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Unified description of cuprate superconductors using a four-band d-p model
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In the 35 years since the discovery of cuprate superconductors, we have not yet reached a unified understanding
of their properties, including their material dependence of the superconducting transition temperature Tc. The
preceding theoretical and experimental studies have provided an overall picture of the phase diagram, and some
important parameters for the Tc, such as the contribution of the Cu dz2 orbital to the Fermi surface and the
site-energy difference �d p between the Cu dx2−y2 and O p orbitals. However, they are somewhat empirical
and limited in scope, always including exceptions, and do not provide a comprehensive view of the series of
cuprates. Here we propose a four-band d-p model as a minimal model to study material dependence in cuprates.
Using the variational Monte Carlo method, we theoretically investigate the phase diagram for the La2CuO4 and
HgBa2CuO4 systems and the correlation between the key parameters and the superconductivity. Our results
comprehensively account for the empirical correlation between Tc and model parameters, and thus can provide a
guideline for new material design. We also show that the effect of the nearest-neighbor d-d Coulomb interaction
Vdd is actually quite important for the stability of superconductivity and phase competition.

DOI: 10.1103/PhysRevResearch.3.033157

I. INTRODUCTION

The discovery of superconductivity in cuprates has brought
about the significant progress in strongly correlated elec-
tron systems [1]. Along with the high superconducting
transition temperature Tc, cuprates show anomalous phases
and phenomena such as the Mott metal-insulator transi-
tion, pseudogap phenomena, and antiferromagnetic (AF) and
charge-density-wave (or stripe) phases [2,3]. Recently, ne-
matic order [4] and ferromagnetic fluctuation [5,6] have also
been observed experimentally. These newly observed experi-
ments being constantly reported with the underlying, possibly
exotic, physics have continued to attract many researchers’
interests over 35 years since the first high-Tc cuprate super-
conductor was synthesized.

It has been widely believed that the strong AF spin
fluctuation characteristic to the two-dimensional square lat-
tice structure triggers the various anomalous phenomena in
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cuprates [7–10]. On the basis of this picture, the effective
one-band Hubbard model [11] has been studied with vari-
ous numerical methods extensively [12,13]. It succeeded in
describing the important physics in cuprates not only for the
ground state but also for the excited state. The angle-resolved
photoemission spectroscopy (ARPES) experiments show that
the Fermi surface consists of only one energy band mainly
derived from the Cu dx2−y2 orbital [14] and thus the one-band
models are justified as long as the low-energy physics is
concerned.

However, recent theoretical and experimental development
sheds light on the importance of the orbital degree of free-
dom in cuprates. For example, material dependence of Tc is
difficult to discuss within the one-band models. The previous
studies of the one-band models generally discussed the ma-
terial dependence via the shape of different Fermi surfaces
originated by different hopping integrals, e.g., the nearest-
neighbor hopping t and the next nearest-neighbor hopping
t ′. Indeed, such treatment allowed us to capture the overall
feature for the difference between hole-doped and electron-
doped systems [15]. However, the material dependence of Tc

for the hole-doped systems has not been able to be explained
properly. Experimentally, Tc becomes higher with larger |t ′/t |,
i.e., more rounded Fermi surface [16]. On the contrary, it is
predicted theoretically that in most one-band models, Tc is
reduced because of poor nesting properties in rounded Fermi
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surfaces [17,18]. A clue to resolving this contradiction can be
found by seriously considering the orbital degrees of freedom,
especially, the Cu dz2 orbital [18–20]. The study for the two-
orbital model shows that the contribution of the dz2 orbital to
the Fermi surface, which is strong in low Tc materials, works
against the dx2−y2 -wave superconductivity [18]. This picture
can explain the material dependence of Tc. Indeed, a recent
ARPES experiment directly observed the hybridization gap
between the dz2 and dx2−y2 orbitals and pointed out the impor-
tance of the multiorbital effect on superconductivity [21].

Another extension to a multiorbital model is the introduc-
tion of the O p orbitals. A minimal model that includes the
Cu dx2−y2 , O px, and O py orbitals in the CuO2 plane is
known as the (three-band) d-p model or the Emery model
[22]. The three-band d-p model has been studied with various
numerical methods [23–47] as much as the one-band models.
In these studies, the site-energy difference �d p between the
Cu dx2−y2 and O px/y orbitals is found to be an important
parameter for understanding the material dependence of Tc.
For example, the three-band d-p model can successfully re-
produce the negative correlation between �d p and Tc [34],
namely, a smaller �d p leads to a higher Tc. Furthermore,
the role of the O p orbitals in the superconducting pairing
[37,41,43,44,47], stripe order [26,38], loop current [29,30,33],
and nematic order [33,36,39,40] has been discussed with the
three-band d-p model. However, it is still difficult to correctly
capture the correlation between Fermi surface topology and Tc

within the three-band d-p model [28,34].
In this paper, we study a four-band d-p model composed

of the Cu dx2−y2 and dz2 orbitals and the O px and py

orbitals, which can be expected to resolve the problems men-
tioned above. As typical examples of single-layer hole-doped
cuprates, we consider La2CuO4 and HgBa2CuO4 systems.
We construct the tight-binding model for these systems based
on the first-principles calculation and examine the effect of
Coulomb interaction by the variational Monte Carlo (VMC)
method. We show that the material dependence of Tc is well
explained with two key parameters, the site energy εdz2 of
the Cu dz2 orbital and the site-energy difference �d p be-
tween the Cu dx2−y2 and O px/y orbitals, which is consistent
with the empirical relation. We thus propose that the present
four-band d-p model is a minimal model that can properly
describe the material dependence of cuprate superconductors.
Furthermore, we also study the effect of the nearest-neighbor
d-d Coulomb interaction Vdd , which has not been discussed
in detail previously. We show that Vdd substantially affects
the stability of superconductivity and the phase competition
among various phases, suggesting an important parameter for
the effective model of cuprates. In addition, we find that Vdd

induces a crossover from a Slater insulator to a Mott insulator
at the undoped limit.

The rest of this paper is organized as follows. In Sec. II, a
four-band d-p model on the two-dimensional square lattice is
introduced. The VMC method and the variational wave func-
tions are also explained in Sec. II. The numerical results are
then provided in Sec. III. The tight-binding energy bands for
the La2CuO4 and HgBa2CuO4 systems, obtained on the basis
of the first-principles calculation, are first shown in Sec. III A.
The material and doping dependencies of a superconducting
correlation function are then examined and the role of two

FIG. 1. (a) Schematic lattice structure of the four-band d-p
model, forming the two-dimensional square lattice. Each Cu site
contains dx2−y2 and dz2 orbitals, while there is either px or py orbital
on O sites. The lattice constant between the nearest-neighbor Cu sites
is set to be one, i.e., primitive translation vectors |ex| = |ey| = 1.
(b) Phase convention for the Cu dx2−y2 orbital and the O px and
py orbitals. Solid (open) ovals indicate the positive (negative) phase.
The hopping integral between the dx2−y2 and px/y orbitals t1 is shown
with the sign. The definitions of other hopping integrals (t2 − t6) are
described in Appendix.

key parameters εdz2 and �d p are clarified in Sec. III B. The
effect of the nearest-neighbor d-d Coulomb interaction Vdd

is investigated in Sec. III C. The phase competition among
superconductivity and other phases is briefly discussed in
Sec. III D. Finally, the paper concludes with a summary in
Sec. IV. The details of the variational wave functions are
described in Appendix.

II. MODEL AND METHOD

A. Four-band d-p model

As an effective low-energy model of cuprates, we consider
a four-band d-p model on the two-dimensional square lattice
(see Fig. 1) defined by the following Hamiltonian:

H = Hkin + Hint − Hdc. (1)

Here, the kinetic term Hkin is described by

Hkin =
∑
i, j,σ

∑
α,β

tαβ
i j c†

iασ c jβσ (2)

=
∑
k,σ

∑
m

Em(k)a†
kmσ akmσ , (3)

where Eq. (2) is the kinetic term in an orbital representation
and Eq. (3) is in a band representation. c†

iασ (ciασ ) is a cre-
ation (annihilation) operator of an electron at site i with spin
σ (=↑,↓) and orbital α (=1, 2, 3, 4) corresponding to (dx2−y2 ,
dz2 , px, py), respectively. tαβ

i j denotes a hopping integral be-
tween orbital α at site i and orbital β at site j. tαα

ii is a site
energy εα for orbital α at site i. Equation (3) is obtained
by diagonalizing Eq. (2), and the energy eigenvalue Em(k)
is characterized by the wave vector k and the energy band
index m (=1, 2, 3, 4). a†

kmσ (akmσ ) is a creation (annihilation)
operator of the corresponding energy band with spin σ . The
undoped parent compounds of cuprates correspond to one
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FIG. 2. The Coulomb interaction parameters between nearest-
neighbor orbitals. Solid (open) circles represent Cu (O) atoms.

hole (i.e., seven electrons) per unit cell in this model, which
is conventionally referred to as half filling, and hereafter we
denote the carrier density as the number δ of holes per unit
cell that are introduced into the system at half filling.

The Coulomb interaction term Hint is composed of eight
terms,

Hint =Ud

∑
i

(
nd1

i↑nd1
i↓ + nd2

i↑nd2
i↓

)

+
(
U ′

d − J

2

) ∑
i

nd1
i nd2

i − 2J
∑

i

Sd1
i · Sd2

i

− J ′ ∑
i

(c†
i1↑c†

i1↓ci2↑ci2↓ + c†
i2↑c†

i2↓ci1↑ci1↓)

+ Up

∑
i

(
npx

i↑npx

i↓ + n
py

i↑n
py

i↓
) + Vd p

∑
〈i, j〉

nd
i n

px/y

j

+ Vpp

∑
〈i, j〉

npx
i n

py

j + Vdd

∑
〈i, j〉

nd
i nd

j . (4)

Here, nα
i = nα

i↑ + nα
i↓ with nα

iσ = c†
iασ ciασ is the number op-

erator and Sα
i is the spin angular momentum operator at site

i with orbital α. d1 and d2 are abbreviations for dx2−y2 and
dz2 orbitals, respectively, and nd

i = nd1
i + nd2

i . Ud ,U ′
d , J, and

J ′ represent on-site intraorbital, interorbital, Hund’s coupling,
and pair-hopping interactions between d orbitals, respectively.
In this paper, we set J ′ = J and Ud = U ′

d + 2J [48]. The
on-site intraorbital Coulomb interaction within p orbitals Up is
also introduced. The last three terms in Hint take into account
the intersite Coulomb interactions between nearest-neighbor
orbitals, Vd p,Vpp, and Vdd , as shown in Fig. 2, where the sum∑

〈i, j〉 runs over all pairs of nearest-neighbor orbitals located
at site i and j.

In addition, the following double counting correction term
Hdc is introduced:

Hdc =
[{

Ud + 2

(
U ′

d − J

2

)
+ 16Vdd

}
〈nd〉0 + 8Vd p〈np〉0

]

×
∑

i

nd
i + {

(Up + 8Vpp)〈np〉0 + 8Vd p〈nd〉0
}

×
∑

i

(
npx

i + n
py

i

)
, (5)

where 〈nd〉0 = 1
NS

∑
i〈nd

i 〉 and 〈np〉0 = 1
NS

∑
i〈(npx

i + n
py

i )〉 are
the average electron density of the d and p orbitals in the
noninteracting limit and NS is the total number of unit cells.
When we apply a many-body calculation method to a mul-
tiorbital model, the site energy of each orbital is shifted due
to the interaction effect. However, such energy shifts have
already been included in the energy band of the tight-binding
model constructed from the first-principles calculation. This
is a so-called double counting problem and should be treated
with care especially in the d-p model [49]. Here, we subtract
the term Hdc from the Hamiltonian to correct the energy shift.
This is one of the reasonable treatments to avoid the double
counting.

B. VMC method

The effect of Coulomb interaction is treated using a VMC
method [50–52]. The trial wave function considered here is a
Gutzwiller-Jastrow type composed of four parts,

|�〉 = P(2)
G PJc PJs |	〉. (6)

|	〉 is a one-body part constructed by diagonalizing the one-
body Hamiltonian including the off-diagonal elements {ρα

i },
{mα

i }, and {�αβ
i j }, which induce long-range ordering of charge,

spin, and superconductivity, respectively. The renormalized
hopping integrals {t̃αβ

i j } are also included in |	〉 as variational
parameters. The explicit forms of them are described in the
Appendix.

The Gutzwiller factor

P(2)
G =

∏
i,γ

[e−gγ |γ 〉〈γ |i] (7)

is extended to two-orbital systems [53,54]. In P(2)
G , possible

16 patterns of charge and spin configuration of the dx2−y2 and
dz2 orbitals at each site |γ 〉, i.e., |0〉 = |0 0〉, |1〉 = |0 ↑〉, · · · ,
|15〉 = |↑↓ ↑↓〉, are differently weighted with e−gγ and {gγ }
are optimized as variational parameters.

The remaining operators

PJc = exp
[
−

∑
i, j

∑
α,β

vc
i jαβnα

i nβ
j

]
(8)

and

PJs = exp
[
−

∑
i, j

∑
α,β

vs
i jαβsz

iαsz
jβ

]
(9)

are charge and spin Jastrow factors, which control long-range
charge and spin correlations, respectively. sz

iα is the z com-
ponent of the spin angular momentum operator at site i with
orbital α. We set vc

iiαβ = vs
iiαβ = 0 for α, β = d1, d2 because

the on-site correlation between the dx2−y2 and dz2 orbitals are
already taken into account in P(2)

G .
In this paper, we focus mainly on the superconducting

correlation functions to examine where the superconductiv-
ity appears in the phase diagram. (The detailed studies on
other competing orders will be discussed elsewhere.) The
variational parameters in |�〉 are therefore {t̃αβ

i j }, {�αβ
i j }, {gγ },

{vc
i jαβ}, and {vs

i jαβ}. They are simultaneously optimized using
stochastic reconfiguration method [55]. We show results for
NS = 24 × 24 = 576 unit cells (and thus 576 × 4 = 2304
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TABLE I. The tight-binding parameters for the La2CuO4 and HgBa2CuO4 systems in eV units estimated on the basis of maximally
localized Wannier orbitals from the first-principles LDA calculation. For comparison, the tight-binding parameters for the La2CuO4 system
with reference to the QSGW method are also shown (denoted as “revised”). The definitions of ti and εα are described in Appendix A 1.
�d p = εdx2−y2 − εp, i.e., the site-energy difference between the Cu dx2−y2 and O px/y orbitals.

t1 t2 t3 t4 t5 t6 εdx2−y2 εdz2 εpx/y �d p

La2CuO4 1.42 0.61 0.07 0.65 0.05 0.07 –0.87 –0.11 –3.13 2.26
La2CuO4(revised) 1.42 0.61 0.07 0.51 0.03 0.07 –0.87 –0.68 –3.13 2.26
HgBa2CuO4 1.26 0.65 0.13 0.33 0.00 0.05 –1.41 –1.68 –3.25 1.84

orbitals in total), which is large enough to avoid finite-size
effects. The antiperiodic boundary conditions are set for both
x and y directions of the primitive lattice vectors.

III. RESULTS

A. Band structures of La2CuO4 and HgBa2CuO4

First, we discuss the material dependence of the band
structure. As a typical example of single-layer hole-doped
cuprates, we study the La2CuO4 and HgBa2CuO4 systems.
We construct maximally localized Wannier orbitals [56,57]
from the first-principles calculation in the local-density ap-
proximation (LDA) with ecalj package [58] and fit them with
the hopping integrals ti (i = 1 − 6) and the site energy of each
orbital εα . The parameter sets determined for these systems
are listed in Table I and the explicit form of the tight-binding
model is described in the Appendix. Note that the estimated
site energy of the Cu dz2 orbital εdz2 , and the hybridization
between the Cu dz2 and O px/y orbitals t4, depend significantly
on the method of first-principles calculation. In fact, the esti-
mated εdz2 is much lower in the quasiparticle self-consistent
GW (QSGW) method [61–63] than in the conventional LDA
calculation [64]. To clarify the effect, we also consider another
parameter set of La system with reference to the QSGW band
structure (labeled as “revised”), where the site energy εdz2 is
lower and t4 is also slightly smaller than those estimated on
the basis of the LDA calculation (see Table I).

Figure 3 shows the noninteracting tight-binding energy
bands for La and Hg systems. We can notice the clear dif-
ference among them: (i) The density of states (DOS) of the
dz2 component is extended from 0 to −2 eV in the La system
[Fig. 3(a)], while it is almost localized around −2 eV in the Hg
system [Fig. 3(c)]. This is because the dz2 orbital is hybridized
with the px/y orbital in the La system much more strongly
than in the Hg system. The dz2 electrons obtain the itinerancy
through the hybridization and therefore the dz2 component of
the La system is more extended than that of the Hg system.
The revised version of the La system is located somewhere in
between [Fig. 3(b)]. (ii) The site-energy difference between
the dx2−y2 and px/y orbitals �d p = εdx2−y2 − εp is larger in the
La system than in the Hg system. This affects the occupancy
of each orbital and thus the strength of the electron correla-
tion. For example, when �d p (> 0) is small, the energy band
crossing the Fermi energy contains more component of the
px/y orbital, in which the intraorbital Coulomb interaction is
smaller.

Starting from these energy band structures, we shall in-
vestigate the ground-state property of the La and Hg systems
using the VMC method. We assume that the tight-binding pa-
rameters remain unchanged with hole doping. The Coulomb
interaction parameters are set as (Ud ,U ′

d , J,Up,Vd p,Vpp) =
(8.0, 6.4, 0.8, 4.0, 2.0, 1.6) t1 for both La and Hg systems
with reference to Ref. [65]. Note that the values for the La
system are larger in eV units because of the larger t1. In the

FIG. 3. The energy dispersions and projected density of states onto the dx2−y2 , dz2 , and px/y orbitals for the noninteracting tight-binding
models for (a) La2CuO4, (b) La2CuO4(revised), and (c) HgBa2CuO4 systems. The tight-binding parameters are given in Table I. Fermi energy
(defined as zero energy) is set to be the case of 15% hole doping (δ = 0.15). The high symmetric momenta are indicated as � = (0, 0),
M = (π, π ), and X = (π, 0).
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following, we set t1 as a unit of energy. We first set Vdd = 0
and then discuss the effect of finite Vdd . As shown in Sec. III C,
we find that even small Vdd can substantially affect the prop-
erty of the system.

B. Superconducting correlation function

1. Overview

To discuss the material dependence of superconductivity,
we calculate the superconducting correlation function defined
as

Pdd (r) = 1

NS

∑
i

∑
τ,τ ′

f (dd )
ττ ′ 〈�†

τ (Ri )�τ ′ (Ri + r)〉, (10)

where �†
τ (Ri ) is a creation operator of singlet pairs between

nearest-neighbor dx2−y2 orbitals,

�†
τ (Ri ) = 1√

2
(c†

i1↑c†
i+τ1↓ + c†

i+τ1↑c†
i1↓), (11)

and τ runs over four nearest-neighbor Cu sites (τ =
±ex,±ey). f (dd )

ττ ′ is a form factor of a superconducting gap
function with dx2−y2 symmetry, namely, f (dd )

ττ ′ = 1 for τ ‖ τ ′
and −1 for τ ⊥ τ ′. 〈· · · 〉 denotes 〈�| · · · |�〉/〈�|�〉 for the
optimized variational wave function |�〉. If Pdd (r) is saturated
to a finite value for r = |r| → ∞, superconducting long-range
order exists.

Figure 4(a) shows the behavior of Pdd (r = |r|) for the
Hg system at a hole doping rate δ = 0.153. It shows good
convergence for r � 4 and reveals that the superconducting
long-range order certainly exists. The sign of the d-d pairing
in a real space is shown in Fig. 4(b). It is positive in the x
direction and negative in the y direction, reflecting the dx2−y2 -
wave symmetry expected in cuprate superconductors. We also
calculate the superconducting correlation function for pairing
formed between the dx2−y2 and px/y orbitals Pd p(r), which
is defined in the same way as Pdd (r) except that c†

i+τ1σ in
Eq. (11) is replaced with c†

i+ τ
2 3(4)σ for τ = ±ex(y). Although

the value is one order of magnitude smaller than Pdd (r) [see
Fig. 4(a)], Pd p(r) is also saturated to a finite value, indicative
of the long-range order of d-p pairing. Note that the sign
of the d-p pairing changes alternatively along both x and
y directions and thus shows p-like symmetry as shown in
Fig. 4(c). This is due to the phase convention of px and py

orbitals adopted here [see Fig. 1(b)] and is consistent with
the dx2−y2 pairing symmetry [66]. It is also compatible with
the preceding study of the three-band d-p model [45]. This
kind of real space or orbital representation is useful for the
analysis of cuprate superconductors [43,44,47] because the
pairing length is expected to be very short [67].

2. Material dependence: Effect of dz2 orbital

Let us now examine the material and doping dependence
of the superconducting correlation function. We take the
converged value of Pdd (r → ∞) as a strength of supercon-
ductivity Pdd . Figure 5(a) shows the doping dependence of
Pdd for the La, La(revised), and Hg systems. For all cases,
Pdd displays a dome shape as a function of the hole doping
rate δ. At δ = 0, the system is insulating due to the strong

FIG. 4. (a) Superconducting correlation function Pdd (r) and
Pd p(r) for the Hg system at a hole doping rate δ = 0.153. The sign
change of (b) d-d and (c) d-p pairings. Cu (O) sites are indicated by
solid (open) circles in (b) and (c).

correlation effect and thus Pdd = 0. As δ increases, mobile
carriers are introduced into the system and the mobility of the
Cooper pair increases. On the other hand, the strength of the
d-d pairing itself is reduced by doping because the electron
correlation effect is also reduced. The balance between these
two factors results in the dome-shaped behavior of Pdd . This
picture is expected to be universal for all hole-doped cuprate
superconductors. The doping dependence of Pd p is also shown
in Fig. 5(b). Pd p displays similar behavior with Pdd ; they have
the same peak structure and vanish at the same doping rate
δ. The d and p orbitals are hybridized with each other and
form a quasiparticle band represented with operators b and b†

[Note that they are different from a and a† in Eq. (3).] The
quantity Pbb ∼ 〈b†b†bb〉 is more directly related to Tc but it is
difficult to calculate within the VMC method. Nevertheless,
we expect that Pdd is closely related to Tc and is a good
indicator of superconductivity because the Cooper pairs are
mainly contributed from d-d pairing.

Next, let us study the importance of the orbital character
near the Fermi energy in the material dependence of super-
conductivity. Generally, a large DOS at the Fermi energy is
favorable for superconductivity due to the large energy gain
of gap opening. However, a detailed structure of the DOS,
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FIG. 5. (a) Pdd and (b) Pd p as functions of the hole doping rate δ

for the three systems.

namely, the orbital character and k dependence should be
carefully investigated. For this purpose, we calculate the fol-
lowing momentum distribution function of holes:

nα (k) = 1

2

∑
σ

〈ckασ c†
kασ 〉, (12)

where c†
kασ (ckασ ) is a Fourier transform of c†

iασ (ciασ ) in
Eq. (2). Figure 6 shows nα (k) for the La system at the super-
conducting phase (δ = 0.153) and the paramagnetic metallic
phase (δ = 0.181). The discontinuities around the X point and
in the middle of the �-M line in Fig. 6(b) for the paramagnetic
metallic phase indicate the existence of Fermi surface. Since
the node of the superconducting gap runs along the �-M line,
a discontinuity also exists in the superconducting phase, as
shown in Fig. 6(a). We can observe that the dz2 component has
large weight around the X point, exhibiting a peak structure
in nα (k), where the superconducting gap becomes the largest
(so-called “hot spot”). This feature is expected to be unfavor-
able for superconductivity because the AF spin fluctuation,
which promotes the dx2−y2 -wave pairing, is suppressed when
the Cu dz2 orbital contributes to the formation of the Fermi
surface [68].

FIG. 6. Total and α orbital components of momentum distribu-
tion function for the La system at (a) δ = 0.153 (superconducting
phase) and (b) δ = 0.181 (paramagnetic metallic phase). The high
symmetric momenta are indicated as � = (0, 0), M = (π, π ), and
X = (π, 0).

To investigate the effect of the dz2 component, the ra-
tio of the dz2 component to the total at the X point, R =
ndz2 (X)/ntot(X), is calculated in Fig 7(a). For the La sys-
tem, the ratio R increases with increasing δ and shows rapid
enhancement for δ > 0.16. It coincides with the sudden disap-
pearance of Pdd for δ > 0.16 shown in Fig. 5(a). On the other
hand, R for the La(revised) system is much smaller than that

FIG. 7. (a) δ dependence of the ratio R of the dz2 component to
the total at the X point for the three systems. Solid (open) symbols
represent the superconducting (paramagnetic metallic) phase. (b) δ

dependence of the quasiparticle renormalization factor z for the three
systems. Symbols are the same with those in (a).
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of the La system, because εdz2 is lower and the hybridization
between the dz2 and dx2−y2 orbitals via the px/y orbitals is
smaller. As a result, the superconducting phase is extended
to a larger value of δ and a smooth dome shape is observed in
Pdd vs δ as shown in Fig. 5(a). For the Hg system, R is much
more suppressed because the dz2 -orbital-based band is almost
localized and detached from the dx2−y2 -orbital-based band [see
Fig. 3(c)]. This is an ideal condition for superconductivity [18]
and therefore Pdd becomes largest for the Hg system.

These results conclude that superconductivity is more en-
hanced when the dz2 -orbital-based band is deeply sinking and
its contribution to the low-energy physics is small. Therefore,
the material dependence of superconductivity is understood
only by incorporating the dz2 orbital explicitly into a model
such as our model, which is a remarkable advantage over
the usual one-band Hubbard and t-J models, and even the
three-band d-p model.

Pdd calculated here corresponds to the square of the su-
perconducting order parameter and is closely related to the
superconducting transition temperature Tc. The critical doping
rate δc for the La system, where Pdd becomes zero, seems to
be too small (∼0.16) compared with the experimental value
(δc = 0.25 − 0.3). Furthermore, the sudden disappearance of
Pdd is also unrealistic. It can be inferred that the actual value
of εdz2 is much lower than the value estimated from the LDA
calculation. Indeed, as shown in Table I, the value of εdz2 with
reference to the QSGW calculation is much lower. Further-
more, the QSGW band structure [64] can well explain the
resonant inelastic x-ray scattering experiment [69]. We expect
that the revised band structure shown in Fig. 3(b) properly
includes the correction for the LDA calculation and gives
more realistic result for the La system.

3. Material dependence: Effect of apical oxygen height

From the viewpoint of the actual lattice structure, εdz2

is governed by the apical oxygen height, i.e., the distance
between the apical oxygen and the copper: The larger the
apical oxygen height is, the lower εdz2 is with respect to
εdx2−y2 , because of the crystal field effect [68,70]. In addition,
a larger apical oxygen height leads to a lower site energy εpz

of the apical oxygen due to the decrease of a crystal field
effect, which in turn lowers the εdz2 through the hybridization
between pz and dz2 orbitals despite the increase of the distance
between apical oxygen and the copper. Therefore, our result
suggests that a larger apical oxygen height leads to a higher
Tc through a lower εdz2 . Indeed, the experimentally observed
apical oxygen height of the Hg system is larger than that of the
La system. This tendency is also consistent with the so-called
Maekawa’s plot [71], where a lower εpz is related to a higher
Tc. Although the model itself does not explicitly include the pz

orbital of the apical oxygen, the present four-band d-p model
properly incorporates the effect of the apical oxygen height
via adjusting the site energy εdz2 .

4. Material dependence: Effect of �d p

We also show in Fig. 7(b) the quasiparticle renormalization
factor z estimated from the jumps in the total momentum
distribution function ntot(k) along the nodal direction of the
dx2−y2 -wave superconducting gap. At δ = 0, the system is

insulating and thus z = 0. With increasing δ, z increases ac-
cording to the decrease of the electron correlation effect. We
find that z for the La system is smaller than that for the
Hg system, indicating that the electron correlation effect is
stronger in the La system. This can be attributed to the larger
�d p = εdx2−y2 − εp for the La system, which results in the
larger d-orbital occupancy of holes when it is doped. The
electron correlation has a dual effect: One is to enhance the
superconducting pairing and the other is to reduce the mobility
of Cooper pairs. In the present case, the latter effect would be
dominant and thus Pdd for the La system is suppressed com-
pared with the Hg system. This tendency is consistent with
the negative correlation between �d p and Tc as mentioned in
Sec. I.

C. Effect of Vdd

Now we discuss the effect of the Coulomb interaction
between nearest-neighbor d orbitals Vdd . Vdd is expected to
be smaller than other Coulomb interactions, Ud ,U ′

d ,Up,Vd p,
and Vpp [65]. However, Vdd directly affects the charge
and spin correlations between nearest-neighbor d electrons,
which dominate the properties of cuprate superconductors.
As discussed in this section, we verify that the supercon-
ductivity in the model studied here is more sensitive to
the value of Vdd than other Coulomb interactions. Here-
after, we treat only Ud and Vdd as independent parameters,
and set other Coulomb interactions as (U ′

d , J,Up,Vd p,Vpp) =
(0.8, 0.1, 0.5, 0.25, 0.2) Ud with reference to Ref. [65]

Figure 8(a) shows the ground state phase diagram for the
Hg system at δ = 0 within the paramagnetic phase. When
Vdd = 0, a metal-insulator transition occurs at Ud/t1 ∼ 6.3,
assuming the paramagnetic phase. The metal-insulator transi-
tion is detected by monitoring the jump in the total momentum
distribution function ntot(k) as well as the long-range behavior
of the charge Jastrow factor PJc [72]. This transition is a Mott
metal-insulator transition because δ = 0 corresponds to the
case with one hole per unit cell, nhole = 1, where the system
cannot be a band insulator. With the introduction of small but
finite Vdd (one order of magnitude smaller than Ud ), the metal-
lic region is substantially enlarged. This is understood because
the densities of empty sites and doubly-occupied sites increase
to reduce the energy loss of Vdd , thus effectively weakening Ud

by Vdd , and then the insulating phase is destabilized.
It is noteworthy that the AF insulator is always more sta-

ble than the paramagnetic insulator in the present parameter
space. With increasing Ud , the system undergoes the phase
transition from the metallic phase to a Slater-type AF insu-
lator [a blue line in Fig. 8(b)], followed by the crossover
to a Mott-type AF insulator [a red dotted line in Fig. 8(b)].
Here, a Slater-type AF insulator is an insulator that becomes
metallic without AF order, while a Mott-type AF insulator
is an insulator that remains insulating without AF order. The
crossover line in Fig. 8(b) is hence identical with the paramag-
netic metal-insulator transition line in Fig. 8(a). As explained
next, it is crucially important for the appearance of high-Tc

superconductivity whether the AF insulator in the parent com-
pounds (δ = 0) is Slater-type or Mott-type [31,32,72,73].

Next we study the effect of Vdd on superconductivity.
Figure 9 shows the superconducting correlation function Pdd

033157-7



HIROSHI WATANABE et al. PHYSICAL REVIEW RESEARCH 3, 033157 (2021)

FIG. 8. Ground-state phase diagram for the Hg system at δ = 0
(a) within the paramagnetic phase and (b) with the AF phase. The
dotted curve in (b) corresponds to the solid curve in (a). Green stars
in (a) and (b) represent the parameters used in Fig. 9.

at Ud/t1 = 8 and Vdd/t1 = 0, 0.3, and 0.6 for the Hg system.
As Vdd increases, Pdd is suppressed and the peak position
is moved to a smaller value of δ. In particular, a signifi-
cant suppression is observed when Vdd/t1 = 0.6. In this case,

FIG. 9. Pdd as a function of the hole doping rate δ at Ud/t1 = 8
and Vdd/t1 = 0, 0.3, 0.6 for the Hg system.

Pdd vs δ does not show a dome-shaped behavior but instead
an almost monotonic decrease, which rather reminds us of
electron-doped cuprates [74,75]. This observation of Pdd vs
δ corresponds to the fact that the system is out of the Mott
insulator region at δ = 0 (see Fig. 8). The view of a “doped
Mott insulator” is thus no longer valid. Similar claims have
been made in the study of one-band Hubbard models [76,77].
Our result suggests that it is essential to start from the Mott
insulator region at δ = 0 to reproduce the dome-shaped be-
havior observed experimentally in hole-doped cuprates. This
can be considered as a good criterion for choosing the reason-
able Coulomb interaction parameters of an effective model for
cuprates.

D. Phase competition

Finally, we briefly discuss the competition between su-
perconductivity and other phases. The energy comparison
among various phases in the ground state is a subtle prob-
lem and depends significantly on the numerical methods. The
VMC method used here tends to overestimate the magnetic
long-range ordered phases, although it is much improved
as compared with a mean-field type approximation. In fact,
we find that the AF phase and the stripe phase with both
spin and charge modulations have lower variational energies
than dx2−y2 -wave superconductivity for δ < 0.3. Nevertheless,
we believe that the present results capture the essence of
the material dependence of cuprate superconductors and the
conclusion is unchanged, when the improved wave functions
incorporating the quantum fluctuations suppress these overes-
timated competing orders. We also note that the effect of Vdd

is also important for the phase competition. This is because
most of the competing phases including the phase separation
are governed by the correlation between nearest-neighbor d
electrons. This is also the case in the one-band Hubbard model
[78,79]. The detailed ground-state phase diagram, including
various competing phases, for the four-band d-p model is left
for a future study.

IV. DISCUSSION AND SUMMARY

To obtain the unified description of cuprate supercon-
ductors, we have studied the four-band d-p model for the
La2CuO4 and HgBa2CuO4 systems. We have shown that a
lower εdz2 with respect to εdx2−y2 and a smaller �d p(>0) lead to
a higher Tc. The former results in a more localized dz2 -orbital-
based band that do not interfere the superconductivity. The
latter results in a larger z, namely, a weaker electron correla-
tion effect, which promotes the itinerancy of mobile carriers
and thus enhances superconductivity. The present four-band
d-p model covers these two factors, beyond the usual one-
band and even three-band d-p models. Therefore, this model
is considered to be a minimal model that can properly describe
the material dependence of cuprate superconductors, and thus
it can also provide a valuable guideline to design new materi-
als with a higher Tc.

The effect of Vdd has also been investigated. Although
the value of Vdd is small compared with other Coulomb in-
teraction parameters, it substantially affects the ground-state
property of the system. Vdd weakens the effective Ud and
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induces the paramagnetic metal-insulator transition, or the
crossover from a Slater insulator to a Mott insulator. The
stability of superconductivity is also affected by Vdd . Consid-
ering the doping dependence, we have to start from the Mott
insulator region at δ = 0 to obtain the stable superconductivity
and the dome-shaped dependence of Pdd as a function of
δ. Therefore, the appropriate estimation of Vdd is important
for the modeling of cuprates, as in other strongly correlated
electron systems where various phases compete.
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APPENDIX: CONSTRUCTION OF THE TRIAL
WAVE FUNCTION

Here, we describe the details of the trial wave function
together with the noninteracting tight-binding model obtained
on the basis of the first-principles calculations in Sec. III A.
The construction of the trial wave function is the most impor-
tant part for the VMC method. Depending on the trial state,
both real and k space representations are used.

1. Noninteracting energy band

First, we describe how to construct the noninteracting
tight-binding energy band discussed in Sec. III A. The non-
interacting energy band is obtained by diagonalizing the
following one-body Hamiltonian:

Hkin =
∑
k,σ

(
c†

k1σ , c†
k2σ , c†

k3σ , c†
k4σ

)
⎛
⎜⎝

t11 t∗
21 t∗

31 t∗
41

t21 t22 t∗
32 t∗

42
t31 t32 t33 t∗

43
t41 t42 t43 t44

⎞
⎟⎠

⎛
⎜⎝

ck1σ

ck2σ

ck3σ

ck4σ

⎞
⎟⎠ (A1)

=
∑
k,σ

∑
m

Em(k)a†
kmσ akmσ (A2)

with the hopping matrix elements given as

t11 = εdx2−y2 , (A3)

t21 = 0, (A4)

t22 = εdz2 − 2t5(cos kx + cos ky), (A5)

t31 = 2it1 sin 1
2 kx, (A6)

t32 = −2it4 sin 1
2 kx, (A7)

t33 = εpx + 2t3 cos kx + 2t6[cos(kx + ky) + cos(kx − ky)],

(A8)

t41 = −2it1 sin 1
2 ky, (A9)

t42 = −2it4 sin 1
2 ky, (A10)

t43 = 2t2
[
cos

(
1
2 kx + 1

2 ky
) − cos

(
1
2 kx − 1

2 ky
)]

, (A11)

t44 = εpy + 2t3 cos ky + 2t6[cos(kx + ky) + cos(kx − ky)],

(A12)

where c†
kασ (ckασ ) is a creation (annihilation) operator of

an electron with momentum k, spin σ (=↑,↓), and orbital
α (= 1, 2, 3, 4) corresponding to (dx2−y2 , dz2 , px, py), respec-
tively. The bonds between nearest-neighbor Cu sites are set as
unit vectors (|ex| = |ey| = 1) and the bonds between nearest-
neighbor Cu and O sites are one-half of them (see Fig. 1).

The hopping integrals ti (i = 1 − 6) and the site energy of
each orbital εα are determined by fitting the band structures
that are obtained by the LDA or QSGW calculation. The
specific values for the La, La(revised), and Hg systems are
listed in Table I. Equation (A2) is obtained by diagonalizing
the Hamiltonian matrix in Eq. (A1) and is the same with
Eq. (3) in Sec. II A. Em(k) is the noninteracting energy band
characterized by the wave vector k and the energy band index
m (= 1, 2, 3, 4) with a†

kmσ (akmσ ) being a creation (annihila-
tion) operator of the corresponding energy band with spin σ .

2. Trial wave function

a. Superconductivity

To construct the trial wave function for superconductivity,
we employ the Bogoliubov de-Gennes (BdG) type Hamilto-
nian in real space [80], i.e.,

HBdG =
∑
i, j

∑
α,β

(c†
iα↑, ciα↓)

(
T αβ

i j↑ �
αβ
i j

�
αβ∗
ji −T αβ

ji↓

)(
c jβ↑
c†

jβ↓

)
.

(A13)

Here, T αβ
i jσ is obtained from the Fourier transform of the matrix

in Eq. (A1) with renormalized hopping integrals t̃i and also
includes the chemical potential term. The chemical potential
μ is set to the Fermi energy in the noninteracting limit. �

αβ
i j

corresponds to an anomalous part that describes the super-
conducting pairing in real space. Therefore, the variational
parameters to be optimized in |	〉 are t̃i (i = 2 − 6) and {�αβ

i j }
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with t̃1 = t1 being fixed as a unit of energy. In this study,
we consider the pairing between nearest-neighbor orbitals,
d-d , d-px, d-py, px-px, and py-py, where d denotes the dx2−y2

orbital. In the paramagnetic phase, we simply set �
αβ
i j = 0.

We can also construct the trial wave function with the
band (k space) representation, where �mn(k) ∝ 〈akm↑a−kn↓〉
is the variational parameter. However, we find that the trial
wave function with the real space representation always gives
lower (i.e., better) energy than that with the band represen-
tation, especially, for large Coulomb interaction parameters.
This is because the Coulomb interaction depends on the
orbital, not on the band, and thus the trial wave function
with the real space (orbital) representation gives the better
result.

b. Uniform spin AF and stripe phases

As mentioned in Sec. II B, various long-range orderings
of charge and spin can be described by introducing {ρα

i } and
{mα

i }. A uniform spin AF phase with A and B sublattices for

the orbital α is expressed with the staggered potential

mα
i =

{−sσ mα for A sublattice
+sσ mα for B sublattice (A14)

where sσ = 1(−1) for σ = ↑(↓). For a stripe phase with
charge and spin periodicities λα

c = 2π/qα
c and λα

s = 2π/qα
s ,

respectively, the following potentials with spatial modulation
in the x direction should be introduced:

ρα
i = ρα cos

[
qα

c

(
xi − xα

c

)]
(A15)

and

mα
i = (−1)xi+yi mα sin

[
qα

s

(
xi − xα

s

)]
, (A16)

where xα
c and xα

s control the relative phases of charge and
spin orderings, respectively. For example, the stripe phase
observed around δ = 1/8 in several cuprate superconductors
corresponds to λc = 4 and λs = 8, although the orbital depen-
dence and relative phase are still under debate.
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