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Dynamically assisted tunneling in the impulse regime
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We study the enhancement of tunneling through a potential barrier V (x) by a time-dependent electric field
with special emphasis on pulse-shaped vector potentials such as Ax (t ) = A0/ cosh2(ωt ). In addition to the known
effects of preacceleration and potential deformation already present in the adiabatic regime, as well as energy
mixing in analogy to the Franz-Keldysh effect in the nonadiabatic (impulse) regime, the pulse Ax (t ) can enhance
tunneling by “pushing” part of the wave function out of the rear end of the barrier. Aside from the natural
applications in condensed matter and atomic physics, these findings could be relevant for nuclear fusion, where
pulses Ax (t ) with ω = 1 keV and peak field strengths of 1016 V/m might enhance tunneling rates significantly.
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I. INTRODUCTION

One of the most striking differences between classical and
quantum mechanics is the tunnel effect. Even though this
phenomenon cannot be directly observed with the naked eye
[1], it plays an important role in many areas of physics and
across a wide variety of length scales, including ultracold
atoms in optical lattices on the micrometer scale (see, e.g.,
[2,3]), and ranging down to nuclear physics in the femtometer
regime [4–6]. However, although tunneling is usually taught
in the first lecture course on quantum mechanics, our intuition
and understanding, especially regarding time-dependent sce-
narios, is still far from complete [7].

In order to be more specific, let us consider the one-
dimensional (1D) Schrödinger equation describing a particle
with energy E and mass m incident on a potential barrier V (x).
Then, using the standard WKB approximation, we may derive
the tunneling probability P (or, more precisely, its exponential
contribution) and arrive at the following famous expression,
which, as Coleman [8] puts it, “every child knows” (h̄ = 1)

P ∼ e−2SE = exp

{
−2

∫ xE
out

xE
in

dx
√

2m[V (x) − E ]

}
. (1)

Here, xE
in and xE

out are the classical turning points with V (xE
in ) =

V (xE
out ) = E (assuming that there are only two of them). Al-

ternatively, one could employ the instanton picture where SE

denotes the Euclidean action [8].
Adding a temporal dependence V (t, x), however, the sit-

uation becomes far more complex. Only in certain limiting
cases, such as slowly varying or rapidly oscillating potentials
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V (t, x), simple expressions similar to Eq. (1) can be derived
via the quasistatic or the time-averaged potential approxima-
tion.

In the following, we do not consider the general case
V (t, x), but we focus on the simpler (yet nontrivial) scenario
of a static potential barrier superimposed by a purely time-
dependent electric field. In the Coulomb gauge, this case can
be represented by a space-time-dependent potential V (t, x) =
V0(x) + xV ′

1 (t ), but we find it more convenient to represent
the electric field via the vector potential A(t ) in the temporal
gauge.

In order to understand the impact of the additional electric
field on the tunneling probability (1) of a charged particle, let
us try to separate the phases of the temporal evolution:

First, even before hitting the barrier, the electric field can
accelerate (or decelerate) the particle which effectively in-
creases (or decreases) the energy E and changes the classical
turning points xE

in and xE
out. This effect already occurs in the

adiabatic regime of slowly varying electric fields.
In contrast, the time dependence of A(t ) can induce addi-

tional phenomena in the nonadiabatic (impulse) regime. Thus,
as the second effect, the energy E is no longer conserved
due to this temporal variation, i.e., it can effectively shift
the energy up or down. Assuming a harmonic oscillation
A(t ) = A0 sin(ωt ), for example, this effect can be understood
in the Floquet picture [9,10] where we get side bands with
effective energies E ± nh̄ω (in analogy to the Franz-Keldysh
effect [11,12].) In view of the exponential decay of the wave
function inside the barrier, this effect can typically most ef-
ficiently enhance the tunneling rate when the mixing occurs
near the front end xE

in of the barrier.
Third, the electric field effectively deforms the barrier and

thereby changes the tunneling probability (1). Similar to the
first contribution (preacceleration) and in distinction to the
second (energy mixing), this effect already occurs in the adia-
batic regime.

Finally, the time-dependent electric field may enhance tun-
neling by effectively “pushing” part of the wave function out
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of the rear end xE
out of the barrier in the nonadiabatic (impulse)

regime. (Reversing the electric field would then suppress tun-
neling by “pulling” it back into the barrier.) In the following,
we shall study this fourth displacement effect and its relation
to the other three contributions in more detail.

Of course, the electric field does also influence the wave
packet after tunneling through the barrier, but this does not
change the tunneling probability, unless the wave packet is
“pulled” back into the barrier again. This case is relevant for
scenarios where the time-averaged potential approximation
applies, but it will not play a role here.

One should also stress that the above dissection according
to the various stages of the temporal evolution (or the spatial
regions) is not sharp as we are dealing with wave packets in-
stead of point particles. Due to the corresponding uncertainty,
all these phenomena will be intertwined in general. Only in
appropriate limiting cases, it will be possible to separate these
effects clearly, as we shall see below.

Outline

In order to establish the basic mechanisms underlying our
main ideas, we briefly recapitulate the Kramers-Henneberger
transformation in Sec. II. Based on this mapping, we derive
and discuss approximate analytic solutions for rectangular
and triangular potential barriers in Secs. III and IV. Albeit
idealized, these simple toy models allow us to identify and to
distinguish the various enhancement effects mentioned above.
Comparing the rectangular potential with the two possible ori-
entations of the triangular barrier, for example, we may study
the dependence of those effects (especially energy mixing and
displacement) on the potential slope at the turning points xE

in
and xE

out. In Sec. V, we then briefly discuss potential exper-
imental realizations, before considering the case of nuclear
fusion in Sec. VI in more detail. Apart from a summary of
our main results, Sec. VII contains a brief discussion of the
prospects for experimental applications. Finally, the extension
to further scenarios such as muon-assisted fusion is discussed
in Sec. VIII.

II. KRAMERS-HENNEBERGER MAP

The fourth displacement effect described above can be
nicely understood using the Kramers-Henneberger transfor-
mation [13] which describes an exact mapping of a purely
time-dependent electric field to the induced quiver motion
χ(t ). In order to briefly recapitulate the basic principle, let us
start from the Schrödinger equation

i∂tψ = − [∇ − iqA(t )]2

2m
ψ + V ψ. (2)

For a purely time-dependent vector potential A(t ), we may
eliminate the quadratic term q2A2/(2m) by a global phase
transformation ψ → eiφ(t )ψ with φ̇ = q2A2/(2m).

If we now consider a Galilei transformation r → r + vt
which changes the time derivative as ∂t → ∂t − v · ∇, we see
that the additional term is equivalent to a constant vector
potential A proportional to the velocity v. This identification
also works for time-dependent vector potentials A(t ) which
can thus be represented by the displacement r → r + χ(t )

given by

χ̇(t ) = −qA(t )

m
, (3)

which is precisely the classical solution of a point particle
with mass m and charge q in the electric field generated by
the vector potential A(t ). Thus, the vector potential A(t ) can
be translated into a corresponding displacement χ(t ) of the
wave function ψ , i.e., ψ[t, r] → ψ[t, r − χ(t )]. Turning this
argument around, the Schrödinger equation (2) in the presence
of a static potential barrier V (r) and a purely time-dependent
electric field A(t ) can be mapped onto a Schrödinger equa-
tion without any vector potential A = 0, but with a quivering
potential barrier V0[r] → Vχ [t, r] = V0[r + χ(t )].

III. RECTANGULAR POTENTIAL

In order to study the four effects (preacceleration, energy
mixing, potential deformation, and displacement) mentioned
in the Introduction, let us start with the extremely simple case
of a rectangular (box) potential of height V0 and length L in
one dimension

V (x) = V0�(x)�(L − x). (4)

In the absence of the vector potential A(t ), we would have
an incident wave with energy Ein on the left-hand side x < 0
of the potential, plus a reflected wave with the same energy
Ein. Including the vector potential A(t ) changes the incident
wave according to the Kramers-Henneberger transformation
described above, while the reflected wave will in general
contain a mixture of different energies E . Thus, we arrive at
the general ansatz

ψ (t, x < 0) = e−iEint+i
√

2mEin [x−χ (t )]

+
∫

dE ψref (E )e−iEt−i
√

2mE [x−χ (t )]. (5)

The term
√

2mEin χ (t ) in the exponent of the first line de-
scribes the acceleration by the electric field before hitting the
barrier. Similarly, we use the general ansatz for the solutions
inside the barrier

ψ (t, 0 < x < L) =
∫

dE e−iEt

× (ψ+
int (E )e+√

2m(V0−E ) [x−χ (t )]

+ ψ−
int (E )e−√

2m(V0−E ) [x−χ (t )] ), (6)

as well as the transmitted solutions

ψ (t, x > L) =
∫

dE ψtra (E )e−iEt+i
√

2mE [x−χ (t )], (7)

where we have assumed that there is no wave incident
from the right-hand side of the barrier x > L. Without the
additional electric field, ψtra (E ) would just be the energy-
dependent transmission amplitude of the static box potential
(4) multiplied by the incident wave function in energy space.
Modifications of ψtra (E ) induced by that electric field, i.e.,
χ (t ), then correspond to the enhancement (or suppression) of
tunneling.

The matching conditions for ψ (t, x) and ψ ′(t, x) at x = 0
and L for all times t uniquely determine ψref (E ), ψ±

int (E ), and
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ψtra (E ). While the resulting set of equations is linear and thus
solvable via numerical discretization, for example, we shall
use some analytical approximations to gain further inside in
the following.

A. Sudden approximation

As our first example, let us consider a very strong and
short pulse A(t ) which can be approximated by a Dirac delta
function A(t ) ∝ δ(t ). According to Eq. (3), this corresponds
to a sudden displacement χ (t ) = 	χ�(t ), where we assume
L > 	χ > 0. Considering an initially stationary solution with
Ein, we find two major effects. At the front of the barrier
(around x = 0), the displaced wave function is no longer an
energy eigenstate, implying a mixture of energies E . The
contributions corresponding to higher energies E > Ein can
then tunnel through the barrier more easily than the initial
stationary solution with Ein.

At the rear of the barrier (around x = L), a part of the ex-
ponential tunneling tail with length 	χ is “pushed” out of the
barrier and thus the probability density behind the barrier is
exponentially enhanced by a factor of e2

√
2m(V0−Ein ) 	χ , which

could be quite large.

B. Opaque-barrier approximation

In order to treat more realistic time dependencies χ (t ),
we employ the opaque-barrier (low-energy) approximation.
To this end, we assume that the potential height V0 is much
larger than all other energy and frequency scales, such as
V0 � Ein. Furthermore, we assume that the barrier width L is
also much larger than all other length scales, such as L � |χ |.
As a result, the tunneling rate is strongly suppressed due to√

2mV0L � 1, i.e., the barrier is very opaque (see also [14]).
In addition to the large quantity

√
2mV0L � 1, we only

keep those terms where an energy E � V0 is combined with
the long length L as well as those terms where the displace-
ment χ � L is combined with the large barrier height V0. To
be consistent, we neglect all terms which do not contain a
large quantity (V0 or L), such as all combinations of an energy
E � V0 with a displacement χ � L. Within this scheme,
the acceleration before the barrier

√
2mEin χ (t ) in Eq. (5) is

neglected.
Using this approximation scheme, we may simplify the

matching conditions at x = 0 and L. Due to the exponential
suppression of the tunneling rate, we have ψ+

int (E ) ≪ ψ−
int (E )

such that the contribution from ψ+
int (E ) can be neglected at

x = 0. To leading order in E/V0, we then find ψref (E ) ≈
−δ(E − Ein ) which yields

ψ−
int (E ) ≈ −2i

√
Ein

V0

∫
dt

2π
ei(E−Ein )t−√

2mV0 χ (t ). (8)

Consistent with the simple picture described in the previous
Sec. III A, this equation describes the energy mixing at the
front of the barrier x = 0 due to the time-dependent dis-
placement χ (t ). Then we may use the remaining matching
condition at x = L in order to determine the transmitted solu-
tion

ψtra (E ) ≈ ψ0
E

∫
dt

2π
ei(E−Ein )t−√

2mV0[χ (t+iT)−χ (t )], (9)

where ψ0
E = 4e−√

2mV0 L+EinT−i
√

2mE L√
Ein/V0 collects the χ -

independent factors and T denotes the Büttiker-Landauer
traversal time [14] for this case (with V0 � Ein)

T = L

√
m

2V0
. (10)

Note that the first two exponentials e−√
2mV0 L+EinT in ψ0

E are
the leading-order contributions of the undisturbed tunneling
exponent e−√

2m(V0−Ein ) L.
It is illuminating to see how the Büttiker-Landauer traver-

sal time T appears in Eq. (9) as an imaginary-time argument:
According to Eq. (8), the solution ψ−

int (E ) inside the barrier is
determined by the Fourier transform of e−√

2mV0 χ (t ), evaluated
at the energy shift E − Ein. This reflects the energy mixing
at the front end x = 0. For example, inserting an oscillating
field A(t ) = A0 sin(ωt ) which yields an oscillating χ (t ) =
χ0 cos(ωt ), a Taylor expansion of the exponential e−√

2mV0 χ (t )

directly shows the appearance of side bands E − Ein = ±nω.
Since modes with higher energy E can tunnel easier though

the barrier, they acquire an additional factor of e(E−Ein )T at the
rear end of the barrier [see Eq. (6)]. Now we may calculate
ψtra (E ) in Eq. (7) via the inverse Fourier transform of the
wave function ψ (t, x = L) at the rear end. After inserting
Eqs. (6) and (8), we obtain two time integrals and one energy
integration. Analytic continuation t → t + iT of the first time
integral from Eq. (8) corresponding to the front end then
allows us to cancel the additional factor of e(E−Ein )T such that
the remaining energy integral just yields a Dirac delta distri-
bution in time, giving the final result (9). Thus, this analytic
continuation t → t + iT reflects the effect of energy mixing
at the front end of the barrier.

C. Dynamically assisted tunneling

The result (9) now enables us to study the enhancement of
tunneling due to the vector potential A(t ). In this form (9), we
directly see the invariance under Galilei and gauge transfor-
mations A(t ) → A(t ) + const. Furthermore, it is interesting to
note that the exponent

√
2mV0[χ (t + iT) − χ (t )] is consistent

with the change of the instanton action [15]

√
2mV0[χ (t + iT) − χ (t )] = −

√
2V0

m

∫ t+iT

t
dt ′q A(t ′), (11)

because
√

2V0/m is the undisturbed instanton velocity. Thus,
the above Eq. (11) is the analog to formula (10) in [16].
However, that work [16] was mainly focused on the tunnel-
ing exponent, whereas the above Eq. (9) does also contain
the prefactor [for the box potential (4) and within the used
approximations].

If we derive the typical energy gain or loss from Eq. (9) via
the saddle-point method

	E = E − Ein ≈ −i
√

2mV0[χ̇ (t + iT) − χ̇ (t )]

= iq

√
2V0

m
[A(t + iT) − A(t )], (12)

we also find agreement with the instanton picture [15]. Note
that the real time t corresponds to the rear x = L of the barrier,
the complex time t + iT to the front x = 0 (see also [17]).
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As expected, the timescale distinguishing the adiabatic
from the nonadiabatic (impulse) regime is the Büttiker-
Landauer traversal time (10). In the adiabatic regime of slowly
varying χ (t ), the difference χ (t + iT) − χ (t ) ≈ iTχ̇ (t ) is
purely imaginary. Thus, the main effect is an energy shift 	E
given by mLχ̈ (t ), i.e., the energy gained in the electric field. A
real contribution

√
2mV0T

2χ̈ (t )/2 to the exponent in Eq. (9)
arises to second order in T. This contribution can be rewritten
as T	E/2 and just reflects the quasistatic deformation of the
potential by the electric field.

In the nonadiabatic regime of rapidly changing χ (t ), how-
ever, we may get a stronger enhancement of the tunneling
probability, as expected from the previous considerations. The
first term χ (t + iT) in the exponent in Eq. (9) stems from
the front end xE

in = 0 of the barrier where the imaginary shift
t → t + iT to complex time corresponds to energy mixing.
The second term χ (t ) stems from the rear end xE

out = L and
reflects how the wave function is “pushed” out of the barrier.
Altogether, we obtain the following rough estimate for the
enhancement of the tunneling probability

Pχ ∼ P0 exp{O(2
√

2mV0	χ )}. (13)

Note, however, that the simple result (9) has been derived
for the box potential (4) and will not apply to other poten-
tial barriers V (x) in general. The discontinuities at the front
xE

in = 0 and the rear end xE
out = L make the energy mixing and

displacement mechanisms quite efficient; this may change for
other V (x).

IV. TRIANGULAR POTENTIAL

In order to study the difference between a very steep po-
tential slope and a more gradual change, let us consider a
triangular potential

V (x) = x

L
V0�(x)�(L − x). (14)

Of course, the ansatz for the solutions outside the barrier is
the same as before in Eqs. (5) and (7). The solutions inside
the barrier can be written in terms of displaced Airy functions
Ai and Bi:

ψ (t, 0 < x < L)

=
∫

dE e−iEt+iϕ(t )

×
{
ψA

int (E ) Ai

[(
2mV0

L

)1/3(
x − χ (t ) − EL

V0

)]

+ψB
int (E ) Bi

[(
2mV0

L

)1/3(
x − χ (t ) − EL

V0

)]}
, (15)

with the additional global phase ϕ̇(t ) = V0χ (t )/L since an x
displacement of a linear potential V (x) ∝ x translates into a
variation of the potential height.

As before, we apply the opaque-barrier and low-energy
approximation χ (t ) � L and E � V0. In addition, the slope
V0/L of the triangle is assumed to be small such that
V0χ (t )/L � E . Under these assumptions, products of small
terms are neglected (see Appendix A). Note that this includes
the above phase ϕ(t ) as it scales with the product of the small

slope V0/L and χ (t ). However, as this phase ϕ(t ) does also
include a time integral over χ (t ), neglecting ϕ(t ) poses a
restriction on the relevant timescales, which should not be too
long. This is consistent with our previous considerations, as
we are interested in rapid (i.e., nonadiabatic) changes.

Then, in analogy to the opaque-barrier approximation for
the box potential, we find ψA

int (E ) ≫ ψB
int (E ). Using the

approximations described above, we find the transmitted so-
lution

ψtra (E ) ≈ ψ0
E

∫
dt

2π
ei(E−Ein )t+√

2mV0χ (t ), (16)

where ψ0
E now describes the undisturbed (χ = 0) amplitude

for the triangle (14).
Comparing Eqs. (9) and (16), we find that the term χ (t +

iT) describing the energy mixing at the front end is missing,
just the “pushing out” effect at the rear end x = L of the
barrier remains. The suppression of energy mixing at the front
end xin

E = EL/V0 of the barrier (i.e., the first classical turning
point) can intuitively be understood by the nearly adiabatic
evolution in space and time induced by the gradual change
(with a very small slope).

Quantum ratchets

To complete the picture, let us consider the case of a trian-
gular potential turned around, where the steplike discontinuity
is at the front end while we have the gradual change at the rear
end. As one might have expected from the previous consider-
ations, we now obtain “the other half” of Eq. (9), i.e., the term
χ (t + iT) describing the mixing of energies at the front end,
while the “pushing out” effect at the rear end has negligible
effect due to the nearly adiabatic evolution in space and time
induced by the gradual change.

Depending on the temporal structure of χ (t ), the energy
mixing χ (t + iT) and the “pushing out” contribution χ (t ) can
be very different. For example, enhancing the tunneling prob-
ability by “pushing out” part of the wave function obviously
requires χ > 0, while the energy mixing contribution χ (t +
iT) can also enhance tunneling if the electric field points in
the other direction, provided that its temporal structure (e.g.,
spectrum) contains large enough frequency components.

In stationary tunneling, one cannot observe such a dif-
ference between the triangular potential (14) and its mirror
image. Due to unitarity, the tunneling probability does not
depend on whether the wave is incident from left or right.
The time-dependent vector potential A(t ), however, induces a
nonequilibrium situation, where such a breaking of symmetry
is possible. This phenomenon is closely related to quantum
ratchets (see, e.g., [18,19]).

V. EXPERIMENTAL REALIZATIONS

Since tunneling plays a role in various areas of physics, its
dynamical assistance could be observed in several scenarios.
However, as most of them will not correspond to a rectangular
or shallow triangular potential, let us first briefly discuss the
case of a general potential V (x).

033153-4



DYNAMICALLY ASSISTED TUNNELING IN THE IMPULSE … PHYSICAL REVIEW RESEARCH 3, 033153 (2021)

A. Büttiker-Landauer traversal time

For general potentials V (x), the Büttiker-Landauer traver-
sal time T is given by [14]

T = −dSE

dE
=

∫ xE
out

xE
in

dx

√
m

2[V (x) − E ]
. (17)

This quantity plays a manifold role. It describes the (imag-
inary) propagation time of an instanton from xE

in to xE
out.

Furthermore, it measures how much the instanton action SE

(which determines the tunneling exponent) decreases when
increasing the energy E . As a consequence, the Büttiker-
Landauer traversal time T provides an estimate for the
frequency components ω a pulse (or time-dependent field)
should contain to facilitate a significant enhancement of tun-
neling. If the characteristic frequency components ω are too
low ωT � 1, the energy mixing is not sufficient to shift the in-
stanton action SE enough. As a result, the Büttiker-Landauer
traversal time T can be used to separate slow (adiabatic) from
fast (nonadiabatic) processes.

Note, however, that this quantity T does not yield any infor-
mation about the efficiency of the energy mixing or “pushing
out” processes. For example, T does not depend on whether
the particle is incident from left or right (cf. Sec. IV). The
Büttiker-Landauer traversal time T corresponds to the change
of the tunneling exponent, but does not describe the prefactor
in front of the exponential. In the Floquet picture, for exam-
ple, these prefactors are determined by the matrix elements
between the Floquet bands, which determine the efficiency of
the energy mixing or “pushing out” processes.

It should also be stressed here that the Büttiker-Landauer
traversal time T is not necessarily the unique answer to the
question of how long the particle stays inside the barrier
during tunneling; this is indeed a nontrivial issue (already
at the stage of a proper definition, see also [20–22]). In-
stead, it is an important quantity for discriminating slow from
fast processes, as explained above. In this role, it provides
a good first estimate of the experimental requirements for
observing assisted tunneling. From Eq. (17), we may read
off the rough scaling law T = O(L

√
m/[V − E ]) where L is

again the length of the barrier. In analogy, the instanton action
SE in Eq. (1) can be estimated via SE = O(L

√
m[V − E ]).

Now, since SE should not be too large in order to have a
measurable tunneling probability, we obtain the rough order-
of-magnitude estimate T ∼ O(L2m). This behavior of the
characteristic timescale can also be obtained directly from the
Schrödinger equation by comparing the temporal derivative
term i∂tψ with the kinetic energy contribution ∇2ψ/(2m).

B. Ultracold atoms in optical lattices

On a comparably large length scale of order micrometer,
optical lattices generated by standing laser beams in the op-
tical or near-optical regime provide a potential landscape for
ultracold atoms in which they can tunnel from one potential
minimum to the next one (see, e.g., [2,3]). The potential
barrier height can be tuned by the laser strength (and its
detuning). The above estimate T ∼ O(L2m) of the Büttiker-
Landauer traversal time scales as the inverse of the recoil
energy ER = k2/(2m) which is typically of the order of tens

of kHz. Nonadiabatic variations should then be in the sub-
millisecond regime, which is not beyond the experimental
capabilities. An effective electric field can be generated by
accelerated motion of the optical lattice (i.e., a real displace-
ment in space), which can be understood as an inverse of the
Kramers-Henneberger transformation. This realization allows
us to study dynamically assisted tunneling for neutral particles
such as atoms [23–27].

C. Electrons in solids

Another prototypical example are electrons in solid-state
devices with characteristic length scales between the nanome-
ter and the micrometer scale [28–33]. By fabricating these
devices and applying gate voltages, one could even appropri-
ately realize a box (4) or triangular (14) potential. Due to the
smaller length scales and the smaller (effective) mass of the
electron, the Büttiker-Landauer traversal time is much shorter
in this case and corresponds to frequencies ranging from the
terahertz to the infrared regime (see, e.g., [34]), which can be
coupled in via real electromagnetic fields.

D. Atomic physics

On even smaller length scales in the nanometer or sub-
nanometer regime, electrons tunnel from one atomic or
molecular orbital to another or into free space (field ioniza-
tion) [35–37]. The reduction of the characteristic length scales
goes along with a further increase of the typical frequency
scales necessary to reach the nonadiabatic regime [38–40],
which range from the optical or near-optical frequencies (see,
e.g., [41,42]) up to the keV regime for tightly bound electrons
around highly charged (high-Z) nuclei (cf. [43]).

E. Nuclear α decay

Tunneling on yet smaller length scales in the picometer to
femtometer regime plays an important role in nuclear physics.
As one of the first applications of quantum tunneling, Gamov
explained the Geiger-Nuttall law of nuclear α decay [5] via
tunneling of the α particle through the Coulomb barrier of the
remaining nucleus [4]. Of course, it would be interesting to
study the option for dynamically assisting this process, for
example, with the strong field generated by an x-ray free-
electron laser (XFEL). This topic has induced several, partly
controversial, discussions in recent years (see, e.g., [44,45]).

Following our strategy above, let us estimate the Büttiker-
Landauer traversal time for this case. As shown in [46], for
example, the associated frequency scales are in the 100 keV
to MeV regime (see also [45,47]). Even though the mass of the
α particle is much larger than the electron mass, the extremely
small length scales lead to ultrashort times. Since frequencies
in the 100 keV to MeV regime are probably hard to reach with
current or near-future XFEL facilities, one should search for
alternatives. One such option for creating short enough pulses
could be the electromagnetic field generated by an additional
nucleus (see also [48]) with an energy of order 50 MeV
passing by at a distance of order 100 femtometers. Of course,
this electromagnetic field is not really spatially homogeneous,
but the main effects should persist, at least qualitatively.
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VI. NUCLEAR FUSION

In the following, let us study nuclear fusion in more detail
(see, e.g., [16,49–54]), which can be regarded as the pro-
cess opposite to nuclear α decay (or, more general, nuclear
fission). Interesting examples include deuterium-tritium (see,
e.g., [53,54])

2
1D + 3

1T → 4
2He + 1

0n + 17.6 MeV, (18)

or proton-boron fusion (see, e.g., [55–58])

1
1 p + 11

5 B → 3 × 4
2He + 8.7 MeV. (19)

First, we focus on the most simple case of two particles with
masses m1 and m2 and charges q1 and q2 in the initial state.
Later we shall discuss the generalization to more complicated
scenarios such as muon-assisted fusion.

A. The model

Describing the two nuclei as nonrelativistic point particles
(in the low-energy regime), their dynamics is governed by the
two-body Lagrangian

L12 = m1

2
ṙ2

1 + m2

2
ṙ2

2 − V (|r1 − r2|)
+ (q1ṙ1 + q2ṙ2) · A(t ), (20)

where the potential V (|r1 − r2|) contains the Coulomb re-
pulsion at large distances and the nuclear attraction at short
distances. The vector potential A represents the field of
the XFEL, which can be approximated by a purely time-
dependent field because the XFEL wavelength is much larger
than the characteristic length scales of our problem (see
also [16]).

In center of mass R = (m1r1 + m2r2)/(m1 + m2) and
relative coordinates r = r1 − r2, the effective single-body La-
grangian for the latter reads as

L = m

2
ṙ2 − V (|r|) + qeff ṙ · A(t ), (21)

with the reduced mass 1/m = 1/m1 + 1/m2 and the effective
charge qeff = (q1m2 − q2m1)/(m1 + m2). Upon quantization,
we arrive at the same Schrödinger equation (2), but with
rescaled variables m and qeff .

B. Scaling analysis

In order to identify the relevant parameters, let us first per-
form a scaling analysis of the Schrödinger equation (2) which
is facilitated by the self-similarity of the Coulomb potential.
Neglecting the details of the nuclear attraction at short dis-
tances (in a low-energy approximation), the potential V (|r|)
is a homogeneous function of degree −1, i.e., V (|λr|) =
V (|r|)/λ. This allows us to cast the Schrödinger equation (2)
into a dimensionless form. Using the initial energy E in order
to set the frequency and timescale, the length scale can be
set by the outer (classical) turning point rE where V (rE ) = E .
Then the comparison of the kinetic term ∇2ψ/(2m) with the
energy Eψ yields the first dimensionless parameter

η = 2mEr2
E = 2m

E

( q1q2

4πε0

)2
. (22)

The square root of this parameter yields the undisturbed
WKB tunneling exponent P ∼ exp{−π

√
η} in Eq. (1) and

the Büttiker-Landauer traversal time ET = π
√

η/4 for this
potential. As explained above, this WKB tunneling exponent
(and thus η) should not become too large in order to have a
measurable tunneling probability.

The second dimensionless parameter can be constructed
by incorporating the remaining term qeff A in the Schrödinger
equation (2). Of course, in view of the dimensionless parame-
ters (22) and E/ω, this construction is not unique. Motivated
by the above considerations, we choose to compare the ampli-
tude of the displacement (3) with rE giving

ζ = qeffA

mωrE
= qeff A

mc

E

ω

4πε0c

q1q2
, (23)

where the last ratio on the right-hand side is the inverse of the
QED fine-structure constant modified by the charge numbers
Z1 and Z2 of the two nuclei. The first ratio is analogous to
the inverse Keldysh parameter 1/γ or the laser parameter a0,
but now with the electron mass being replaced by the reduced
mass of the nuclei. Hence, this quantity ζ will typically be
smaller than unity, but again it should not be too small to see
a significant effect.

The fact that the two dimensionless parameters η and ζ

in Eqs. (22) and (23) should not be too far above or below
unity, respectively, shows that we do not have good scale
separation in our problem, which makes it hard to distinguish
the four effects (preacceleration, energy mixing, potential de-
formation, and displacement) mentioned in the Introduction.
Instead, they will all be intertwined. Still, the previous results,
especially the comparison between the rectangular and the
triangular potentials, suggest that energy mixing may be less
efficient than displacement, for example, due to the gradual
change of the Coulomb potential at the outer turning point rE .

As another lesson, we may compare deuterium-tritium
with proton-boron fusion by means of the above scaling analy-
sis. For the proton-boron system, the Coulomb strength ∝q1q2

is a factor of 5 stronger than in the deuterium-tritium case,
while the reduced mass is roughly a factor of 3

4 smaller. Ac-
cording to Eq. (22), the energy should thus be nearly a factor
of 20 larger in order to achieve the same WKB tunneling
probability. Note, however, that this rough estimate is based
on neglecting the details of the nuclear attraction, i.e., the real
factor will be a bit smaller than 20. Nevertheless, as the effec-
tive charge qeff of the proton-boron system is approximately
a factor of 5

2 larger than in the deuterium-tritium case, the
required vector potentials do not differ much (only by a factor
of 3

2 ) in the two cases.

C. Numerical results

As explained above, the analytical scaling analysis in
the previous section does not take into account the fact
that the Coulomb potential is cut off at nuclear distances
of a few femtometers. In order to include this effect
and to arrive at quantitative results, we solved the one-
dimensional Schrödinger equation in the presence of the
cutoff Coulomb potential V (x) and the time-dependent pulse
Ax(t ) = A0/ cosh2(ωt ) numerically for initial Gaussian wave
packets (see Appendix B).
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Let us first discuss the case of deuterium-tritium fusion
with an effective charge qeff ≈ q/5 and reduced mass m ≈
1 GeV. For initial kinetic energies of 2, 4, and 8 keV, the
outer classical turning points rE determined by the Coulomb
repulsion, which correspond to the initial turning points xE

in in
Eq. (1), are rE ≈ 720, 360, and 180 fm, respectively. The inner
turning point, corresponding to xE

out in Eq. (1), is determined
by the nuclear attraction and lies around 4 fm.

For these energies (2, 4, and 8 keV), the Büttiker-Landauer
traversal times are given by T ≈ 2, 0.7, and 0.25 as, respec-
tively, while the dimensionless parameters in Eq. (22) assume
the values η ≈ 60, 30, and 15, respectively. In view of h̄ ≈
0.7 keV as, we see that we may probe nonadiabatic effects
with frequencies in the keV regime.

A pulse Ax(t ) with ω = 1 keV and a peak field strength
of 1016 V/m then corresponds to a Kramers-Henneberger
displacement of 	χ ≈ 130 fm. Hence, the dimensionless pa-
rameter in Eq. (23) assumes the values ζ ≈ 0.1, 0.2, and 0.4
for these energies (2, 4, and 8 keV). Note, however, that the
above value of 	χ ≈ 130 fm does not necessarily correspond
to a real displacement of the wave function (this would only
be the case in the sudden approximation). As we can see in
Fig. 1, for example, the impact of the field on the dynamics
does also depend on the other parameters involved.

The enhancement of the tunneling rate [defined as the
probability current j(t ) on the rear end of the barrier] is
displayed in Fig. 1. For all three values of the initial ki-
netic energy (2, 4, and 8 keV), we see that we obtain a
significant enhancement whose relative strength decreases a
bit with increasing energy. As explained above, the absence
of good scale separation makes it hard to disentangle the
four contributions (preacceleration, energy mixing, potential
deformation, and displacement). However, comparison with
the results of Ref. [16] where mainly the tunneling exponent
has been considered [see Eq. (10) in that work, which is the
analog of our formula (11) for the box potential] suggests that
the energy mixing contribution is suppressed by the gradual
change of the Coulomb potential near the outer turning point
rE , which is consistent with our results for the triangular
potential.

As motivated by the scaling analysis above, let us compare
these results for deuterium-tritium fusion with the proton-
boron scenario. First, in order to obtain approximately the
same dimensionless parameters η and ζ as in the deuterium-
tritium case with E = 2 keV, we choose an initial kinetic
energy of E = 38 keV and a pulse with ω = 19 keV and
28 × 1016 V/m. The outer classical turning point is then rE ≈
190 fm and the Büttiker-Landauer traversal time T ≈ 0.1 as.
Comparing the top plots in Figs. 1 and 2, we indeed find
rather good agreement of the relative enhancement rates, even
though the inner turning point (a bit above 4 fm for the proton-
boron case) does not follow the scaling transformation.

For comparison, we also considered the impact of the same
pulse (with ω = 1 keV and 1016 V/m) as in the deuterium-
tritium case. As one may observe in Fig. 2 (middle and
bottom), such a pulse does also yield significant enhancement
rates for initial kinetic energies of 40 and 80 keV. However, in
view of the shorter Büttiker-Landauer traversal times T ≈ 0.1
and 0.03 as, such a pulse with ω = 1 keV may already be too
slow to probe nonadiabatic effects.

FIG. 1. Enhancement of the tunneling rate for deuterium-tritium
fusion with initial kinetic energies of 2 (top), 4 (middle), and 8
keV (bottom). The orange curves enclosing the yellow bell-shaped
regions correspond to the undisturbed tunneling rates j(t ) of the
initial Gaussian wave packets without the electric field while the blue
dashed-dotted curves show the enhancement due to the pulse Ax (t )
with ω = 1 keV and a peak field strength of 1016 V/m.

VII. CONCLUSIONS

We study how tunneling of a charged particle through a
static potential barrier V (x) could be dynamically assisted by
an additional time-dependent electric field. We identify four
main mechanisms corresponding to the stages of the temporal
evolution or the spatial regions: (i) preacceleration before the
barrier, (ii) energy mixing at its front end, (iii) deformation
of the potential barrier, and (iv) displacement at its rear end.
While the two effects (i) and (iii) are already present in the
adiabatic regime of slowly varying electric fields, the other
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FIG. 2. Enhancement of the tunneling rate for proton-boron fu-
sion. The top plot corresponds to an initial kinetic energy of 38 keV
and a pulse with ω = 19 keV and 28 × 1016 V/m, which represents
the scaling transformation of the scenario in Fig. 1 (top). For compar-
ison, using the same pulse with ω = 1 keV and 1016 V/m as in Fig. 1
for deuterium-tritium fusion does also yield significant enhancement
for initial kinetic energies of 40 (middle) and 80 keV (bottom).

two phenomena (ii) and (iv) require sufficiently fast, i.e.,
nonadiabatic, changes of the electric field.

For the special cases of rectangular and triangular potential
barriers, we we were able to disentangle the four contributions
by means of approximate analytic solutions. We found that the
two nonadiabatic effects (ii) energy mixing and (iv) displace-
ment (occurring at the front and rear end, respectively) are
dual to each other with the main difference that the former one
(ii) is associated to an analytic continuation to complex times
t → t + iT where T is the Büttiker-Landauer traversal time.

TABLE I. Rough order-of-magnitude estimate of the character-
istic length and energy scales for various tunneling scenarios and the
typical field strengths required for dynamical assistance.

Length System Energy Field strength

μm Optical lattices peV n.a.
Solids meV 105 V/m

nm
Atoms eV 1010 V/m

pm Nuclear fusion keV 1016 V/m
α decay

fm MeV 1018 V/m

This analytic continuation reflects the energy shift, which in
turn changes the tunneling through the barrier.

The occurrence of a complex time is also related to another
distinction between the two contributions (ii) and (iv). The
displacement effect (iv) strongly depends on the sign of the
electric field: In one direction, the electric field would “push”
parts of the wave function out of the rear end of the barrier and
thereby enhance tunneling, while an electric field pointing in
the opposite direction would “pull” them into the barrier again
and thereby suppress tunneling. In contrast, the energy mixing
effect (ii) can enhance tunneling for both signs of the electric
field, especially deep in the nonadiabatic regime, where the
shift of the energy induced by the time dependence of the
electric field becomes the most important contribution (see
also Appendix C).

Furthermore, the comparison between the rectangular and
the triangular potentials indicates that the efficiency of the
two nonadiabatic effects (ii) and (iv) strongly depends on the
shape of the potential at the turning points and is suppressed
in the case of a gradual change. This finding is related to the
quantum ratchet effect where tunneling in one direction may
be favored compared to the other in nonequilibrium situations.

The Büttiker-Landauer traversal time T mentioned above is
an important quantity in this respect because it can be used to
distinguish slow (i.e., adiabatic) from fast (i.e., nonadiabatic)
processes. Since tunneling is a crucial effect in many areas of
physics, we briefly discuss the observability of the considered
mechanisms in several scenarios, such as ultracold atoms in
optical lattices, electrons in solids and in atoms and molecules,
and nuclear α decay (see also Table I).

Finally, we turn our attention to nuclear fusion and discuss
the special scaling properties of this process stemming from
the Coulomb potential. As an explicit example, we study a
Sauter pulse Ax(t ) = A0/ cosh2(ωt ) with ω = 1 keV and a
peak field strength of 1016 V/m and find a significant en-
hancement of the tunneling rate for deuterium-tritium fusion
with initial energies between 2 and 8 keV as well as for
proton-boron fusion in the 40–80 keV energy range.

Of course, the required field strength of 1016 V/m is quite
large, but still well below the Schwinger critical field ES =
m2

ec3/(qh̄) ≈ 1.3 × 1018 V/m. Even though it is probably
beyond the present capabilities of x-ray free-electron lasers
(XFEL), such field strengths might be achievable with further
technological progress, e.g., focusing the XFEL beam better.
Another interesting option could be high-harmonic focus-
ing [59–61] or similar effects of light-matter interaction at
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ultrahigh intensities (cf. [62]). As a different approach, such
ultrashort and ultrastrong pulses (though with a potentially
non-negligible spatial dependence) could be generated by
charged particles (such as α particles) with sufficiently high
energies (e.g., 50 keV or above) and small enough impact pa-
rameters (e.g., 500 fm or below). Note that highly energetic α

particles are actually produced in deuterium-tritium and, even
more so, in proton-boron fusion, such that this enhancement
process might perhaps be (partially) self-sustained after an ini-
tial ignition phase. While the additional spatial dependence of
the Coulomb field of these α particles complicates the analysis
[63], the main effects such as the displacement mechanism
should persist, at least qualitatively.

VIII. OUTLOOK

As became evident from the previous considerations, our
understanding is by far not complete yet and there are many
ways for further progress. For example, one could gener-
alize the approximate analytical solutions derived above to
other potentials, such as combinations of piecewise constant,
linear, or even parabolic potential barriers. Another obvious
generalization is the solution of the full three-dimensional
(3D) Schrödinger equation, e.g., in position representation or
after an expansion into spherical harmonics. Even though one
would expect the main mechanisms (such as the displace-
ment) to persist, there should be quantitative differences, e.g.,
regarding the prefactors.

This could also pave the way to study the impact of electro-
magnetic fields A(t, r) depending on space and time. Related
studies of the Sauter-Schwinger effect (see, e.g., [46,64,65])
show a nontrivial interplay between the spatial and the tem-
poral dependence of the field. In this respect, it could be
interesting to compare the assisted tunneling studied in this
work with the dynamically assisted Sauter-Schwinger effect
[66] which is governed by a relativistic (Dirac or Klein-Fock-
Gordon) wave equation instead of the Schrödinger equation.

Muon-assisted fusion

As one can observe in Fig. 1, the relative enhancement of
the tunneling rate does, in stark contrast to the tunneling rate
itself, not depend very strongly on the initial kinetic energy,
which is consistent with the expected behavior of the dis-
placement mechanism, for example. Thus, instead of starting
with an asymptotically free scattering state (which was the
scenario studied above), one could consider an initial bound
state created by a dip in the Coulomb potential. This could
be regarded as a toy model for muon-assisted nuclear fusion
where the deuterium and tritium nuclei form a bound state
with a muon (see, e.g., [67–70]).

Motivated by this toy model, we solved the Schrödinger
equation in the presence of the same pulse Ax(t ) with ω =
1 keV and 1016 V/m as before, but now with a potential V (x)
admitting a bound state, which we used as our initial state
(see Appendix B 4). The result is plotted in Fig. 3 and shows
that such a pulse can also induce a significant enhancement
in this case. Even though the potential V (x) is a bit different,
one would expect that the displacement mechanism operates
in a very similar way, as the vicinity of the inner turning

FIG. 3. Enhancement of the tunneling rate starting in a bound
state as a toy model for muon-assisted deuterium-tritium fusion,
again a pulse with ω = 1 keV and 1016 V/m has been assumed.

point is basically unchanged. However, the preacceleration
mechanism should be strongly affected as it acts on the initial
state.

Furthermore, it should be stressed here that the case of
muon-assisted fusion is much more complex. For example, the
electric field does not only couple to the relative motion of the
deuterium and tritium nuclei via qeff , it also couples directly
to the oppositely charged muon (which is much lighter). Thus,
we have a real three-body problem here [71], which is far
more involved, but also offers far more interesting possibil-
ities. This includes the eigenfrequencies of the three-body
problem which partially also lie in the keV regime [72] and
thus facilitate a strong (and possibly resonant) coupling to
the external electric field. For a bigger picture, one should
reconsider the whole process in the presence of the external
electromagnetic (e.g., XFEL) field, including the unwanted
sticking of the muon to the produced α particles, which might
also be affected by the external field.
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APPENDIX A: TRIANGULAR POTENTIAL

For the analytic treatment of the triangular potential in
Sec. IV, we employed the low-energy and opaque-barrier
approximation as well as the assumption of a small slope. In
order to demonstrate the consistency of these three limits and
how they can be based on a systematic expansion, we intro-
duce a small parameter ε and consider the limit ε ↓ 0. The
low-energy approximation is then recovered by the scaling of
the involved energies

E → √
ε E , (A1)

and analogously Ein → √
ε Ein while the potential barrier

height V0 stays constant, i.e., independent of ε.
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Given that the barrier height V0 stays constant, we scale the
barrier length as

L → L

ε
, (A2)

which corresponds to the opaque-barrier approximation, and,
at the same time, to the assumption of a small slope. For con-
venience, we also scale the time t as t → t/

√
ε such that the

√
ε factors in the product Et cancel each other, and similarly

the wave functions ψ → ψ/
√

ε.
In this limit ε ↓ 0, the tunneling exponent scales as 1/ε

which reflects the nonperturbative character of tunneling. In
comparison, the corrections induced by the time-dependent
perturbation χ = O(ε0) are small because χ is smaller than
the barrier length ∝1/ε as well as the turning point xin

E ∝
1/

√
ε.

1. Gradual incidence

Let us first consider a wave incident on the triangular potential (14) from the left-hand side. The solutions inside the barrier
read as

ψ (t, 0 < x < L/ε) =
∫

dE e−iEt+iεϕ × {
ψA

int (E ) Ai[g(x − χ )] + ψB
int (E ) Bi[g(x − χ )]

}
, (A3)

where we have used the abbreviation

g(x) =
(

2εmV0

L

)1/3(
x − EL√

εV0

)
. (A4)

In the following, we neglect the global phase ϕ as it scales with ε.
Let us consider the junction conditions at the front end x = 0 of the barrier. Because the Airy function Ai is exponentially

decreasing for large positive arguments whereas the other Bi is exponentially increasing, the amplitudes of the interior solution
satisfy ψA

int ≫ ψB
int as the tunneling wave function will be exponentially suppressed at the rear end of the barrier. Since both

Airy functions around x = 0 are of order unity, we can neglect the coefficients ψB
int (E ) in the junction conditions at x = 0. We

find to leading order

e−iEint +
∫

dE ψrefl(E )e−iEt =
∫

dE ψA
int (E )Ai[−zE ]e−iEt (A5)

and

i
√

2m
√

εEine−iEint −
∫

dE i
√

2m
√

εE ψrefl(E )e−iEt =
∫

dE ψA
int (E )

(
2εmV0

L

)1/3

Ai′[−zE ]e−iEt , (A6)

with the abbreviation

zE =
(

2εmV0

L

)1/3 EL√
εV0

= −g(0). (A7)

Solving Eqs. (A5) and (A6) via a Fourier transformation, the dominant contribution reads as

ψA
int (E ) = 2

√
πδ(E − Ein )z1/4

E exp

{
i

(
2

3
z3/2

E − π

4

)}
, (A8)

where we have used the asymptotic expansion of the Airy function for large negative arguments since zE ∝ ε−1/6 due to the the
smallness of the potential slope. We see immediately from (A8) that no energy mixing occurs when the wave function enters the
gradually increasing barrier.

Let us turn to the junction conditions at the rear end x = L/ε. Here we cannot neglect the exponentially small functions
ψB

int since they are multiplied with an exponentially large factor. In view of the large tunneling exponent ∝1/ε, we employ the
asymptotic expressions of the Airy functions for large positive arguments. Altogether, we obtain for the transmitted amplitude

ψtrans(E ) = exp

{
−i

√
2mE

√
ε

L

ε
+ i

(
2

3
z3/2

Ein
− π

4

)}

× 2

(√
εEin

V0

) 1
4
∫

dt

2π
ei(E−Ein )t × exp

{
− 2

3
(2mV0)1/2 L

ε
+ EinT√

ε
+ (2mV0)1/2χ

}
. (A9)

In the exponential in the last line, the dominant contribution ∝1/ε is just the undisturbed tunneling exponent at zero energy. The
next-to-leading-order contribution ∝1/

√
ε takes into account the small initial energy Ein. Finally, the last term ∝χ describes the

displacement effect.
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2. Steep incidence

Turning the triangle around, we have for the scaled interior solution

ψ (t, 0 < x < L/ε) =
∫

dE e−iEt+iεϕ ×
{
ψA

int (E ) Ai
[
g
(L

ε
− x + χ

)]
+ψB

int (E ) Bi
[
g
(L

ε
− x + χ

)]}
. (A10)

We apply the same approximations as above and find from the junction conditions at x = 0 the expansion coefficient

ψA
int (E ) = − 2i

√
π

√
2m

√
εEin

(2mV0ε/L)1/3[(2mV0ε/L)1/3L/ε]1/4
× 1

2π

∫
dt ei(E−Ein )t exp

{
−(2mV0)1/2χ

(
t√
ε

+ i
T

ε

)}

× exp

{
−2

3
(2mV0)1/2 L

ε
+ EinT√

ε

}
. (A11)

Here the steep slope at the front end of the triangle results in an energy mixing which is encoded in the complex time argument
of the function χ . Equation (A11) together with the junction conditions at the rear end of the triangle determine the transmission
amplitude

ψtrans(E ) = exp

{
−i

√
2mE

√
ε

L

ε
+ i

(
2

3
z3/2

E − π

4

)}
× 2

(√
εE2

in

V0E

) 1
4
∫

dt

2π
ei(E−Ein )t

× exp

{
− 2

3
(2mV0)1/2 L

ε
+ EinT√

ε
+ (2mV0)1/2χ

(
t√
ε

+ i
T

ε

)}
. (A12)

Apart from a minor change (Ein/E )1/4 of the prefactor, the major difference between Eqs. (A12) and (A9) lies in the χ

dependence of the exponential in the last line. The analytic continuation of the time-dependent function χ to complex time
arguments reflects energy mixing (at the front end) and can enhance the tunneling amplitude strongly.

In contrast, the leading-order ∝1/ε and next-to-leading-order ∝1/
√

ε contributions to that exponential are the same in
Eqs. (A12) and (A9). As a consistency check, the case of χ = 0 reproduces the time-independent solution of the Schrödinger
equation where the t integral in Eq. (A12) yields δ(E − Ein ) and thus the tunneling probabilities are the same.

APPENDIX B: NUMERICAL SOLUTION TECHNIQUE

The basic principle is to convert the time-dependent
Schrödinger equation (2) into a system of coupled ordinary
differential equations through the method of lines, where
the coordinate variable x is discretized beforehand and the
resulting set of ordinary differential equations is then propa-
gated in time. Derivatives in terms of x are computed through
pseudospectral methods whereas the time derivative is per-
formed in terms of an explicit stepper (see Appendix B 1).
The presence of a steep descent in the scalar potential V (x)
displaying the transition from a repulsive Coulomb potential
to an attractive potential poses a special challenge which is
discussed separately in Appendix B 2.

1. Pseudospectral methods and time integration

The main idea of pseudospectral methods is to compute all
numerically cheap operations in the basic domain, but perform
derivatives in the respective complementary domain where
they become multiplications again [73,74]. For example, the
kinetic operator can be formally written in terms of Fourier F
and inverse Fourier transforms F−1 as

∂2
x �(x) = F−1{F{

∂2
x �(x)

}}
= F−1

{
(ikx )2F

{
�(x)

}}
. (B1)

In the context of assisted tunneling, boundary conditions are
of no concern as we assume that the wave function falls off
sufficiently fast in x and, moreover, does not propagate beyond
the limits of the spatial domain.

However, as the problem is posed as an initial-value prob-
lem, we do not know all temporal boundary conditions, thus,
evaluating ∂t is not done spectrally. Instead, integration in time
has been performed using a Dormand-Prince Runge-Kutta
integrator of order 8(5,3). This is an adaptive, explicit, 12-step
method of eighth order with embedded error correction of or-
ders 5 and 3 [75]. This allows for continuous adjustments over
the course of integration to ensure, e.g., norm preservation.

Errors due to the spatial discretization scale per O([1/N]N )
with the number of grid points N , while for the time stepping
we have an error of order O([	t]8).

For the sake of completeness, initial conditions in
deuterium-tritium and proton-boron fusion are given by Gaus-
sian wave packets of the form

�(x, t = 0) = 1√√
2πσ

exp
{±i

√
2mEin(x − a0)

}

× exp

{
− (x − a0)2

4σ 2

}
, (B2)

with the particle’s initial energy Ein, the initial peak location
a0, and the packet’s initial width σ . Intricacies within muon-
assisted fusion are discussed in Appendix B 4.

2. Discretizing the Coulomb potential

In order to solve the Schrödinger equation by means of
spectral methods we have to bring the vector potential in a
form that allows an efficient evaluation in x space without
sacrificing accuracy in kx space. To this end we first perform
a variable transformation in x bringing the peak of the scalar
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FIG. 4. Sketch of a lowest-order discretization scheme for a
Coulomb potential with a steep gradient close to the nucleus. A
wave propagating from left-to-right probes step functions (blue area:
ε < 0, yellow and blue area: ε > 0) which become increasingly
removed from the true value of the smooth Coulomb potential (black
line). Only if the resolution is sufficiently high, the location of the
grid point at the center (cyan circle: ε < 0, purple square: ε > 0)
becomes irrelevant and the potentials coincide.

potential to the center of the domain

Vnum(x) = q1q2

4πε0(|x| + |xout|) �(−x + ε|xout|) (B3)

with the inner turning point xout < 0 given by the nuclear
radius.

At this point we have to be very careful about the defini-
tion of the Heaviside function � as the steep dropoff of the
potential cannot be represented exactly on a grid with finite
resolution. Hence, we have to introduce a numerical parameter
ε, which determines whether the minimal and maximal trans-
mission rates are studied and thus serve as an indicator for
convergence. In short, if the transmission rates for 1 � ε > 0
are reasonably close to the rates obtained for the same con-
figuration but with −ε, we have reason to believe that spatial
discretization is not a major source of error. Additionally, the
resolution close to the peak of the potential is much more
important than in the tail, thus, mappings in x (in this work we
used an exponential mapping) are advantageous as due to the
increased point density at the origin the barrier can be better
approximated. In Fig. 4 we have illustrated this problem.

Furthermore, for pseudospectral solvers a sudden change
in the potential is problematic because it generally leads to
instabilities and due to the Gibbs phenomenon oscillations in
the wave function might emerge. These issues cannot be fully
eliminated, but its effects can be minimized by performing
multiple computations for a well-suited coordinate system and
monitoring of the results for a gradual increase in, e.g., the
number of grid points. In this way, outliers can be spotted
easily, further increasing the robustness of the calculations.

3. Attractive potential

In contrast to the repulsive force exerted by the Coulomb
potential, nuclear forces act attractive. However, the ex-
act shape of the potential close to the nucleus is largely
unknown. Furthermore, resolving any additional short-range

force would require a much finer grid, leading to a significant
increase in the total lattice size and, in turn, higher numerical
cost. Hence, to not complicate matters further we opted for a
simple, uniform potential well instead [76,77]

Vnucl(x) = V0�(x − ε|xout|), (B4)

with V0 < 0 and, again, the numerical parameter ε.
For the calculations regarding muon-assisted fusion, it is

essential to include this nuclear attraction term because in this
case, the initial state is a bound state with negative energy
Ein < 0 and thus tunneling would be impossible for V0 = 0.
For the other cases starting from an initial scattering state (B2)
with positive energy Ein > 0, this is no longer true and thus it
is not necessary to include a nuclear potential V0.

Nevertheless, to complete the picture, we studied how the
tunneling probabilities change when lowering the nuclear po-
tential V0. We found that the impact of this nuclear potential V0

does indeed modify the tunneling probabilities in both cases,
with and without an electric field, but in nearly the same way,
such that its effect on the enhancement has been found to be
only of minor importance.

4. Computing muon-assisted fusion

As already stated in the main body of the text, muon-
catalyzed fusion creates a three-body problem [71] that has
to be solved under the influence of external sources. As such a
study is well beyond the scope of this work, we employ a toy
model (see, e.g., [68]). In this way we can fall back on solving
the one-dimensional Schrödinger equation with a nonvanish-
ing vector potential, a reduced mass m, and an effective charge
qeff . The main difference comes from the fact that, contrary to
deuterium-tritium or proton-boron fusion, there is no incident
wave packet. Instead, here the initial state is determined by a
bound state.

In our toy model the bound state generated by the muon is
represented by a deformation of the Coulomb potential in such
a way that a pocket within the repulsive potential emerges.
This muon-modified Coulomb potential can, for example, be
described by

Vbound(x) = q1q2

4πε0

(
1

|x| + |xout| − 	V

[1 + κ (|x| + |xout|)]4

)
,

(B5)

where 	V and κ can be determined from the energy and
length scales of the muon-generated bound state (cf. [70] for
a discussion on this specific potential).

In terms of a numerical evaluation of muon-assisted fusion,
we first consider a static situation where deuterium, tritium,
and muon form a molecule. In order to have a well-posed
problem, we demand that the wave function vanishes at x =
xout < 0. In this situation our effective model produces bound
states describing a wave function that is trapped within the
region x ∈ (−∞, xout]. Employing the shooting method the
precise shape of the ground-state wave function is obtained,
which, in turn, defines the initial state for the time-dependent
Schrödinger solver.

In a second step, restrictions on the potential are lifted
allowing the wave function to spread beyond this point, i.e., to
x > xout, and therefore to tunnel through the Coulomb barrier.
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TABLE II. Comparison of the enhancement and suppression of
tunneling for various scenarios with the same values for energy
Ein = 4 keV, pulse width ω = 1 keV, and field strength 1016 V/m.
“Incidence” refers to the slope of the potential at the entry point
of the wave packet: Gradual or steep. Two pulse shapes were
considered: a Sauter pulse A0/cosh2(ωt ) and a Gaussian profile
A0 exp{−ω2t2}2/

√
π , where the factor 2/

√
π was chosen to keep the

total displacement 	χ constant. The A0 field was oriented parallel
(→) or antiparallel (←) to the initial propagation velocity of the
wave packet (i.e., the tunneling direction). The increase or decrease
in the tunneling probability is given in terms of the ratio comparing
the cases with and without field. The timing was chosen such that
the vector potential peaks at the moment the peak of the wave packet
makes contact with the barrier.

Incidence Pulse shape Field direction Ratio

Gradual Sauter ← 0.64
→ 2.06

Gauss ← 0.65
→ 2.18

Steep Sauter ← 0.65
→ 3.02

Gauss ← 0.71
→ 3.48

Furthermore, the full potential exhibits also an attractive term

Vmuon = Vbound(x)�(−x + ε|xout|) + Vnucl(x). (B6)

The attractive potential V0 is deemed to be uniform and, in
view of accurate calculations, assumed to be V0 = −10 keV.
This value of V0 is well below the bound-state energy and
turned out to be a good compromise between creating a stim-
ulus for the wave function to tunnel without sacrificing too
much computational resources on a proper lattice discretiza-
tion to account for a highly oscillating outwards propagating
wave packet after tunneling.

APPENDIX C: COULOMB RATCHETS

For the triangular potential in Sec. IV, we have discussed
the quantum ratchet effect, i.e., the dependence of enhance-
ment or suppression of tunneling on the orientation of the
potential. This dependence on the orientation of the potential
is absent for stationary tunneling and thus a clear nonequilib-
rium phenomenon, which can be understood by the difference
between the energy mixing and the displacement effects. As
the Coulomb potential (cut off by the nuclear attraction) does
also exhibit a strong asymmetry, one expects analogous effects
in this case.

Table II presents the enhancement or suppression of tun-
neling (represented by the “ratio”) in dependence of the
orientation of the potential (i.e., the direction of “incidence”)
and the direction of the field. Furthermore, we studied the de-
pendence on the pulse shape by comparing a Sauter pulse with
a Gaussian profile. Even though these two pulse shapes look
very similar as a function of real time t ∈ R, their behavior
in the complex t plane is very different (see also [78]), which
should affect the energy mixing effect.

FIG. 5. Enhancement of the tunneling rates for the scenarios in
Figs. 1 and 3 due to the pulse Ax (t ) with ω = 1 keV where the blue
curves correspond to various peak field strengths n × 1015 V/m with
n ∈ {1, 2, 3, . . . , 10}.
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The quantum ratchet effect is clearly visible in the dif-
ferences between the upper and lower halves of Table II,
especially for the enhancement of tunneling (for the parallel
field direction). As expected, this enhancement is stronger for
steep incidence, which we attribute to the higher efficiency of
the energy mixing process.

This energy mixing process does also display a stronger
dependence on the pulse shape (in view of the behavior in
the complex plane or the Fourier transform, which yields
the frequency spectrum of the pulse) than the displacement
effect, for example, which is also visible in Table II. Note
that analogous dependencies on the pulse shape have been
discussed in the context of the dynamically assisted Sauter-
Schwinger effect, which can also be understood as an example
for dynamically assisted tunneling (see, e.g., [78]).

Finally, we observe, at least for the parameters used in Ta-
ble II, a perfect correlation between the field direction and the
enhancement or suppression of tunneling. For parallel fields
(first accelerating and then decelerating the incident particle),
tunneling is enhanced while antiparallel fields (where the free
kinetic energy is lowered during the pulse) suppress tunnel-
ing. However, this intuitive picture is not always correct: As
already stated above, the energy mixing process can also
enhance tunneling for antiparallel fields if the spectral width
of the pulse is broad enough to facilitate a sufficient upshift
in energy, which, in turn, increases the tunneling probability
more than its reduction due to the other processes. In fact,
we observed the counterintuitive behavior numerically for a
different set of parameters (pulse width ω = 10 keV and field
strength 1017 V/m) in the case of antiparallel fields and steep
incidence (as expected).

APPENDIX D: FIELD-STRENGTH DEPENDENCE

To conclude, let us briefly discuss the dependence of the
enhancement on the peak field strength. Figure 5 displays
the tunneling current j(t ) for the scenarios in Figs. 1 and 3

(i.e., deuterium-tritium fusion for initial kinetic energies of
2, 4, and 8 keV, as well as the case of muon-assisted fu-
sion) for various peak field strengths n × 1015 V/m with n ∈
{1, 2, 3, . . . , 10}. If we try to fit these field-strength dependen-
cies of the maximum enhancement, we find that exponential
fits (with different fitting factors in the exponent for the
various cases) provide a very good description in all four
scenarios.

Although this is very reminiscent of Eqs. (9) and (16), one
should be careful regarding a direct identification. First, the
results (9) and (16) were derived for idealized (rectangular
and triangular) potentials and cannot be applied directly here.
Second, other mechanisms such as preacceleration (i) and
potential deformation (iii) can also induce an exponential de-
pendence on the field strength. As explained above, all effects
(i)–(iv) are intertwined for the parameters under consideration
and cannot be disentangled easily. Their relative contributions
may vary depending on the parameters and none of these
effects (i)–(iv) alone can explain all of our findings.

For instance, a pulse Ax(t ) with ω = 1 keV and a peak
field strength of 1016 V/m can accelerate an effective particle
(with qeff and m) at rest to a maximum kinetic energy of up to
0.1 keV. This preacceleration effect would not be sufficient
to account for the enhancement seen in Fig. 3. Similarly,
the static potential deformation with 1016 V/m can also not
explain this enhancement such that the nonadiabatic effects
(ii) and/or (iv) must play a role.

To give a different example, the short Büttiker-Landauer
traversal time of T ≈ 0.03 as in proton-boron fusion at an ini-
tial kinetic energy of 80 keV (see the bottom panel of Fig. 2)
suggests that a pulse with ω = 1 keV is probably too slow
to decisively probe nonadiabatic effects (ii) and (iv). Thus,
adiabatic effects such as pre-acceleration (i) are expected to
dominate in this case.

Disentangling the relative contributions of the various ef-
fects (i)–(iv) in dependence on the parameters should be the
subject of future studies.
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