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We develop a microscopic theory of multipole interactions and orderings in 5d2 transition metal ion com-
pounds. In a cubic environment, the ground state of 5d2 ions is a non-Kramers Eg doublet, which is nonmagnetic
but hosts quadrupole and octupole moments. We derive low-energy pseudospin one-half Hamiltonians de-
scribing various spin-orbital exchange processes between these ions. Direct overlap of the t2g orbitals results
in bond-dependent pseudospin interactions similar to those for eg orbitals in manganites, except for different
orientations of the pseudospin easy axes. On the other hand, the superexchange process, where two different
t2g orbitals communicate via oxygen ions, generates new types of pairwise interactions. In perovskites with
180◦ bonding, we find nearly equal mixture of Heisenberg and eg orbital compass-type couplings. The 90◦

superexchange in compounds with edge-shared octahedra is most unusual: Despite highly anisotropic shapes of
the Eg wave functions, the pseudospin interactions have no bond dependence. We consider the Eg pseudospin
models on various lattices and obtain their ground state properties using analytical and numerical methods. On
the honeycomb lattice, we observe a duality with the extended Kitaev model, and use it to uncover a critical point
where the quadrupole and octupole states are exactly degenerate. On the triangular lattice, an exotic pseudospin
state, corresponding to the coherent superposition of vortex-type quadrupole and ferri-type octupole orders, is
realized due to geometrical frustration. This state breaks both spatial and time-reversal symmetries, but possesses
no dipolar magnetism. We also consider Jahn-Teller coupling effects and lattice mediated interactions between
Eg pseudospins, and find that they support quadrupole order. Possible implications of the results for recent
experiments on double perovskite osmates are discussed, including effects of local distortions on the pseudospin
wave functions and interactions.
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I. INTRODUCTION

As a hallmark of strong correlations, the spin-orbital mul-
tiplet structure of ions is largely preserved in transition metal
(TM) compounds. At low temperatures, the spin and orbital
degeneracy of these multiplet levels has to be lifted one way
or another. Apart from exotic means of the entropy quenching
such as formation of quantum spin and orbital liquids, this is
typically done by long-range ordering of spins and orbitals,
or their composites, through symmetry breaking phase transi-
tions.

Broadly speaking, the interactions driving these phase
transitions have three different microscopic origins: (a)
Jahn-Teller orbital-lattice coupling, (b) Kugel-Khomskii type
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spin-orbital exchange, and (c) relativistic spin-orbit cou-
pling (SOC). Depending on the multiplet structure of
constituent ions and the nature of chemical bonds in a
crystal, the interplay between these couplings may take var-
ious forms, resulting in rich spin-orbital physics in TM
compounds.

Lifting the orbital degeneracy via a cooperative Jahn-
Teller (JT) structural transition is most common in eg-orbital
systems like manganites. At this transition, the orbitals are
(self)trapped by static lattice distortions. The JT driven orbital
order is essentially independent of spins and happens well be-
fore magnetic ordering. In this picture, the low-energy physics
is given by “spin-only” Hamiltonians, with the exchange pa-
rameters dictated by the Goodenough-Kanamori rules [1,2].

In t2g-orbital systems with relatively weak JT coupling, the
spin S and orbital L degrees of freedom are no longer sepa-
rated [3]. They may instead develop joint dynamics driven by
the spin-orbital exchange interactions, as well as by intraionic
SOC, which unifies the two sectors by forming total angular
momentum J = S + L. The latter root to the “spin-orbital-
entangled” physics is especially relevant to 4d and 5d electron
compounds.

In the strong SOC limit, the JT orbital-lattice coupling
and Kugel-Khomskii exchange interactions have to be
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reformulated in terms of total angular momentum J of the
lowest multiplet level, as is usually done in 4 f electron sys-
tems. This leads to a number of important consequences. First,
the JT-orbital order is “converted” into quadrupole order of
J moments, involving also the spin sector, which was ini-
tially “blind” to JT physics. Effective JT coupling is typically
reduced, due to a partial suppression of the initial orbital
degeneracy. Second, exchange interactions between effective
J moments (“pseudospins”) may become highly anisotropic
and bond-directional; this is due to the nonspherical shape
of the spin-orbit entangled wave functions. Third, pseudospin
states may carry not only dipole or quadrupole moments, but
also higher-rank multipoles such as a magnetic octupole.

The physical content of pseudospin wave functions is de-
cided by a filling factor n of d-orbital levels. In combination
with the lattice and chemical bonding geometry in a given
material, this leads to a variety of nontrivial interactions and
ground states among different dn compounds. This includes
a possible realization of Kitaev spin-liquids, excitonic mag-
netism, and multipole orders (for a recent review, see Ref. [4]).

In this paper, we focus on spin-orbital physics in com-
pounds based on d2 ions. The d2 configuration with two-
electron spin S = 1 and effective orbital moment L = 1 is
special, because its total angular momentum J = 2 is isomor-
phic (in terms of the degeneracy and symmetry properties)
to a single d-electron orbital moment l = 2 [4]. This for-
mal analogy has interesting implications for the symmetry
and physical properties of d2 ions. Namely, in a cubic en-
vironment, a J = 2 level has to split into Eg doublet and
T2g triplet levels by an energy �c [see Fig. 1(a)], just like
the d-electron l = 2 level splits into eg and t2g-orbital levels
by a cubic crystal field [5]. While the T2g triplet hosts an
effective angular momentum J̃ = 1 (with a familiar relation
J̃ = −J) [6], the non-Kramers Eg doublet is similar to an
eg-orbital doublet, which carriers no dipole but the quadrupole
and octupole moments instead [7–10]. This implies that d2

ions with non-Kramers Eg ground states may show high-rank
multipole orders, similar to rare-earth f 2 non-Kramers �3 ions
[11]. We note that while the non-Kramers doublets d2(Eg),
d1(eg), and f 2(�3) share the same symmetry, their “internal”
structure and hence physical properties (e.g., exchange inter-
actions and orderings) are different, as we will see below. As
the cubic splitting �c increases with the strength of SOC,
the spin-orbital entangled Eg multipoles are most protected
and realized in materials based on heavy, especially 5d2,
transition-metal ions.

Experimentally, a single phase transition around 30–
50 K is observed in 5d2 double perovskite (DP) compounds
[12–15]. This is very different from 5d1 Kramers ion DPs,
which show two separate transitions [16–19], corresponding
to quadrupole (structural) and dipole orders of J = 3/2 states
[20,21]. Having a single transition is natural for pseudospin-
1/2 doublet systems, and this clearly points to the Eg doublet
physics in 5d2 DPs. However, the precise nature of this tran-
sition is not yet fully established. The structural changes at
this transition, if any, are found to be below 0.1% [12]. While
no magnetic Bragg peaks were seen in neutron diffraction
data, time-reversal (TR) symmetry breaking is detected by
muon spin relaxation. To reconcile these observations, a ferro-
type octupolar order of the Eg doublets has been proposed
[12,22,23].

FIG. 1. (a) Cubic splitting �c of the J = 2 level, and the spatial
shapes of Eg-doublet wave functions (see also Fig. 2 of Ref. [4]).
Right panel shows the pseudospin (sx, sy, sz) coordinate axes with
respect to oxygen octahedra. (b) Direct hopping between xy orbitals
in honeycomb (left) and double perovskite (right) lattices, result-
ing in bond-dependent pseudospin τ interactions Eq. (10) between
spin-orbit entangled Eg states. (c) Two-orbital superexchange via
180◦ Me-O-Me bonding geometry. Hopping is orbital conserving:
xz ↔ xz and yz ↔ yz. This process results in pseudospin interac-
tions Eq. (13), comprising isotropic Heisenberg and bond-dependent
compass-type couplings. (d) Two-orbital superexchange via 90◦

bonding geometry. Hopping interchanges the orbital labels: xz ↔ yz.
This process leads to the interactions Eq. (15), which are anisotropic
in pseudospin space but have no bond dependence.

The octupole is a third-rank magnetic multipole, which car-
ries no dipole moment, and its long-range order is observed in
rare-earth compounds (see Ref. [11] for a review of multipole
orders). The possibility of octupolar order in d-electron sys-
tems is intriguing. It is actually quite unexpected because an
Eg doublet is subject to JT physics: its partners have different
charge density shapes (planar and elongated), see Fig. 1(a).
Therefore, a conventional quadrupole order like in eg-orbital
systems [2] is the most natural instability to expect in the
first place. To realize the octupolar order, exchange interac-
tions between the octupole moments must be strong enough
to overcome the quadrupolar interactions contributed by the
Kugel-Khomskii exchange and orbital-lattice JT couplings.

Early theoretical work [24] on d2 DP systems with strong
SOC assumed that cubic splitting of the J = 2 level �c is
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smaller than the exchange couplings and therefore neglected
it. The obtained phase diagram contains dipolar and quadrupo-
lar ordered states. Here we develop a theory of d2 electron
systems starting from the opposite limit, i.e., when cubic
splitting �c is large and the Eg doublet is well separated from
the virtual T2g states, as actually seen in experiment [12].
Having in mind 5d2 materials other than double perovskite
compounds, we keep the discussion as general as possible,
considering various spin-orbital exchange processes typical in
TM oxides. The resulting Eg-doublet interactions are repre-
sented in terms of pseudospin one-half Hamiltonians. In most
cases, the interactions are dominated by quadrupolar cou-
plings. In a 90◦ exchange geometry however, the quadrupole
and octupole channels are equally present, and effective in-
teractions on a single bond can be written in a Heisenberg
form with no preference for either of these two channels.
The resulting multipole orders of Eg doublets in different
lattices are considered. On a honeycomb lattice, we show
that the Eg-pseudospin model can be mapped to the extended
Kitaev model, thereby uncovering a hidden SU(2) symmetry
point that separates quadrupole and octupole orders. The pseu-
dospins on a geometrically frustrated triangular lattice show
more complex phase behavior, including a coherent mixture of
different rank (quadrupole and octupole) orders in the ground
state. The order parameters are reduced by quantum fluctua-
tions. In DP lattices, we find that the exchange interactions
favor a quadrupole order.

We further discuss orbital-lattice coupling effects, and
show that JT phonon-mediated interactions cooperate with
exchange interactions to support quadrupolar order. This is
similar to conventional eg-orbital systems. We suggest that
in DP lattices, where the magnetic ions are widely separated
and have no common oxygen, a dynamical Jahn-Teller ef-
fect may develop to reduce the structural distortions induced
by quadrupolar order. We also consider modifications of the
pseudospin wave functions by symmetry lowering distortions
(caused by site disorder or other defects), and find that they
induce a magnetic dipole moment on the Eg doublet. In gen-
eral, d2 compounds represent an interesting class of materials
where all three main actors—the electron exchange, orbital-
lattice interaction, and relativistic SOC—play an essential role
in determining the ground states and low-energy excitations.

The paper is organized as follows: Section II introduces
the Eg-doublet states and their pseudospin-1/2 description.
In Sec. III, we derive pseudospin Hamiltonians considering
different orbital exchange geometries, which are typical in
TM compounds. Section IV studies pseudospin orderings and
excitations on various lattice structures. Section V discusses
Jahn-Teller coupling and disorder effects in the context of
experiments in DP compounds. Section VI summarizes the
main results.

II. NON-KRAMERS Eg DOUBLET AND PSEUDOSPINS

The Eg-doublet wave functions written in the Jz basis are:
1√
2
(|2〉 + |− 2〉) and |0〉 [6]. These functions follow from

diagonalization of the octahedral crystal field operator for
J = 2 ions [12,22], and as expected on symmetry grounds,
are similar to the eg doublet states of a d electron with l = 2.
We regard them as pseudospin s = 1/2 states |↑〉 and |↓〉,

correspondingly. To get an idea about the orbital shapes of
the Eg wave functions, we use Clebsch-Gordan coefficients
and represent them in terms of two-electron spin and orbital
|Sz, Lz〉 states:

|↑〉 = 1√
2

(|1, 1〉 + |− 1,−1〉), (1)

|↓〉 = 1√
6

(|1,−1〉 + 2|0, 0〉 + |− 1, 1〉). (2)

In the pseudospin-up state with Lz = ±1, one of the elec-
trons must occupy lz = 0 planar orbital d0 = dxy, flattening
the overall charge density as shown in Fig. 1(a). However, the
pseudospin-down state (2) is dominated by an Lz = 0 compo-
nent |d+1d−1〉, where the electrons occupy lz = ±1 complex
orbitals d±1 = ∓(dyz ± idzx )/

√
2; thus, its charge density is

elongated towards apical oxygen Oz. Under cubic rotations,
the Eg wave functions (1) and (2) transform similar to eg-
orbital pair x2 − y2 and 3z2 − r2.

Within the Eg doublet, the J = 2 quadrupole operators

O3 = 1

6

(
2J2

z − J2
x − J2

y

)
, (3)

O2 = 1

2
√

3

(
J2

x − J2
y

)
, (4)

have matrix elements 〈± 1
2 |O3| ± 1

2 〉 = ±1 and 〈± 1
2 |O2| ∓

1
2 〉 = 1. Thus, the following correspondence between the
pseudospin sz and sx components, and Eg quadrupoles fol-
lows: sz = 1

2 O3 and sx = 1
2 O2. The third component sy =

1
2 Txyz describes the octupolar moment Txyz = 1√

3
JxJyJz with

threefold symmetry axis [111]. The projections of the octahe-
dral x, y, z axes onto the two-dimensional pseudospin (sz, sx )
plane [111] make 120◦ angles between them, and the pseu-
dospin sz axis is parallel to the octahedral z axis projection, see
Fig. 1(a). This is the most natural choice, because sz is related
to the O3 quadrupole moment (3) directed along z axis. As we
will see below, this also results in one-to-one correspondence
between the exchange bond labels γ ∈ {x, y, z} and octahedral
(x, y, z) axes. The basis rotations within the (sz, sx ) plane
by φ = 2π/3 correspond to the cyclic permutations among
Jx, Jy, Jz. Finally, we note that the sz and sx operators are
TR-even, while the sy octupole is TR-odd; this implies that the
pairwise interactions of the type sz

i s
y
j and sx

i sy
j are not allowed,

unless TR symmetry is broken.
Following eg-orbital pseudospin formalism [2,25], we in-

troduce the following pseudospin combinations:

τγ = cos φγ sz + sin φγ sx, (5)

τ̄γ = − sin φγ sz + cos φγ sx. (6)

Here, the pseudospin index γ = (z, x, y) also specifies the cor-
responding angles φγ = (0, 2π/3, 4π/3). In essence, (τγ , τ̄γ )
play the role of (sz

γ , sx
γ ) operators defined in the rotated basis
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of pseudospin functions:

|↑〉γ = cos(φγ /2)|↑〉 + sin(φγ /2)|↓〉, (7)

|↓〉γ = − sin(φγ /2)|↑〉 + cos(φγ /2)|↓〉. (8)

Physically, τx (τy) and τ̄x (τ̄y) correspond to the quadrupolar
operators of 3x2 − r2 (3y2 − r2) and y2 − z2 (z2 − x2) sym-
metries, respectively. The notations τγ and τ̄γ are useful since
one may derive the exchange Hamiltonian H(γ ) for γ = z type
bonds in terms of (sz, sx ) pair, and then restore H(γ ) for all γ

by simply replacing sz → τγ and sx → τ̄γ . In perovskites with
180◦ bonding, the z-type bond is parallel to the octahedral z
axis; while in other cases, e.g., in a honeycomb lattice, the z-
type bond is orthogonal to the octahedral z axis (a convention
also used in the Kitaev model literature).

To derive pseudospin exchange interactions, one has to
project Kugel-Khomskii type spin-orbital Hamiltonians—
which are already known from previous works—onto the
low-energy Eg-doublet subspace. We note that conventional
eg-orbital exchange interactions operate in the quadrupolar
sector (sz, sx ) exclusively [2]. In contrast, we will see below
that the Eg “orbital” exchange may involve interactions be-
tween the octupole moments sy, as well; this is because the
Eg-pseudospin states are spin-orbit entangled objects. Com-
bined with the specific hopping geometry of t2g orbitals, this
results in a nontrivial structure of the Eg interactions. We con-
sider below some basic exchange processes, which commonly
appear in transition metal compounds.

III. PSEUDOSPIN EXCHANGE HAMILTONIANS

A. Single-orbital exchange: Direct t2g orbital overlap

We start with the simple case where one specific orbital is
active on a given nearest-neighbor (NN) exchange bond. Two
examples of single-orbital coupling are shown in Fig. 1(b):
direct dxy-orbital hopping on z-type bonds in the honeycomb
lattice, and dxy-orbital hopping in the ab plane of the DP lattice
[24]. In this case, we expect that the Eg exchange Hamiltonian
is similar to that for eg orbitals in ferromagnetic manganites.
Indeed, spin-orbit Eg and pure orbital eg states have the same
(�3) symmetry properties. Moreover, the Kugel-Khomskii eg-
exchange process also involves a single-orbital, specific to a
given bond [2].

Neglecting Hund’s coupling effects in the intermediate
states, direct hopping −td (d†

xy,idxy, j + H.c.) gives the follow-
ing exchange Hamiltonian, written in terms of spin S = 1 and
orbital L = 1 moments of a d2 ion [26]:

H(c)
i j = t2

d

U

[
(Si · S j + 1)L2

ziL
2
z j −L2

zi−L2
z j

]
. (9)

For the x (y) bonds where the dyz (dzx) orbital exchange is ac-
tive, Lz is replaced by Lx (Ly). Projection of this Hamiltonian
onto the Eg subspace results in

H(γ )
i j (d ) = Jτ τiγ τ jγ , (10)

with Jτ = 4
9

t2
d

U , and τγ given by Eq. (5). This interaction has
the same structure as the Kugel-Khomskii eg-orbital Hamilto-
nian, but with the reduced exchange constant due to a small
fraction of the active orbital (e.g., dxy for the z bond) in

the two-electron Eg wave function. Representative values of
td ∼ 0.1 − 0.2 eV and U ∼ 2 eV would give an energy scale
of Jτ ∼ 2 − 9 meV (the lower end is appropriate for DP lattice
where d-ions are well separated and thus hopping td is small).

We note that there is a subtle difference between Eq. (10)
and the Kugel-Khomskii eg exchange in perovskites [2]. In
the latter, the active eg orbital (say 3z2 − r2 on z bond)
is quasi-one dimensional and bond-oriented, thus enforcing
pseudospins τγ to be aligned along the interacting γ -bond
directions (hence the name “pseudodipolar” or ”compass”
model [2]). In contrast, the τγ quadrupoles in Eq. (10) try to
avoid the bond directions; e.g., for z-type bond we have sz

i s
z
j

coupling but with the Ising sz axis being perpendicular to the
z-bond direction. Physically, the pseudospin orientation spec-
ifies the shape of the quadrupolar charge distribution and can
be probed in the experiment. Formally however, the two mod-
els can be converted into each other by a 90◦ rotation within
the (sx, sz) quadrupolar plane [i.e., replacing τ in Eq. (10)
by τ̄ ]. This point has to be kept in mind while comparing
the present τ model results with those in canonical compass
model studies [27–31].

The bond-dependent nature of the interactions in Eq. (10)
brings about frustration effects intrinsic to Kugel-Khomskii
type spin-orbital models [2] and their descendants [3,31].
Typically, this frustration is resolved by order-from-disorder
mechanism, see, e.g., Refs. [32–34].

B. Two-orbital superexchange: 180◦ bonding geometry

This case is typical for a metal-oxygen-metal (Me-O-
Me) superexchange process in perovskites, see Fig. 1(c). On
the z-type bond, two orbitals a = dyz and b = dzx equally
contribute, and hopping is orbital-conserving: −t (a†

iσ a jσ +
b†

iσ b jσ ). The spin-orbital Hamiltonian (at JH = 0) reads as
[35]

H(γ )
i j = t2

U

[
(Si · Sj + 1)O(γ )

i j + (
Lγ

i

)2 + (
Lγ

j

)2]
, (11)

where orbital operator for z type bond reads as

O(z)
i j = (

Lx
i Lx

j

)2 + (
Ly

i Ly
j

)2 + Lx
i Ly

i Ly
jL

x
j + Ly

i Lx
i Lx

j L
y
j . (12)

Operators O(x) and O(y) for x and y bonds follow from cubic
permutations among Lx, Ly, Lz.

A projection of the above Hamiltonian onto the Eg sub-
space gives

H(γ )
i j (180◦) = J

[
si · s j + 2

3τiγ τ jγ
]
, (13)

with the exchange constant J = 2
3

t2

U . In this equation, the
Heisenberg term gives an equal coupling in quadrupolar
(sx, sz ) and octupolar sy sectors. This term is not present in the
Kugel-Khomskii eg-orbital Hamiltonian, but is realized here
because the Eg orbitals have a complex internal structure, and
they are made of t2g orbitals with hopping rules different from
those for eg orbitals.

The second bond-dependent τγ term in Eq. (13) is a direct
analog of the Kugel-Khomskii eg-orbital exchange. It operates
only in the quadrupolar channel, thus disfavoring octupolar
correlations. It is important to note that the easy axis orien-
tations in this term exactly coincide with the bond directions,
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as dictated by the shapes of the active complex orbitals, e.g.,
∓(dyz ± idzx )/

√
2 orbitals having rotational symmetry around

z bond (like 3z2 − r2 axial symmetry in eg models). Thus the
Eg pseudospins in the 180◦ bonding geometry behave exactly
as the eg-orbital compasses do in cubic lattices [2], orienting
themselves along the bond directions. This follows from a
general observation that in case of axial symmetry, the spin-
1/2 anisotropy term should have a dipole-dipole interaction
form [36]. For the same reason, the compass-like τ interaction
also appears for non-Kramers doublets in f 2 electron system
[37]. Due to differences between d- and f -orbital hopping ge-
ometries, however, the isotropic term in Eq. (13) is not present
in the f 2 case. On square or cubic lattices, we expect that the
Hamiltonian (13) would have two-sublattice quadrupolar or-
der, with alternating planar and elongated Eg states, as selected
by the anisotropic τ term via order-from-disorder mechanism.

C. Two-orbital superexchange: 90◦ bonding geometry

This process is typical for nearest-neighbor Me-O2-Me
superexchange in delafossite derived structures with edge
shared octahedra, see Fig. 1(d). On the z-type bond, two
orbitals a = dyz and b = dzx equally contribute again, but
hopping is orbital nonconserving: −t (a†

iσ b jσ + b†
iσ a jσ ). The

resulting spin-orbital Hamiltonian reads as in the 180◦ case,
see Eq. (11), but now with the modified orbital part [i.e.,
interchanging Lx

j ↔ Ly
j in Eq. (12)] [35]:

O(z)
i j = (

Lx
i Ly

j

)2 + (
Ly

i Lx
j

)2 + Lx
i Ly

i Lx
j L

y
j + Ly

i Lx
i Ly

jL
x
j . (14)

The orbital nonconservation during the hoppings has dramatic
consequences for the exchange symmetry, as observed previ-
ously in spin-orbit J = 1/2 [3,38] and J = 0 [35] systems. In
the present non-Kramers Eg doublet case, this results in the
pseudospin Hamiltonian

Hi j (90◦) = J
(
sy

i sy
j − sx

i sx
j − sz

i s
z
j

)
, (15)

which is completely different from Hi j (180◦) in Eq. (13), but
the coupling constant remains the same: J = 2

3
t2

U . This result
is remarkable in several aspects. It has no γ -bond dependence,
since the quadrupolar (sx, sz) part is isotropic and does not
change under the rotations (5) and (6), and the octupolar sy

moment is not affected by C3 rotations around [111] axis and
is thus independent of γ as well. This is unlike the d5 Kramers
doublet case, where the cubic rotations affect all three com-
ponents of the J = 1/2 vector, via cyclic permutations of its
x, y, z components (see, e.g., Eq. (5.8) in Ref. [3]). Neverthe-
less, SOC results in strong exchange anisotropy: quadrupoles
are ferro-correlated, while the octupolar components sy are
coupled in an antiferro-fashion.

In bipartite (e.g., honeycomb) lattices, this anisotropic
Hamiltonian can conveniently be converted into an AF
Heisenberg form Jsi · s j , by changing the sign of the sx and
sz components on one of the sublattices; such hidden symme-
tries are common to spin-orbit pseudospin-1/2 Hamiltonians
[3,39,40]. After this transformation, one observes an exact
degeneracy between quadrupole and octupolar orderings, with
the out-of-plane Goldstone mode representing a smooth ro-
tation from one type order to the other one at no energy
cost. Such exact degeneracy and coherent mixture of different

(even/odd) rank order parameters and related gapless modes
is rather unusual, but have previously been discussed in the
context of t2g-orbital Hamiltonians, see Refs. [3,41] for de-
tails.

IV. PSEUDOSPIN ORDER: QUADRUPOLAR VERSUS
OCTUPOLAR STATES

In this section, we discuss the phase behavior and excita-
tions of the Eg pseudospin models on different lattices.

A. Simple cubic lattice

The two-orbital 180◦-exchange Hamiltonian (13) is ap-
plicable to perovskite lattices. As we already mentioned in
that section, we expect a two-sublattice quadrupolar order in
this case. This is conceptually similar to eg-orbital order in
3d systems; the only difference is that the Eg “orbitals” are
spin-orbit coupled objects. Like in the eg-orbital case, both
exchange and JT couplings will contribute to the quadrupolar
ordering, and they typically support each other. Formally, the
Hamiltonian (13), comprising an AF Heisenberg interaction
and an anisotropic compass-like terms is very similar to the
model studied in Ref. [32]. Thus, its excitation spectrum
should acquire a sizable gap due to the order-by-disorder
mechanism.

B. Honeycomb lattice

A honeycomb lattice is derived from the delafossite struc-
ture with edge-shared octahedra. In general, two different
channels are operative in this case: direct hopping td con-
sidered in Sec. III A, and indirect t superexchange via 90◦
bonding considered in Sec. III C. It is known that for pseu-
dospin J = 1/2 exchange in d5 compounds, there is also a
combination of these two processes (i.e., t times td terms)
resulting in the off-diagonal, so-called � interaction [42].
Interestingly, such a crossterm is absent in the present Eg

problem. So, the full Hamiltonian in honeycomb or triangular
lattices is comprised of the bond-dependent τ model (10), and
the 90◦ exchange J interaction (15), which is also anisotropic,
but bond-independent:

H(γ )
i j = Jτ τiγ τ jγ + J

(
sy

i sy
j − sx

i sx
j − sz

i s
z
j

)
. (16)

Physically, both Jτ and J are positive, and their ratio
can be arbitrary. While the first term operates in the pure
quadrupolar (sz, sx ) sector, J coupling equally supports AF
octupolar and FM quadrupolar states. As noticed above, the
J interaction is actually dual to the AF Heisenberg model
(on bipartite lattices). A finite τ term breaks this symmetry
and selects the ordering type. Since the (sz, sx ) part of the
J term has a negative sign, a small admixture of positive
Jτ reduces the quadrupole interactions. As a result, two-
sublattice staggered order of octupole moments sy is favored
at J 
 Jτ . The ground state wave function is complex, ψA/B =
(|↑〉 ± i|↓〉)/

√
2, and has a cubic shape, see Fig. 2(c) of

Ref. [4].
In the opposite limit Jτ 
 J , it is obvious that sy octupole

order has to give way to ordering of the τ quadrupoles that
live in (sz, sx ) plane. The quadrupole order is TR invariant
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(i.e., the condensate wave function is real) but breaks cubic
symmetry. The transition is of a spin-flop type: spins flop from
the [111] direction into the honeycomb plane. In terms of the
condensate wave function, this corresponds to the phase-jump
from π/2 to 0 in the relative phase factor eiφ between |↑〉 and
|↓〉 states.

Interestingly, the transition point and quadrupole order
pattern that replaces octupole order can be obtained from
symmetry considerations alone, by virtue of the duality trans-
formations in pseudospin honeycomb models [40]. To this
end, we use the explicit form of τγ given in Eq. (5) and rewrite
Eq. (16) as follows:

H(γ )
i j = (1 − λ)

(
sz

i s
z
j + sx

i sx
j

) + λsy
i sy

j

+ cos φγ

(
sz

i s
z
j − sx

i sx
j

) − sin φγ

(
sz

i s
x
j + sx

i sz
j

)
. (17)

Here, λ = 2J/Jτ , and the overall energy scale equal to Jτ /2 is
not shown. This equation has exactly the same structure as the
extended Kitaev model, written in the hexagonal coordinate
frame [40]. Simple relabeling of the spin axes (x, y, z) ↔
(Y, Z, X ), and a term-by-term comparison of Eq. (17) with
Eq. (A1) of Ref. [40] gives the following correspondence:
JXY = 1 − λ, JZ = λ, A = 1, and B = 0. (We note that B term
of Ref. [40] couples in-plane and out-of-plane components of
spins; for the present Eg problem, finite B would imply lin-
ear quadrupole-octupole coupling, which is forbidden by TR
symmetry). Next, we use the relations (A2–A5) of Ref. [40]
to obtain the parameters K , �, J̄ , and �′, which define the
extended Kitaev model in the octahedral axes frame [42] (we
use J̄ to avoid confusion with J in our models):

K = 1, (18)

� = 1 − 2
3 (1 − λ), (19)

J̄ = 1
3 (1 − λ), (20)

�′ = − 2
3 (1 − λ). (21)

So far, we have shown that Eqs. (16) and (17) correspond to
the extended Kitaev model at the specific parameter set. The
virtue of this mapping is that at λ = 2J/Jτ = 1, we see that
J̄ = �′ = 0. Thus, at this point, the model is isomorphic to
the K = � = 1 model, which in turn, is dual to the isotropic
Heisenberg model, see Table I of Ref. [40]. This leads to a
remarkable observation that at Jτ = 2J , the highly anisotropic
Hamiltonian (16) is dual to the effective FM Heisenberg
model H̃i j = −J s̃i · s̃ j . The duality transformation involves
a six-sublattice rotation matrix T6 [40], which converts in-
plane FM order of effective spins s̃ into a vortex pattern of
sz and sx moments in our model. This quadrupole order is
shown in Fig. 2(a) (cf. Fig. 2(e) of Ref. [40]). On the other
hand, out-of-plane FM order of s̃ corresponds to octupolar
AF order of sy moments already discussed above. Being dual
to the eigenstates of a hidden FM Heisenberg model, these
vortex and AF states are “fluctuation free”, and low-energy
excitations are magnons with a quadratic dispersion.

The exact degeneracy of these two states is lifted as soon as
λ deviates from its critical value 1. From Eq. (17), we see that
the corrections to the SU(2) point Hamiltonian H(λ = 1) read
as (1 − λ)(sz

i s
z
j + sx

i sx
j − sy

i sy
j ). This term acts as an easy-plane

FIG. 2. (a) Phase diagram of the Hamiltonian (17) on honey-
comb lattice as a function of λ = 2J/Jτ . There are two states,
separated by a first-order spin-flop transition at the hidden SU(2)
symmetric point λ = 1. Left and right insets show the ordered
patterns of the vortex-type quadrupole and AF-octupole phases,
respectively. (b) Quantum zero-point energy δE as a function of or-
dered moment orientation ϕ within the honeycomb plane, calculated
at λ = 0.5. A ground-state pattern with ϕ = π/6 is shown in panel
(a) left. (c) The in-plane (�‖) and out-of-plane (�⊥) magnon gaps in
the vortex-quadrupole phase, and the magnon gap (�) in the uniaxial
AF-octupole ordered state. Dashed line shows the pseudospin order
parameter length 2〈s〉 near the transition point, where the model is
dual to a fluctuation free Heisenberg FM.

or easy-axis anisotropy, selecting quadrupolar vortex order if
1 − λ > 0, and sy octupolar AF order if 1 − λ < 0. It also
opens a finite gap in magnon spectra.

The symmetry-based considerations above are confirmed
by numerical studies. Figure 2(a) shows the phase diagram of
Hamiltonian (17), obtained by classical theory and exact diag-
onalization on a C3 symmetric 24-site cluster. The first-order
transition between the vortex-quadrupole and AF-octupole
phases occurs at λ = 1. Across the spin-flop transition, the
in-plane quadrupole moments (black arrows) flip to the out-
of-plane octupole moments (red arrows). We investigated the
quantum effects using linear spin wave theory (LSWT). In the
quadrupole phase, the zero-point magnon energy δE depends
on the vortex pattern orientation [specified by the angle ϕ

in Fig. 2(a)]. The state with ϕ = π/6 has the lowest energy,
see Fig. 2(b). Note that the pinning potential is extremely
weak, so the spins are almost free to rotate (globally) within
a quadrupolar plane. This implies the presence of low-energy
quadrupole moment fluctuations.

The calculated magnon gaps are presented in Fig. 2(c)
near the spin-flop transition area (λ ∼ 1). In the planar-type
quadrupole phase, there are two different gaps, �⊥ and �‖,
associated with the out-of-plane and in-plane magnon modes.
The out-of-plane gap is finite already within LSWT, and pro-
portional to the deviation from the hidden FM SU(2) point:
�⊥ ∝ (1 − λ). The in-plane gap, on the other hand, is zero
within LSWT because the classical energy of the vortex
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FIG. 3. (a) Phase diagram of Hamiltonian (17) on the triangular
lattice as a function of λ = 2J/Jτ . The phases are separated by
spin-flop transitions at λ1 and λ2. Insets: The ordering patterns of
phases I and III. (b) Magnetic unit cell in the quadrupole-octupole
mixed phase II. Triangular sublattice (red circles) is occupied by
down-oriented octupole moments. On a hexagon, the in-plane com-
ponents of spins form a vortex. Left and right patterns are related by
in-plane ϕ rotations, in opposite directions on A and B sites; quantum
effects slightly favor the right pattern. (c) Upper part: Down-oriented
octupole moment at the center, and out-of-plane canted spins (blue
arrows) on a hexagon. Lower part: Decomposition of a canted spin
into octupole and quadrupole moments.

pattern is independent of the in-plane rotation angle ϕ. Planar
anisotropy δE (ϕ) and the corresponding gap only appears
beyond LSWT level, via quantum order-from-disorder mech-
anism, and thus is small: �‖ ∝ (1 − λ)2. The octupole phase
(λ > 1) has uniaxial symmetry and a two-fold degenerate
magnon dispersion with the gap � ∝ (λ − 1). As expected,
the ordered moments (dashed line) are fully saturated at the
hidden FM point. Away from this point, they are reduced by
quantum fluctuations (the effect is stronger in the quadrupole
phase owing to the presence of a soft in-plane magnon mode).

C. Triangular lattice

The behavior of the model (16), or its equivalent (17),
on a triangular lattice is of interest too. It is also relevant
to double-perovskites, where the face-centered-cubic (fcc)
lattice of magnetic ions can be viewed as triangular planes
stacked along the [111] direction. The triangular lattice is
nonbipartite and a paradigmatic example of geometrical frus-
tration for AF Ising-type models. This is exactly the case for
octupolar interactions here: see the Jsy

i sy
j or λsy

i sy
j terms with

positive J and λ values in Eqs. (16) and (17), respectively.
Leaving full exploration of the model for future study,

we discuss now its global phase behavior on a triangular
lattice. Inspection of the classical ground states, supported
by classical Monte Carlo simulations suggest that there are
(at least) three distinct phases, shown in Fig. 3(a), which

are realized when the parameter λ = 2J/Jτ varies from pure
Jτ limit to a dominant J regime. Stripy-quadrupole phase I
at small λ is essentially the same state as found earlier in
compass model [29,30]; note, however, that the spin pattern in
our “anticompass” τ model is rotated by 90◦, for the reasons
discussed in Sec. III A. This state has a classical energy per
site EI = −(3 − λ)s2 (in units of Jτ /2).

At large λ, the ground state is driven by the J interac-
tion, which is of ferro-type in the quadrupolar channel, while
octupole AF coupling is equally strong but frustrated. This re-
sults in simple ferro-quadrupole order (phase III), with energy
EIII = −3(λ − 1)s2. Classically, moments can freely rotate
within a quadrupolar plane, but quantum effects generate
in-plane anisotropy, pinning the ordered moments along the
middle of the two bonds (ϕ = π

6 ). The anisotropy is rather
weak: magnon zero-point energy, calculated at λ = 2, varies
only by δE (ϕ) � 7 × 10−4Jτ .

In the above states I and III, the octupolar Ising interaction
λsy

i sy
j was left “unused” because of its frustrating nature. At

intermediate λ values, however, this coupling is actually larger
than the quadrupolar one (as Jτ and J quadrupole terms are of
different sign and compete). Therefore, an intermediate state
between I and III, which finds a way to resolve “triangular”
frustration and activates large octupole couplings, is expected.

The pseudospin ordering pattern, whose unit cell is shown
in Fig. 3(b) and further detailed in Fig. 3(c), does exactly
this job. In this state, the original triangular lattice is divided
into two, honeycomb and triangular sublattices. The spins
on the honeycomb sublattice are canted and carry both oc-
tupole and quadrupole moments. The latter condense into a
vortex pattern similar to what shown in Fig. 2(a). While the
out-of-plane components form a ferro-octupole order. The
honeycomb octupole moment is largely (but not fully) com-
pensated by down-oriented octupoles residing at the middle
of every hexagon. As a whole, phase II represents a coherent
superposition of vortex-quadrupole and ferri-octupole orders.
Such a mixture of the different rank multipoles is rather un-
usual. We also note that this order is noncoplanar and has a
large unit cell, which helps to relieve the frustrations inherent
to spin-orbital models. In this sense, the case is similar to a
complex behavior of spin-orbit pseudospins J = 1/2 of d5

ions on a triangular lattice [3,43,44].
As a function of spin canting angle θ , the classical energy

of the mixed state II is obtained as follows:

EII(θ )/s2 = −1 − 2λ sin θ + (1 + λ) sin2 θ. (22)

Here, the second term originates from coupling between hon-
eycomb lattice octupoles sy ∝ sin θ with those residing at the
hexagon centers. Minimizing EII(θ ) with respect to θ , we find
sin θ = λ/(1 + λ). This gives a ground state energy of phase
II (per site):

EII = −
(

λ + 1

1 + λ

)
s2. (23)

Comparing this result with EI and EIII obtained above, we find
the phase transition points λ1 and λ2:

λ1 = 1 + √
17

4
� 1.28, λ2 = 1 + √

33

4
� 1.69. (24)
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In between λ1 and λ2, the angle θ varies from 34◦ to
39◦, and the size of octupole moment on honeycomb sites
2|〈sy〉| = sin θ � 0.56 − 0.63. This nearly compensates pure
octupole moments from triangular sublattice, leaving rather
small total octupole moment per site: 2|〈sy〉|tot = 1

3 (2 sin θ −
1) � 0.04 − 0.09.

Displayed in Fig. 3(b) are two different vortex patterns,
related to each other by in-plane rotations of spins. Classically,
these states are degenerate. Quantum zero-point energies, cal-
culated within LSWT for these two ground states, slightly
differ; the right one is lower by δE � 2 × 10−4Jτ . This re-
sult implies that in-plane magnon excitations acquire a small
but finite gap, generated by the order-from-disorder mecha-
nism. Out-of-plane excitations, corresponding to fluctuations
between quadrupole and octupole sectors, are gapped out al-
ready on a classical level.

Overall, the Eg pseudospin Jτ − J model (16) on triangular
lattice contains rich physics yet to be fully explored theoreti-
cally. The above results also should encourage experimental
work finding and studying 5d2 compounds with quasi-two
dimensional honeycomb and triangular lattice structures.

D. Double perovskites

Now, we move to the DP lattice, which motivated this
study. DPs are special because the magnetic ions are widely
separated from each other and thus interact weakly. This im-
plies that the pseudospin one-half description, which assumes
that the intersite interactions are less than on-site cubic split-
ting �c, is best justified in DP compounds.

The dominant exchange channel in DPs is due to the
single-orbital process considered in Sec. III A. This results
in Kugel-Khomskii type Hamiltonian (10) acting in the
pure quadrupole τ -channel: Jτ τiγ τ jγ . To our knowledge, the
ground state of this model on fcc lattice (formed by magnetic
ions in DPs) has not yet been considered. To address the
behavior of the τ model on the highly frustrated fcc lattice,
we perform classical Monte Carlo simulations on the related
model, Jτ niγ n jγ , where pseudospins τ = 1/2 are replaced by
classical vectors of unit length (n2 = 1).

The simulated annealing Monte Carlo is performed for DP
and, for comparison, triangular lattices. We use 1372 sites
(7 × 7 × 7 unit cell) of DP and 1296 sites (36 × 36) of
triangular lattice with periodic boundary conditions. Monte
Carlo simulations were performed using the ALPS project
library [45–47]. We find a collinear AF-quadrupole order at
low temperatures, and the ordering pattern in DP lattice is dis-
played in Fig. 4(a). The moment is along the bond direction,
and there are 8 antiparallel and 4 parallel nearest neighbors.
Within the [111] planes, moments form a stripy pattern as in
the triangular lattice, see phase I in Fig. 3(a). Temperature
dependence of the ordered moment length 〈n〉 in Fig. 4(b)
shows that the ordering sets in at Tc � 1.6Jτ in DP lattice. This
is about three times higher than Tc/Jτ in the triangular lattice,
most likely due to increased dimensionality. Quantifying the
quadrupole moment reduction by quantum fluctuations in fcc
lattice is an interesting but challenging problem, and left for
future study.

It should also be noticed that Tc in the actual model with
quantum spin τ = 1/2 is different from the above Monte

(b)(a)
1.0

0.5

0.0

T/Jτ

n

0 1 2

FIG. 4. (a) Double perovskite lattice, where the transition metal
ions (filled circles) reside on the fcc sublattice. Arrows show the
ordered pattern of quadrupole moments. It can be viewed as a stack
of triangular lattice [111] planes (shaded), with stripy-AF quadrupole
order within each plane. (b) Temperature dependence of the order
parameter 〈n〉 for classical Jτ model in DP (solid line) and triangular
(dashed line) lattices, obtained by classical Monte Carlo simulation.

Carlo result. Roughly, an upper limit for the rescaling factor
can be obtained by replacing n2 = 1 by s(s + 1). For the
present case of spin one-half, this gives an estimate of Tc ∼ Jτ .
A rather low value of Tc (despite a large coordination number
12) is presumably due to frustrations of the model on fcc
lattice.

In principle, the 90◦ bonding superexchange via nonmag-
netic B′ sites is possible in DP lattice, due to the extended
nature of 5d orbitals. However, this process involves many
hopping steps (Bi-O-B′-O-Bj), and the corresponding indirect
hopping t and hence J are expected to be small. Therefore,
even though the full exchange Hamiltonian in DPs is formally
given by Eq. (16), the single-orbital quadrupole interaction
Jτ should dominate over J coupling between the octupoles.
(This can be contrasted to the f 2 ion exchange in the fcc
lattice, which is dominated by octupole interaction [37]). Our
result implies that spin-orbital exchange in DPs uniquely sup-
ports AF order of quadrupole moments, breaking underlying
discrete point group symmetries both in real and pseudospin
spaces, but preserves TR symmetry.

We should note that the above result is obtained at large cu-
bic splitting �c between the excited T2g states and pseudospin
Eg doublet. The previous calculations in the other limit, i.e.,
neglecting cubic splitting and using full J = 2 Hilbert space
instead [24] found no octupolar instability, too. Reference [22]
suggested that in the intermediate case, when the Eg doublet
is formed and T2g triplet is not too high, the virtual states may
generate octupolar interactions that are strong enough to over-
come quadrupolar couplings. We now inspect this possibility,
by considering contributions of the virtual T2g states to the
effective pseudospin Eg Hamiltonian. This brings us to Jahn-
Teller physics, which operates not only within the ground state
Eg doublet, but also connects it with the T2g triplet.

V. JAHN-TELLER COUPLING EFFECTS.
IMPLICATIONS FOR DOUBLE-PEROVSKITES

A. Jahn-Teller Hamiltonian

We consider a linear coupling between the octahedral nor-
mal modes Q� and electron quadrupolar moments O� of
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symmetry �. For t2g-orbital systems, the �3 doublet (Q3 and
Q2 modes of 3z2 − r2 and x2 − y2 symmetries, respectively)
as well as �5 triplet modes (Qxy, etc.) are relevant [6]. Micro-
scopically, orbital-lattice coupling in the �3 channel splits the
t2g-orbital levels, while coupling to �5 modes is orbital nondi-
agonal, e.g., Qxy distortion mixes dyz and dzx wave functions.

In terms of two-electron J = 2 quadrupoles, the Jahn-
Teller couplings in the above two channels read as follows
(summation over lattice sites i is implied):

HJT (�3) = −g (Q3O3 + Q2O2)i, (25)

HJT (�5) = −g′(QxyOxy + QyzOyz + QzxOzx )i, (26)

where O3 and O2 quadrupoles are defined in Eqs. (3) and (4),
while Oxy = (JxJy + JyJx )/2

√
3, etc. Within the ground-state

Eg doublet, �3 coupling takes a form familiar from the eg-
orbital JT problem [2,25]:

HJT (�3) = −g (Q3σ
z + Q2σ

x ), σ z/x = 2sz/x. (27)

On the other hand, quadrupolar operators in HJT (�5) have no
matrix elements within the pseudospin subspace; instead, they
connect the Eg doublet to the excited T2g states. This leads to
a so-called second-order or “pseudo-Jahn-Teller” effect [48],
which operates through the mixing of the ground and excited
states. In spin-orbit coupled systems, this effect modulates the
spatial shape of the pseudospin wave functions and generates
new terms in low-energy effective Hamiltonians [49].

B. Pseudospin interactions mediated by Jahn-Teller coupling

Spatial correlations between the octahedral deformations
on different sites mediate interactions between quadrupolar
moments [10,25,50]. Typically, these interactions cooperate
with the Kugel-Khomskii mechanism of orbital ordering [2].
In most TM compounds, the JT centers share common oxy-
gens and thus stay in direct contact with each other. This
leaves little room for single-ion JT dynamics. In the DP
lattice, however, the JT ions have no common oxygen, so
they have to interact by exchanging virtual phonons. Since
JT phonon modes disperse weakly, this interaction is much
smaller than in perovskites. This has two important conse-
quences: (i) cooperative JT couplings are weak enough so that
the Eg-pseudospin description remains valid, and (ii) single-
ion JT dynamics, intrinsic to non-Kramers Eg states, may
develop.

We start with pseudospin interactions mediated by JT
coupling in the �3 channel (27). Two ions in the xy plane
couple most efficiently via Q3 type distortions, as illustrated
in Fig. 5(a). The corresponding quadrupole interaction is

V σ z
i σ z

j = 4V sz
i s

z
j, (28)

whose strength V = −g2〈Q3iQ3 j〉ω=0 > 0 is given by nonlo-
cal static susceptibility of the Q3 modes. In DPs, antiferro-
type intersite correlations 〈Q3iQ3 j〉 < 0 arise due to a finite
dispersion δωq of the corresponding optical phonons with
energy ω0. This gives a rough scale of V as a small fraction
∝ δωq/ω0 ∼ 0.1 of a single-ion JT stabilization energy EJT .
For d1 Os in DPs, Refs. [51,52] evaluated EJT ∼ 20 meV (this
might be lower for d2), suggesting V ∼ 1 meV, i.e., of the
same order as the exchange coupling Jτ for DPs. Relatively

FIG. 5. (a) Antiferro correlated Q3 distortions on xy plane of the
DP lattice, leading to V coupling (28) between quadrupole moments
of �3 symmetry. (b) Antiferro correlated Qxy distortions on xy plane,
leading to V ′ coupling (29) in the �5 quadrupolar channel.

small values of EJT (and hence JT mediated coupling V ) may
indicate a rather weak coupling of the diffuse 5d orbitals to
the lattice. We note that considering both Q3 and Q2 modes
would induce also sx

i sx
j and sz

i s
x
j type terms; however, these

are not essential in the context of possible octupole order. The
main result is that the quadrupole interactions, mediated by
�3 type JT phonons cooperate with the exchange coupling,
i.e., Jτ → Jτ + 4V , as in the case of the usual eg-orbital
problem in manganites. In general, octupolar order has better
chances in systems where Jahn-Teller coupling is inactive or
reduced. An example of this is d1 perovskite Sr2VO4 [53],
where V 4+ ion with Kramers doublet ground state is free of JT
effect.

The Jahn-Teller coupling in the �5 channel (26) works
differently, and it actually leads to octupolar coupling sy

i sy
j

by virtue of pseudo-JT effect. For a pair in the xy plane,
we consider that Qxy type distortions shown in Fig. 5(b) are
most relevant. This leads to the following interaction between
�5-type quadrupole moments:

V ′ Oi
xyO j

xy, (29)

with positive V ′ = −(g′)2〈Qi
xyQ j

xy〉ω=0. The interactions on yz
and zx planes are induced by Qyz and Qzx type modes. For
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t2g-orbital systems, constants V and V ′ are expected to be of
the same order, but their ratio depends on material details.
In d1 Os double-perovskite, coupling to �3 type modes are
stronger [51], which might also be the case in d2 osmates.

As said above, �5 quadrupoles have no matrix elements
within Eg doublet; instead, they create transitions from the
Eg doublet to excited T2g states. For example, Oxy = i(T †

z f↓ −
f †
↓Tz ), where hard-core bosons f and T belong to pseudospin

( f↑, f↓) and triplet (Tx, Ty, Tz ) sectors, correspondingly. Thus,
the pairwise interaction V ′Oi

xyO j
xy may (a) excite a pair of

triplons, and (b) lead to dispersion and broadening of the
T excitons. In the present context, we are interested in the
pair generation process, which dynamically mixes up the
ground- and excited-state wave functions, modifying thereby
the pseudospin exchange Hamiltonian. Specifically, this pro-
cess activates the composite operators (SL2

z )i and (SL2
z ) j in the

exchange Hamiltonian of Eq. (9). These operators have non-
diagonal Eg ↔ T2g matrix elements [e.g., SzL2

z = −(T †
z f↑ +

H.c.)], and are thus sensitive to the admixture of JT induced
triplet states in pseudospin wave functions.

Now, we assume that the exchange Jτ and quadrupole
V ′ couplings are small compared to cubic splitting �c. In
other words, we assume that the dispersion and broadening
of triplon excitations, caused by these interactions, is smaller
than �c, and thus the pseudospin description is valid. This is
exactly what is observed in experiment [12]. Then we proceed
along the lines of Ref. [22], eliminating virtual triplon pairs
perturbatively. This results in the following effective Hamil-
tonian (for pairs on the xy plane), which now includes the
exchange as well as JT-coupling mediated interactions:

H(z)
eff = Jzs

z
i s

z
j + Jxsx

i sx
j − Jysy

i sy
j . (30)

For γ = x, y bonds, one has to replace sz → τγ and sx → τ̄γ .
Effective parameters read as

Jz = Jτ

(
1 − 81

32

Jτ

�c

)
+ 4V

(
1 − V ′

8V

V ′

�c

)
, (31)

Jy = Jx = Jτ

9V ′

4�c
. (32)

Provided that the triplet excitations are well separated from
the pseudospin doublet, i.e., Jτ and V ′ much smaller than �c,
the corrections ∝ 1/�c to Jz in Eq. (31) can be neglected, and
we obtain

Jy

Jz
� Jτ

Jτ + 4V

2V ′

�c
< 1. (33)

This implies that quadrupolar τ interactions dominate over
those in the octupolar sy sector. Moreover, Jy/Jz ratio can be
further reduced by dynamical JT effects, which suppress the
interactions involving sy operators by the Ham factor [6] and
discourage the octupole order. The result (33) is natural for
5d ions on DP lattices, where intersite interactions Jτ , V , and
V ′ between widely-separated ions should be much less than
the single-ion energy �c. The latter is driven by large SOC
for 5d electrons; we also think that the cubic splitting �c is
further enhanced by the dynamical JT effect stabilizing the Eg

doublet against the T2g states. It would be interesting to check
the latter point by quantum chemistry calculations.

The above findings suggest that a single phase transi-
tion observed in 5d2 osmium DP oxides [12] is driven by
a quadrupolar ordering of Eg doublets. Comparison of the
Monte Carlo result (Sec. IV D) for the quadrupolar ordering
temperature ∼Jτ + 4V (including now JT-phonon mediated
coupling V ) with the experimental transition temperature
30 − 50 K gives Jτ + 4V ∼ 4 meV, consistent with the above
estimates of intersite couplings. Concomitant lattice distor-
tions might be small for several reasons: First, JT coupling is
already weakened by the SOC effect, which partially removes
orbital degeneracy. Second, on-site JT vibronic dynamics
[6,48] and intersite quantum fluctuations reduce the pseu-
dospin order parameter and hence the static distortions, to
the levels that are difficult to detect directly by x-ray diffrac-
tion. In general, JT coupling seems to be rather weak for 5d
orbitals; indeed, quadrupole order induced distortions in 5d1

DPs have been found to be extremely small [18] or below the
resolution limit [19]. However, quadrupolar order should lead
to changes in phonon spectra that should be well visible in
Raman and optical data. Possible signatures of the dynamical
JT effect, e.g., transitions between vibronic levels [54] are
of special interest. Also, a quadrupolar order can be probed
by nuclear magnetic and quadrupole resonance experiments.
Further experiments, especially on single crystal samples, are
necessary to identify the nature of the “hidden” order param-
eter in DP 5d2 compounds.

C. Coupling to local distortions: Induced magnetic moments

While a quadrupole order of JT active Eg doublets sounds
natural, this picture cannot explain TR-symmetry breaking
observed in 5d2 DPs [13–15]. One possible explanation is to
attribute this effect to magnetic moments induced by defects
(e.g., B ↔ B′ site disorder). Near defects, noncubic crystal
fields can modify the Eg-doublet wave functions, or even com-
pletely destroy the pseudospin description, thus recovering
the J dipole moments at least partially. Nuclear magnetic and
quadrupole resonance lineshapes may quantify such magnetic
state inhomogeneities. In fact, the signatures of spin disorder
and freezing are rather common in d2 DPs [13–15]. To show
how symmetry lowering distortions affect the physical content
of the Eg doublets and their interactions, we consider JT cou-
pling of �5 symmetry quadrupoles Oαβ to the corresponding
local distortions eαβ :

δHi = −g′(exyOxy + eyzOyz + ezxOzx )i. (34)

The local quadrupolar fields (34) modify the Eg doublet func-
tions at site i as follows:

|↑̃〉i ⇒ |↑〉 + is(δx|Tx〉 − δy|Ty〉)i, (35)

|↓̃〉i ⇒ |↓〉 + i(δz|Tz〉 − cδx|Tx〉 − cδy|Ty〉)i, (36)

where s = √
3/2, c = 1/2 [the normalization factors

p2
↑ = 1 + s2(δ2

x + δ2
y ) and p2

↓ = 1 + δ2
z + c2(δ2

x + δ2
y ) are

not shown]. The parameters δz = g′exy/�c, etc quantify the
degree of admixture of virtual triplet states Tx, Ty, and Tz

into the ground state due to strain eαβ field. This admixture
“magnetizes” the Eg doublet, by inducing a dipolar component
into the sy operator. By calculating matrix elements of total
angular momentum J within the modified Eg doublet (35, 36),
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we find an induced moment Jiα = 4δiαsy
i , illustrating a partial

recovery of the dipolar moments due to local distortions. The
corresponding magnetic moment, which is carried by the sy

operator, is Miα = 2δiαsy
i (using g factor g = 1/2 of J = 2

state).
In principle, a direct link between lattice distortions and

magnetism is generic to all spin-orbit Mott insulators. In
5d2 ion systems, where the nonmagnetic nature of the Eg

doublet is protected by cubic symmetry (i.e., independent of
covalency, etc.), lattice distortions have an especially strong
impact on magnetic properties. To illustrate this point further,
we may consider uniform strain applied along the [111] axis
of a crystal: exy = eyz = ezx = e/

√
3. This induces a mag-

netic moment with g factor g‖ = 2√
3

�tr
�c

, where �tr = g′e is
the strain induced field, while the g factors within the [111]
plane remain zero. This results in an extreme anisotropy
of the magnetic response to lattice distortions in 5d2

systems.
Noncubic crystal fields also induce new couplings between

pseudospin moments. Projection of the exchange interaction
(9) onto the Eg doublet with “distorted” wave functions (35,
36) modifies the Jτ term in Eqs. (10) and (16) as follows:

Jτ τiγ τ jγ → Jτ

[
τiγ τ jγ + a(γ )

i j sy
i sy

j

]
, (37)

where a new term, the sy
i sy

j coupling, which operates in the
magnetic channel, appears. Its relative strength is given by
a(z)

i j = 9(δizδ jz + 1
4δixδ jx + 1

4δiyδ jy) for z-type bonds (results
for γ = x, y follow from symmetry). We see that even rather
small strain fields are sufficient to support sy order locally: the
new term becomes comparable with quadrupolar τ coupling
already at δ ∼ 1/3. The sign of ai j depends on the relative
orientation of local distortions; for antiferro-type distortions
(δiδ j < 0), the sy moments are coupled ferromagnetically, and
vice versa (i.e., following Goodenough-Kanamori rules).

The lattice effects on the physical content of the Eg dou-
blets should be essential for understanding the magnetic
properties of 5d2 osmates. A qualitative picture is that while
pseudospin one-half ordering in these compounds is predom-
inantly of a quadrupolar type, there should also be a weak
and spatially inhomogeneous dipolar component of the pseu-
dospin order parameter, induced by the random distortions
inevitable in real crystals.

VI. CONCLUSIONS

We have developed a microscopic theory for multipole
orders in spin-orbit Mott insulators of non-Kramers d2 ions,
which have a nonmagnetic doublet ground state of Eg sym-
metry. The exchange Hamiltonians for dominant hopping
processes are derived and expressed in terms of pseudospin-
1/2 operators. Reflecting the spin-orbital mixed nature of the
Eg wave functions, the pseudospin interactions are in general
strongly anisotropic and depend on the bond directions. The
phase behavior of these models on different lattices are con-
sidered by means of analytical and numerical methods.

On a honeycomb lattice, we find that interplay between
direct overlap of t2g orbitals and their hopping via ligand ions
gives rise to a competition between two distinct multipole

orders: vortex-type quadrupole order and collinear AF oc-
tupole order. These two states become degenerate at the
parameter point where the model has a hidden SU(2) sym-
metry and is isomorphic to the FM Heisenberg model. The
model also can be mapped to the extended Kitaev model for
d5 systems, which is useful to understand its global phase
behavior.

On a triangular lattice, a combination of geometrical and
spin-orbital frustrations result in a novel type of ordering,
which can be viewed as a coherent superposition of vortex-
type quadrupole and ferri-type octupole orders. This complex
state appears as an intermediate phase between collinear AF
and FM quadrupole states, as a compromise to their competi-
tion.

Double perovskite compounds of d2 ions with strong SOC
such as osmium Os6+ or rhenium Re5+ are discussed in
more detail, including also Jahn-Teller coupling of electron
quadrupole moments to lattice degrees of freedom. We find
that the exchange and JT effects do work cooperatively to
support quadrupole order in DP lattices. Static lattice distor-
tions associated with this order are expected to be small, due
to a reduction of the order parameters by the dynamical JT
effect and pseudospin frustrations caused by bond-dependent
interactions on the fcc lattice. Nevertheless, quadrupole order
should lead to well detectable changes in phonon spectra as
well as in nuclear magnetic resonance lineshapes. Signatures
of JT dynamics in Raman and optical data should also be
interesting to look for. A possible scenario for TR-symmetry
breaking due to noncubic crystal fields near defects is sug-
gested. We show that the local distortions modify the ground
state wave functions, induce local magnetic moments and en-
hance their exchange interactions, illustrating the importance
of the lattice effects for interpretation of the experimental
data.

Overall, we have presented a theory for a class of pseu-
dospin one-half systems based on non-Kramers 5d2 ions. The
models introduced and discussed in this paper are of interest
in their own right. From a materials perspective, our findings
suggest rich physics yet to be explored in 5d2 spin-orbit Mott
insulators with various lattice structures. Of special interest
are the vortex-type states in honeycomb, and an unusual co-
herent mixture of quadrupole and octupole orders in triangular
lattices. The present paper may form a theoretical basis for the
future research of 5d2 ion compounds.
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