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Strong-coupling theory of condensate-mediated superconductivity in two-dimensional materials
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We develop a strong-coupling theory of Bose-Einstein condensate-mediated superconductivity in a hybrid
system, which consists of a two-dimensional electron gas with either: (i) parabolic spectrum or (ii) relativistic
Dirac spectrum in the vicinity of a two-dimensional solid-state condensate of indirect excitons. The Eliashberg
equations are derived, and the expressions for the electron pairing self-energy due to the exchange interaction
between electrons mediated by a single Bogoliubov excitation (a bogolon) and the bogolon pairs are found.
Furthermore, we find the superconducting order parameter and estimate the critical temperature of the super-
conducting transition. The critical temperature reveals its linear dependence on the dimensionless coupling
constant. It is shown that the bogolon-pair-mediated interaction is the dominant mechanism of electron pairing in
hybrid systems in both the weak- and the strong-coupling regimes. We calculate the effective bogolon-electron
interaction constant for both parabolic and linear electron dispersions and examine the dependence of the critical
temperature of the superconducting transition on exciton condensate density.
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I. INTRODUCTION

The first microscopic description of the superconduct-
ing (SC) state belongs to the celebrated Bardeen-Copper-
Schrieffer (BCS) theory [1–4], which explains the emergence
of the SC gap and allows one to estimate the critical
temperature of SC transition Tc. Later, Green’s functions
formalism-based Migdal-Eliashberg (later Eliashberg) theory
was developed [5–7]. It provides a more rigorous and accu-
rate basis for the estimation of Tc and allows one to account
for the Coulomb repulsion between electrons. Generally, by
employing McMillan’s approach [8], the formation of Cooper
pairs by electron-phonon interaction can be solely determined
by the effective electron-phonon coupling strength λ. As
compared with the BCS theory, which only works in the weak-
coupling regime (of λ � 1), the Eliashberg theory is more
general. In particular, it avoids the Debye frequency cutoff,
thus, allowing to extend the estimations to the strong coupling
regime (of λ close to or larger than unity).

The price to pay is that the analytical and numeri-
cal calculations by the Eliashberg theory are usually more
complicated than the ones by the BCS. It requires the
solution of multiple coupled equations, which is often
tricky, and some assumptions are in order. Since the 1960s,
various numerical approaches implying different special
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assumptions and simplifications have been developed in order
to find the approximate solutions of the Eliashberg equations.
Very recently, there have been suggested powerful density
functional-based techniques (called the density functional
theory for superconductors) [9–11]. In general, the phonon-
mediated superconductivity is well studied, although there
still exist many open questions, in particular, regarding the SC
transition in novel two-dimensional (2D) materials and their
stacks due to phonon-mediated pairing.

However, electron-phonon interaction is not the only
possible route to the formation of Cooper pairs. Among
others, there have been reported several proposals for exci-
ton [12–14], exciton-polariton [15–17], and cavity-photon-
mediated [18] coupling mechanisms between electrons. In
our recent works [19,20], we have developed a BCS-like
theory for the indirect exciton condensate-mediated super-
conductivity in hybrid systems consisting of layers of a
(Bose-condensed) exciton gas and a 2D electron gas or
graphene. Employing the Bogoliubov theory, we consid-
ered quasiparticle excitations above the exciton condensate
called bogolons. They interact with the electron gas via
Coulomb forces, which distinguishes this problem from the
phonon-assisted electron-electron interaction in conventional
superconductors.

However, all the proposals listed above are based on
the BCS-like approach. Thus, the weak effective coupling
strength between electrons and phonons (or other particles,
such as bogolons) is assumed, which means that λ should,
strictly speaking, be small. In this paper, we build a strong-
coupling theory for bogolon-mediated superconducting in
hybrid Bose-Fermi systems—an intense area of research
[15,21–25]. By employing the Green’s-functions technique,
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we calculate the electron-bogolon coupling strength λ and
give an estimation for the critical temperature of SC transition.
The bosonic subsystem which we consider here is an indirect
exciton gas. It can be substituted by other quasicondensates,
such as direct exciton gas or exciton-polariton condensates,
which have been predicted [26–31] and studied experimen-
tally [32–35]. The condensation in these systems has been
reported at relatively high temperatures, even approaching
room temperature.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of bogolon-electron interaction. In Sec. III,
we build the bogolon-mediated Eliashberg theory and derive
the Eliashberg spectral function. Furthermore, in Sec. IV,
we calculate the electron-bogolon coupling constant λ and
estimate the critical temperature by considering electrons with
parabolic and linear dispersions. Finally, in Sec. IV we sum-
marize the results.

II. SINGLE-BOGOLON AND BOGOLON-
PAIR-MEDIATED INTERACTION

Let us consider a hybrid system in which a 2D layer of
electron gas (2DEG) and a layer of a Bose-Einstein conden-
sate (BEC) are in the vicinity of each other in the z direction
(we consider the same setup as in works [19,20,36]). The
bosonic subsystem is represented by indirect excitons where
the formation of a BEC has been recently reported [35,37]. In-
direct excitons consist of electrons and holes residing in n- and
p-doped layers which are separated in the z direction. These
layers can be made of, e.g., MoS2 or WSe2 materials separated
by several layers of hexagonal boron nitride (hBN) [35,38].
The 2D electron gas (described by the field operator �σ (r)
with the position vector r and the spin σ = {↑,↓}) and the ex-
citon gas [described by the field operator �(r)] layers are also
spatially separated by a hBN layer. The electrons and indirect
excitons are coupled by the Coulomb interaction [22,39],

H =
∑

σ

∫
dr
∫

dR �†
σ (r)�σ (r)g(r − R)�†(R)�(R),

(1)

where R is the in-plane position vector of the exciton
center-of-mass motion. We consider the case when the most
of excitons are being in the ground state (in BEC). Then, in
the weakly interacting regime, one can write the exciton field
operator as �(R) = √

nc + ϕ(R), where nc is the condensate
density and ϕ(R) is the field operator for noncondensed
excitons. Applying the Fourier and the Bogoliubov
transformations, from (1), we can find the Hamiltonian
for the one-bogolon (1b) and bogolon-pair-mediated (2b)
interactions [19,20,36,40] (putting h̄ = kB = 1 below for
simplicity and restoring these constants later),

H1 =
√

nc

L

∑
kpσ

gp[(vp + u−p)b†
−p + (v−p + up)bp]c†

k+p,σ ck,σ ,

(2)

H2 = 1

L2

∑
kpqσ

gp[uq−puqb†
q−pbq + uq−pvqb†

q−pb†
−q

+ vq−puqb−q+pbq + vq−pvqb−q+pb†
−q]c†

k+p,σ ck,σ , (3)

where gp is the Fourier image of electron-exciton interaction;
cp,σ and bp are the annihilation operators for the electrons
and bogolons, respectively. The Bogoliubov coefficients are
defined as [41]

u2
p = 1 + v2

p = 1

2

{
1 +

[
1 +

(
Ms2

ωp

)2
]1/2}

, (4)

upvp = −Ms2

2ωp
, (5)

where M is the exciton effective mass, s = √
κnc/M is the

sound velocity, κ = e2
0d/ε0ε is the exciton-exciton interaction

strength in the reciprocal space, e0 is the electron charge, ε

is the dielectric constant, ε0 is the dielectric permittivity, and
ωp = sp(1 + p2ξ 2

h )1/2 is the spectrum of bogolons with the
healing length ξh = 1/2Ms.

To find an analytic form of the electron-exciton interac-
tion, we disregard the peculiarities of the exciton internal
motion (relative motion of the electron and hole in the ex-
citon). In monolayers of transition-metal dichalcogenides, the
exciton binding energy is usually very large: It might even
exceed room temperature. Thus, the assumption that an in-
dividual exciton is in its ground state with respect to its
relative electron-hole motion is reasonable, and only the exci-
ton center-of-mass motion plays an important role. Then, the
electron-exciton interaction in direct space reads

g(r − R) = e2
0

4πε0ε

(
1

ree
− 1

reh

)
, (6)

with ree =
√

l2 + (r − R)2 and reh =
√

(l + d )2 + (r − R)2 ;
here, d is an effective size of the boson, which is equal to the
distance between the n- and p-doped layers in the case of an
indirect exciton condensate, and l is the separation between
the 2DEG and the BEC. Performing the Fourier transforma-
tion, we find

gp = e2
0(1 − e−pd )e−pl

2ε0εp
≈ e2

0d

2ε0ε
. (7)

We will consider the contact-interaction case, where pd � 1
and pl � 1 for simplicity.

Using the conventional perturbation theory, one may argue
that H1 � H2 since the density of noncondensed particles is a
small quantity as compared with the condensate density, i.e.,√

ncb†
p � b†

pbp. However, with the Bogoliubov coefficients,
the summation such as vp + u−p in Eq. (2) can drastically
change the situation. In the long-wavelength limit, ξh p �
1, which we consider in this paper, one has ωp ≈ sp and
up ≈ −vp ≈ √

Ms/p. Then, vp + up → 0 whereas upvp →
∞. These estimations give a hunch that the contribution of
H2 should surpass H1.

III. THE ELIASHBERG EQUATIONS

We will work in the framework of the Nambu-Gor’kov
formalism [42,43]. First, let us introduce the two-component
field operator,

�k =
(

ck↑
c†
−k↓

)
, �†

k = (c†
k↑ c−k↓), (8)
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where ckσ is the annihilation operator of an electron with
the momentum k and spin σ . Then, the generalized Green’s
function in the (2 × 2)-matrix form reads

Ĝ(k, τ ) = −〈Tτ�k(τ )�†
k〉, (9)

or using (8), we can write it as

Ĝ(k, τ ) = −
( 〈Tτ ck↑(τ )c†

k↑〉 〈Tτ ck↑(τ )c−k↓〉
〈Tτ c†

−k↓(τ )c†
−k↓〉 〈Tτ c†

−k↓(τ )c−k↓〉
)

. (10)

The diagonal terms in Eq. (10) represent the standard Green’s
functions of electron quasiparticles, whereas the off-diagonal
terms are the Gor’kov’s anomalous Green’s functions. Per-
forming the Fourier transform from the imaginary-time
domain to the Matsubara frequency representation, we have

Ĝ(k, ipk ) =
( G(k, ipk ) F (k, ipk )
F∗(k, ipk ) −G(−k,−ipk )

)
. (11)

To define the bogolons’ Green’s function, we introduce the
notation Ap = upbp + vpb†

−p. Then, the normal and anoma-
lous free Green’s functions of the bogolons read D(p, τ ) =
−〈Tτ Ap(τ )A†

p〉 and A(p, τ ) = −〈Tτ Ap(τ )A−p〉, respectively.
Switching to the Matsubara frequency domain, we find

D(p, iωn) = u2
p

iωn − ωp
− v2

p

iωn + ωp
, (12)

A(p, iωn) = upvp

iωn − ωp
− upvp

iωn + ωp
. (13)

In the long-wavelength limit pξh � 1, the Bogoliubov co-
efficients (4) and (5) read up ≈ −vp, and, consequently,
D(p, iωn) ≈ −A(p, iωn). Using the operators Ap and A†

p, the
bogolon–mediated interaction with the electronic subsystem

given in Eqs. (2) and (3) reads

H1 =
√

nc

L

∑
kpσ

gp(Ap + A†
−p)c†

k+p,σ ck,σ , (14)

H2 = 1

L2

∑
kpqσ

gp(A†
q−pAq)c†

k+p,σ ck,σ . (15)

Henceforth, we perform a perturbation theory expansion over
the weak interacting terms Eqs. (14) and (15) in order to
obtain the Dyson equation for the electron Green’s function.
The general solution of the Dyson equation reads

Ĝ−1(k, ipk ) = Ĝ−1
0 (k, ipk ) − ̂(k, ipk ), (16)

where

Ĝ−1
0 (k, ipk ) = ipkσ0 − ξkσ3 (17)

is the unperturbed Green’s function, σν=0–3 are the Pauli ma-
trices, and ξk is the electron dispersion measured with respect
to the chemical potential ξk = εk − μ.

Following the steps of the standard Eliashberg theory,
we separate the electron self-energy into two terms: the
usual Coulomb contribution ̂c and the electron-bogolon
contribution ̂eb (in full analogy with the electron-phonon
contribution).

The Coulomb contribution is given by

̂c(k, ipn) = − 1

β

∑
p,m

σ3Ĝod (p, ipm)σ3V (k − p), (18)

where V (k − p) are the matrix elements of static screened
Coulomb interaction between the electronic states k and p,
and Ĝod is the off-diagonal component of the Green’s function
[4]. The self-energies of the electron-bogolon (̂1b) and the
electron-bogolon-pair (̂2b) interaction can be calculated by
the Dyson equation up to first order, in accordance with the
diagrams presented in Fig. 1,

̂1b(k, ipk ) =
∑
p,m

ncg2
p

L2β
σ3Ĝ(k − p, ipk − iωm)σ3[2A(p, iωm) + D(p, iωm) + D(−p,−iωm)], (19)

̂2b(k, ipk ) =
m,n∑
p,q

g2
p

L4β2
σ3Ĝ(k − p, ipk − iωm − iωn)σ3[A(q − p, iωm)A(q, iωn) + D(q − p,−iωm)D(q, iωn)], (20)

where pk and ωn are the Matsubara frequencies of the fermions and bosons, respectively. Then (in the long-wavelength limit)
we see that ̂1b → 0 because the normal and anomalous Green’s functions of the bogolon cancel each other out.

For the 2b processes it is not the case, and we introduce the polarization operator P (p, iωn), which reads

P (p, iωm) = − 2

βL4

∑
q,n

A(q − p, iωn + iωm)A(q, iωn)

= −M2s4

2L4

∑
q

1

ωq−pωq

[(
Nq−p − Nq

iωm + ωq − ωq−p
− Nq−p − Nq

iωm − ωq + ωq−p

)
+
(

Nq + Nq−p + 1

iωm + ωq + ωq−p
− Nq + Nq−p + 1

iωm − ωq − ωq−p

)]
.

(21)

In this paper, we will restrict ourselves to the case when the
contribution of Nq terms is negligible. As we have shown
in earlier works [19,20], the Nq-containing correction only

results in quantitative difference (more precisely, it results in
an increase in the critical temperature of the SC transition),
and it is negligible when the size of the condensate is small.
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FIG. 1. Electron self-energy diagrams. The double solid lines stand for the Green’s functions of an electron Ĝ in Eq. (10). The zigzag lines
denote the condensate particles. (Thus, each zigzag line gives the factor

√
nc). The dotted lines represent bogolons (the particles excited from

the condensate). The wiggly lines stand for the electron-exciton interaction gp. Panels (a)–(d) correspond to the 1b process [Eq. (19)], and
panels (e)–(h) correspond to the 2b process [Eq. (20)]. Physically, the diagrams in (a)–(d) describe the excitation of a condensate particle to a
noncondensed state by a moving electron, whereas (e)–(h) describe the condensate polarization due to the moving electron.

Then, the polarization operator simplifies to

P0(p, iωm) = −κ2n2
c

L4

∑
q

1

ωq−pωq

ωq + ωq−p

ω2
m + (ωq + ωq−p)2

,

(22)

and the self-energy can be rewritten in the form,

̂2b(k, ipk ) = −1

β

∑
p,n

g2
k−pP0(k − p, ipk − ipn)

× σ3Ĝ(p, ipm)σ3. (23)

We have already demonstrated, that the self-energy contri-
bution due to the 2b process is dominant ̂2b � ̂1b. We want
to note that all other terms, such as three- and four- (and more)
bogolon-mediated processes give smaller contributions since
all these terms emerge in the perturbative expansion where
the small parameter is electron-exciton interaction strength gp.
The terms ̂1b(2b) are of the same order ∼g2

p, which is the
leading order of the expansion.

To proceed further, it is a common practice to decompose
the matrix self-energy and rewrite it as a linear combination
of Pauli matrices with scalar functions as coefficients [44],

̂(k, ipk ) = ipk[1 − Z (k, ipk )]σ0 + χ (k, ipk )σ3

+φ(k, ipk )σ1 + φ̄(k, ipk )σ2, (24)

where Z (k, ipk ) is the mass renormalization function,
χ (k, ipk ) is the energy shift, φ(k, ipk ) and φ̄(k, ipk ) are the
order parameters. By the gauge transformation [4], we can set
the order parameter φ̄ to zero. Then, using (16) and (17), the
Green’s function reads

Ĝ(k, ipk ) = − 1

�(k, ipk )
{ipkZ (k, ipk )σ0

+ [ξk + χ (k, ipk )]σ3 + φ(k, ipk )σ1}, (25)

�(k, ipk ) = [pkZ (k, ipk )]2 + [ξk + χ (k, ipk )]2

+ [φ(k, ipk )]2. (26)

Replacing (24) and (25) by the exact forms of self-energy in
(18) and (23), we come up with the Eliashberg equations,

Z (k, ipk ) = 1 + T

pkNF

∑
p,n

pnZ (p, ipn)

�(p, ipn)
λ(k, p, k, n), (27)

χ (k, ipk ) = − T

NF

∑
p,n

ξp + χ (p, ipn)

�(p, ipn)
λ(k, p, k, n), (28)

φ(k, ipk ) = T

NF

∑
p,n

φ(p, ipn)

�(p, ipn)
[λ(k, p, k, n) − NFV (k − p)],

(29)

where NF is the density of states per spin at the Fermi level
and

λ(k, p, k, n) = −NF g2
k−pP0(k − p, ipk − ipn)

=
∫ ∞

0

2ω dω

(pk − pn)2 + ω2
α2F (k, p, ω) (30)

is the Eliashberg electron-bogolon spectral function [4] with

α2F (k, p, ω) = − 1

π
Im[P0(k − p, ipk − ipn)]. (31)

The superconducting gap can now be found as

�(k, ipk ) = φ(k, ipk )

Z (k, ipk )
. (32)

For the 2b process, we have

α2F (k, p, ω) = NF g2
k−pκ

2n2
c

2L2

H (ω − s|k − p|)
2πs2

√
ω2 − (s|k − p|)2

,

(33)

where H (ω) is the Heaviside step function (see the details of
the calculation in Appendix A).

The equation �(k, ipk ) = 0 gives the normal-state solu-
tions. The critical temperature Tc can be defined as the highest
temperature for which �(k, ipk ) �= 0. We will use it in what
follows.

IV. RESULTS

In this section, we apply the Eliashberg theory to different
hybrid systems. In particular, we consider 2DEG with the
parabolic dispersion case and the electron gas with the linear
dispersion case.

First of all, let us simplify the Eliashberg equations
(27)–(29) using the following approximations: (i) Since the
superconducting pairing mainly occurs within a narrow en-
ergy window around the Fermi surface (FS), we restrict the
consideration to the electrons with k f [4,44,45]. Then, we
can put χ (k f , ipk ) = 0 and only solve Eqs. (27) and (29); (ii)
we assume the anisotropy of the Fermi surface is weak and,
thus, use the isotropic formulation of the Eliashberg equa-
tions. Then, we can relabel the scalar functions (for brevity):
Z (k = k f , ipn) → Zn.
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In the parabolic dispersion case (and under the approxima-
tions discussed above), Eqs. (27) and (29) read [46] (see the
details of the derivations in Appendix B)

Zn = 1 + πT

pn

∑
ν

pν√
p2

ν + �2
ν

λ(n − ν), (34)

Zn�n = πT
∑

ν

�ν√
p2

ν + �2
ν

[λ(n − ν) − μ∗
c ]. (35)

Here, we introduce the dimensionless Coulomb interaction
μ∗

c . By definition, it represents a double average over the FS
of the term V (k − p) in (29),

μ∗
c = NF 〈〈V (k − p)〉〉FS. (36)

For large class of superconductors [4,44,47], μ∗
c is in the range

of 0.1–0.2. We will use this value instead of calculating the
double-average term.

The λ function in Eq. (34) reads

λ(n − ν ≡ m) = λm√
1 + m2b2

E

, (37)

λm = M2sNF

16πk f

(
e2

0d

ε0ε

)2

F

⎛
⎝arccos φ0,

1√
1 + m2b2

E

⎞
⎠, (38)

bE = πT

sk f
, φ0 = 1

2k f L
, (39)

where m is a an integer number, which indicates the difference
between two Matsubara frequencies; F (φ, m) is the elliptic
integral of the first kind; NF = me/(2π ) with the effective
mass of electron me; and L is the effective size of the con-
densate introduced as the necessary cutoff.

In order to calculate Tc, we will employ the technique
discussed in Ref. [46]. Since the transition temperature is
defined as the point, when the energy gap is infinitesimally
small, the value of Tc can be found by setting � = 0 in all of
the denominators of Eqs. (34) and (35). This gives

Z2n+1 = 1 + 1

2n + 1

∑
v

sgn(2v + 1)λ(n − v), (40)

Z2n+1�2n+1 =
∑

v

�2v+1

|2v + 1| [λ(n − v) − μ∗
c ], (41)

where n and v are the Matsubara frequencies’ indices, ipn =
π (2n + 1)T , and sgn(x) is the signum function. Now, the
equations for Z2n+1 are independent of the gap function �2n+1.
The critical temperature can be found by setting the determi-
nant of the matrix to zero, det Mnv = 0, where

Mnv = δnvZ2n+1 − λ(n − v) − μ∗
c

|2v + 1| . (42)

Furthermore, we can calculate the Tc numerically.
Let us now consider a 2DEG with a linear dispersion in,

e.g., a graphene layer [48–51]. For simplicity, we will dis-
regard the spinor structure of the wave function assuming
that we deal with the doped graphene with the Fermi energy
sufficiently away from the Dirac point. Furthermore, we will
disregard the contribution from different valleys [52,53]. This
approximation is valid since the large nonzero wave-vector
(∼k f ) strongly depresses the interaction gp in Eq. (7).

FIG. 2. Dimensionless critical temperature bi as a function of the
dimensionless coupling constant λ

p(l )
0 . The main plot corresponds

to the case of small λ
p(l )
0 . The inset shows the general case of

arbitrary λ
p(l )
0 . Blue solid line: the results of the calculation by the

Eliashberg equations with bE = πT
sk f

; yellow dashed line: the results

of the calculations by the BCS theory with bBCS = πT
2ωD

. Green
dashed-dot line in the inset shows the asymptotic estimation with
bE =

√
[λp(l )

0 F (arccos φ0, 0.5)]2 − 1 by Eq. (46). We used the di-
mensionless parameter φ0 = 0.01.

Given the assumptions discussed above, we come up with
a similar system of equations as the one for the parabolic
case: Eqs. (34) and (35). For the coupling constant (38) (see
Appendix C), we have

λm = M2s

32π2v f

(
e2

0d

ε0ε

)2

F

⎛
⎝arccos φ0,

1√
1 + m2b2

E

⎞
⎠, (43)

where the definitions of b and φ0 are same as in Eq. (39).
Let us, first, understand the principle dependence of the

critical temperature on the coupling constant. Comparing
Eqs. (37)–(39) and (43), we see that it is convenient to denote
the following dimensionless parameters:

λ
p(l )
0 = M2s

32π2v
p(l )
f

(
e2

0d

ε0ε

)2

, (44)

where v
p(l )
f is the Fermi velocity for the parabolic and linear

cases, respectively. Then, we can investigate the critical tem-
perature in terms of bE = πT/sk f and λ

p(l )
0 (Fig. 2). Let us

compare the critical temperatures calculated using the Eliash-
berg and BCS theories. In BCS, it reads

T BCS
c = γ

π
2ωD exp

(
− 1

χ

)
, (45)

where ωD = Ms2/2 is the frequency cutoff, and γ =
exp C0 with C0 ≈ 0.577 as Euler’s constant. The parame-
ter χ in parabolic [19] and linear [20] cases reads χp(l ) =
λ

p(l )
0 ln(2φ−1

0 )/π . Thus, in BCS we have a different dimen-
sionless temperature bBCS = πT/2ωD (compare with bE).

Figure 2 shows that the Eliashberg and BCS theory
curves converge well when λ

p(l )
0 is small as expected; with

the increase in λ
p(l )
0 , then discrepancies between the two
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FIG. 3. The critical temperature of the SC transition as a func-
tion of condensate density calculated using the Eliashberg theory
for different values of dimensionless Coulomb interaction strength
μ∗

c . We used the parameters typical for MoS2: the electron ef-
fective mass me = 0.46m0 [56] and exciton effective mass M =
m0 with the free-electron mass m0; the dielectric permittivity ε =
4.89; the interlayer separation d = 1.0 nm, and the electron density
ne = 1.5 × 1012 cm−2.

theories become more and more pronounced. As λ
p(l )
0 → ∞,

the asymptotic limit gives a nearly linear dependence of the
Eliashberg critical temperature on the coupling coefficient
λ

p(l )
0 . Such dependence is not typical for the conventional

superconductors discussed in the early works [4,46] in which
the dependence Tc ∼ √

λ in the framework of the Einstein
model was found. This linear behavior can be understood as
the result of the peculiarities of the angular dependence of the
integral in 2D systems [54]. The nearly linear dependence
which we find can be also checked analytically if we only
consider the leading order of (40) and (41) (see the details in
Appendix D) as the lower boundary estimation of the critical
temperature [4,46,55]. The asymptotic behavior reads

bE >

√[
λ

p(l )
0 F (arccos φ0, bE )

]2 − 1. (46)

Since the elliptic integral converges faster as one increases
bE , we can treat F (arccos φ0, bE ) as a constant. The inset
plot in Fig. 2 shows an estimation of the asymptotic be-
havior of the dimensionless critical temperature with fixed
F (arccos φ0, bE = 0.5).

Figures 3 and 4 show the critical temperature of the SC
transition as a function of condensation density. For the
parabolic dispersion, we use the parameters typical for MoS2,
and for the linear dispersion case we use the parameters typi-
cal for graphene.

Another interesting question is the dependence of electron-
bogolon interaction constant on nc and ne. In the zeroth order
of the electron-bogolon interaction constant, from Eq. (44) we
find

λ
p
0 ∝

√
nc

ne
, (47)

λl
0 ∝ √

nc. (48)

This discrepancy in the parametric dependencies can be un-
derstood by recalling the difference between the densities of
states in linear and parabolic cases.

Let us address the remaining assumptions, which we used
in the calculations. First, to derive Eqs. (38) and (43) in
addition to the standard approximations discussed in Sec. IV,
we also approximated the exciton-electron interaction by gp ≈
e2

0d/2ε0ε. Such a simplification is valid if k f d and k f l � 1.
This assumption imposes a restriction on the maximal allowed
value of ne for considered distances d and l . If the separations
d and l are on a nanometer scale, the density of electrons
should be ne � 1013 cm−2.

Second, the polarization operator which we consider in
Eq. (22) does not include the Nq terms as we have already
mentioned. These terms are relatively small when the size of
the condensate LBEC is small as it has been shown in the anal-
ysis in the framework of the BCS theory [19,20] since these
contributions give an integral truncation from L−1

BEC to k f /2.
In other words, we find the lower bound for the SC gap and
the Tc. For electrons, we considered the Green’s function with
account of the finite temperature since we are interested in the
critical temperature of the SC transition. As the earlier works
on bogolon- [19,20] and phonon- [57] mediated SC point
out, in the BCS theory the nonzero terms in (21) contribute
to a nonmonotonous temperature dependence, and they only
enhance the critical temperature. Thus, the simplifications we
used are of technical nature, and they do not qualitatively
change our results or conclusions.

Finally, we want to comment on the concerns regarding the
applicability of our results in the context of the Hohenberg-
Mermin-Wagner theorem [58,59]. This theorem postulates a
nonexistence of the long-range order in infinite 2D systems
at finite temperatures. Indeed, there arise divergencies due
to the presence of fluctuations. To avoid any confusion, we
want to stress that in all the calculations performed in this
paper we considered systems of finite size. As the result, the
magnitude of the thermal fluctuations (of the phase of the

FIG. 4. Critical temperature as a function of condensate den-
sity for the linear dispersion case for different μ∗

c ’s. We used v f =
108 cm/s. Other parameters are the same as in Fig. 3.
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order parameter) increases slowly (logarithmically) with this
size, which justifies the upper-bound estimation of the critical
temperature in the frameworks of the mean-field approach.

V. CONCLUSIONS

We developed the Eliashberg theory of the Bose
condensate-mediated superconductivity in hybrid two-
dimensional Bose-Fermi systems and showed that
bogolon-pair-mediated pairing of electrons represents the
dominant mechanism not only in weak-, but also in the
strong-coupling regime, whereas single-bogolon pairing
is suppressed and, thus, does not play any significant
role. We started with an analytic expression for the
self-energy of electrons in a two-dimensional material
due to their interaction with bogolons; then, we calculated
the electron-bogolon coupling constant in the cases of
parabolic and linear electron dispersions and presented the

corresponding estimations of the critical temperature of
superconducting transition, which turns out relatively high.
It was demonstrated that the critical temperature of the
superconducting transition depends on the dimensionless
coupling constant linearly, which is not common for
the conventional superconductors. We expect our theory
and the estimations to impact such research areas as
low-dimensional superconductors, novel two-dimensional
Dirac materials, and the density functional theory for
mesoscopic superconductivity.

ACKNOWLEDGMENTS

We thank Professor S. Flach and Dr. K. Villegas for useful
discussions. We have been supported by the Institute for Basic
Science in Korea (Project No. IBS-R024-D1) and the Russian
Foundation for Basic Research (Project No. 18-29-20033).

APPENDIX A: THE ELIASHBERG SPECTRAL FUNCTION

Using the definitions Eqs. (22) and (31), we find the Eliashberg spectral function [4],

α2F (k, p, ω) = NF g2
k−p

(
−κ2n2

c

2L2

)∫
dq

(2π )2

−δ(ω − ωq+k−p − ωq)

ωq+k−pωq

= NF g2
k−p

(
−κ2n2

c

2L2

)
I (ω, |k − p|). (A1)

[One can easily verify Eq. (A1) by performing the integration over ω in Eq. (30).] Let us take the integral over q. For that, we
denote p′ = k − p and then deal with the integral,

I (ω, p′) =
∫

dq
(2π )2

(−1)

ωq+p′ωq
δ(ω − ωq+p′ − ωq). (A2)

By denoting q1 = |q + p′| (which we will use instead of the angle integration variable below), we find

I (ω, p′) = 4

(2π )2s3

∫ ∞

0
dq
∫ q+p′

|q−p′|
dq1

(−1)δ( ω
s − q1 − q)√

q2
1 − (q − p′)2

√
(q + p′)2 − q2

1

. (A3)

Now, we switch the variables of integration using the substitutions x = s(q + q1) and y = s(q1 − q), yielding

I (ω, p′) = 2

(2π )2s2

∫ ∞

sp′

dx√
x2 − s2 p′2

∫ sp′

−sp′

dy√
s2 p′2 − y2

(−1)δ(ω − x)

= 2

(2π )2h̄3s2

(−1)H (ω − h̄sp′)√
(ω/h̄)2 − s2 p′2

∫ 1

−1

dz√
1 − z2

= − H (ω − h̄sp′)

2π h̄2s2
√

ω2 − (h̄sp′)2
, (A4)

where H (x) is the Heaviside step function. Substituting Eq. (A4) in (A1), we find the spectral function given in Eq. (33).

APPENDIX B: THE PARABOLIC DISPERSION CASE

Using the Eliashberg spectral function (33), we find

λ(k, p, n, v) =
∫ ∞

0
dω

2ω

(pn − pv )2 + ω2
NF g2

k−p
κ2n2

c

2L2

H (ω − s|k − p|)
2πs2

√
ω2 − (s|k − p|)2

= NF κ2n2
c

2πs2L2

∫ ∞

s|k−p|
dω

ωg2
k−p

(pn − pv )2 + ω2

1√
ω2 − (s|k − p|)2

. (B1)
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Again, using the notation q = k − p and noting that the integral over q only depends on the absolute value of q, we find

λ(k, p, n, v) = NF κ2n2
c |gq|2

4π h̄2s2L2

∫ ∞

(h̄sq)2

dω2

(pn − pv )2 + ω2

1√
ω2 − (h̄sq)2

= NF κ2n2
c |gq|2

4π h̄2s2L2

∫ ∞

0

d�

(pn − pv )2 + (h̄sq)2 + �

1√
�

. (B2)

This integral is analytical (for ab > 0) [60], ∫
dx

(a + bx)
√

x
= 2√

ab
arctan

√
bx

a
. (B3)

Then, denoting αnv ≡ pn − pv we find

λ(k, p, n, v) = NF κ2n2
cg2

k−p

4s2L2
√

α2
nν + (s|k − p|)2

. (B4)

Furthermore, under the assumption of isotropic Fermi surface and considering the pairing to occur on the Fermi surface from
Eq. (27) we find

Zn = 1 + T

pnNF

∑
p,v

pvZv

[pvZv]2 + ξ 2
p + φ2

v

λ(k, p, n, v). (B5)

Taking k = k f , we have

Zn = 1 + T

pnNF

∑
v

L2

π2

∫
d p

pZv pv

p2
vZ2

v + ξ 2
p + φ2

v

∫ k f +p

k f −p
dq

q√
q2 − (k f − p)2

√
(k f + p)2 − q2

NF κ2n2
cg2

q

4s2L2
√

α2
nν + (sq)2

, (B6)

where q = k f − p. Substituting p = √
2me(μ + ε) yields

Zn = 1 + T

pn

∑
v

∫
dε

me pvZv

p2
vZ2

v + ξ 2
p + φ2

v

∫ kF +p

kF −p
dq

L2

π2

qκ2n2
cg2

q

4s2L2
√

α2
nv + s2q2√

q2 − (
k f −

√
k2

f + 2meε
)2
√(

k f +
√

k2
f + 2meε

)2 − q2

≈ 1 + T

pn

∑
v

∫
dε

pvZv

p2
vZ2

v + ξ 2
p + φ2

v

∫ k f +p

k f −p
dq

qmeκ
2n2

cg2
q

4s2π2
√

α2
nv + s2q2

1

q
√

4k2
f − q2

, (B7)

where switching to the last line in (B7) we made the perturbative expansions using 2meε � k2
f .

Furthermore, we can apply the residue theorem to take the integral over ε. Also, in the integral over q we change the integral
limit to p = k f ,

Zn = 1 + T

pn

∑
v

π pv√
p2

v + �2
v

∫ 2k f

0

meκ
2n2

cg2
q

4s2π2
√

α2
nv + s2q2

dq√
4k2

f − q2

= 1 + T

pn

∑
ν

pv√
p2

v + �2
v

∫ 2sk f

0
dx

meκ
2n2

cg2
q

4s2π

1√
α2

nv + x2

1√
4s2k2

f − x2

≈ 1 + T

pn

∑
ν

pv√
p2

v + �2
v

meκ
2n2

cg2
0

4s2π

∫ 2sk f

0
dx

1√
α2

nv + x2

1√
4s2k2

f − x2
, (B8)

where the approximation,

g2
q = e4

0(1 − exp[−qd])2 exp[−2ql]

4ε2ε2
0 q2

≈ e4
0d2

4ε2ε2
0

≡ g2
0 (B9)

was used. To proceed with Eq. (B8), we can use the table integral [60],∫ b

u

dx√
(x2 + a2)(b2 − x2)

= F (γ , r)√
a2 + b2

(b > u � 0), (B10)
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where F is the elliptic function of the first kind, and

γ = arccos
u

b
, r = b√

a2 + b2
. (B11)

Finally,

Zn = 1 + πT

pn

∑
v

pv√
p2

v + �2
v

λ(n − v). (B12)

Performing a similar procedure, we obtain Eq. (35).

APPENDIX C: THE LINEAR DISPERSION CASE

For the linear dispersion case, we start the derivation from Eq. (B6),

Zn = 1 + T

pnNF

∑
v

L2

π2

∫
d p

pZv pv

p2
vZ2

v + ξ 2
p + φ2

v

∫ k f +p

k f −p
dq

q√
q2 − (k f − p)2

√
(k f + p)2 − q2

NF κ2n2
cg2

q

4s2L2
√

α2
nν + (sq)2

, (C1)

where q = k f − p and p = ±(ε + μ)/v f with v f as the Fermi velocity. Without the loss of generality, we assume the n-doping
case of graphene, i.e., μ > 0. Then, the wave vector reads [61]

p =
{

− ε+μ

v f
(ε < −μ)

ε+μ

v f
(−μ < ε)

, (C2)

and we have

Zn = 1 + T

pn

∑
v

⎡
⎢⎢⎣
∫ ∞

−μ

dε

(
ε + μ

v2
f

)
pvZv

p2
vZ2

v + ξ 2
p + φ2

v

1√
q2 − (2k f + ε

v f
)2

√(
ε
v f

)2
− q2

+
∫ −μ

−∞
dε

(
ε + μ

v2
f

)
pvZv

p2
vZ2

v + ξ 2
p + φ2

v

1√
q2 −

(
ε
v f

)2
√(

2k f + ε
v f

)2
− q2

⎤
⎥⎥⎦ L2

π2

∫ kF +p

kF −p
dq

qκ2n2
cg2

q

4s2L2
√

α2
nv + s2q2

. (C3)

Assuming ε
v f

� k f and ε
v f

� q, we can write

Zn ≈ 1 + T

pn

∑
v

⎡
⎣∫ ∞

−∞
dε

(
ε

v2
f

)
pvZv

p2
vZ2

v + ξ 2
p + φ2

v

1√
q2
(
4k2

f − q2
) +

∫ ∞

−∞
dε

(
μ

v2
f

)
pvZv

p2
vZ2

v + ξ 2
p + φ2

v

1√
q2
(
4k2

f − q2
)
⎤
⎦

× L2

π2

∫ k f +p

k f −p
dq

qκ2n2
cg2

q

4s2L2
√

α2
nv + s2q2

. (C4)

The integrand in the first line represents an odd function of ε, and, thus, it gives a vanishing contribution. For the rest terms in
the equation above, we apply the residue theorem to take the integral over ε. Also, in the integral over q, we change the limit of
integration to p = k f ,

Zn = 1 + T

pn

∑
v

π pv√
p2

v + �2
v

∫ 2k f

0

μκ2n2
cg2

q

4s2π2v2
f

√
α2

nv + s2q2

dq√
4k2

f − q2

= 1 + T

pn

∑
ν

pv√
p2

v + �2
v

∫ 2sk f

0
dx

μκ2n2
cg2

q

4s2v2
f π

1√
α2

nv + x2

1√
4s2k2

f − x2

≈ 1 + T

pn

∑
ν

pv√
p2

v + �2
v

μκ2n2
cg2

0

4s2v2
f π

∫ 2sk f

0
dx

1√
α2

nv + x2

1√
4s2k2

f − x2
. (C5)

Using the relation given in Eqs. (B10) and (B11), we find

Zn = 1 + πT

pn

∑
v

pv√
p2

v + �2
v

k f κ
2n2

cg2
0

4s2π2v f

1√
α2

nv + 4s2k2
f

F

⎛
⎝arccos

1

2k f L
,

2sk f√
α2

nv + 4s2k2
f

⎞
⎠. (C6)
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Introducing the quantities,

λ(n − v ≡ m) = λm√
1 + m2b2

E

, (C7)

λm = M2s

32π2v f

(
e2

0d

ε0ε

)2

F

⎛
⎝arccos φ0,

1√
1 + m2b2

E

⎞
⎠, (C8)

bE = πT

sk f
, φ0 = 1

2Lk f
, (C9)

we come up with a relatively simple final expression for the mass renormalization function,

Zn = 1 + πT

pn

∑
v

pv√
pv + �v

λ(n − v). (C10)

APPENDIX D: THE ASYMPTOTIC LIMIT

Here, we will show the asymptotic limit with two different
methods.

First, following the arguments discussed in Ref. [46],
we can assume bE to be large. Then, the leading-order
contribution in (37) or (43) is

λ(0) = λ
p(l )
0 F (arccos φ0 ≡ φ̃0, 1), (D1)

with zero Matsubara frequency index and we have neglected
the terms λ(n) with |n| > 1. Then, Eqs. (40) and (41) are trun-
cated. For Eq. (40), we find Z±1 = 1 + λ(0), and for Eq. (41)
we have Z±1�±1 = �±1λ(0) + �∓1λ(±1).

This results in a self-consistent equation,

⎡
⎣ χ√

1 + b2
E

F

⎛
⎝φ̃0,

1√
1 + b2

E

⎞
⎠
⎤
⎦

2

= 1. (D2)

Furthermore, we can assume F (φ̃0,
1√

1+b2
E

) to be constant

for simplicity since it converges to a constant when the tem-
perature increases as is shown in Fig. 5. Then, we find the

FIG. 5. Elliptic integral F (arccos φ0, bE ) as a function of dimen-
sionless parameter bE .

following estimation for Tc,

bE =
√

χ2F2
c − 1, (D3)

where the symbol Fc means we have fixed bE as a constant
inside F (φ̃0,

1√
1+b2

E

).

Alternatively, we can calculate the lower boundary of crit-
ical temperature using the method introduced in Refs. [4,55].
From (33) we find

α2F (ω) =
∑
kp

WkWpα
2F (k, p, ω), (D4)

where Wk = δ(εk − ε f )/NF . Considering the parabolic case,
the averaged spectral function reads

α2F (ω) = 2sk f λ
p
0

π

∫ 2k f

0

H (ω − sq)dq√
(ω2 − s2q2)

(
4k2

f − q2
) , (D5)

where λ
p
0 is defined in (44). Then, the inequality from

Ref. [55] gives

1 >

∫ ∞

0
dω

2ωα2F (ω)

(2πTc)2 + ω2
, (D6)

where Tc is the lower estimation of the critical temperature.
The integral in (D6) gives (bc ≡ 2πTc),∫ ∞

0
dω

2ωα2F (ω)

(2πTc)2 + ω2

= 2sk f λ
p
0

π

∫ ∞

sq

2ω dω

ω2 + b2
c

∫ 2k f

0

dq

(ω2 − s2q2)
(
4k2

f − q2
)

= 2sk f λ
p
0

π

∫ 2k f

0

dq√
4k2

f − q2

∫ ∞

0

dω(
b2

c + s2q2 + ω
)√

ω

= 2sk f λ
p
0

∫ 2k f

0

dq√(
b2

c + s2q2
)(

4k2
f − q2

)
= 2sk f λ

p
0

F (γ , r)√
4s2k2

f + b2
c

, (D7)
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where γ = arccos 1
2k f L = arccos φ0 and r = 2sk f√

4s2k2
f +b2

c

=
1√

1+b2
E

. Introducing the dimensionless parameters defined in

(39), we find

1 > λ
p
0

F
(

arccos φ0,
1√

1+b2
E

)
√

1 + b2
E

, (D8)

giving

bE >

√(
λ

p
0Fc

)2 − 1. (D9)

A similar routine allows to find similar dependence in the
linear-dispersion case.
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