multiple logic gates, while each gate has an inter-
mediate output, we reserve the symbol Vout for the specific
Vg that corresponds to the overall output Y of the module.
Intermediate input and output voltages are not converted to
binaries except for the final output Vout. While the output
of each gate is used as the input of the ensuing gate, we
neglect the back reaction on Vout so that the occupation of the
ensuing transistors does not affect Vout, which is consistent
with the high-capacitance assumption made in Eq. (2). Unless
specified otherwise, all gates are initialized at Vg = 0VT at
the start of the computation, but no reinitialization is done
afterwards. While the channel capacity is a more comprehen-
sive characterization of the accuracy and provides the best
case scenario, the much larger input space and complicated
memory effects make it cumbersome to calculate in the case
of logic circuits. We thus use the error rate in the final output
instead, and consider the worst case scenario in choosing the
inputs to provide an upper bound for the error rate whenever
possible.

A. Combinational circuit

A combinational circuit maps a given set of inputs to a
single output using a number of gates, such as an adder that
computes the sum of inputs and a XOR gate that computes their
parity. As the simplest example, we study the behavior of an
array of L NOT gates indexed by i = 1, 2, . . . , L connected in
the way that V (i)

in = V (i−1)
g for i > 1. A schematic of the system

can be found in Fig. 4(a). The input of the circuit X determines
V (1)

in , and the output is measured from the last gate Vout = V (L)
g .

The spatial dimension adds complexity to the evolution of Vg,
as illustrated in Fig. 4(b) for Vd = 5VT , X = 0. In the steady
state, we expect the output voltage of the odd gates close to
Vd , and the even gates close to zero. For a gate to reach its
steady state, its input, which depends on the dynamics of the
previous gate, must first reach its expected value, thus the
propagation delay should increase with the gate index i. As
the odd gates are initialized far from their steady state, it will
take a significant amount of time to reach its expected output.
For the odd gates which have not yet reached the steady state,
the ensuing even gate will have a lower input voltage, resulting
in the overshoot of voltage before eventually decaying to its
expected lower output. The turnover in voltage of the even
gates corresponds to the inflection point on the VTC.

A consequence of the connectivity between gates is the cor-
ruption of initial input. While the input voltage of the first gate
is always 0VT , for finite Vd , the maximum input voltage of the
second gate will be slightly lower than Vd , and thus corrupted.
As the VTC of the NOT gate is a nonincreasing function, a
corrupted input will inevitably cause a higher error rate in the
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(a)

(b)

(c) (d)

FIG. 4. Performance of an array of NOT gates with X = 0, and
all Vg initialized to 0VT . (a) Schematic of an array of NOT gates
with a single input X and output Y . (b), (c) Evolution of Vg (b),
and the steady-state error rate (c) for individual gates with Vd = 5VT .
(d) Spatial propagation rate κ as a function of Vd .

output, which will propagate along the array. This is shown
in Fig. 4(c), where the error rate for individual gates in the
steady state rises initially with gate index, before converging
to a constant value after a few gates, and is always higher than
that of the single gate. A similar behavior can be found in the
propagation delay time, which increases sharply for the first
few gates and converges to a slower linear increase afterwards
Appendix E. This implies that circuit designs with deeper
layered structure are unfavorable in terms of both accuracy
and propagation delay.

The convergence behavior is intriguing as it implies the
existence of a pair of fixed points (V ∗

odd,V ∗
even) for the

intermediate outputs in the steady state. Indeed, the fixed-
point solution corresponds to the point on the VTC (Vin =
V ∗

odd, Vout = V ∗
even) satisfying the condition that its reflection

(Vin = V ∗
even, Vout = V ∗

odd) is also on the VTC. As the fixed
point is a dynamically stable solution, it does not depend
on the initial input V (1)

in Appendix E, whereas the speed of
approaching the fixed point characterizes the spatial correla-
tion in the system. We fit the decay in |V (i)

g − V ∗|/VT with
an exponential function exp[−κi], and report the rate κ for
different Vd in Fig. 4(d). For Vd = 5VT , the spatial correlation
length 1/κ is on the order of 1, which means spatial correla-
tion exists between neighboring gates. As a consequence, it is
more probable to observe consecutive errors along the array,
which is shown by an error analysis of simulated trajectories
in Appendix E. As the VTC becomes sharper with increasing
Vd , the correlation length between gates decreases. In the limit

of high Vd , the fixed-point solution can be found exactly at
(Vin = 0, Vout = Vd ), which means that the input becomes
uncorrupted. To summarize, the combination of gates intro-
duces longer propagation delay and input corruption, and thus
deeper layered circuit design is advised against. By operating
at a higher Vd to reduce spatial correlation, the latter problem
can be mitigated, but of course this is done at the cost of even
longer propagation delay.

B. Sequential circuit: RS latch

While combinational circuits are typically used to carry
out arithmetic computations, modern computing devices often
include another type of logic circuit to handle memory: the
sequential circuit. Figure 5(a) shows an example of such a
circuit, known as the RS latch. The RS latch consists of two
NAND gates where the output of gate 1, V (1)

g , is sent as an

input of gate 2, V (2)
in,A, and similarly, the output of gate 2,

V (2)
g , is fed back as V (1)

in,B. The remaining two inputs V (1)
in,A and

V (2)
in,B correspond to the two external binary inputs XS and XR,

respectively. The output of the circuit Vout, which coincides
with V (1)

g , depends not only on the external inputs XS and XR,
but also the stored information of V (1)

g and V (2)
g . This is the

defining characteristic of a sequential circuit, which makes it
useful as a memory storage. More specifically, for a perfect
RS latch, in the “set” stage where the external inputs are
set as XS = 0, XR = 1 or XS = 1, XR = 0, there exists only
one dynamically stable state for the system, so that we can
unambiguously designate the memory at Vout as 1 or 0. In
the “hold” stage where XS = XR = 1, however, the system
is bistable and its state depends on the initialized value of
V (1)

g and V (2)
g . In the vicinity of the fixed points, an effective

Hamiltonian description of the RS latch is quartic in Vout with
two minima and a maxima between them [63]. This emergent
bistability resulting from the feedback loop allows the RS
latch to function as a memory storage device.

To function as a memory storage device, a circuit must
have at least two distinguishable states in which information
can be stored. For our stochastic model in Fig. 5(a), these
states correspond to the steady-state solutions that satisfy the
feedback condition V (1)

in,B = V (2)
g , V (2)

in,A = V (1)
g under the input

V (1)
in,A = V (2)

in,B = Vd . An intuitive way to find their location is
to overlap the VTC of the two NAND gates along the cut
V (1)

in,A = Vd and V (2)
in,B = Vd , which are not exactly the same

due to the asymmetry in the nonperfect NAND gates. We
show a couple of scenarios at different Vd in Figs. 5(d)–5(f).
At Vd = 3VT , the highly asymmetric VTCs cross merely at
(V (1)

in,B,V (2)
in,A) = (0.67VT , 2.61VT ), indicating that the system

only has a single stable state and does not qualify as a mem-
ory storage device. As Vd increases to 5VT , two dynamically
stable informational states start to emerge at (V (1)

in,B,V (2)
in,A) =

(0.19VT , 4.92VT ) and (4.89VT , 0.20VT ), though the slight
asymmetry suggests different dynamics around the two states.
While a third intersection point is found at (V (1)

in,B,V (2)
in,A) =

(2.93VT , 2.26VT ), it corresponds to an unstable saddle point.
At an even higher Vd = 40VT , the two states converge to
(V (1)

in,B,V (2)
in,A) = (0VT , 40VT ) and (40VT , 0VT ), and symmetry

is restored.
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FIG. 5. (a) Circuit diagram of the RS latch. (b), (c) The evolution of the outputs V (1)
g and V (2)

g for 100 trajectories with the initialization
V (1)

g = V (2)
g = Vd = 5VT , where time is scaled by the propagation delay τp of the NAND gate. The dark curve represents the average relaxation

behavior. (d)–(f) The location of the stable informational states determined by overlapping the VTC for the two NAND gates at Vd = 3VT (d),
Vd = 5VT (e), and Vd = 40VT (f).

While the existence of two distinguishable informational
states is guaranteed at sufficiently high Vd , there remains
the question of whether these informational states are robust
against noises. While in both the set and hold stages, V (1)

g and
V (2)

g are usually sufficiently far from each other that it is pos-
sible to distinguish them definitively, there do exist occasions
where the noise can mediate a transition. One such example
is shown in Figs. 5(b) and 5(c) for the initialization V (1)

g =
V (2)

g = Vd = 5VT . As the outputs of the gates evolve from
their initialization towards the steady-state solution, there is a
significant overlap between the two outputs around t = 0.5τp,
which leads to about 13% of the trajectories failing to retain
the information and evolving to the wrong fixed point. This
kind of perturbation happens when the overlap region includes
the unstable intersection point on the VTC, and the change of
convexity of the effective Hamiltonian brings the trajectory
towards a different stable state. Such an initialization error
is rare to observe either in the set or hold stage, and we
show additional evidence for the robustness of the circuit
at V (1)

g = V (2)
g = 2.5VT and 0VT in Appendix F. In addition,

at a higher Vd , as the VTC becomes sharper, not only do
the two minima in the Hamiltonian become more separated,
their vicinity also become steeper, both of which facilitate the
differentiation between the two states and thus will drastically
improve the robustness of the device.

C. Sequential circuit: D flip flop

With the RS latch as a basic computing unit, we can model
a memory storage module that synchronizes with the clock
generator, called the D flip flop. Modern computing devices
typically include a pulse generator that oscillates between 0

and 1, with a clock cycle τc. To see how the clock is incorpo-
rated into the D flip flop, we show the circuit diagram of a D
flip flop in Fig. 6(a), built up from four NAND gates and one
NOT gate. The circuit can be readily modularized as a memory
storage unit, denoted with the symbol D, that takes in an input
X representing the data, another input XWE synchronized with
the clock, and generates an output Y . The two NAND gates
with the feedback loop on the right-hand side constitute an
RS latch, which is responsible for the memory storage. When
the write-enable input XWE = 1, the D flip flop sets its output
Vout in agreement with the data X , whereas when XWE = 0,
the D flip flop holds its stored value as its output, which can
be further processed for computing purposes.

The clock cycle τc, or the clock frequency 1/τc, is an
important parameter as it determines how fast data can be read
and stored. In Figs. 6(b) and 6(c) we illustrate how the clock
cycle influences the accuracy and dissipation of the data trans-
mission process for a D flip flop with Vd = 8VT . We start with
XWE = 1 and send in a stream of data X = {1, 0, 1, 0, . . . }.
While XWE alternates between 1 and 0 every τc/2, the data
input only changes every τc. This input data sequence is
chosen to maximize the alternation in the output, and thus
minimize the memory effect discussed earlier for the NOT

gate. Therefore, the error rate and dissipation in this case are
expected to be the highest among all possible input sequences.
The error rate ξ is measured according to the output Vout at the
end of each cycle, and is reported separately for the cycles
with X = 1 and 0. The evolution of Vout as a function of the
cycle number can be found in Appendix F.

Similar to the behavior for the single NAND gate in
Fig. 3(d), the error rate for X = 0 starts to decrease monotoni-
cally when τc is longer than the single-gate propagation delay
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(a)

(b)

(c)

FIG. 6. (a) The symbol (left) and circuit diagram (right) of a D
flip flop. (b), (c) Error rate (blue, with axis label on the left) and
average dissipation per gate per cycle (red, with axis label on the
right) as a function of the clock cycle τc, scaled by the propagation
delay of the NAND gate, for cycles with input X = 1 (b) and 0 (c). All
NAND gates are operated at Vd = 8VT .

τp. The error rate for X = 1, however, first increases with τc

before eventually decreasing. This counterintuitive behavior
comes from the memory retention behavior in the RS latch.
Once data are stored in the RS latch, it tends to stay in the
memory by influencing the transmission of the following data,
and thus introduces temporal correlation between the outputs.
The influence of the data can only be erased given sufficient
time to transmit the following data. This temporal correlation
time, or memory retention time, again coincides with the prop-
agation delay τp. In this example, as the first input X = 1, the
output retains the memory of a higher output at short τc, so the
error rate for X = 1 is deceptively low, and the error rate for
X = 0 is high. At τc ≈ τp, the output is stuck between the high
and low outputs before reaching either steady state, so that the
error rate for either cycle is high. In this regime, the average
dissipation accumulated within each cycle rises fast with τc, as
charging processes contribute heavily to energy costs. When
τc > τp, the memory effect is eventually overcome and the er-
ror rates for both cycles start to decay. The average dissipation
rate also converges to a smaller constant value as within each

cycle, the system is able to reach the steady state, in which
much less dissipation is generated. The exponential scaling of
τp with Vd implies that while the asymptotic error is expected
to decrease when operating far from thermal energies Vd �
VT , the speed with which the D flip flop can function with that
lower error is significantly slower. Due to this lag, comparing
between a lower and a higher Vd , the error is expected to be
much lower in the former case for a fixed computing time on
the order of τp of the lower Vd .

IV. PARITY COMPUTING DEVICE

With the combinational circuit modularized as the arith-
metic logic unit (ALU), and the sequential circuit as the
memory storage device, we can combine the two components
to model a computing device. We choose the task of comput-
ing the parity of a sequence of inputs X = {X1, X2, . . . , XN } of
length N , which has wide applications in error detection. Such
a task can be easily implemented by combining (N − 1) XOR

gates in a sequential manner. However, when N is relatively
large, due to the limitation in resources, it is beneficial to break
up the task in several steps, and store intermediate results in
memory. The clock generator synchronizes the operation of
different components to ensure correct sequencing.

As an example, we consider two XOR gates as an ALU,
and four D flip flops, D1 to D4, as a memory device to check
the parity of N = 12. Figure 7(a) shows the schematic of our
design, while the complete circuit diagram can be found in
Appendix F. Each XOR gate takes in two binary inputs at a
time, the source of which is controlled by two input two-way
switches, shown in red in Fig. 7(a). When the switch is con-
nected to terminal 1, the input comes from the data sequence
X; whereas when terminal 2 is connected, the input comes
from the data stored in a D flip flop. At the end of each XOR

gate is an output two-way switch, shown in green in Fig. 7(a),
which controls where to store the output. We store new data
only on free D flip flops, where the data stored at an earlier
time is already read out for postprocessing and does not need
to be held any more. The total system requires modeling over
100 transistors.

We start the computation by sending in pairs of input data
from the data sequence, and computing their parities with the
XOR gates. The D flip flops are set by outputs from the ALU
(first D1, D2 and then D3, D4), and once all D flip flops have
been set, we free them by sending the stored information back
to the ALU for further processing. The computation is termi-
nated when all inputs are taken into account in the final output,
and the entire task can be completed in six clock cycles. A
more detailed description of the protocol, and a computational
tree graph that illustrates how intermediate outputs are related
to the final output can be found in Appendix F.

As before, we are interested in the time and dissipation
required to achieve a certain accuracy. In Fig. 7(b), we show
the error rate for the final output at t = 6τc, and the average
dissipation per gate (averaged over the 28 gates in this device)
per clock cycle 	̄ as a function of τc with Vd = 8VT . Both
results are averaged over more than 104 inputs, which are se-
quences of independent and identically distributed Bernoulli
random variables with equal probability of being 0 or 1. As
expected, the average error rate decays with the clock cycle
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(a)

(b)

FIG. 7. (a) Schematic of the parity computing device with two
XOR gates and four D flip flops. The input of each XOR gate is
controlled by two input two-way switches, shown in red. The output
two-way switch, shown in green, determines which D flip flop is
used to store the output of the XOR gate. (b) The average error rate
(blue, with axis label on the left) and dissipation per gate per cycle
(red, with axis label on the right) as a function of the time cycle τc,
scaled by the propagation delay of a single NAND gate, averaged over
different input sequences. All gates are operated at Vd = 8VT .

until τc ≈ 3τp, as the extended spatial dimension of the circuit
increases the propagation delay in the final output. At such
a high Vd , spatial correlations do not extend beyond neigh-
boring gates, and are even weaker between different modules,
especially for clock cycles longer than τp. We further analyze
how the error in the final output is correlated along its com-
putational path in Appendix F. The average dissipation first
increases sharply and then converges to a linear growth in the
limit of large τc, similar to the D flip flop, but slightly lower
than that in Fig. 6(c) for the same τc. This is because the input
sequences are randomly chosen instead of alternating between
0 and 1, and the memory effect can help shorten the charging
process, which most contributes to the entropy production.
Additionally, because of the synchronization, the D flip flops
may remain at a steady state for a few cycles before they are
freed to. During such periods, the dissipation is especially low
as the entropy production in the steady state is minimal due
to relatively small leakage currents. Therefore, computational
protocols that minimize changes on the memory storage de-
vice are desirable for low dissipation computing. Taking into
consideration both the accuracy and dissipation, the optimal
clock cycle to operate with is τc ≈ 2τp, as lowering the speed
further will only result in higher dissipation from the steady
state.

V. DISCUSSION AND CONCLUSION

We have illustrated a promising model for stochastic logic
gates, and demonstrated its utility in building arbitrary logical
circuits. Information manipulations, such as bit storage and
erasing, are represented by the charging and discharging of
the capacitors, which is consistent with current data storage
technology. While our model performs as a perfect logic
circuit when operated in the limit of low noise, its thermo-
dynamical consistency allows us to study the rich interplay
between speed, accuracy, and dissipation in the intermediate
regimes, from which we can derive some useful design prin-
ciples for low dissipation computing devices. For instance,
we have provided a physical origin of input corruption in
the combinational circuits, as well as feedback robustness
in the sequential circuits, and illustrated how each can be
improved drastically by operating at a slightly higher voltage.
In addition, memory effects should be exploited as much as
possible to minimize dissipation. With modularization, it is
straightforward to scale up our model to even larger and more
complex systems, making it a useful model to study collective
behaviors of circuits. It is useful to bear in mind that the
signal-to-noise ratio regime that is explored in this work is two
orders of magnitude lower than current technology. However,
with the exponential growth of the number of computations
per unit of energy dissipated, as observed by Koomey’s law
[64], such a low dissipation regime will soon become relevant.
While the model we propose is not intended for a direct
comparison with the current CMOS technology, the fact that
it can reproduce the input-output behaviors of universal logic
gates makes it a promising tool to study fundamental physical
limits on computations.

One of the major motivations of this work is to enable the
design of low dissipation computing devices with maximal
accuracy and speed. While there exist several theoretical
results that propose bounds on the thermodynamic costs of
computing [4,43], understanding under what circumstances
they are saturated requires a realistic model for the thermal
noise. As each dynamical process in our model obeys a
local detailed balance, we are able to harness the lessons
of stochastic thermodynamics to define and analyze the
time dependence and fluctuations of the entropy production.
Note that the 	 we have referred to throughout the paper is
different from the total dissipation, which is the heat released
by the system, by a term T �S, the change in the Shannon
entropy of the system transistors times the bath temperature.
Nevertheless, we have used the two terms interchangeably
since for the timescales studied, the boundary term �S
is orders of magnitude smaller than the cumulative term 	,
which is very large due to the large gate capacitance. This then
raises the question of how to further decrease the irreversible
dissipation and that associated with charging the gates. This
problem is the crux of optimal control theory, and adiabatic
circuit design [65,66], from which some design principles
can be borrowed. For example, while we have kept the input
voltage of the transistors Vin fixed within each cycle, one can
design optimal feedback protocol that controls it according to
the state of the capacitor, in order to minimize the irreversible
dissipation throughout the process. Such optimal feedback
protocols already exist for simple thermodynamic engines
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[67], and we believe our model provides an ideal testing
ground for applying more advanced stochastic control
algorithms [68]. Marrying our model with a framework that
integrates information with thermodynamics [69,70], we
hope to get a step closer to achieving a computing design that
minimizes dissipation while maximizing accuracy and speed.

VI. MATERIALS AND METHODS

Simulations were done with both an iterative, numerically
exact diagonalization of the master equation as well as Gille-
spie simulations [60]. In both, we employ a separation of
timescales for electron transfer to or from a transistor and
gate charging, afforded by the large gate capacitance. Specif-
ically, the large capacitance means we can update Vg with
discrete time step, chosen to be 10β h̄, and compute rates at
fixed Vg in-between these dynamical updates. More details on
the models and calculations can be found in Appendices A
and D.

All our codes and data can be accessed on GitHub [71].
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APPENDIX A: NOT GATE MODEL DETAIL

The Markovian system is described by the occupation
number of the two single-electron levels nN, nP = 0/1, and the
gate voltage Vg. Electrons can jump between the transistors
and the reservoirs only if the target site is empty. Denoting
the transition rate from state i to j as k ji, the rates describing
the exchange of electrons between the transistors and the
reservoirs are given by

kNs = � fs(εN), ksN = �[1 − fs(εN)],

kPd = � fd (εP), kdP = �[1 − fd (εP)],

kNg = � fg(εN), kgN = �[1 − fg(εN)],

kPg = � fg(εP), kgP = �[1 − fg(εP)],

(A1)

where fi(x) = [eβ(x−μi ) + 1]−1 is the Fermi distribution. The
transition rate between the two transistors depends on their
relative energy levels, for example, in the case of εP > εN,

kPN = �n(εP − εN), kNP = �[1 + n(εP − εN)], (A2)

where n(x) = [eβx − 1]−1 is the Bose-Einstein distribution.
The rate constant � = 0.2/β h̄ ∼ ps−1 is chosen so that elec-
tron transitions happen on a longer timescale than quantum
tunneling, and the broadening of energy levels due to the
coupling to electrodes is smaller than thermal fluctuations.

The dynamics of the capacitor is solved by the equation of
motion

dVg = − 1

Cg

∫ tint

0
Jg(t )dt, (A3)

where Cg is the capacitance and Jg is the electron current
flowing into the electrode from the transistors. While the
transfer of electrons changes Vg, the capacitor is treated as an
electron reservoir at constant chemical potential μg = −qVg

within each time interval tint. Thus, the assumption made here
is that the electron transfer within each tint is small compared
to CgVT , and the electron relaxation within the capacitor is fast
compared to tint. We have chosen Cg = 200q/VT , tint = 10β h̄
in order to justify these assumptions.

To obtain a numerically exact solution to the Markovian
dynamics, for each interval tint, we solve for the average
occupation number 〈nN〉, 〈nP〉 from the stationary solution of
the master equation, which describes how the probability of
the configuration pnN,nP = (p0,0, p0,1, p1,0, p1,1) evolves with
time:

ṗnN,nP = W pnN,nP ,

W =

⎡
⎢⎢⎢⎣

−S1 krP + kgP klN + kgN 0

kPr + kPg −S2 kPN klN + kgN

kNl + kNg kNP −S3 krP + kgP

0 kNl + kNg kPr + kPg −S4

⎤
⎥⎥⎥⎦,

(A4)

where S j = ∑
i 
= j Wi j for a matrix W . Note that the tran-

sition rates concerning the gate (g) are time dependent
through Vg, while a local equilibrium approximation is in-
voked within each integration interval tint. The current Jg

flowing into the capacitor is then computed by the sum of two
terms

JN→g/q = kgN〈nN〉 − kNg(1 − 〈nN〉),

JP→g/q = kgP〈nP〉 − kPg(1 − 〈nP〉).
(A5)

In the Gillespie simulation, the electron jumping processes
are modeled explicitly as chemical reactions, with M = 10
reaction rates

w1 = kNs(1 − nN), w2 = ksNnN,

w3 = kPd (1 − nP), w4 = kdPnP,

w5 = kNg(1 − nN), w6 = kgNnN,

w7 = kPg(1 − nP), w8 = kgPnP,

w9 = kPNnN(1 − nP), w10 = kNPnP(1 − nN).

(A6)

We use the Monte Carlo method to simulate the probability
that reaction i will happen after time t ,

P(t, i) = wi exp

[
−

M∑
i=1

wit

]
, (A7)

and the currents between two sites are calculated as the
discrete number of jumps between the two sites. The dis-
cretization error in voltages between the average protocol and
the Gillespie simulation is on the order of q/Cg = 0.005VT .
The resultant dynamics and distributions of the NOT gate are
illustrated in Fig. 8. The average behavior of the dissipated
heat is shown in Fig. 9 as a function of Vd .
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(a) (b)

(c) (d)

FIG. 8. Dynamics of a single NOT gate with X = 0, Vd = 5VT ,
and Vg initialized from zero. (a) Distribution of the propagation delay
τp. (b) Distribution of Vg at t = 5 × 106β h̄, where the red dashed line
labels the threshold voltage for Y = 1. (c) Evolution of the total heat
dissipation of 100 individual simulated trajectories (light blue) and
their ensemble average (dark blue). (d) Distribution of the entropy
production rate in the steady state, measured in the long-time limit
where τobs = 106β h̄.

APPENDIX B: COMPUTATION OF CHANNEL CAPACITY

For the NOT gate, we observe Gaussian distributions in Vout

in the steady state regardless of Vd , with the same variance
1/(βCg). Under the Gaussian assumption, the error rate is
uniquely determined by the average output voltage Vout. For
example, the accuracy rate for X = 0 is determined by the
conditional probability

p(Y = 1|X = 0) =
∫ ∞

0.98Vd

dV

√
βCg

2π

× exp

[
−βCg(V − Vout)2

2

]
. (B1)

Marginalizing the conditional probabilities, the mutual infor-
mation can be computed by

I (X ;Y ) =
∑

x=0,1

∑
y=0,1,∅

p(x, y) log2
p(x, y)

p(x)p(y)
. (B2)

FIG. 9. Heat dissipation as a function of Vd for a NOT gate with
Vg initialized to 0VT . (a) The heat dissipation during the propagation
delay τp (dots) for X = 0, which converges to the quadratic function
CgV 2

d /2 (line) at high Vd . (b) The heat dissipation rate in the steady
state σss decreases exponentially with Vd for both X = 0/1.

To compute the channel capacity, we numerically maximize
I (X ;Y ) over the base probability distribution p(X ), where the
conditional probabilities are computed using Vout in the steady
state.

APPENDIX C: COMPUTATION OF AVERAGE
INFORMATION RATE

For an information channel with memory, the average in-
formation rate per data is defined as

Ī (X; Y) = 1

Ndata
I
(
X1, . . . , XNdata ;Y1, . . . ,YNdata

)
, (C1)

which in the limit of Ndata → ∞ and upon maximizing over
the input probability distribution p(X), is the generalization of
the channel capacity. As an example, for Ndata = 2, the mutual
information is computed by

I (X1, X2;Y1,Y2) =
∑

x1=0,1

∑
x2=0,1

∑
y1=0,1,∅

∑
y2=0,1,∅

× p(x1, x2, y1, y2) log2
p(x1, x2, y1, y2)

p(x1, x2)p(y1, y2)
.

(C2)

To incorporate the memory effect, note that the probability
distribution of the ith output Yi is not only a function of Xi,
but also the output voltage of the previous data V i−1

out . The
dependence can be expressed with the conditional probability
p(V i

out|xi,V i−1
out ), which we sample by Gillespie simulations of

more than 107 trajectories. The dependence of I on the obser-
vation time τobs thus comes from this conditional probability.

Let V 0
out = 0VT , and we can write the joint probability

p
(
x1, x2,V 1

out,V 2
out

) = p
(
V 2

out

∣∣x2,V 1
out

)
p
(
V 1

out

∣∣x1,V 0
out = 0VT

)
× p(x2)p(x1), (C3)

which follows from the Markovian nature of the memory
effect, and the fact that the input data xi are independent from
each other. The joint distributions can then be computed by
marginalization, e.g., defining the mapping between Y and
Vout in Eq. (5) as Y = dig(Vout),

p(x1, x2, y1, y2) =
∑

y1=dig(V 1
out )

∑
y2=dig(V 2

out )

p
(
x1, x2,V 1

out,V 2
out

)
,

(C4)
where the sum is over all V i

out, discrete in our simulation, that
correspond to yi.

As the numerical maximization is difficult for large Ndata,
without loss of generality, we choose as our input a se-
quence of independent and identically distributed Bernoulli
random inputs with equal probability of being 0 or 1. We
show in Fig. 10 the average information rate at Vd = 5VT

for Ndata = 1, 2, 3 as a function of τobs, the processing time
for each individual data from input to output. For Ndata = 1,
the information rate first decreases at small τobs, as ξ (X = 1)
inevitably increases at short time due to the initialization
Vg = 0VT , and rises up sharply around the propagation delay
τp, which is the time required for ξ (X = 0) to decay. As we
increase Ndata, the memory effect is expected to be especially
helpful when consecutive inputs share the same value, and
thus should on average improve the information rate. This
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FIG. 10. Average information rate for a repeatedly used NOT gate
with Vd = 5VT as a function of the data processing time τobs.

effect is not evident for extremely small τobs, where the error
rate for X = 0 is too high to be corrected by the memory
effect. However, the memory effect plays a significant role,
bringing up to 30% increase in the average information rate,
at intermediate τobs. All curves eventually converge in the
long-time limit as the memory effect wears off for times much
longer than the propagation delay.

APPENDIX D: NAND GATE MODEL DETAILS

The NAND gate is described by four occupation numbers
(nPA , nPB , nNA , nNB ) and the gate voltage Vg. The energy levels
of the four transistors are determined in the same manner as in
Eq. (2) of the main text, with εNA , εPA corresponding to Vin,A,
and εNB , εPB corresponding to Vin,B:

εPA = ε0
P + qVin,A, εNA = ε0

N − qVin,A,

εPB = ε0
P + qVin,B, εNB = ε0

N − qVin,B,
(D1)

The transition rate between the transistors and reservoirs is
described analogously to Eqs. (A1) and (A2). To avoid numer-
ical issues in Eq. (A2) when the adjacent transistors have the
same energy levels, we add a 10−3 regularizer in the denom-
inator of the Bose-Einstein distribution n(x). The output Vg is
again treated as a capacitor described by Eq. (A3), where the
current Jg is the sum of JPA→g, JPB→g, and JNA→g, each defined
as in Eq. (A5). As in the NOT gate, both an average protocol

FIG. 11. The voltage transfer curve of the NAND gate along the
one dimension Vin = Vin,A = Vin,B, which becomes more symmetric
as Vd increases.

(a) (b)

FIG. 12. Spatial propagation in an array of NOT gates with Vd =
5VT and all Vg initialized to 0VT . (a) Propagation delay for the odd
gates with X = 0. (b) Exponential decay of the distance between
Vg and the fixed point. The spatial propagation rate κ is deduced
from the rate of the exponential decay, which is independent of the
input V (1)

in .

and a Gillespie simulation consisting of 16 chemical reactions
are used to study the dynamics. The heat dissipation during an
observation time τobs is

	(τobs) =
∫ τobs

0
dt Js→NB (μs − μg)

+ (
Jd→PA + Jd→PB

)
(μd − μg). (D2)

The resultant voltage transfer curve for the NAND gate is
shown in Fig. 11.

APPENDIX E: ERROR ANALYSIS IN AN ARRAY
OF NOT GATES

We simulate an array of NOT gates of length L with V (1)
in =

0VT , Vd = 5VT , and generate more than 108 snapshots of the
system.The space time correlations for this array are illus-
trated in Fig. 12. For each snapshot, we first search for regions
with de = 1, 2, . . . , 16 consecutive errors, and then count the
total number of such error domains, denoted by N (de). While
counting, we do not account for the first 10 gates in each array
as they have not reached the fixed-point solution. To character-
ize spatial correlation in the system, we compare the value of

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0  2  4  6  8  10  12  14

N
 (
d e

+
1
) 

/ 
N

 (
d e

)

de

L=60
L=110

L=160
L=210

ref

FIG. 13. The ratio N (de + 1)/N (de) as a function of de calculated
for an array of NOT gates of length L = 60, 110, 160, and 210 with
Vd = 5VT . The orange dots represent the reference where all gates are
independent from each other, and alternate between 2ξ0ξ1/(ξ0 + ξ1)
and (ξ0 + ξ1)/2.
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(a)

(b)

(c)

FIG. 14. Output voltage of a D flip flop with clock cycle τc =
2 × 106β h̄ (a), τc = 107β h̄ (b), and τc = 3 × 107β h̄ (c). The input
data sequence starts from Xdata = 1 and alternates between 1 and 0.
All gates are operated at Vd = 8VT , and are initialized with Vg = 0VT .
We discard the first few cycles and average over more than 50 cycles
when computing the average error rate and dissipation in Fig. 6, so
that their values have no dependence on the initialization.

N (de + 1)/N (de) computed in our model with the case where
all gates are independent from each other. We denote the
single-gate error rate of the odd and even gates as ξ0/1. Note
that to make a fair comparison, this error rate corresponds to
the fixed-point solution of the array, instead of the error rate
of a single NOT gate with X = 0/1. Assuming odd and even
gates are observed with equal probability, it is easy to derive

FIG. 15. The evolution of the outputs V (1)
g and V (2)

g with the ini-
tialization V (1)

g = V (2)
g = 0VT (a) and V (1)

g = V (2)
g = 2.5VT (b) where

Vd = 5VT . The dark curves represent the steady-state solution from
the average protocol, while the lighter curves represent 100 trajecto-
ries. In both cases, the percentage of trajectories that end up in the
other informational state (V (1)

g ,V (2)
g ) = (0.20VT , 4.89VT ) is less than

10−5 among the 2.56 × 106 trajectories simulated.

that N (de = 1) = (ξ0 + ξ1)/2 and N (de = 2) = ξ0ξ1. One can
infer from this simple calculation that for independent gates,
N (de + 1)/N (de) = 2ξ0ξ1/(ξ0 + ξ1) if de is odd, (ξ0 + ξ1)/2
if de is even. This result is plotted in Fig. 13 as the reference,
where the zigzag behavior comes from the difference between
ξ0 and ξ1. In addition, we plot in the same figure the value
N (de + 1)/N (de) for our model with L = 60, 110, 160, and
210. For smaller L, as finite-size effect prevents larger error
domains to emerge, the value N (de + 1)/N (de) is lower and
decays with de. Such effect mitigates with increasing L, and
the value of N (de + 1)/N (de) should not depend on the exact
value of de other than its parity in the L → ∞ limit. The
converged values of N (de + 1)/N (de), as shown in Fig. 13,
are clearly higher than the reference values, indicating that
there exists a positive correlation in errors between adjacent
gates. In other words, given that an error occurs at gate i, the
probability of observing another error at its neighboring gate
is enhanced due to the spatial correlation.

APPENDIX F: PARITY COMPUTING DEVICE

The parity computing device is constructed in part with
memory storage units comprised of the RS latch and D flip
flop. Additional characterization of the RS latch robustness to
initialization is shown in Fig. 14. Evolution of the D flip flop’s
output voltage with changing cycle time in shown in Fig. 15.
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FIG. 16. (a) Symbol (left) and circuit diagram (right) of a XOR

gate, which takes in two inputs X1, X2, and compute their parity as
output Y . (b) Circuit diagram of the parity computing device with
two XOR gates and four D flip flops.

1. Computation protocol

For concreteness, we consider the input sequence
X = {0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0} and plot in Figs. 16(b)
and 16(c) the Vout of the XOR gates, D1 and D2, for an
ensemble of trajectories. Here the clock cycle is chosen as
τc = 107β h̄. All gates are operated at Vd = 8VT , while all ca-
pacitors are initialized with zero charge. We highlight with red
cross the time points where outputs are being read out from
the D flip flops. At t = 0, we send in four input data, X1 to
X4, by connecting all the input two-way switches to terminal
1. Since all the D flip flops are slack at the moment, we can
store the computing results of the XOR gates into D1 and D2
by switching both output two-way switches to terminal 1 as
well. The clock stays at 0 within the first half-cycle while
computations are being done at the ALU, until t = τc/2, when

the clock switches to 1 and the outputs of the ALU are being
written into D1 and D2. At t = τc, as the clock returns to
0, another 4 input data are sent in while the output two-way
switches are connected to terminal 2 so that outputs can be
sent to and stored at D3 and D4. At the end of the second
cycle, when we realize that our memory devices are full and
can not take in new inputs, we read out the outputs at D1 to
D4 and send them back to the ALU as inputs by connecting
all input two-way switches to 2. We continue the computation
in this manner until all input data are taken into account and
the final output is read from D1 at t = 6τc.

2. Error analysis in the parity computing device

The computational tree graph of the computing device
is shown in Fig. 17(a), with 12 input nodes in the zeroth
layer representing the input data, and a single final output
l (1)
4 that computes the parity of the inputs. The nodes in

layers 1 to 3 represent intermediate computation results. If
an error is observed in any of the nodes whose layer is
deeper than 0, we look further at its parent nodes to trace
where the error originates, and its child node (if existing) to
see how far the error propagates. We call such a record of
error vertically along the computational tree graph an error
path, and its length is denoted as le. In this computational
tree graph, the maximum value for le is 4, which means the
error propagates from layer 1 all the way to the final output;
while the minimum value for le is 1. Among the 1.28 × 104

simulations we have done with different input sequences,
we make a histogram of the error paths with length le for
different clock cycle τc, which is shown in Fig. 17(d). For
the shortest clock cycle plotted τc = 5 × 106β h̄, which is too
soon for the gates to reach their steady states, we observe
an overwhelmingly high number of error paths of length
le = 4. However, when τc is longer, we see an exponential
decay in the number of error paths with increasing le. This
exponential decay rate characterizes the temporal correlation
between intermediate computation results. The rate increases
with longer τc, indicating the diminishing correlations, or the
weakening of the memory effect at longer clock cycle. With
τc > 2 × 107β h̄, it is almost impossible to find an error path
with le = 4 that propagates through the computational tree
graph.
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(a)

(b) (c)

(d)

FIG. 17. (a) Computational tree graph of the device that computes the parity of 12 input data. The node l ( j)
i denotes the jth output of the

ith layer. The zeroth layer has 12 nodes, which represent the 12 data in the input sequence. Each child node calculates the parity of its two
parent nodes. The final output l (1)

4 computes the parity of all the input data. (b) For the input sequence X = {0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0}, the
output of XOR 1 and its corresponding memory storage D1 for 64 individual trajectories at Vd = 8VT , τc = 107β h̄. The red crosses label points
where outputs on D1 are read out for further processing. (c) The output of XOR 2 and its corresponding memory storage D2 with the same
parameters as in (b). The lower plot shows the histogram of outputs at D2 at t = 4τc. The red dotted line labels the threshold under which the
output corresponds to an error. (d) Histogram of error paths of length le for different clock cycle τc.
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