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The association between productivity and impact of scientific production is a long-standing debate in science
that remains controversial and poorly understood. Here we present a large-scale analysis of the association
between yearly publication numbers and average journal-impact metrics for the Brazilian scientific elite. We
find this association to be discipline specific, career age dependent, and similar among researchers with outlier
and nonoutlier performance. Outlier researchers either outperform in productivity or journal prestige, but they
rarely do so in both categories. Nonoutliers also follow this trend and display negative correlations between
productivity and journal prestige but with discipline-dependent intensity. Our research indicates that academics
are averse to simultaneous changes in their productivity and journal-prestige levels over consecutive career years.
We also find that career patterns concerning productivity and journal prestige are discipline-specific, having in
common a raise of productivity with career age for most disciplines and a higher chance of outperforming in
journal impact during early career stages.
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I. INTRODUCTION

The development of knowledge-based economies and the
increasing availability of information and knowledge itself
have driven transdisciplinary efforts toward a better quanti-
tative understanding of the scientific enterprise: the science of
science [1,2]. Beyond the academic question of finding driv-
ing mechanisms of science, these initiatives aim to enhance
scientific efficiency by identifying successful practices and
policies, from the choice of countries’ scientific priorities to
the selection of research projects and faculty candidates. Sci-
entific progress is nowadays strongly dependent on research
evaluation processes, as they regulate the stream of ideas
and research projects by means of science funding allocation
[2–5]. But while peer review is considered the standard ap-
proach for assessing academic performance [6], the process
itself is laborious and has several drawbacks, ranging from
biases and lack of consistency to fraud [6–9]. In addition,
the increasing number of scientific publications [10] and the
growth of the scientific workforce [11] impose further limi-
tations on the peer-review method [5]. A direct consequence
of these issues is the steady increase (especially after the
2000s [12]) in the use of bibliometric indexes for grading the
performance of researchers [5,13].
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Bibliometric assessments are considered more objective
criteria, but there is no consensus on which indexes are
more suitable for evaluating academic performance, and many
believe that the intrinsic nature of scientific processes can
only be precisely quantified by multidimensional features
[14,15]. This data-driven culture of performance evaluation
has amassed much criticism [6,16–18], and it also exerts enor-
mous pressure on scholars (particularly on young scientists
[19]) for publishing in large quantities, in prestigious journals,
and developing highly cited research [5,20,21]. Still, research
productivity and impact measures are often and widely used to
quantify academic performance, representing essential ingre-
dients for the perception and recognition of academic success.
While productivity is defined as the number of research items
in a given period, impact has a more subjective character and
is usually measured by the number of citations, the share of
articles among highly cited papers, and the prestige of the pub-
lication venue. Regardless of which metric is used, research
evaluation via bibliometrics has raised the “quality versus
quantity” debate since its conception [22–37], and there is
still no agreement on the association between productivity and
impact. For instance, while Larivière and Costas [32] have
found a positive association between productivity and num-
ber of highly cited articles, Bornmann and Tekles [36] have
shown that top productive authors usually have lower fractions
of publications among top-cited articles (that is, a negative
association between productivity and impact at overly high
productivity levels). An important part of these controversial
findings reflects the fact that the association between produc-
tivity and impact is discipline specific, career age dependent,
and scale dependent, and it may be affected by the presence
of outlier individuals. However, there is still a lack of works
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simultaneously addressing all these points to reveal the overall
complexity of the “quantity versus quality” relationship.

Here we investigate multifaceted aspects of this associ-
ation by analyzing the scientific career of more than six
thousand scientists from the Brazilian scientific community’s
elite from 14 different disciplines. We determine the yearly
publication numbers and the respective average value of the
journal-impact metrics over the careers of these academics.
Although the use of journal-level metrics for assessing the
individual performance of researchers is controversial [16,38],
this approach remains widespread [39], especially in Brazil
where several universities use journal prestige (or derivative
indicators) for everything from grading resumes of gradu-
ate students to the selection of tenure-track faculty positions
and grant applications. Recent works have also demonstrated
that journal-level metrics carry information about academic
performance [40–44] and that these metrics are correlated
with citations, thus indicating that citations and journal-level
metrics are partly substitutes. Whether journal-level metrics
(or even citations) are suitable or not for research evaluation,
these metrics are still important for the scientific community
and deserve further investigation.

Our research probes patterns of the association be-
tween productivity and journal-impact metrics throughout
researchers’ careers across different disciplines. In contrast
to previous works, we use standard score measures to ac-
count for discipline and inflation-like effects and correct for
size-dependent biases on average journal prestige. We further
identify outlier individuals in productivity and journal impact,
finding these academics to either outperform in productiv-
ity or journal prestige over their careers but rarely in both
categories. We also find that academics are averse to simul-
taneously changing their levels of productivity and journal
prestige and prefer maintaining these levels over consecu-
tive years of their careers. For nonoutlier individuals, our
results indicate a negative correlation between productivity
and journal prestige for most researchers from most disci-
plines. However, we show that career patterns of productivity
and journal prestige are discipline specific, although they
have in common the fact that productivity increases with
time for all disciplines. By shedding light on career age and
discipline-specific aspects of productivity and journal pres-
tige, we believe our work may contribute significantly to a
more comprehensive and fair research evaluation process.

II. RESULTS

A. Journal prestige versus productivity plane

To investigate the association between productivity and
journal prestige, we have collected the academic curricula
of 6028 Brazilian researchers from 14 disciplines (see the
Methods Sec. IV A for details) holding the CNPq Research
Productivity Fellowship (Bolsa Produtividade em Pesquisa do
CNPq) as of May 2017. This fellowship has been awarded
since the 1970s by the Brazilian National Council for Sci-
entific and Technological Development (CNPq, Conselho
Nacional de Desenvolvimento Científico e Tecnológico) in
recognition of outstanding scientific production. CNPq fel-
lows have significant status among the Brazilian scientific

community and are often considered the elite of Brazilian
scientists. We further obtain the journal impact factor (JIF)
between 1997 and 2015 from Clarivate’s journal citation re-
ports. We combine these data sets to assign the time-varying
values of JIF to the 312 881 articles published by the CNPq
fellows between 1997 and 2015. We consider the number of
articles published per year as the productivity indicator and
the average JIF as a proxy for journal prestige. We have also
carried out a comparative analysis when considering the Sco-
pus’s SCImago journal rank (SJR) as an indicator of journal
prestige. Despite the substantial differences in the definitions
of JIF and SJR, both measures of journal prestige are strongly
correlated (Fig. S1 [45]), and yield very similar results. We
have opted to present the results for the JIF in the main text,
and we refer to the Supplemental Material [45] for compar-
isons with the SJR.

We start our investigation by noticing that the number of
articles and citations have increased over time [46,47]. This
produces inflation in productivity and journal-impact mea-
sures that needs to be accounted for a fair comparison between
different publication years. Our results indicate that the aver-
age productivity of the CNPq fellows has increased at a rate of
≈ 1.57 papers/year per decade. Similarly, the average JIF of
these publications has raised by ≈ 0.72 units per decade (Figs.
S2 and S3 [45]). This inflation effect is different among dis-
ciplines; for instance, the productivity of medical researchers
has increased by ≈ 3.5 papers/year per decade, while those
working in electrical engineering experienced a productivity
inflation of ≈ 0.3 papers/year per decade. Because of this
inflation effect and differences in publication patterns among
disciplines, we do not use raw numbers of productivity but
instead robust standard scores (z scores) relative to discipline
and year of publication. In addition to discipline and year, the
robust standard scores for average journal prestige are also
relative to researchers’ productivity levels. This additional
normalization accounts for the fact that the more productive
a researcher is in a given year, the narrower the range of
variation of his or her average journal prestige. A similar size
effect has been observed by Antonoyiannakis [48,49] when
comparing the impact factor of journals with different sizes,
and the approach we use for rescaling the average journal
prestige is an adapted version of his method for ranking jour-
nals [48,49] (see the Methods Sec. IV B for details).

Figure 1(a) shows a scatter plot of the average journal pres-
tige versus the productivity for all career years of researchers
in our data set (see Fig. S4 [45] for a comparison with the
SJR data). In this plane, a unit of productivity indicates a
performance one standard deviation above (if positive) or
below (if negative) the average performance of all scholars
of a given discipline in a given year. Similarly, a unit of av-
erage journal prestige represents a performance one standard
deviation above (if positive) or below (if negative) the average
random performance at a given productivity level of a given
discipline and year. We divide this plane into four main sectors
separating outlier years of researchers (z scores higher than
3.5) regarding productivity (P) and average journal impact
(I). The sector IP++ contains career years in which re-
searchers were simultaneously outliers in journal prestige and
productivity (I > 3.5 and P > 3.5). Similarly, sectors I++
and P++ indicate outlier career years only regarding journal
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FIG. 1. Journal prestige vs productivity. (a) Relation between average journal impact and productivity in standard score units (the inset
shows the full range of the plane). Data points represent career years of researchers from the 14 disciplines in our study. This plane is divided
into seven sectors. Three sectors represent career years with overly high performance in journal impact (I++), productivity (P++), or both
quantities (IP++). Four nonoutlier sectors represent career years with productivity and journal impact above (I+P+) or below (I−P−) the
average, journal impact below and productivity above the average (I−P+), and journal impact above and productivity below the average
(I+P−). (b) Venn diagram showing the set relations among the four categories of researchers. Nonoutliers are those with all career years
in nonoutlier sectors. Perfectionists and hyperprolifics are researchers with at least one career year in sectors I++ and P++, respectively.
Hyperprolific perfectionists are those having at least one career year within sector IP++. (c) Probability of being a perfectionist researcher
while having a given number of career years in the hyperprolific sector (P++), as estimated via logistic regression (the inset shows the logistic
coefficients). The colored curves (and bars) refer to different disciplines, while the gray curve represents the aggregated result of all disciplines.
Materials engineering (omitted in this panel) is the only discipline that does not display a significant association. (d) Probability distribution of
the normalized entropy values associated with the occupation of the plane sectors over researchers’ careers. The purple curve shows the results
for the occupation of only outlier sectors by outlier researchers and the green curve is the same but after ignoring sector IP++. The gray curve
shows the entropy distribution for nonoutlier researchers. (e) Transition matrix among the plane sectors for outlier (left) and nonoutlier (right)
researchers. Each cell represents the relative excess of transitions between two sectors compared with a null model corresponding to shuffled
versions of researchers’ careers for 10 000 realizations.

prestige (I > 3.5 and P < 3.5) and productivity (I < 3.5 and
P > 3.5), respectively. We further divide the nonoutlier sector
(I < 3.5 and P < 3.5) into four other sectors: I+P+ for career
years with journal prestige and productivity above the aver-
age (I > 0 and P > 0); I+P− for career years with journal
prestige above and productivity below the average (I > 0 and
P < 0); I−P+ for career years with journal prestige below and
productivity above the average (I < 0 and P > 0); and I−P−

for career years with journal prestige and productivity below
the average (I < 0 and P < 0).

B. Outlier and nonoutlier researchers

One of the most striking features of the plane shown in
Fig. 1(a) is the existence of researchers who, despite belong-
ing to the elite of Brazilian scientists, further differentiate
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themselves by exhibiting productivity or average journal pres-
tige (or both) in overly high levels at specific years of their
careers. These outlier career years are relatively rare and
represent only 7.7% of the 76 454 total career years (Fig.
S5A [45]). Among the outlier sectors, the number of career
years in P++ and I++ represent 47% and 46% of the total,
respectively. Consequently, career years in sector IP++ are
much rarer and correspond to only 7% of the total outlier
years. Similar results are obtained for the SJR data set (Fig.
S5B [45]).

Outlier years also represent only a small fraction of the
careers of researchers covered by our data set (Fig. S6A
[45]). More than 47.6% of these researchers are outliers in
productivity or journal prestige (or both) only in one year, and
only 6.7% have more than 50% of their career years in outlier
sectors. The Venn diagram of Fig. 1(b) depicts the set relations
between researchers categorized as nonoutlier (all career years
in nonoutlier sectors), perfectionist (at least one career year in
sector I++), hyperprolific (at least one career year in sector
P++), and hyperprolific perfectionist (at least one career year
in sector IP++). About 30% of all researchers manage to
have at least one career year in outlier sectors. There is no
researcher with all career years in sector IP++ or in either
sectors I++ or P++. In addition, only seven researchers (a
chemist, an agronomist, and five physicists) have all career
years covered by our data set in the three outlier sectors.
Similar results are found for the SJR data set (Fig. S6B [45]).

Among the 1817 outlier researchers, 1556 (85.6%) are
only hyperprolific or only perfectionist over their careers. This
result indicates that most outlier researchers have a persistent
behavior regarding being hyperprolific or perfectionist. This
clear distinction between hyperprolifics and perfectionists is
further corroborated by the existence of only 121 researchers
(6.7% of the outliers) simultaneously outliers in both cate-
gories, that is, in sector IP++. A similar pattern was recently
observed by Bornmann and Tekles [36] for the association
between productivity and number of articles in the top 1%
most cited. Our result thus indicates that it is extremely hard to
frequently publish in very prestigious journals and keep pro-
ductivity at overly high levels. Intriguingly, we observe that
extremely hyperprolific research years (P > 27.7) are all in
sector IP++. This result shows that while very rare, there are
16 researchers capable of maintaining extreme performances
in productivity and journal prestige.

To reinforce this result, we use logistic regression to es-
timate the effect of hyperprolific years on the probability of
being a perfectionist researcher (see the Methods Sec. IV C
for details). Figure 1(c) shows the probability of being a
perfectionist researcher as a function of the number of hyper-
prolific years and the logistic coefficients when considering all
disciplines both together and separated. Materials engineer-
ing does not show a significant association (p value > 0.05)
and has been omitted in Fig. 1(c). For the other 13 disci-
plines and when aggregating all disciplines, the coefficients
are significant and negative, establishing that an increase in
the number of hyperprolific years decreases the chances of
being a perfectionist researcher. However, this effect varies
considerably among the disciplines. For instance, while five
hyperprolific years practically prevent the existence of per-
fectionist researchers in mathematics, there is a probability

of 63.2% of being a perfectionist in physics with the same
number of hyperprolific years. For the SJR data set, 23 out
of 25 disciplines display a negative and significant association
between the number of hyperprolific years and the probability
of being a perfectionist (Fig. S4C [45]), reaffirming the nega-
tive association between these two behaviors.

The group of 261 researchers who manage to publish both
as perfectionist and hyperprolific (simultaneously or not) is
significantly more productive than the exclusively hyperpro-
lific ones (average z-score productivity of 2.71 ± 0.08 versus
2.06 ± 0.03; p value <10−16, permutation test) and the ex-
clusively perfectionist ones (average z-score productivity of
2.71 ± 0.08 versus 0.54 ± 0.02; p value <10−16, permutation
test). Furthermore, this former group of researchers publish
in journals with higher prestige than hyperprolific (average z-
score JIF of 1.89 ± 0.05 versus 0.23 ± 0.02; p value <10−16,
permutation test) and perfectionist researchers (average z-
score JIF of 1.89 ± 0.05 versus 1.45 ± 0.02; p value <10−16,
permutation test). We find similar results for the SJR data.

We have also quantified whether outlier researchers have
a preference for a particular outlier sector. To do so, we
consider only career years in outlier sectors to estimate their
corresponding fractions and calculate the normalized Shannon
entropy for every outlier researcher outperforming in more
than one category. Entropy values close to unity represent
more alternating behaviors, while values around zero indicate
that these researchers prefer a given outlier sector. Figure 1(d)
shows that the distribution of these entropy values has a peak
around 0.6 (purple curve), suggesting a preference for par-
ticular outlier sectors. However, if we do not consider sector
IP++ (the most underpopulated sector), the entropy shifts
to higher values and its distribution peaks around 1 (green
curve), indicating that there is no preference between sectors
I++ and P++ for researchers publishing in both sectors. In
this aspect, these atypical researchers are not so different from
those present only in nonoutlier sectors. As shown in Fig. 1(d)
(gray curve), nonoutlier researchers also do not exhibit a
strong preference for any sector over their careers. The same
patterns are observed for the SJR data set (Fig. S4D [45]).

Another intriguing question is whether there are more
frequent transitions among sectors of the journal prestige
versus productivity plane over the researchers’ careers. To
investigate this hypothesis, we estimate the number of tran-
sitions among all plane sectors and compare them with a
null model defined by the average number of transitions es-
timated after randomly shuffling researchers’ careers (over
10 000 realizations). This process allows us to estimate the
relative excess for all possible transitions (that is, the number
of transitions among sectors during consecutive career years
minus the average value of this quantity estimated from the
shuffled careers further divided by this same average value).
Figure 1(e) shows these transition matrices when group-
ing researchers in outlier and nonoutlier categories. Both
matrices are almost symmetric and have positive diagonal ele-
ments among the highest absolute values, indicating that most
transitions have no preferential direction and a short-term
trend to remain in the same sector. For outlier researchers,
the transitions IP++ •→ IP++, I++ •→ I++, and P++ •→
P++ have the largest excesses among all self-transitions.
For nonoutliers, I+P+ •→ I+P+ and I−P+ •→ I−P+ are
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FIG. 2. Average productivity and journal impact over researchers’ careers for different disciplines. These visualizations show the average
productivity (gray curves) and the average journal prestige (red curves) calculated within 5-yr sliding windows over career years for each
discipline in the JIF data set. Shaded areas correspond to bootstrapping 95% confidence intervals. Average productivity increases with career
progression for all disciplines (Fig. S8A [45]) and shows a plateau or small decrease in later career stages for most disciplines. Although some
disciplines display more complex patterns, average journal prestige has a subtle downward trend and is usually larger in initial career stages
for most disciplines (Fig. S8B [45]).

the self-transitions with largest excesses. Intriguingly, the
self-transition I−P− •→ I−P− (lowest prestige and lowest
productivity sector) has an excess that is larger for outlier
(23%) than for nonoutlier (7%) researchers.

The transitions among nonoutlier sectors are marked by
a negative excess when simultaneously changing levels of
productivity and journal impact (I+P± ↔ I−P∓). These
transitions represented by the antidiagonal elements in the
nonoutlier matrix are less frequent over the careers of out-
lier and nonoutlier researchers. A similar pattern is observed
for transitions involving the outlier sectors I++ and P++;
that is, the transitions I++ ↔ P++, P++ •→ I+P−, and P+
+ •→ I−P− are also less frequent over the careers of outlier
researchers. Conversely, transitions among different sectors
with similar productivity or journal prestige (for instance,
I+P+ ↔ I−P+ and I−P− ↔ I+P−) usually have excesses
close to zero and are thus about as frequent as those occurring
in the null model. Together with the excess of self-transitions,
these results suggest an aversion to simultaneously chang-
ing productivity and journal prestige levels and a preference
for maintaining these levels over consecutive years of re-
searchers’ careers.

We further notice that most transitions between outlier
and nonoutlier sectors occur much less frequently than by
chance (negative or close to zero excesses). Career years in
sector P++ are usually not preceded nor followed by years
in low productivity sectors (I+P− and I−P−). Conversely,
career years in sector I++ are less followed and less pre-
ceded by years in low journal prestige sectors (I−P+ and
I−P−). It is also worth noticing that career years in the
sector IP++ are more often preceded by years in sector
P++ than I++, suggesting that it is easier for hyperprolifics

to become hyperprolific perfectionists than for perfectionist
researchers.

We find overall similar results for the SJR data set (Fig.
S4E [45]). The main differences emerge for transitions in-
volving sector IP++. Outside the diagonal, the two largest
transitions for outlier researchers are IP++ → I++ and IP+
+ → P++ with 14% and 12% excesses, respectively. This
result suggests I++ and P++ years are more commonly pre-
ceded by IP++ years when considering SJR as the measure
of journal prestige. In addition, although sector IP++ is still
more often preceded by hyperprolific years (P++) than by
perfectionist ones (I++), the difference is not as substantial as
it is for the JIF data set. All other transitions display about the
same behavior. We also verify that the SJR results are robust
when considering only the disciplines present in the JIF data
set (Fig. S7 [45]).

C. Effects of career age

We have also investigated the effects of researchers’ career
age on the average journal prestige and productivity. To do
so, we consider the year after Ph.D. graduation as the first
career year. Next, we calculate the average productivity and
average journal prestige within 5-yr sliding windows of ca-
reer years for all disciplines. Figure 2 shows these average
values as a function of researchers’ career years. We observe
a significantly increasing trend of average productivity over
the years for all disciplines (Fig. S8A [45]), followed by a
plateau or slight decrease in the latest career years. For av-
erage journal prestige, while some disciplines show complex
patterns, we observe these values are slightly larger during
first career years and present a subtle downward trend for
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1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Physics
0.15 0.15 0.15 0.14 0.12 0.12 0.12 0.10

0.23 0.28 0.33 0.36 0.35 0.39 0.41 0.48

0.24 0.18 0.16 0.13 0.15 0.10 0.12 0.16

0.32 0.33 0.30 0.29 0.32 0.32 0.29 0.19

0.01 0.02 0.03 0.04 0.03 0.04 0.03 0.04

0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.03

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Physiology
0.22 0.16 0.19 0.22 0.22 0.24

0.21 0.24 0.30 0.35 0.32 0.32

0.29 0.26 0.18 0.16 0.16 0.12

0.22 0.24 0.26 0.18 0.16 0.20

0.00 0.03 0.04 0.07 0.11 0.06

0.05 0.07 0.02 0.02 0.02 0.05

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Agronomy
0.21 0.22 0.22 0.19 0.29 0.18

0.28 0.34 0.34 0.36 0.37 0.36

0.16 0.14 0.11 0.11 0.09 0.16

0.26 0.21 0.26 0.25 0.11 0.13

0.03 0.04 0.03 0.06 0.11 0.11

0.05 0.04 0.04 0.03 0.03 0.05

1-5 6-10 11-15 16-20 21-25 26-30 31-35

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Biochemistry
0.17 0.19 0.21 0.22 0.23 0.21 0.30

0.29 0.25 0.28 0.29 0.37 0.37 0.33

0.25 0.21 0.17 0.17 0.13 0.11 0.11

0.23 0.26 0.24 0.23 0.19 0.16 0.13

0.02 0.05 0.05 0.06 0.04 0.13 0.10

0.04 0.05 0.04 0.03 0.04 0.02 0.02

1-5 6-10 11-15 16-20 21-25 26-30 31-35

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Chemistry
0.23 0.21 0.23 0.24 0.23 0.28 0.33

0.15 0.24 0.29 0.33 0.35 0.33 0.36

0.34 0.23 0.19 0.15 0.14 0.13 0.11

0.23 0.28 0.25 0.22 0.19 0.17 0.13

0.01 0.02 0.03 0.05 0.07 0.07 0.04

0.05 0.03 0.01 0.01 0.01 0.02 0.03

1-5 6-10 11-15 16-20 21-25

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Electrical Engineering
0.16 0.23 0.28 0.18 0.22

0.35 0.34 0.35 0.46 0.43

0.12 0.12 0.07 0.11 0.10

0.22 0.23 0.17 0.17 0.16

0.12 0.07 0.11 0.05 0.10

0.04 0.01 0.03 0.01 0.00

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Genetics
0.15 0.18 0.19 0.19 0.23 0.18

0.24 0.24 0.32 0.33 0.32 0.34

0.28 0.20 0.14 0.18 0.15 0.16

0.26 0.28 0.27 0.20 0.17 0.18

0.02 0.02 0.04 0.03 0.07 0.07

0.06 0.08 0.04 0.05 0.05 0.04

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Geoscience
0.27 0.26 0.24 0.29 0.29

0.30 0.34 0.42 0.33 0.43

0.21 0.10 0.09 0.12 0.06

0.15 0.21 0.13 0.09 0.08

0.04 0.05 0.09 0.12 0.10

0.03 0.03 0.02 0.03 0.02

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Immunology
0.16 0.13 0.20 0.26 0.23 0.23

0.19 0.35 0.38 0.28 0.35 0.32

0.27 0.22 0.13 0.20 0.10 0.13

0.27 0.23 0.21 0.19 0.14 0.18

0.01 0.02 0.06 0.04 0.12 0.10

0.11 0.04 0.02 0.03 0.03 0.04

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Materials Engineering
0.29 0.32 0.25 0.24 0.31 0.25

0.28 0.27 0.32 0.30 0.27 0.38

0.17 0.16 0.13 0.15 0.11 0.08

0.15 0.19 0.19 0.19 0.22 0.21

0.03 0.03 0.07 0.08 0.07 0.08

0.06 0.02 0.01 0.01 0.01 0.00

1-5 6-10 11-15 16-20 21-25

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Mathematics
0.19 0.27 0.27 0.25 0.23

0.41 0.33 0.40 0.36 0.35

0.07 0.16 0.09 0.08 0.12

0.28 0.16 0.16 0.17 0.18

0.01 0.06 0.03 0.09 0.08

0.04 0.03 0.05 0.04 0.05

1-5 6-10 11-15 16-20 21-25 26-30 31-35

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Medicine
0.22 0.19 0.18 0.19 0.19 0.17 0.24

0.22 0.25 0.27 0.26 0.30 0.30 0.44

0.22 0.19 0.19 0.17 0.12 0.11 0.10

0.24 0.26 0.29 0.29 0.26 0.28 0.16

0.04 0.04 0.03 0.04 0.07 0.08 0.04

0.05 0.05 0.05 0.04 0.04 0.04 0.02

1-5 6-10 11-15 16-20 21-25

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Microbiology
0.16 0.18 0.19 0.26 0.30

0.28 0.34 0.32 0.30 0.31

0.23 0.16 0.17 0.20 0.25

0.27 0.25 0.29 0.16 0.10

0.02 0.03 0.01 0.05 0.02

0.04 0.05 0.02 0.02 0.01

1-5 6-10 11-15 16-20 21-25 26-30

Career age

I+P+

I-P+

I+P-

I-P-

I++

P++

Pharmacology
0.21 0.18 0.16 0.21 0.16 0.22

0.22 0.30 0.28 0.23 0.29 0.32

0.21 0.19 0.19 0.19 0.22 0.16

0.27 0.24 0.28 0.26 0.25 0.22

0.00 0.05 0.06 0.08 0.07 0.03

0.10 0.04 0.01 0.01 0.01 0.04

N
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FIG. 3. Occupation trends in the journal prestige vs productivity plane over researchers’ careers. These visualizations show the fraction
of career years in each nonoutlier sector and in outlier sectors I++ and P++ as a function of researchers’ career age for the 14 disciplines
in the JIF data set. Columns indicate 5-yr intervals and lines represent the different sectors. The same color code indicates the fractions for
the nonoutlier sectors (gray shades), and the other two color codes are used for the outlier sectors I++ (blue shades) and P++ (pink shades).
Sector IP++ is omitted because career years in this sector are very rare. We observe that low-productivity sectors are more populated during
initial career years and a shifting trend toward high-productivity sectors in later career stages for most disciplines. Only 5-yr intervals having
at least 20 researchers are shown in these visualizations.

most disciplines (Fig. S8B [45]). Figures S9 and S10 [45]
show similar results for the SJR data set. We remark, however,
that these average trends for disciplines may not represent the
individual behavior of researchers, as we shall discuss in the
next section.

To further characterize the effects of researchers’ career
age on productivity and journal prestige, we divide scholarly
careers into 5-yr intervals and estimate the average fraction
of career years in each sector of the journal prestige versus
productivity plane as a career age function. Figure 3 shows
these fractions for all disciplines in our study. In this matrix
representation, columns stand for career-year intervals, lines
indicate different plane sectors, and color codes stand for
the fraction values. Because our data comprise researchers at
different career stages, this analysis spans a time interval in
career years larger than the number of years in the JIF data set
(19 years).

Figure 3 indicates that occupation trends in the journal
prestige versus productivity plane vary among disciplines
(see Fig. S11 [45] for results based on the SJR data set).
However, some evolution patterns are common. By analyzing
the nonoutlier sectors, we observe a concentration in low-
productivity sectors (I+P− and I−P−) during initial career
years and a shifting trend to high-productivity sectors (I+P+
and I−P+) in later career stages of researchers from most
disciplines. This trend is particularly evident in physics and
chemistry, for which we observe a more pronounced growth
in sector I−P+. For the outlier sectors, we notice a low
prevalence in sector P++ during initial career stages and an
increasing trend over time for all disciplines. This rise in
productivity levels over the years may reflect the consolidation
of researchers’ careers and the likely increase of their scien-
tific collaborations. Furthermore, these patterns for nonoutlier
and outlier researchers agree with the overall increasing
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Physics

Pharmacology

Genetics

Immunology

Microbiology

Electrical Engineering

Physiology

Medicine

Agronomy

Biochemistry

Materials Engineering

Chemistry

Geoscience

0.3 0.2 0.1 0.0 0.1
Productivity effect on average journal prestige

Mathematics

Without career age effect
With career age effect

(a)

Physics

Pharmacology

Genetics

Immunology

Microbiology

Electrical Engineering

Physiology

Medicine

Agronomy

Biochemistry

Materials Engineering

Chemistry

Geoscience

0.04 0.02 0.00 0.02 0.04
Career age effect on average journal prestige

Mathematics

(b)

FIG. 4. Effect of productivity on journal prestige for nonoutlier researchers. (a) Posterior probability distributions of the average value
of the linear coefficient (μP) when considering the association between productivity and journal impact for nonoutlier researchers of each
discipline. The colored-filled curves represent the results without accounting for the effects of career age, while the gray-filled curves show
the distributions of μP after including career age as a confounding factor in the hierarchical Bayesian model (see the Methods Sec. IV D for
details). (b) Posterior probability distributions of the average value of the linear coefficient (μA) related to the effect of career age on journal
impact for nonoutlier researchers of each discipline.

trend in average productivity for all disciplines observed in
Fig. 2.

Conversely, it is intriguing to observe that sector I++ tends
to be more populated during the initial stages of researchers’
careers—a result that partially explains the slightly larger
average journal prestige during first career years for most
disciplines observed in Fig. 2. This behavior not only indicates
that it is more likely to become an impact outlier in initial
career years, but also that younger researchers (those hav-
ing shorter career paths) may outperform more often in this
category. Indeed, among the outlier researchers, the chance
of finding perfectionist researchers decreases from 79% to
58% when career length increases from 10 to 30 years (Fig.
S12A [45]). It is worth mentioning this trend of exhibiting
high journal prestige in initial career stages may also reflect
a selection effect as our data set only includes researchers
belonging to the scientific elite of Brazil. Results for the SJR
data set corroborate this finding (Fig. S12B [45]) and indicate
very similar trends not only for disciplines present in both data
sets but also for disciplines exclusive of the SJR data set.

D. Quantifying the effect of productivity on journal prestige

While our findings indicate a negative association between
productivity and journal prestige at very high levels of both
quantities for most researchers, we have not yet explored
this relationship for researchers who never accessed outlier
sectors. These nonoutlier academics represent 70% of the
researchers in our data set and may exhibit heterogeneous
behaviors, limiting the emergence of a clear aggregated re-
lationship at discipline level. To account for these individual

behaviors, we select only the productive years of nonoutlier
researchers with careers longer than 5 years (see Tables S1
and S2 [45] for details regarding this data set) and use a
hierarchical Bayesian model (see the Methods Sec. IV D for
details) for probing the association between productivity and
average journal prestige. We assume a linear relationship be-
tween journal prestige and productivity, where the distribution
of the linear coefficient related to each researcher has a mean
drawn from another distribution with average value μP.

By fitting this model to data with the Bayesian approach,
we estimate the posterior probability distribution of the linear
coefficient of each researcher and the posterior distribution
of μP for each area. Thus, the distribution of μP represents
the aggregated effect of productivity on journal impact for
nonoutlier researchers in each discipline. Distributions of μP

shifted toward positive values represent disciplines where
most researchers display a positive association between pro-
ductivity and journal impact. In contrast, distributions more
concentrated in negative values characterize disciplines where
an increase in productivity correlates with a decline in journal
impact for most researchers.

Figure 4(a) shows that the distribution of μP (colored-filled
curves) varies significantly among disciplines. All disciplines
but mathematics have distributions entirely located in values
of μP lower than zero, suggesting an overall negative associa-
tion between productivity and average journal impact for most
nonoutlier researchers. In the most extreme case, a rise in one
unit in the productivity of physicists associates with ≈ 0.242
decrease in average journal impact of their publications (in
z-score units). On the other extreme, we have mathematics
with distribution located near zero. This result indicates that

033158-7



SUNAHARA, PERC, AND RIBEIRO PHYSICAL REVIEW RESEARCH 3, 033158 (2021)

productivity usually plays a small role on journal impact for
most mathematicians, while some may display more intense
associations (positive or negative).

The results of Figs. 2 and 3 have already shown that career
age affects the average productivity and journal prestige when
aggregating researchers by their respective disciplines. Thus,
we can also expect career age to affect the association between
journal prestige and productivity at individual level. This is
a critical aspect as the overall negative association reported
in Fig. 4(a) may reflect a change from an early-career stage
marked by low productivity and high impact to higher pro-
ductivity and lower impact over the years.

To account for the possible confounding effect of career
age on the association between journal prestige and produc-
tivity, we have included career age as a predictor of journal
impact in the linear hierarchical Bayesian model. In this case,
the distribution of the linear coefficient related to the effect of
career age for each researcher has a mean drawn from another
distribution with average value μA (see the Methods Sec. IV D
for details). Figure 4(b) shows that the distributions of μA also
vary among disciplines with most having negative or close to
zero average values. These results indicate a reduction in the
average journal impact over career years for most researchers
from most disciplines. While it is hard to directly compare
the effects of changing productivity with the effects of career
progression, a 10-year career progression has more effect on
journal prestige than increasing one unit of productivity (z
score) of a typical researcher only for chemistry and physics
(Fig. S13 [45]). Most importantly, Fig. 4(a) shows that the
distributions of μP with (colored-filled curves) and without
(gray-filled curves) the career age effect change very little.
Thus, the confounding effect of career age on the overall
negative association between journal prestige and productivity
is almost negligible—that is, an increase in productivity asso-
ciates with a decrease in journal prestige regardless of career
age.

The SJR data set (Figs. S14 and S15 [45]) extends this
analysis for more disciplines and yields similar results for
disciplines present in both data sets.

III. DISCUSSION

We have investigated the association between yearly sci-
entific productivity and average journal impact for more than
6000 top Brazilian researchers. Our results explore this as-
sociation across disciplines and career stages and distinguish
researchers with outlier and nonoutlier performances. Un-
like previous works on the subject, our findings explicitly
account for temporal inflation of the bibliometric indica-
tors, scale-dependent effect on average journal prestige, and
discipline-specific publication practices via robust standard
score measures. These procedures have allowed us to build
the journal prestige versus productivity plane—a coherent
and straightforward aggregated representation of researchers’
performances in productivity and journal impact. From this
representation, we have categorized researchers into out-
liers and nonoutliers and further divided outliers into three
categories: hyperprolific (outlier only in productivity), per-
fectionist (outlier only in journal impact), and hyperprolific

perfectionist (simultaneously outlier in productivity and jour-
nal impact).

Researchers with outlier performance comprise 30% of
total scholars in our data set, and the most common behavior
is performing as an outlier in only one career year (47.6% of
cases). Among the outliers, the vast majority of researchers
are exclusively hyperprolific or exclusively perfectionist. De-
spite that, 16 extremely hyperprolific researchers display
career years solely in sector IP++ when performing above
a productivity threshold of P > 27.7. Only 14.4% of outlier
researchers manage to be hyperprolific and perfectionist over
their careers, and solely 6.7% simultaneously outperform in
both categories (the hyperprolific perfectionists). This former
group of 14.4% of outlier researchers (261 individuals) does
not have a preferential outlier sector, displays productivity
levels higher than exclusively hyperprolific and perfection-
ist scholars, and publishes in journals of higher prestige in
comparison with exclusively hyperprolific and perfectionist
researchers. Furthermore, we find that an increase in the num-
ber of hyperprolific career years reduces the probability of
performing as a perfectionist for researchers who nonsimul-
taneously outperform in both categories for all disciplines
except materials engineering in our data set. This negative
association varies among disciplines, with mathematics pre-
senting the most negative effect and physics the blandest
effect. Together, these findings corroborate a negative asso-
ciation between productivity and journal prestige at outlier
levels of both quantities. It is extremely hard for researchers to
maintain overly high productivity while frequently publishing
in very prestigious journals.

We have also explored short-term career patterns regarding
productivity and journal impact. To do so, we have estimated
the excess of transitions among sectors of the journal prestige
versus productivity plane during consecutive career years of
outlier and nonoutlier researchers. We have identified a per-
sistent behavior in which researchers tend to stay within the
same sector of the plane and thus display similar performance
over consecutive years. Transitions among similar levels of
productivity and journal prestige are about as frequent as by
chance. Conversely, transitions among plane sectors with dif-
ferent productivity and journal impact levels occur much less
often than by chance, indicating that researchers are averse to
simultaneously changing their productivity and journal impact
levels over consecutive career years.

We believe this aversion to simultaneously changing
productivity and journal impact and the persistence in
maintaining similar performances regarding these metrics in-
dicate possible research and publication strategies in which
researchers opt between productivity-focused or journal-
impact-focused strategies [35]. To keep productivity levels,
scholars may choose strategies based on expanding collab-
orations, avoiding prestigious journals, producing bite-sized
articles, and selecting more traditional research themes. Con-
versely, impact-focused strategies may rely on searching for
collaborators only when necessary and beneficial to solv-
ing research tasks, selecting high-impact journals as the top
choice, publishing findings with maximization of understand-
ing and impact in mind, and choosing novel research fields.
Further research is needed for explicitly identifying these
strategies. Still, our results suggest that publication strategies
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may persist as a habit, and they possibly reflect individual
characteristics and cultural conventions of research groups.

We have investigated the aggregated effect of career age
on the average journal prestige and productivity for all dis-
ciplines. We have identified that journal prestige is usually
slightly larger in initial career stages with a subtle downward
trend over career years for most disciplines. Productivity, in its
turn, tends to increase over career years for all disciplines. We
have also studied the effect of career age on the occupation of
sectors of the journal prestige versus productivity plane for
each discipline. Our findings indicate that disciplines have
distinct occupation fractions of these sectors, reflecting the
different publication practices of different fields. However, we
have found low productivity sectors (I−P− or I+P−) to be
more populated during initial stages of researchers’ careers
from all disciplines. We have also identified an increasing
occupation trend of high productivity sectors—including the
hyperprolific sector (P++)—in later career stages for prac-
tically all disciplines. Conversely, researchers more often
achieve perfectionist performances in early career stages. It
is important to remark that both the trend of presenting larger
journal prestige in initial career years and the higher proba-
bility of finding researchers occupying sector I++ in yearly
career stages may reflect a selection effect, as all researchers
in our data set belong to the Brazilian scientific elite. Whether
these trends would also hold for other academics is an in-
teresting question that future research could address. The
increase in productivity with career age was also verified by
Sinatra et al. [47] and may reflect a series of achievements
that tend to be usual in scientific career progression, such as
more familiarity with research themes [24], larger availability
of financial resources [24,50], and invitation to write review
articles [24]. Similarly, the emergence of hyperprolific years
in later career stages may coincide with achieving higher
positions in research centers, which could overly enhance
publication rates by the tradition of some research disciplines
(such as in medical and life sciences) of including the head of
scientific labs in all publications [51].

Our results have also shown that the relation between
productivity and journal impact for nonoutlier researchers is
similar to the one observed for those achieving outlier perfor-
mance. For nonoutlier, we have used a Bayesian hierarchical
model that accounts for researchers’ heterogeneous behaviors
and identifies the emergent pattern for each discipline. We
have found an overall negative association for the majority of
disciplines when considering only nonoutlier researchers—a
result that is in line with the negative association observed
at outlier levels of productivity. However, the intensity of
the association varies among disciplines, with physics having
the most negative association and mathematics having the
blandest effect of productivity on journal prestige. We have
verified that while career age is also negatively correlated
with journal impact, the overall negative association between
journal impact and productivity is not significantly affected by
this confounding factor. These findings contradict the Nijstad
et al. “dual pathway to creativity model” [28], which states
that creativity—as perceived as novel and suitable ideas—can
be achieved through flexibility (usage of a variety of ideas
to generate new ones) and persistence (exploration of the
same subject in depth) pathways. According to this theory,

researchers with high productivity should be either exploring
and associating various themes, enabling the generation of
creative ideas in the flexibility pathway, or intensively work-
ing and publishing on the same theme until creative ideas are
generated in the persistence pathway. In this sense, since pro-
ductivity does not positively correlate with journal prestige,
the JIF and SJR may not be the most suitable indicators for
evaluating creativity.

IV. METHODS

A. Data

The data used in our study were obtained from the Lattes
platform [52] (Plataforma Lattes). This information system
has been maintained by the Brazilian government since 1999
and hosts the official curricula vitae (CV) of academics in
Brazil. The Lattes CV is widely used for individual and in-
stitutional evaluations, and researchers are required to keep
their records up to date. We have initially selected all 14 487
Brazilian researchers (from 88 disciplines) holding the CNPq
Research Productivity Fellowship (as of May 2017) and ob-
tained their complete publication records (1 121 652 articles).
We filtered out researchers whose CVs were not updated from
1 Jan 2016 and those having no information about discipline
and Ph.D. conclusion date, reducing the number to 14 146
researchers. We further filled in missing information about
publication year and journal by using the DOI reference with
the CrossRef API.

To define the journal prestige of these publications, we
have obtained the journal impact factor (JIF) for all available
scientific journals between 1997 and 2015 from Clarivate’s
journal citation reports. We thus combined these two data
sets to assign the time-varying values of JIF to the articles
published by the CNPq fellows. For each of these researchers,
we calculated the number of articles published by year (pro-
ductivity) and the average JIF of these publications (average
journal prestige). Finally, we grouped these time series by
discipline and selected the 14 disciplines having at least 50
researchers with published articles in each year between 1997
and 2015. This process led to our final data set comprising
6 028 researchers from 14 disciplines and 312 881 arti-
cles (Fig. S16 [45]). We have also considered the Scopus’s
SCImago journal rank (SJR) as a measure of journal prestige.
To do so, we have obtained the SJR values for all available
scientific journals between 1999 to 2015 from Scopus. By
following the same approach used for the JIF, we obtain
the productivity and the average SJR for 448 959 articles
published by 8 465 researchers from 25 disciplines (Fig. S17
[45]).

While the JIF of a journal is simply defined as the
number of citations received by articles from the two pre-
ceding years divided by the number of published articles in
these two previous years [53,54], the SJR is a more com-
plex network-based (an eigenfactor variant of the Page Rank
algorithm) indicator [55]. Despite this difference, JIF and
SJR are strongly correlated with Pearson correlation ≈ 0.85
(Fig. S1 [45]). The disciplines from both data sets are from
science, technology, engineering, and mathematics (STEM
disciplines), which in turn reflects the predominance of pro-
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ductivity fellowship grants to researchers from these academic
disciplines.

B. Inflation and robust standard score units

The volume of scientific production has increased over
time at global and individual levels [46,47]. This yields an
inflation effect that prevents a direct comparison of raw pro-
ductivity and journal impact values from different periods
(Figs. S2 and S3 [45]). Disciplines also have distinct volumes
of publication and citation dynamics [56,57], which in turn
hampers the aggregation and comparison of raw productivity
and journal impact values among different disciplines. Fur-
thermore, average journal impact suffers from an additional
size effect that decreases its variability with the rise of produc-
tivity. This size effect has been observed when comparing the
impact factor of journals with different numbers of total pub-
lications [48,49] and, as argued by Antonoyiannakis [48,49],
it represents a direct consequence of the central limit theorem.

To account for these issues, we have used z-score measures
relative to year and discipline for productivity and z-score
measures relative to year, discipline, and productivity level for
journal prestige. Let pk

j (y) and ik
j (y) represent, respectively,

the number of papers and the average journal prestige of the
publications by researcher j from discipline k in year y. We
calculate the z scores of productivity as

Pk
j (y) = pk

j (y) − E
[
pk

j (y)
]

S[pk
j (y)]

,

where E[pk
j (y)] and S[pk

j (y)] are (respectively) the average
and the standard deviation of the productivity of researchers
from discipline k in year y. Similarly, we calculate the z-score
journal prestige as

Ik
j (y) = ik

j (y) − E
[
ik
rnd(y, pk

j (y))
]

S
[
ik
rnd(y, pk

j (y))
] ,

where ik
rnd(y, p) is the average journal impact of a random

sample of p publications from discipline k in year y, and
E[ik

rnd(y, p)] and S[ik
rnd(y, p)] represent, respectively, the av-

erage and the standard deviation of ik
rnd(y, p) estimated over

1000 independent realizations. This definition is an adapta-
tion of the � index proposed by Antonoyiannakis [48,49] for
ranking journals of different sizes, and it accounts for the fact
that low-productivity researchers have high variability in their
average values of journal prestige, while high-productivity
researchers display significantly lower variability (Figs. S18
[45]).

Here we have further used Huber robust estimators for
mean (location) and standard deviation (scale) in place of the
usual estimators [58] due to the existence of outlier values
for pk

j (y) and ik
j (y) (Fig. S19 [45])—that is, E[. . . ] and S[. . . ]

represent respectively Huber’s estimators of location and scale
(as implemented in PYTHON package statsmodels [59]).

C. Logistic regressions

To quantify the effect of performing as outlier in produc-
tivity on the chance of being an outlier in journal impact

(perfectionist), we use the following logistic model,

�perfectionist = eα0+α1YP

1 − eα0+α1YP
,

where �perfectionist is the probability of being a perfectionist
researcher given the scholar has YP outlier career years in
productivity, α0 is the intercept, and α1 is the logistic regres-
sion coefficient. Positive values of α1 indicate that an increase
in YP enhances the probability of performing as a perfec-
tionist, while negative values of α1 show that an increase in
YP reduces the probability of being a perfectionist. We have
adjusted this model (as implemented in the PYTHON package
statsmodels [59]) to our data by considering all researchers
who outperformed in journal impact or productivity at some
point in their careers. We have also adjusted the same model
when grouping researchers by discipline. Figure 1(c) shows
�perfectionist as a function of YP for each discipline in the JIF
data set and when considering all disciplines together (the
inset depicts the values of α1). Similarly, Fig. S4C [45] shows
the corresponding results for the SJR data set.

We further use a similar logistic model to estimate the
probability of being perfectionist as a function of the career
length of researchers (L). In this case, the model can be written
as

�perfectionist = eθ0+θ1L

1 − eθ0+θ1L
,

where θ0 (intercept) and θ1 (regression coefficient) are the
model parameters. We have adjusted this model considering
all outlier researchers in JIF and SJR data sets. Figure S12
[45] shows �perfectionist as a function of L for both data sets.
The adjusted parameters are θ0 = 1.849 ± 0.132 and θ1 =
−0.051 ± 0.006 for the JIF data set, and θ0 = 1.921 ± 0.108
and θ1 = −0.054 ± 0.005 for the SJR data set.

D. Bayesian hierarchical model

We use a Bayesian hierarchical model to estimate the ef-
fect of productivity on average journal impact for nonoutlier
researchers. For a given discipline, we consider that the data
are hierarchically structured such that each observation of I j

and Pj is nested within a researcher j (here we have dropped
the index k for simplicity). We further assume a linear relation
between these variables at the individual level, where c j and
β j are (respectively) the intercept and the slope of the linear
association for the jth researcher of a given discipline. We
consider the parameters c j and β j as random variables dis-
tributed according to normal distributions whose parameters
are also random variables. Mathematically, we can write this
model as

I j ∼ N (c j + β jPj, ε), (1)

where N (μ, σ ) stands for a normal distribution with mean
μ and standard deviation σ , ε accounts for the unobserved
determinants of I j , and

c j ∼ N (μc, σc),

β j ∼ N (μP, σP ),

where μc is the mean, σc is the standard deviation of a normal
distribution associated with the intercept c j , and μP and σP are
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the same for the distribution associated with β j . The Bayesian
inference process consists in determining the posterior prob-
ability distributions of the parameters at discipline level (μc,
σc, μP, and σP) and at researcher level (c j and β j for every j
researcher of given discipline).

We perform this Bayesian regression for each area sepa-
rately and use noninformative prior distributions [60] to not
bias the posterior estimation; that is, we consider

ε ∼ U (0, 102),

μc ∼ N (0, 105),

μP ∼ N (0, 105),

σc ∼ Inv-	(10−3, 1),

σP ∼ Inv-	(10−3, 1),

(2)

where U (xmin, xmax) represents a uniform distribution between
xmin and xmax, and Inv-	(a, b) stands for an inverse-γ distribu-
tion with parameters a (shape) and b (scale). Figure S20 [45]
shows a graphical representation of this model.

We have also considered a generalized version of the model
defined in Eq. (1), where career age Aj is also assumed to be
linearly related with average journal prestige. The value of
Aj refers to the career age of researcher j at a given year y
with productivity Pj and average journal impact I j . Thus, we
include the career age Aj as an independent variable in the
hierarchical model of Eq. (1), yielding

I j ∼ N (c j + β jPj + γ jA j, ε), (3)

where γ j is the slope of the linear association between career
age and journal prestige. This linear coefficient is assumed to
be distributed according to a normal distribution

γ j ∼ N (μA, σA),

where μA is the mean and σA is the standard deviation. We
adjust the model of Eq. (3) with the same noninformative prior
distributions defined in Eq. (2), and use

μA ∼ N (0, 105),

σA ∼ Inv-	(10−3, 1)
(4)

as the noninformative prior distributions for the additional
parameters related to the effects of career age. Figure S21 [45]
shows a graphical representation of this generalized model
that accounts for possible confounding effects of career age
on the association between average journal prestige and pro-
ductivity.

We implement these two models [Eqs. (1) and (3)] using
the PyMC3 framework [61] via gradient-based Hamiltonian
Monte Carlo no-U-Turn-sampler method for sampling the
posterior distributions. We run eight parallel chains with
10 000 iterations (of which 5000 are burn-in samples) to allow
good mixing of the Monte Carlo chains. We estimate the
Gelman-Rubin convergence statistic (R-hat) for all regression
analyses and the results were all close to one, an indication of
convergence of the sampling approach.
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