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Distribution of kinks in an Ising ferromagnet after annealing and the generalized
Kibble-Zurek mechanism
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We consider the annealing dynamics of a one-dimensional Ising ferromagnet induced by a temperature quench
in finite time. In the limit of slow cooling, the asymptotic two-point correlator is analytically found under Glauber
dynamics, and the distribution of the number of kinks in the final state is shown to be consistent with a Poissonian
distribution. The mean kink number, the variance, and the third centered moment take the same value and obey
a universal power-law scaling with the quench time in which the temperature is varied. The universal power-law
scaling of cumulants is corroborated by numerical simulations based on Glauber dynamics for moderate cooling
times away from the asymptotic limit, when the kink-number distribution takes a binomial form. We analyze
the relation of these results to physics beyond the Kibble-Zurek mechanism for critical dynamics, using the
kink-number distribution to assess adiabaticity and its breakdown. We consider linear, nonlinear, and exponential
cooling schedules, among which the last provides the most efficient shortcuts to cooling in a given quench time.
The nonthermal behavior of the final state is established by considering the trace norm distance to a canonical
Gibbs state.
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I. INTRODUCTION

Nonequilibrium phenomena occupy a prominent role at the
frontiers of physics, where few and highly valuable paradigms
are able to provide a description making use of equilibrium
properties. Notable examples include linear response theory
and the fluctuation-dissipation theorem [1], fluctuation the-
orems and work relations valid far from equilibrium [2,3],
and the Kibble-Zurek mechanism [4–7]. We focus on the last,
as it provides a framework to analyze the course of a phase
transition and the breakdown of adiabatic dynamics leading
to the formation of topological defects. In this context, the
system of interest exhibits different collective phases as a
control parameter is varied across a critical value. This pa-
rameter is the temperature in thermal phase transitions but
can be identified by other quantities such as a magnetic field,
or the density of particles in the system. The crossing of a
continuous phase transition is characterized by the divergence
of the (equilibrium) relaxation time in the neighborhood of
the critical point, known as critical slowing down. As a result,
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whenever the phase transition is driven in a finite quench time
τQ, adiabaticity is broken [8].

A scenario of spontaneous symmetry breaking is charac-
terized by the presence of a manifold of degenerate ground
states in the low-symmetry phase of the system. During the
course of the phase transition, causally disconnected regions
of the system may single out different ground states, leading
to the formation of domains and the creation of topologi-
cal defects at the resulting interfaces. A familiar example in
this context is the cooling of a paramagnet below the Curie
temperature, resulting in domains with a homogenous local
magnetization and separated by domain walls. According to
the Kibble-Zurek mechanism (KZM) the mean number of
defects decays as a function of the time scale in which the
transition is crossed. Specifically, a universal power-law scal-
ing is predicted when the control parameter is driven linearly
in time. The finite-time cooling of an Ising ferromagnet has
been used as a paradigmatic test bed to explore KZM physics
[9–13], which provides useful heuristics in adiabatic quantum
optimization and quantum annealing [14–18]. Generalizations
of the KZM have been established that account for disor-
der [19,20], nonlinear driving protocols [21–23], as well as
inhomogeneous systems [23–33] (see Refs. [8,34] for a re-
view). These developments have inspired novel protocols in
adiabatic quantum computation [25,35–39]. While the early
formulation of the KZM was focused on classical systems,
following decades of research, the applicability of the KZM
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in the quantum domain has been established by a combination
of analytical, numerical, and experimental studies [8,27,34].

Beyond the mean number of kinks, one may wonder
whether the full kink number distribution exhibits universal
behavior. The latter is directly accessible in many experiments
and can be as well probed via single-qubit interferometry
[40]. The kink-number distribution has recently been shown
to exhibit signatures of universality beyond the KZM in a
family of models known as quasi-free-fermion systems, that
include paradigmatic instances such as the one-dimensional
transverse-field Ising and XY models, and the Kitaev chain
[41]. In particular, not only the mean number of defects but as
well the variance, third centered moment, and any cumulant of
the kink-number distribution of higher order have been shown
to scale following a universal power-law with the quench time
[41–43]. This prediction has been experimentally explored
using a trapped ion for the quantum simulation of critical
dynamics in momentum space [43]. Universal features of
kink-number statistics in the one-dimensional transverse-field
quantum Ising model have also been reported using D-Wave
quantum annealers as quantum simulators [44]. It is thus natu-
ral to wonder whether the distribution of topological defects in
classical systems is as well universal. Indeed, a framework to
account for the distribution of topological defects generated
across a classical continuous phase transition has been put
forward and predicts a binomial distribution, in agreement
with numerical simulations for the time-dependent Ginzburg-
Landau theory [45]. In higher-dimensional systems, further
evidence for the presence of universality in the full counting
statistics of topological defects has been provided by the study
of the vortex number distribution in a newborn holographic
superconductor, which was predicted to be Poissonian [46].
At the time of writing, experimental evidence of Poissonian
vortex statistics has been reported after cooling of an atomic
Bose gas into a superfluid in finite time [47].

In this work, we characterize the exact kink-number dis-
tribution of a one-dimensional classical ferromagnet cooled
in finite time. Specifically, we consider the one-dimensional
Ising model with no magnetic field and evolving under
Glauber dynamics. The mean number of defects in this setting
has been studied by Krapivsky [10] (see as well Refs. [12,13]
for related work).

Here, using a ring topology endowed with translational
invariance, the kink number distribution is studied. We calcu-
late explicit expressions for the general two-point correlator
for spins separated by a lattice-point distance n in the same
limit. The first three cumulants of the kink-number distri-
bution are explicitly shown to be equal and described by a
universal power law with the quench time, indicating that
the slow cooling of an Ising ferromagnet under the Glauber
dynamics yields a Poissonian kink-number distribution. The
relevance of these findings to finite annealing times is verified
by numerical simulations, in which we consider three different
families of cooling schedules: linear, nonlinear, and exponen-
tial quenches.

From the outset, we note that the only critical behavior
of a one-dimensional Ising ferromagnet is exhibited at zero
temperature. A cooling schedule cannot possibly involve the
crossing of the critical point considered in the original studies
of the KZM. However, the KZM prediction can be extended

to account for “half quenches” ending at the critical point
[48–52]. At the same time, the finite-temperature treatment
endows the dynamic with coarsening. The nonequilibrium
dynamics is thus governed by a coexistence of KZM uni-
versality and coarsening. Their contribution can generally
be discriminated by considering the time scales involved. In
some instances, such as the artificial spin ice [53], the dis-
crimination is not possible. However, for the one-dimensional
Ising ferromagnet with nonconserved order parameter (mag-
netization), domain growth due to coarsening scales with the
square root of the time of evolution. In our study, we can
uniquely identify signatures of critical scaling for different
kinds of quenches (linear, nonlinear, exponential, etc.), ruling
out the effects of coarsening.

The equilibrium critical behavior of the one-dimensional
Ising ferromagnet is peculiar in that it does not exhibit a
power-law divergence of the correlation length as a function
of the proximity to the critical point, known in higher-
dimensional continuous phase transitions. As a result, the
correlation length critical exponent ν is not well defined.
However, we will see that critical scaling with the finite driv-
ing time governs the cumulants of the kink distribution as it
does in the generalized KZM.

Regarding the structure of the paper, we study the nonequi-
librium kink-number distribution at three different levels: an
exact analytical approach, numerical simulations, and a gener-
alized KZM theory building on scaling arguments. Following
the statement of the problem in Sec. II, the analytical approach
is presented in Sec. III. Specific cooling schedules are dis-
cussed by analytical methods and numerical simulations in
Sec. IV. The equilibrium theory presented in Sec. V is used
to characterize fast quenches as well as nonthermal features
of the nonequilibrium state. After commenting on the limits of
the numerical approach, we elaborate on the universal features
of the dynamics by recasting the findings in light of the KZM
in Sec. IX and the generalized KZM, that we introduce in
Sec. X. We close with a discussion and outlook. Additional
details of explicit calculations and numerics can be found in
the Appendixes.

II. KINK DISTRIBUTION IN AN ISING FERROMAGNET

A one-dimensional Ising ferromagnet in the absence of
an external magnetic field is described by the Hamiltonian
H = −∑ j Ji jσiσ j where the spin at a site j can take either of
the two values σ j = ±1. The ferromagnetic character stems
from Ji j � 0. We first discuss the distribution function of
the number of kinks and its characteristic function. Given a
one-dimensional spin chain, the number of kinks in a given
configuration can be studied via the number operator

N̂ = 1

2

N∑
i=1

(1 − σiσi+1), (1)

which can take integer value k ∈ [0, N]. We assume periodic
boundary conditions (in the case of an open chain, the upper
limit of the sum is N − 1 instead of N and k ∈ [0, N − 1]).
We are interested in the distribution of the number of kinks,

P(n) = 〈δ(N̂ − n)〉 = Tr[�δ(N̂ − n)], (2)

where � denotes the state of the system.
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For its characterization, we resort to the characteristic
function

P̃(θ ) = 〈eiθN̂ 〉. (3)

As the kink number takes integer values, using the Fourier
transform yields

P(n) = 1

2π

∫ 2π

0
dθ P̃(θ )e−inθ . (4)

The kink distribution is accessible in experiments and can be
measured, e.g., via single-qubit interferometry [40]. We focus
on the distribution of kinks in the nonequilibrium state result-
ing from cooling the Ising ferromagnet in a finite time. For its
analysis, it will prove useful to use the cumulants κ j ( j ∈ N)
of the distribution. The cumulant generating function of the
kink-number distribution is the logarithm of the characteristic
function and admits the expansion

log P̃(θ ) =
∞∑
j=1

κ j
(iθ ) j

j!
. (5)

In particular, we focus on the mean given by κ1 = 〈N̂ 〉, the
variance κ2 = 〈N̂ 2〉 − 〈N̂ 〉2, and the third-centered moment
κ3 = 〈(N̂ − κ1)3〉.

III. COOLING BY GLAUBER DYNAMICS OF AN ISING
FERROMAGNET: EXACT SOLUTION

To describe the finite-time cooling of the Ising ferro-
magnet, we consider its evolution under Glauber dynamics
[54,55]. Specifically, we consider the nonequilibrium quench-
ing process in which the evolution of the Ising chain
is described as a reversible Markov process obeying the
detailed balance condition Peq(�σ )wi(�σ ) = Peq(�σ (i) )wi(�σ (i) ),
where �σ = (σ1, . . . , σi, . . . , σN ) is the current system state
and �σ (i) = (σ1, . . . ,−σi, . . . , σN ) denotes the same state with
the ith spin flipped. The probabilities Peq are given by the
Boltzmann distribution,

Peq(�σ ) = e−βH(�σ )

Z , (6)

where the partition function is given by Z =∑
{σi=±1} e−βH(�σ ). The flipping rate wi(�σ ) of spin i is

obtained by direct substitution of Eq. (6) into the detailed
balance condition:

wi(�σ )

wi(�σ (i) )
= Peq(�σ )

Peq(�σ (i) )
(7)

= e−βσi
∑

j Ji jσ j

eβσi
∑

j Ji jσ j
(8)

= 1 − σitanh
(
β
∑

j∈〈i〉 Ji jσ j
)

1 + σitanh
(
β
∑

j∈〈i〉 Ji jσ j
) , (9)

where the final equality is obtained by substitution of the hy-
perbolic identity for the exponential. We focus on the uniform
coupling case with nearest-neighbor interactions, i.e., Ji j =
Jδi,i+1. Equation (7) then implies the most general flipping

rate in this case to be

wi(�σ ) = α

2

[
1 − σitanh

(
2βJ

σi−1 + σi+1

2

)]
= α

2

(
1 − γ σi

σi−1 + σi+1

2

)
, (10)

where we have normalized the rates by setting the limit wi →
α/2 as T → ∞ and defined γ = tanh(2βJ ) for convenience.

The Glauber dynamics of Ising ferromagnets have been the
subject of an extensive literature. We focus on the nonequilib-
rium case, in which both γ = γ (t ) and α = α(t ) act as control
parameters of the temperature and local flipping barrier, re-
spectively. Making use of translational invariance, consider
the correlator between nearest-neighbor spins W1 = 〈σiσi+1〉.
Previous work by Krapivsky indicates that in the slow-cooling
regime this correlator takes the form [10]

W1 = 1 − Cτ−δ
Q (11)

(up to a logarithmic factor in τQ), where C is a constant
dependent on the cooling schedule specifics, τQ is the time
taken in total for the temperature to pass from an effectively
infinite value to T = 0, and the power-law exponent δ is set
by the dynamic critical exponent z, the cooling schedule, and
system dimensionality (see as well Refs. [12,13]).

The study of kink statistics requires the calculation of mo-
ments 〈N̂m〉 of the kink operator N̂ , each of which involves
the evaluation of expressions proportional to correlators up
to and including 2m individual spins. In the classical Ising
model, it is known that even correlators may also be de-
composed into an alternating sum of two-point correlators,
parametrized solely by their separation n and their time de-
pendence under translational invariance [55]. In the limit of
slow cooling as W1 → 1, it is expected that the correlator Wn

of particles separated by a distance n,

Wn = 1

N

N∑
i=1

σiσi+n, (12)

also converges with the same power law in τQ. In this limit, the
correlators Wn should linearize their functional dependence
on the distance n. This motivates us to start considering the
behavior of two-point functions of the form

Wn = 1 − nCτ−δ
Q . (13)

In the sections to come, we derive explicit asymptotic expres-
sions for Wn in the case of linear, algebraic, and exponential
quenches from the generating function. We use these results
to establish the universal form of the kink-number distribution
and the scaling of its cumulants with the quench time.

We also perform extensive dynamical simulations of the
ferromagnetic Ising-Glauber model with various cooling
schedules. The Glauber dynamics, which is equivalent to the
so-called heat-bath method in Monte Carlo simulations, can
be easily implemented numerically. To take into account the
stochastic and local nature of the spin dynamics, at each
fundamental step, a spin σi that is randomly chosen from
the system is to be updated according to the Glauber tran-
sition dynamics. Specifically, a random number r uniformly
distributed in the interval [0, 1] is generated from a pseudo-
random-number generator. The chosen spin is flipped, i.e.,
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σi → −σi if this random number satisfies r < wi(�σ ), where
wi(�σ ) is given by the Glauber acceptance rate [Eq. (10)] with
α set to 1. To properly compare simulation results from differ-
ent system sizes N , we define a time step in our simulations
as consisting of N single spin updates described above. The
system is initialized in a random spin configuration and then
cooled down by tuning the control parameter γ at each time
step according to the cooling schedule. For each cooling speed
τQ, a large number of independent cooling simulations are
performed and observables are computed from instantaneous
snapshots of the spin configurations.

Periodic boundary conditions are used in all our numerical
simulations presented below. When a final configuration is
generated, the kink number N̂ is measured in different con-
figurations, obtaining the moments 〈N̂ 〉, 〈N̂ 2〉, 〈N̂ 3〉 from the
Monte Carlo average. The cumulants are then calculated using
the identities

κ1 = 〈N̂ 〉,
κ2 = 〈N̂ 2〉 − 〈N̂ 〉2, (14)

κ3 = 〈N̂ 3〉 − 3〈N̂ 〉〈N̂ 2〉 + 2〈N̂ 〉3,

where 〈· · · 〉 denotes average over independent annealing
simulations.

Cumulant generating function

Consider the probability distribution for a given spin con-
figuration, P(�σ , t ). Under Glauber dynamics, this distribution
evolves according to the master equation

∂

∂t
P(�σ , t ) = −

∑
i

wi(�σ )P(�σ , t ) +
∑

i

wi(�σ (i) )P(�σ (i), t ).

(15)
Correlation functions between different spins can be found in
terms of the generating function introduced by Aliev [56–58]:

�({ηi}, t ) =
〈∏

i

(1 + ηiσi )

〉
�σ

=
∑

�σ
P(�σ , t )

∏
i

(1 + ηiσi ), (16)

where 〈·〉�σ denotes an expectation over spin realizations �σ ,
and {ηi} is a set of Grassmann variables satisfying

η2
i = 0, ηiη j + η jηi = 0, (17)

and we assume an infinite chain for simplicity. Explicit corre-
lation functions can be derived from the generating function
via the identity, applicable for an even number n of indices i j :〈

σi1σi2 · · · σin

〉 = ∂n�({ηi}; t )

∂ηin · · · ∂ηi2∂ηi1

∣∣∣∣
{ηi}=0

. (18)

After the propagation of the generating function by way of
Eq. (15) in the manner described by Aliev [58], the form of
�({ηi}; t ) induced by the Grassmann variables {ηi} allows the
explicit expression by differentiation of correlators in the form
of an alternating sum of products of two-point functions. More

concisely, this may be encoded as

∂n�({ηi}; t )

∂ηin · · · ∂ηi2∂ηi1

∣∣∣∣
{ηi}=0

= Pf
(
Wi1,i2,...,in

)
, (19)

where Wi1,i2,...,in is an antisymmetric 2n × 2n matrix whose
elements are defined in terms of the two-point correlators
Wikil = 〈σik σil 〉:

(
Wi1,i2,...,in

)
kl =

⎧⎨⎩Wikil if k < l
0 if k = l
−Wikil if k > l.

(20)

In Eq. (19), we use the Pfaffian Pf(A) of a matrix with ele-
ments akl , defined by the alternating sum of permutations π

over the ordered list of integers {1, 2, . . . , n}:
Pf(A) = det(A)

1
2 (21)

= 1

2
n
2
(

n
2

)
!

∑
π

sgn(π )aπ (1)π (2) · · · aπ (n−1)π (n).

The Pfaffian equivalence induces an equivalent structure to the
Wick contraction for fermionic field operators. A power-series
expansion of the kink-number characteristic function involves
these correlators:

P̃(θ ) = e
iθN

2

[
1 + θ

2i

∑
n

〈σnσn+1〉

+ 1

2!

(
θ

2i

)2∑
n,m

〈σnσn+1σmσm+1〉 + O(θ3)

]
.

(22)

Thus, we can formally write the characteristic function in
terms of the generating function � = �({ηi}; t ):

P̃(θ ) = e
iθN

2

[
1 +

(
e

−iθ
2

∑
n

∂2

∂ηn+1∂ηn − 1
)
�
]∣∣∣

{ηi}=0
. (23)

Its logarithm, lnP̃(θ ), is the cumulant generating function.
Specifically, the jth cumulant κ j of the kink-number distri-
bution can be found as

κ j = 1

i j

d j

dθ j
lnP̃(θ )

∣∣∣∣
θ=0

, j ∈ N. (24)

Let us consider three first terms with j = 1, 2, 3. One readily
finds the mean number of kinks as the first cumulant, i.e.,

κ1 = 1

2

(
N −

∑
n

(∂2
ηn+1,ηn

�)|{ηi}=0

)

= 1

2

∑
n

(
1 − 〈σnσ

z
n+1

〉)
= 〈N̂ 〉 = N

2
(1 − W1). (25)

Similarly, the correlator between two spins that are n sites
apart in the presence of translational invariance will be de-
noted by Wn = 1

N

∑
i〈σiσi+n〉.

The explicit computation of higher-order cumulants is
somewhat laborious. Here, we simply quote the result for
the second and third cumulants derived in Appendix A. The
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second cumulant equals the variance of the number of kinks
and reads

κ2 = 〈N̂ 2〉 − 〈N̂ 〉2

= 1

4
N

[
1 − W 2

1 + 2
N/2∑
n=1

(
W 2

n − Wn+1Wn−1
)]

. (26)

The third cumulant equals the third centered moment and its
explicit computation yields

κ3 = 〈(N̂ − 〈N̂ 〉)3〉

= 1

4
NW1

⎡⎣1 − W 2
1

N−1
2∑

n=1

(N + 2 − 4n)

+(W 2
n − Wn+1Wn−1

)
.

⎤⎦. (27)

At this stage, we can analyze the general features of the
kink distribution in the binomial model. The latter is associ-
ated with N Bernoulli trials describing the presence of a kink
at the interface between different spins with a success proba-
bility p. The first three cumulants of the binomial distribution
are given by N p, N p(1 − p), and N p(1 − p)(1 − 2p). From
the expression of the mean, one can identify the probability
p in terms of the spin-spin correlator as p = 1

2 (1 − W1). An
analogous identification holds for κ2, with Eq. (26) having first
term κ2 = 1

4 (1 − W 2
1 ). Regarding the κ3 the first two terms in

Eq. (27) are consistent with the binomial expression as κ3 =
p(1 − p)(1 − 2p) = 1

4W1(1 − W 2
1 ). We revisit the connection

with the binomial distribution in a different framework, that
of the generalized KZM, in Sec. X.

To summarize this section, we have obtained exact
expressions—Eqs. (25)–(27)—for the first three cumulants of
the kink-number distribution in terms of the n-site correlator
Wn. A crucial observation is that these equations, together
with the ansatz for the leading power-law behavior of Wn in
Eq. (13), yield, to leading order in 1/τQ,

κ1 = κ2 = κ3 = N

2
Cτ−δ

Q , (28)

suggesting that the kink statistics becomes Poissonian in this
limit. We next turn our attention to the explicit analysis for
specific cooling protocols.

IV. FINITE-TIME COOLING

We consider an infinite ring, with an uncorrelated initial
state corresponding to the high-symmetry phase satisfying
〈σi〉0 = 〈σiσ j〉0 = · · · = 0 and no local flipping barrier (thus
α(t ) = α0 = 1). In this case, the generating function reads
[56,58]

�({η}; t ) = exp

⎛⎝ ∑
−∞< f1< f2<∞

η f1η f2Wf1 f2 (t )

⎞⎠, (29)

in terms of [58]

Wm1,m2 =
∫ t

0
dτγ (τ )exp[2(τ − t )]Hm2−m1,1(2h(t, τ )), (30)

where h(t2, t1) = ∫ t2
t1

dτγ (τ ), Hm, j (x) = Im− j (x) − Im+ j (x),
and Iν (x) denotes the νth modified Bessel function of the first
kind. The indices fi denote the (ordered) index of each spin.
In the case of an infinite chain, the correlators depend only on
the distance n between successive spins. In addition, the suc-
cessive modified Bessel functions may reduce the expression
via the identity

2νIν (x)

x
= Iν−1(x) − Iν+1(x). (31)

Thus, evaluating at the instant where T = 0, we may write

Wn = n
∫ τQ

0
dtγ (t ) exp [2(t − τQ)]

In(2h(τQ, t ))

h(τQ, t )
, (32)

which provides the exact integral representation of the n-site
correlator.

Using this result, together with those derived in the pre-
ceding section, we next describe the kink statistics resulting
from different cooling schedules. Specifically, under Glauber
dynamics the flipping rate is dictated by the parameter γ =
tanh(2βJ ) and we consider different functional forms for the
variation of this parameter in time [10–13].

A. Linear quench

For a linear cooling schedule, we consider

γ (t ) = t/τQ, (33)

where τQ denotes the total time taken to cross from the initial
condition to the T = 0 state. After evaluation at t = τQ, when
the critical point is reached, the integral (32) reduces to

Wn(τQ) = n
∫ τQ

0
dηe

−η− η2

4τQ
In(η)

η
, (34)

where we have defined η = (τ 2
Q − t2)/τQ for convenience, and

used the approximation to the exponential factor

e
2τQ

(√
1− η

τQ
−1
)

→ e
−η− η2

4τQ , (35)

justified by the exponential rolloff of the contribution for η =
O(

√
τQ). Asymptotic solution of integral (34) can be exactly

computed as shown in Appendix B and yields

Wn = 1 − n
√

πτ
1
4

Q

[
�

(
3

4

)
− (4n2 − 1)

48
√

τQ
�

(
1

4

)
+ O

(
1

τQ

)]
.

(36)
The above result, in conjunction with our results for κ1 in
Eq. (25), yields

κ1 = N�
(

3
4

)
2
√

πτ
1
4

Q

− N�
(

1
4

)
32

√
πτ

3
4

Q

+ · · · . (37)

By comparing the amplitude of the leading and subleading
terms, one concludes that the power-law behavior sets in for
quench times

τ
(1)
Q 	 1

256

�
(

1
4

)2
�
(

3
4

)2 = 0.03419 . . . , (38)

where the superscript indicates that this time scale character-
izes the first cumulant.
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FIG. 1. Kink-number distribution and corresponding binomial approximation in the final nonequilibrium state of an Ising ferromagnet that
is driven at different rates by a linear cooling schedule. The system size is N = 500 and the kink-number distributions are obtained from
M = 5 × 105 independent Glauber dynamics simulations.

In agreement with Eq. (28), to leading order in a 1/τQ

expansion, we further find

κ1 = κ2 = κ3 = N�
(

3
4

)
2
√

πτ
1
4

Q

, (39)

which suggests that the distribution becomes Poissonian in the
limit of arbitrarily slow cooling.

Figure 1 shows the probability distribution functions of
kink number, P(n), obtained from the Glauber dynamics sim-
ulations for finite quench times. It is worth noting that the
distribution of kinks is well described by binomial distribution
B(n, p) with parameters n = κ1 p, p = 1 − κ2/κ1. Figure 2
shows the scaling of the first three cumulants as a function of
the annealing time. Numerically, the cumulants are calculated
by averaging the recorded kink numbers using Eqs. (14). Our
numerical results clearly show that the first two cumulants
follow a power-law dependence with the annealing rate τQ.
A relatively larger fluctuation can be seen in the data points of
the third cumulant κ3, which is expected due to the enhanced
statistical error in the numerical calculation of higher-order
moments. Nonetheless, the trend of κ3 still roughly follows the
power law. The power-law exponents obtained from nonlinear
least-squares fitting are 0.239 ± 0.001, 0.229 ± 0.001, and
0.189 ± 0.007 for the first three cumulants. These values are
close to the theoretically predicted value 1/4 in Eq. (39) but
exhibit some deviations from it. Thus, only the first cumulant
is governed by the leading 1/τ

1/4
Q term in this range, while the

subleading corrections are important for κ2 and κ3.

B. Nonlinear algebraic quench

The nonlinear passage across a critical point has been pro-
posed to suppress the mean number of defects generated in a
phase transition, as it yields a power-law dependence on the
quench time with a tunable exponent [21–23]. This feature is
also found in the finite-time cooling of an Ising ferromagnet
under Glauber dynamics [10,12,13] and we next study its
effect on the distribution of kinks and the cumulant scaling.
To this end, we consider the algebraic cooling schedule

1 − γ (t ) ≈ A

(
1 − t

τQ

)α

, (40)

parametrized by α. The analogous form of Eq. (34) is thus

Wn(τQ) = n
∫ 2τQ (1− A

1+α
)

0
dηe

−η− A
1+α

η1+α

(2τQ )α
In(η)

η
, (41)

where now

η = 2
∫ τQ

τ

dtγ (t ) ≈ 2(τQ − τ ) − 2
AτQ

α + 1

(
1 − τ

τQ

)
. (42)
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κ3/N

κ1(τQ)/N = 0.314τQ
−0.239

κ2(τQ)/N = 0.200τQ
−0.229

κ3(τQ)/N = 0.069τQ
−0.189
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FIG. 2. (a) First three cumulants scaling of linear cooling sched-
ules and (b) the cooling schedule. The system size is N = 500. For
all three cumulants, each data point is obtained by averaging over
M = 5 × 105 independent Glauber dynamics simulations.
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FIG. 3. Kink-number distribution and corresponding binomial distributions at different cooling rates for algebraic cooling schedules. The
system size is N = 500 and the kink-number distributions are obtained from M = 5 × 105 independent Glauber dynamics simulations.

Again asymptotically approximating Eq. (41) in the limit of
large τQ we find the general expression

Wn = 1 − n

√
2c(α)

π

1

(2τQ)
α

2(1+α)

[
�

(
3

4

)

−c(α)(4n2 − 1)

24(2τQ)
α

1+α

�

(
1

4

)
+ O

⎛⎝ 1

τ
2α

1+α

Q

⎞⎠⎤⎦, (43)

where c(α) = ( A
1+α

)
1

1+α . The expression for κ1 is thus

κ1 = N

2

√
2c(α)

π

�
(

3
4

)
(2τQ)

α
2(1+α)

+ N

16

√
2

π

c(α)
3
2 �
(

1
4

)
(2τQ)

3α
2(1+α)

+ · · · .

(44)

Comparing again leading and subleading amplitudes, we find

τ
(1)
Q 	 1

2

( A

1 + α

) 1
α

[
1

8

�
(

1
4

)
�
(

3
4

)]1+ 1
α

. (45)

A straightforward exercise verifies that Eqs. (43)–(45) coin-
cide with the respective linear schedule expressions (36)–(38)
in the special case α = A = 1. To leading order in 1/τQ,

Wn ≈ 1 − n

√
2c(α)

π

�
(

3
4

)
(2τQ)

α
2(1+α)

, (46)

where c(α) = ( A
1+α

)
1

1+α . Thus, the expressions analogous to
Eq. (39) are, keeping only the leading order in 1/τQ,

κ1 = κ2 = κ3 = N

√
c(α)

2π

�
(

3
4

)
(2τQ)

α
2(1+α)

. (47)

Cumulants of the kink distribution thus exhibit a power-law
scaling with the quench time. In particular, the power-law
exponent α

2(1+α) increases within its range [0, 1/2] as the
parameter α of the cooling protocol is increased.

Minimizing κ j ( j = 1, 2, 3) with respect to α we find that
the optimal value of α is

α∗ = 2AeτQ − 1, (48)

which yields the minimum value of the cumulants,

κ j (α∗) = N�
(

3
4

)
√

2π

[
1√
2τQ

− 1

2Ae

1

(2τQ)3/2
+ O(τ−5/2)

]
.

(49)

Comparing the mean number of kinks resulting from this
optimized nonlinear schedule and the linear case in Eq. (39),
we find that the latter leads to an enhanced suppression by a
factor

κ1(α∗)

κ lin
1

= κ j (α∗)

κ lin
j

= 1

τ
1/4
Q

. (50)

Said differently, for a given cooling time τQ it is possible
to reduce the mean number of kinks with respect to the lin-
ear schedule by using an algebraic schedule. This finding is
reminiscent of the suppression of the mean number of exci-
tations in the quantum dynamics of isolated critical systems,
in which the dynamics is unitary and thus preserves entropy
along the evolution [21–23]. Here, we further note that the
same conclusion applies to higher-order cumulants. However,
as discussed in Sec. VI, a sudden quench outperforms these
schedules.

Figure 3 shows the distribution function of kink number,
P(n), obtained from Glauber dynamics simulations for three
different annealing rates. Again, the kink statistics is well
described by binomial distribution parametrized by n = κ1 p,
p = 1 − κ2/κ1. For the algebraic cooling schedule with α = 2
and A = 1, dependence of the first three cumulants on an-
nealing rate again exhibits a power-law relation, as shown
in Fig. 4. The fitted exponents for the three cumulants are
0.331 ± 0.001, 0.329 ± 0.001, and 0.336 ± 0.011, which are
close to the value α

2(1+α) = 1
3 predicted in Eq. (47).

C. Exponential quench

Both linear and algebraic cooling schedules lead to a
power-law scaling of the cumulants of the kink distribution.
We next consider an exponential quench in the form suggested
by Krapivsky [10]:

1 − γ (t ) ≈ B exp

⎧⎨⎩− b(
1 − t

τQ

)β
⎫⎬⎭. (51)

Here, b, β > 0 are positive real coefficients and B = exp(b)
is a normalization factor ensuring γ (0) = 0 and γ (τQ) = 1.
Making the substitution η = 2h(τQ, τ ), we find the rather
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FIG. 4. (a) First three cumulants scaling of algebraic cooling
schedules and (b) the cooling schedule. The system size is N = 500.
For all three cumulants, each data point is obtained by averaging over
M = 5 × 105 independent Glauber dynamics simulations.

cumbersome integral expression

n
∫ 2τQ

(
1− Bb1/β

β
�(−1/β,b)

)
0

dη

× exp

{
− η − B

bβ

(
η

2τQ

)β

η exp

[
−b

(
η

2τQ

)−β]} In(η)

η
,

(52)

where �(a, b) denotes the (upper) incomplete gamma func-
tion. Asymptotic solution of integral (52) then leads to the
result for Wn,

Wn = 1 − n
1√
πτQ

(
ln(τQ)

b

) 1
2β

, (53)

giving

κ1 = κ2 = κ3 = N

2
√

πτQ

(
ln(τQ)

b

) 1
2β

. (54)

Figure 5 shows the numerical distribution function of
kink number, P(n), for three different annealing rates. The
kink statistics is also well described by binomial distribution
parametrized by n = κ1 p, p = 1 − κ2/κ1. Figure 6 shows the
first three cumulants as functions of the annealing rate us-
ing parameters β = 2, b = 1, and B = 1 for the exponential
cooling schedule. Consistent with the analytical prediction
in Eq. (54), we find all three cumulants exhibit a power-law
dependence as a function of log(τQ). However, contrary to a
constant exponent 1

2β
= 0.25, our best nonlinear least-squares

fit gives three different values 0.245 ± 0.001, 0.241 ± 0.002,
and 0.114 ± 0.040 for the exponents. In particular, the third
cumulant is substantially different from the theoretical predic-
tion. For β = 2, the log(τQ)1/2β term is changing very slowly
in the τQ range of the simulation, making the cumulants only
weakly dependent on log(τQ); thus, the τQ dependence of
cumulants is dominated by the 1/

√
x term in this τQ range.

This makes the higher-order cumulant fitting in this cooling
schedule more sensitive to numerical uncertainties.

A remarkable feature of the exponential schedule is that its
cooling efficiency surpasses that of the optimized nonlinear
schedule. Indeed, taking the ratio of Eq. (49) over Eq. (54) we
find

κ j (α∗)

κ
exp
j

= �

(
3

4

)(
ln τQ

b

)− 1
2β

, (55)

that is, the exponential schedule leads to a logarithmic sup-
pression of the mean kink density with the quench time over
the optimized nonlinear schedule.

V. THERMAL EQUILIBRIUM AT
ARBITRARY TEMPERATURE

We briefly consider the equilibrium kink-number distribu-
tion that will be relevant to the following sections devoted to
sudden quenches and nonthermal behavior. We consider an
arbitrary inverse temperature β � 0. In this case, it is known
that the k-point correlator takes the form [56,59]〈

σi1 · · · σik

〉 = zi2−i1+···+ik−ik−1 , (56)

with

z = 1 −
√

1 − γ 2

γ
= tanh(βJ ). (57)

It follows that at equilibrium the two-point correlator at dis-
tance n equals

Wn = zn. (58)

Using expressions (25)–(27) for κ j ( j = 1, 2, 3), one obtains

κ1 = N

2
(1 − z), (59)

κ2 = N

4
(1 − z2), (60)

κ3 = N

4
z(1 − z2). (61)
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FIG. 5. Kink-number distribution and corresponding binomial distributions at different cooling rate for exponential cooling schedules. The
system size is N = 500 and the kink-number distributions are obtained from M = 5 × 105 independent Glauber dynamics simulations. At the
onset of adiabatic dynamics the distribution becomes asymmetric.

We note that these expressions are equivalent to those of the
binomial distribution B(N, p),

κ1 = N p, (62)

κ2 = N p(1 − p), (63)

κ3 = N p(1 − p)(1 − 2p), (64)
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FIG. 6. (a) First three cumulants scaling of exponential cooling
schedules and (b) the cooling schedule. The system size is N = 500.
For all three cumulants, each data point is obtained by averaging over
M = 5 × 105 independent Glauber dynamics simulations.

with the kink formation probability

p = 1 − z

2
= 1 − tanh(βJ )

2
. (65)

In the infinite-temperature case, the distribution describes as
well that of the quantum Ising chain [60].

VI. FAST AND SUDDEN QUENCHES

We next consider the behavior of the system under a rapid
quench and note that each cooling schedule yields in this limit

Wn(τQ) ≈ n
∫ τQ

0
dηe−η In(η)

η
. (66)

Taking the series expansion of In at η → 0, we find that

Wn(τQ) = n
∞∑

k=0

1

�(k + n + 1)k!

1

22k+n

∫ τQ

0
dηe−ηη2k+n−1.

(67)
The integral in Eq. (67) is equal to the lower incomplete
gamma function γ (a, b), which gives a Taylor series, the
leading factor of which is of the form ba�(a)e−b. Taking the
leading factors of both summations, observing that e−τQ ≈
1 − τQ for fast quenches, and taking the minimal power in τQ

yields

Wn(τQ) ≈
(τQ

2

)n
. (68)

Substituting Eq. (68) into the expressions for κ1, κ2, and κ3

while taking the leading powers gives

κ1 = N

2

(
1 − τQ

2

)
, (69)

κ2 = N

4

(
1 − τ 2

Q

4

)
, (70)

κ3 = NτQ

8
. (71)

The kink distribution upon completion of the quench in the
limit of vanishing τQ is that of a ferromagnet at infinite tem-
perature. According to Eq. (65), for β = 0 the kink formation
probability is p = 1/2, as expected. As a result, the cumulant
values of a binomial distribution B(N, 1/2) in Eq. (62) are re-
covered, i.e., κ1 = N

2 , κ2 = N
4 , κ3 = 0. We further notice that

the values in Eq. (69) also agree with those of the binomial
distribution in Eq. (62) when the kink formation probability
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reads

p = 1

2

(
1 − τQ

2

)
, (72)

which captures the leading correction away from the sudden
limit due to the finite value of the quench time τQ.

We note in passing that another interesting dynamical
phenomenon related to sudden quench is domain coarsening
[61]. It is generally believed that coarsening systems exhibit
dynamical scaling, i.e., the typical domain size grows alge-
braically with time, L ∼ t1/z, where z is a dynamical exponent
that is independent of microscopic details of the system. In the
one-dimensional (1D) Ising chain, the typical domain size is
simply related to the average distance between kinks, hence
L ∼ 1/κ1. The scaling hypothesis thus implies a power-law
behavior for the first cumulant. Interestingly, our extensive
Glauber dynamics simulations show that all three cumulants
follow a diffusive scaling law: κ j ∼ t−1/2, corresponding to
an exponent z = 2 (see Appendix C for more details). As a
caveat, it should be noted that the phenomenology of sudden
thermal quenches differs from that of sudden quenches in
quantum phase transitions in isolated spin chains. Indeed, the
sudden quench followed by an evolution time leads to a lower
density of defects than the linear, nonlinear, and exponential
schedules for a given total duration of the process.

VII. NONTHERMAL BEHAVIOR

One may wonder whether the nonequilibrium state result-
ing from the finite-time cooling of a ferromagnet is effectively
thermal. To that end, one can compute the distance between
an equilibrium thermal distribution of kinks, Pβ (n), with in-
verse temperature β as a free parameter and the numerically
obtained distribution P(n) for given P(n) = PτQ (n). The prox-
imity between the two distributions can be quantified by a
distance. We consider the trace-norm distance

DTN = 1

2

∑
n

|Pβ (n) − PτQ (n)|. (73)

Minimizing it with respect to the free parameter β,

min
β

DTN = D∗
TN, (74)

one can identify the effective temperature β∗ that best ap-
proximates the nonequilibrium state with distance D∗

TN. The
equilibrium distribution Pβ (n) is obtained from standard
Monte Carlo simulation using Glauber dynamic spin update
and the trace-norm distance is minimized using the golden
search method. For concreteness, we focus on the case of a
linear quench protocol. The numerical simulations for a chain
of L = 500 spins indicate nonthermal behavior in the final
state for quench times τQ ∈ [102, 104] (see Fig. 7). For these
parameters, the minimum trace-norm distance remains in the
interval D∗

TN ∈ [0.07, 0.09]. The canonical Gibbs state that
best approximates the final state is characterized by an inverse
temperature that scales as a power law of the quench time with
exponent −0.096 ± 0.001. We note that in a Gibbs state, the
mean kink number equals [40]

κ1 = N

1 + e2βJ
. (75)
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TM = 0.077

FIG. 7. Effective temperature (main panel) and trace-norm dis-
tance (inset) for linear cooling schedule.

Assuming DTN = 0, and comparing this expression with
the result for a linear quench, Eq. (39), suggests that the
power-law scaling is effective and results from linearizing
the logarithmic dependence (taking the Boltzmann constant
kB = 1),

T ∗(τQ) = 2J

log
(

2
√

π
√

τQ

�( 3
4 ) − 1

) , (76)

over the studied range of quench times. Naturally, the explicit
dependence of T ∗ on τQ varies with the cooling schedule.

VIII. LIMIT OF NUMERICAL SIMULATION

The deviations between the analytical results and the nu-
merical data observed in the histograms and cumulant scaling
behavior come from the fact that the slow cooling limit τQ →
∞ and the thermodynamic limit of infinite system size, both
considered in the analytical approach, are not accessible in
the numerical simulation. In the low-temperature, long-time
limit, the topological defects are exponentially scarce, making
finite-size effects significant in the slow-cooling regime. An
arbitrarily long cooling time will simply bring a finite system
close to equilibrium and the nonequilibrium physics cannot
be fully captured. Therefore, to explore the nonequilibrium
physics in the slow-cooling limit, the infinite size limit is also
required, which is beyond reach in the numerical simulation.
The asymptotic behavior of the system in the slow-cooling
limit can still be analyzed by observing the scaling of the
correlator Wn, which has a stronger dependence on the cool-
ing rate. In Fig. 8, it can be seen that Wn converges to the
predicted expression 1 − nC′τ−δ

Q in the long-time limit. This
dependence will further lead to the cumulant behavior pre-
dicted by the analytical calculation. Note that in the range of
quench times τQ ∈ [102, 104], the system size does not have a
significant impact on the results.
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FIG. 8. Scaling of correlator function 1 − Wn for linear cooling
schedule. In the limit of slow quench times the ratio (1 − Wn)/n is
independent of n and governed by the leading term in Eq. (36).

IX. CONNECTION TO THE KIBBLE-ZUREK
MECHANISM: MEAN NUMBER OF KINKS

The KZM predicts the mean density of defects upon com-
pletion of a cooling schedule making use of equilibrium
properties [8]. We first recall that the equilibrium correlation
length of the one-dimensional Ising model is [62]

ξ = ξ0

| log(tanh(βJ ))| , (77)

where ξ0 is the lattice spacing. The one-dimensional fer-
romagnet thus differs from the standard setting in higher
dimensions, where correlation length exhibits a power-law
scaling as a function of the proximity to the critical point. By
contrast, the relaxation time under Glauber dynamics exhibits
the conventional power-law divergence [10,12]

τ = τ0

|1 − γ | , (78)

where τ0 is a microscopic constant. As the critical point at
T = 0, the system exhibits critical slowing down and the
dynamics can be expected to be nonadiabatic for any finite
quench time. For the sake of illustration, we focus on the
linear cooling schedule

γ (t ) = t

τQ
= tanh(2βJ ). (79)

The KZM invokes the adiabatic impulse approximation, ac-
cording to which the relaxation time is in an early stage small
enough so that the system quickly adjusts to the instantaneous
equilibrium configuration with γ = γ (t ). The growth of the
relaxation time close to the critical point gives rise to the effec-
tive freezing of the order parameter of the system. The KZM
estimates the mean size of the domains (out-of-equilibrium
correlation length) after cooling in finite time by the equilib-
rium value of the instantaneous correlation length at freezing,
the so-called freeze-out time t̂ . To estimate the freeze-out time
t̂ , we match the instantaneous equilibrium relaxation time to

the time left until reaching the critical point τQ − t , that is,

τ (t ) = τQ − t . (80)

For the linear schedule, the solution is given by

t̂ = √
τ0τQ. (81)

By an analogous procedure, one can estimate the freeze-out
time for other schedules such as the algebraic and the expo-
nential one. Using the relation between the correlation length
and the relaxation time,

ξ = ξ0

( τ

τ0

) 1
z
, (82)

the KZM predicts the mean domain size after cooling to be
given by

ξ̂ = ξ (t̂ ) = ξ0

(τQ

τ0

) 1
2z
, (83)

which for z = 2 yields the power-law scaling

〈N̂ 〉 = N

ξ̂
∝ τ

−1/4
Q . (84)

The accuracy of the KZM in accounting for the finite-time
cooling of the Glauber dynamics has been discussed in
Refs. [10,12]. We next focus on physics beyond the KZM
associated with the kink-number statistics.

X. BEYOND THE KIBBLE-ZUREK MECHANISM:
KINK-NUMBER STATISTICS

A growing body of results [41–46] suggests that the sig-
natures of universality govern the kink-number distribution
and not only its mean value. To appreciate this, in a classi-
cal setting, it suffices to assume that the formation of kinks
at different locations is described by independent stochastic
events [45].

The key tenet of the KZM is that the cooling dynamics
sets the average length scale of domains to be given by the
equilibrium correlation length evaluated at the freeze-out time
ξ̂ . By contrast, to generalize the KZM we consider that the
effect of the cooling is to partition a system of size L =
Nξ0 into “proto-domains” of the same length scale ξ̂ over
which the order parameter stabilizes. At the boundary between
adjacent domains, kinks form with a given probability p.
Conversely, with probability (1 − p) no kink is formed and the
two adjacent proto-domains coalesce to form a larger domain.
The number of boundaries between proto-domains deter-
mines the number of stochastic events for kink formation set
by (the floor of)

Nb = L

ξ̂
= N

(
τ0

τQ

) 1
2z

, (85)

where the second equality holds for the Ising ferromagnet.
Assuming kink formation events at different locations to be
uncorrelated leads to a kink-number distribution associated
with Nb independent and discrete random Bernoulli variables.
Upon assuming the success probability p to be the same at
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FIG. 9. Schematic representation of the annealing dynamics according to the generalized Kibble-Zurek mechanism. In the course of the
annealing, a system of size L is partitioned into proto-domains of the KZM length scale ξ̂ , which scales as a power law with the quench
time. At the interface between adjacent proto-domains, kinks are spontaneously formed with probability p. There are Nb = L/ξ̂ interfaces.
Assuming events of kink formation to be uncorrelated at different locations yields a binomial distribution for the kink number distribution
P(n) ∼ B(n, Nb, p), in which all cumulants scale as ξ̂−1. Domains with opposite spin configurations are represented in blue and red and are
separated by kinks.

different locations, the distribution takes the binomial form

P(n) = B(Nb, p) =
(

Nb

n

)
pn (1 − p)Nb−n (86)

(see Fig. 9). In one spatial dimension,

κ1 = 〈n〉 = pNb = pN

(
τ0

τQ

) ν
1+zν

. (87)

Similarly, higher-order cumulants of the binomial distribution
read

κ2 = (1 − p)κ1, (88)

κ3 = (1 − 2p)κ2, (89)

κq+1 = p(1 − p)
dκq

d p
. (90)

As a result, all cumulants are predicted to follow the same
universal power-law scaling predicted by the mean num-
ber of kinks, in agreement with the numerical simulations
and analytical calculations we have reported. In the bino-
mial distribution, cumulant ratios are determined by the kink
formation probability p, independent of the quench time. Ac-
cordingly, the numerical values of the cumulant ratios found
in Fig. 2 are expected to be consistent with a well-defined
probability for kink formation and, thus, with the binomial
distribution. According to the generalized KZM this probabil-
ity is independent of the quench time, as shown in Fig. 10.
From κ2/κ1 = 1 − p, one finds p = 0.32. Using any of the
ratios involving the third cumulant, κ3/κ2, one finds the close
value p = 0.27, though we recall that the power-law scaling of
κ3 deviates from the KZM prediction. These values are com-
parable to those observed in other one-dimensional systems,

such as the overdamped Ginzburg-Landau model (p ≈ 0.42)
and the transverse-field quantum Ising model, well in isolation
(p = 0.41) [41–43], or coupled to a bath (p ≈ 0.37–0.39)
[44].

XI. DISCUSSION AND CONCLUSION

We have analyzed the kink-number distribution of an Ising
chain thermally annealed under Glauber dynamics. While
generally it is well described by a binomial distribution, in
the limit of slow annealing kink statistics becomes Poissonian.
We have explicitly computed the two-point function and used
it to derive the low-order cumulants of the distribution. Specif-
ically, the mean number of kinks, the variance, and the third
centered moment are identical and given by a power law with
the quench time in the limit of slow cooling.

The one-dimensional Ising model does not exhibit a phase
transition and in the absence of a magnetic field becomes
degenerate only at zero temperature. The annealing schedules
we have reported involve positive temperatures, approaching
only degeneracy at infinite time. As a result, the annealing of
the ferromagnet does not involve the crossing of the critical
point. The situation is similar to that in recent experiments
with colloidal monolayers that probe only “half of the transi-
tion” [50,51]. In principle, such a scenario does not preclude
the appearance of KZM scaling [48,49,52], although under
slow cooling, the dynamics is inextricably woven with coars-
ening [10,12,13,63,64].

The Ising ferromagnet in one spatial dimension does not
exhibit a power-law divergence of the equilibrium correlation
length. As a result, the correlation length critical expo-
nent ν is not defined. This precludes the application of the
KZM in its original form [8]. However, the appearance of
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0.272 ± 0.003

FIG. 10. Value of the kink formation probability extracted from
the cumulant ration. According to the generalized KZM, this value
is independent of the quench time. The estimate of p depends on the
cumulant ratio considered.

power-law behavior can be established using the adiabatic-
impulse approximation [10,12,13], a core tenet of the KZM.

Focusing on kink-number fluctuations, we have character-
ized the full kink-number distribution that exhibits signatures
of universality as predicted by the generalized KZM [45]. The
dependence of the cumulants of the kink-number distribution
on the annealing time varies with the schedule. When the
temperature is a linear function of time, all cumulants are
shown to scale with a power law of the quench time. When
the annealing schedule involves a polynomial variation of the
temperature with time, a modified power law is observed.
This generalizes to arbitrary cumulants the scaling prediction
for the mean number of defects resulting from the nonlin-
ear passage across a critical point [21,22,45,65]. We have
found corrections to the power-law behavior of cumulants
when the temperature decays exponentially as a function of
time (see as well Refs. [10,12,13] for the mean number).
At variance with previous studies exploring Berezinskii-
Kosterlitz-Thouless phase transition [66,67] and holographic
systems [68], the logarithmic corrections to KZM scaling that
we have reported stem directly from the annealing schedule.

We have further analyzed the dependence of the cooling
efficiency for a given quench time as a function of the choice
of the cooling schedule. Nonlinear quenches are shown to
reduce the residual density of kinks below the value obtained
under a linear quench. This result is consistent with previous
findings on nonlinear quenches [10,12,13,21,22,45,65]. The
nonlinearity can be optimized to maximize this suppression
as suggested in Ref. [22]. An exponential cooling proto-

col proves even more efficient than the optimal nonlinear
quenches in suppressing kink formation. Yet, a sudden quench
to zero temperature with subsequent evolution for the same
total time surpasses all to this end. The cooling scenario thus
exhibits a different phenomenology from that observed in
quantum phase transitions, where sudden quenches enhance
defect formation over finite-time protocols.

In the opposite limit of sudden and nearly sudden quenches
the cumulant values are those of a binomial distribution. As
a result, the shape of the distribution varies from binomial
to Poissonian as the cooling rate is decreased. Yet, even in
the scaling regime for slow quenches, we have shown that
in the regime of generalized scaling behavior the final state
is nonthermal, by establishing the trace distance between the
resulting kink-number distribution upon completion of the
quench and the corresponding one for a canonical Gibbs state.
The thermal state that best approximates the final state ex-
hibits an effective temperature that scales as an inverse power
law of the quench time.

We hope that the current findings motivate new studies of
the finite-time annealing dynamics of a ferromagnet beyond
the KZM. A natural generalization involves the inclusion of
disorder, which is known to turn the power-law scaling on the
quench time under a linear schedule into a logarithmic depen-
dence [9,11,19,20]. An analogous description may be invoked
in one spatial dimension [57] and the full counting statistics,
as well as the role of the schedule, remain unexplored in this
context. Similarly, one can envision studies in higher spatial
dimensions, as well as with continuum and gauge symmetries
[69].

We close by pointing out the relevance of the cooling
dynamics of classical spin models in the benchmarking of
quantum annealers and quantum simulators. By embedding
Ising models in quantum annealing devices, tests of the KZM
have been used to benchmark their performance [44,70,71]
and a study of the kink statistics can provide a stringent test,
helping to elucidate the kind of dynamics emulated in these
devices [44]. In addition, we note that in other setups the
kink-number distribution can be directly measured by making
use of single-qubit interferometry, whereby an auxiliary qubit
is used to probe the state of the Ising ferromagnet [40].
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APPENDIX A: COMPUTATION OF THE SECOND AND THIRD CUMULANTS

For convenience we introduce the notation

∂n
i1,...,in ≡ ∂n

∂ηi1 , . . . , ∂ηin

. (A1)
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Using the cumulant generating function, the variance of the kink number is given by

κ2 = −1

4

[∑
n,m

(
∂4

m+1,m,n+1,n�
)∣∣

{ηi}=0 −
(∑

n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)2]

= −1

4

[∑
n,m

〈σNσn+1σmσm+1〉 −
(∑

n

〈
σNσ z

n+1

〉)2]

= 1

4
[4〈N̂ 2〉 + N2 − 4N〈N̂ 〉 − (N2 + 4〈N̂ 〉2 − 4N〈N̂ 〉)]

= 〈N̂ 2〉 − 〈N̂ 〉2. (A2)

The third cumulant equals the third centered moment and is given by

κ3 = −1

8

[∑
n,m,l

(
∂6

l+1,l,m+1,m,n+1,n�
)∣∣

{ηi}=0 − 3

(∑
n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)(∑
n

(
∂2

m+1,m,n+1,n�
)∣∣

{ηi}=0

)

+ 2

(∑
n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)3]

= 1

8
[−N3 − 12N〈N̂ 2〉 + 6N2〈N̂ 〉 + 3(4N〈N̂ 2〉 + N3 − 6N2〈N̂ 〉) − 2(N3 − 8〈N̂ 〉3 − 6N2〈N̂ 〉 + 12N〈N̂ 〉2)]

= 〈N̂ 3〉 − 3〈N̂ 〉〈N̂ 2〉 + 2〈N̂ 〉3. (A3)

Equations (25), (A2), and (A3) thus lead to the well-known results for the cumulants in terms of moments of the distribution and
show the consistency of using the logarithm of Eq. (23) as the cumulant generating function.

1. Explicit calculation of κ2

We begin with expression (A2), and substitute in the explicit correlators Wn as derived previously from �. Last, we use
translational invariance of the system to dispense with the index m to find a condensed form of the expression:

κ2 = −1

4

[∑
n,m

(
∂4

m+1,m,n+1,n�
)∣∣

{ηi}=0 −
(∑

n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)2]

= −1

4

[∑
n,m

(Wn,n+1Wm,m+1 − Wn,mWn+1,m+1 + Wn,m+1Wn+1,m) −
(∑

n

Wn,n+1

)2]

= −1

4

[
N
∑

n

(
W 2

1 − W 2
n + Wn+1Wn−1

)− N2W 2
1

]

= 1

4
N
∑

n

(
W 2

n − Wn+1Wn−1
)
. (A4)

Note that the expression on the right-hand side of the final equality of Eq. (A4) is also valid for the zero-order term, i.e., when
n = m and so W0 = 1. Taking this out of the summation and using the symmetry of the ring (taking N even for convenience), we
have

κ2 = 1

4
N
∑

n

(
W 2

n − Wn+1Wn−1
) = 1

4
N

(
1 − W 2

1 + 2
N/2∑
n=1

(
W 2

n − Wn+1Wn−1
))

. (A5)

In the case of Wn being described by an expression of the form (13), the resulting limiting expression for κ2 is then

κ2 = N

2
Cτ−ν

Q . (A6)
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2. Explicit calculation of κ3

Returning to the expression for the third cumulant,

κ3 = −1

8

[∑
n,m,l

(
∂6

l+1,l,m+1,m,n+1,n�
)∣∣

{ηi}=0 − 3

(∑
n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)(∑
n

(
∂2

m+1,m,n+1,n�
)∣∣

{ηi}=0

)

+ 2

(∑
n

(
∂2

n+1,n�
)∣∣

{ηi}=0

)3]
. (A7)

Making use of translational invariance in the system allows us to dispense with the first indices, defining the nth and mth spins
relative to their distance from the first:

κ3 = −1

8

[
N

N−1∑
n,m=0

(
∂6

m+1,m,n+1,n,1,0�
)∣∣

{ηi}=0 − 3N2W1

(
N−1∑
n=0

(
∂2

n+1,n,1,0�
)∣∣

{ηi}=0

)
+ 2N3W 3

1

]
. (A8)

A lengthy differentiation process of the terms containing �, or equivalently collecting all index pairs in a fermionic Wick
contraction, yields

κ3 = −1

8

[
N

N−1∑
n,m=0

(
W 3

1 + W1
(
Wn+1Wn−1 − W 2

n + Wm+1Wm−1 − W 2
m + Wn−m+1Wn−m−1 − W 2

n−m

)
+Wn−m(WnWm−1 − WmWn−1 + Wn+1Wm − Wm+1Wn) + Wn−m+1(Wm+1Wn−1 − WnWm)

+Wn−m−1(WnWm − Wn+1Wm−1)
)− 3N2W1

N−1∑
n=0

(
W 2

1 − W 2
n + Wn+1Wn−1

)+ 2N3W 3
1

]
. (A9)

Terms proportional to W 3
1 immediately cancel, as do those symmetric under the transformations n → −n and n ↔ m, with an

analogous counterpart with opposite sign (i.e., the second, third, and fourth brackets within the first summation), leading to

κ3 = −1

8
NW1

[
N−1∑

n,m=0

(
Wn+1Wn−1 − W 2

n + Wm+1Wm−1 − W 2
m + Wn−m+1Wn−m−1 − W 2

n−m

)

− 3N
N−1∑
n=0

(
Wn+1Wn−1 − W 2

n

)]
. (A10)

Collecting like terms in the second summation yields

κ3 = −1

8
NW1

[
N−1∑

n,m=0

(
Wn−m+1Wn−m−1 − W 2

n−m

)− N
N−1∑
n=0

(
Wn+1Wn−1 − W 2

n

)]
. (A11)

Making use of the periodic boundary conditions to reduce the sum, we find

κ3 = −1

8
NW1

[
4

(N−1)/2∑
n,m=0

(
Wn−m+1Wn−m−1 − W 2

n−m

)− 2N
(N−1)/2∑

n=0

(
Wn+1Wn−1 − W 2

n

)]
. (A12)

For a further simplification, it proves convenient to redefine indices as l = |n − m|, to find that there are (N + 1)/2 terms in which
l = 0, 2((N + 1)/2 − 1) = (N − 1) terms such that l = 1, 2((N + 1)/2 − 2) = (N − 3) with l = 2, etc. With this redefinition,
we can write

κ3 = −1

8
NW1

[
2(N + 1)

(
W 2

1 − 1
)+ 4

(N−1)/2∑
l=1

(N + 1 − 2l )
(
Wl+1Wl−1 − W 2

l

)− 2N
(N−1)/2∑

n=0

(
Wn+1Wn−1 − W 2

n

)]
. (A13)

Evaluating the first term in the second summation and collecting like terms gives

κ3 = −1

4
NW1

[
W 2

1 − 1 +
(N−1)/2∑

l=1

(N + 2 − 4l )
(
Wl+1Wl−1 − W 2

l

))]
, (A14)

where we recognize the first two terms as κ3 = p(1 − p)(1 − 2p) = 1
4W1(1 − W 2

1 ) for p = 1
2 (1 − W1). Once again, if in the

τQ → ∞ limit Eq. (13) holds, we have

κ3 = N

2
Cτ−ν

Q . (A15)
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APPENDIX B: CALCULATION OF THE TWO-POINT CORRELATOR

In this Appendix, we detail the computation of the two-point correlator Wn(τQ) in Eq. (32) for the Ising model under Glauber
dynamics and slow quenches. Before dwelling on specific cases, we note that by applying the recursion formula for modified
Bessel functions,

In−1(η) − In+1(η) = 2n

η
In(η), (B1)

the integral Wn(τQ) is written as

Wn(τQ) = n
∫ 2τQ (1− A

1+α
)

0
dηe

−η− A
1+α

η1+α

(2τQ )α
In(η)

η
, n � 1. (B2)

1. Linear cooling

In the case of α = 1, the integral reduces to

Wn(τQ) = n
∫ τQ

0
dηe

−η− η2

4τQ
In(η)

η
. (B3)

Introducing x = η/(2
√

τQ), the integral becomes

Wn(τQ) = n
∫ √

τQ/2

0
dxe−2

√
τQx−x2 In(2

√
τQx)

x
. (B4)

Splitting the integral into two parts, and defining f = f (τQ) a function to be optimized later,

n

[∫ f (τQ )

0
dxe−2

√
τQx−x2 In(2

√
τQx)

x
+
∫ √

τQ/2

f (τQ )
dxe−2

√
τQx−x2 In(2

√
τQx)

x

]
. (B5)

The Taylor and asymptotic expansions of the modified Bessel function In(x) are given by

Iν (z) =
∞∑

k=0

1

�(k + ν + 1)k!

( z

2

)2k+ν

,

Iν (z) ∼ ez

√
2πz

∞∑
k=0

(−1)k ak (ν)

zk
as z → ∞,

(B6)

where ak (ν) denotes a member of the class of polynomials defined by the general formula

an(ν) = (4ν2 − 1)(4ν2 − 9) · · · (4ν2 − (2n − 1)2)

8n�(n + 1)
. (B7)

Plugging the upper expression (B6) into the lower integral, the first term becomes

n
∞∑

k=0

τ
k+ n

2
Q

�(k + n + 1)k!

∫ f (τQ )

0
dxe−2

√
τQx−x2

x2k+n−1 ≈ n
∞∑

k=0

τ
k+ n

2
Q

k!

∫ f (τQ )

0
dxe−2

√
τQxx2k+n−1, (B8)

where the approximation is justified preemptively by the choice of f (τ ), namely, that it should go to zero in the limit of large τ .

In such a limit, we have that limx→0
e−√

2τQx−x2

e−√
2τQx

= limx→0 e−x2 = 1. Solving the integral exactly, we find it to be equal to

n
∞∑

k=0

τ
k+ n

2
Q

�(k + n + 1)k!

1

22k+nτ
k+ n

2
Q

[�(2k + n) − �(2k + n, 2 f (τQ)
√

τQ)]

= n
∞∑

k=0

1

�(k + n + 1)k!

1

22k+n
[�(2k + n) − �(2k + n, 2 f (τQ)

√
τQ)], (B9)

where �(a, b) denotes the upper incomplete gamma function. Turning our attention to the second integral, and making use of
the asymptotic form (B6), we find it to be given by

n

2
√

πτ
1
4

∞∑
k=0

(−1)k

(2
√

τQ)k
ak (n)

∫ √
τQ/2

f (τQ )
dx

e−x2

xk+ 3
2

. (B10)
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The integral part of expression (B10) is exactly solvable, and the resulting form is

− n

4
√

πτ
1
4

∞∑
k=0

(−1)k

(2
√

τQ)k
ak (n)

[
�

(
−k

2
− 1

4
,
τQ

4

)
− �

(
−k

2
− 1

4
, f (τQ)2

)]
. (B11)

Examining the first sum in Eq. (B9), we find

n
∞∑

k=0

�(2k + n)

�(k + n + 1)k!

1

22k+n
= n

�(n)

�(n + 1)
= 1, (B12)

leading to the full expression for Wn,

Wn = 1 − n
∞∑

k=0

1

�(k + n + 1)k!

1

22k+n
�(2k + n, 2 f (τQ)

√
τQ)

− n

4
√

πτ
1
4

∞∑
k=0

(−1)k

(2
√

τQ)k
ak (n)

[
�

(
−k

2
− 1

4
,
τQ

4

)
− �

(
−k

2
− 1

4
, f (τQ)2

)]
. (B13)

Now we go about optimizing f (τQ). We know that limτQ→∞ Wn(τQ) = 1, since an infinite quench has thermal motion allowing
spins to align, and continued coarsening dynamics to ensure that any excitation in the system is eventually removed. This requires
that f (τQ)

√
τQ → ∞ as τQ → ∞. Furthermore, we wish to have an expression with complete � functions, which do not depend

on τQ. Thus, in the limit of τQ → ∞, this leads to the condition that f (τQ) → 0 as τQ → ∞. Thus, we pick as a suitable choice

f (τQ) = τ
− 1

4
Q . We see upon expansion in inverse powers of τQ that the second and third � functions are exponentially suppressed

in powers of τQ. Applying these conditions while taking the leading power in τQ, and thereafter simplifying the � function using
standard identities, leaves us with the final expression:

Wn = 1 − n
√

πτ
1
4

Q

[
�

(
3

4

)
− 1

6
√

τQ
a1(n)�

(
1

4

)
+ O

(
τ−1

Q

)]
. (B14)

In the limit of slow cooling, the final density of defects is governed by the power-law behavior,

ρ(τQ) = κ1

N
= �

(
3
4

)
2
√

πτ
1
4

Q

. (B15)

2. Algebraic cooling

We turn our attention now to the general case of algebraic cooling. Restating integral (41),

Wn(τQ) = n
∫ 2τQ

(
1− A

1+α

)
0

dηe
−η− A

1+α

η1+α

(2τQ )α
In(η)

η
. (B16)

We proceed by making the substitution x = cη(2τQ)−
α

1+α , where c = ( A
1+α

)
1

1+α is defined for convenience. Applying this

substitution, and defining c′ = ( A
1+α

)
1

1+α (1 − A
1+α

), we find

Wn = n
∫ c′(2τQ )1− α

1+α

0
dxe−x(2τQ )

α
1+α /c+x2 In

( x(2τQ )
α

1+α

c

)
x

. (B17)

Splitting the integral in the same fashion as before, we find that the lower contribution becomes approximately equal to

n
∞∑

k=0

1

�(k + n + 1)k!

(2τQ)
α

1+α
(2k+n)

(2c)2k+n

∫ f (τQ )

0
dxe− x(2τQ )

α
1+α

c x2k+n−1 (B18)

while the upper contribution is

n√
2π/c(2τQ)

α
2(1+α)

∞∑
k=0

(−1)k

c−k (2τQ)
kα

1+α

ak (n)
∫ c′(τQ )1− α

1+α

f (τQ )
dx

e−x2

xk+ 3
2

. (B19)

033150-17



MAYO, FAN, CHERN, AND DEL CAMPO PHYSICAL REVIEW RESEARCH 3, 033150 (2021)

As in the previous section, we find conditions on f (τ ), which turn out to be limτ→∞ τ
α

1+α

Q f (τQ) = ∞ and limτ→∞ f (τQ) = 0.

Thus defining f (τQ) = τ
− α

2(1+α)

Q , and taking the limit as before, we find that

Wn = 1 − n

√
2c(α)

π

1

(2τQ)
α

2(1+α)

[
�

(
3

4

)
− c(α)a1(n)

3(2τQ)
α

1+α

�

(
1

4

)
+ O

(
τ

− 2α
1+α

Q

)]
, (B20)

giving the final density of defects equal to

ρ(τQ) = κ1

N
=
√

c(α)

2π

�
(

3
4

)
(2τQ)

α
2(1+α)

, (B21)

to leading order.

3. Exponential cooling

In the case of exponential cooling, we begin with Eq. (37),

Wn = n
∫ τQ

0
dt

(
1 − B exp

(
− b

(1 − t/τQ)β

))
exp(2(τQ − t ))

In(h(τQ, t ))

h(τQ, t )
, (B22)

where, in this case,

h(τQ, t ) = τQ − t − B
∫ τQ

t
dt ′ exp

(
− b

(1 − t/τQ)β

)
. (B23)

Using the substitution u = b1/β

(1−t/τQ ) , the integral becomes∫ τQ

t
dt ′ exp

(
− b

(1 − t/τQ)β

)
= b1/βτQ

∫ ∞

b1/β/(1−t/τQ )

exp(−uβ )

u2
. (B24)

The integral on the left-hand side of (B24) admits an analytical solution in terms of the incomplete gamma function as

b1/βτQ

∫ ∞

b1/β/(1−t/τQ )

exp(−uβ )

u2
= b1/βτQ

[
−

�
(− 1

β
, uβ
)

β

]u=∞

u=b1/β/(1−t/τQ )

, (B25)

giving

b1/βτQ

∫ ∞

b1/β/(1−t/τQ )

exp(−uβ )

u2
= b1/βτQ

β
�

(
− 1

β
, b/(1 − t/τQ)β

)
. (B26)

Therefore, we have that

h(τQ, t ) = τQ − t − B
b1/βτQ

β
�

(
− 1

β
, b/(1 − t/τQ)β

)
. (B27)

Defining then η = 2h(τQ, t ), we have

dη

dt
= −2(1 − B exp(−b/(1 − t/τQ))) = −2γ (t ). (B28)

Inverting as in Ref. [10], we find that

1 − t

τQ
= η

2τQ
+ B

bβ

(
η

2τQ

)1+β

exp

{
−b

(
η

2τQ

)−β}
, (B29)

and so the integral becomes

n
∫ 2τQ(1− Bb1/β

β
�(−1/β,b))

0
dη exp

{
−η − B

bβ

(
η

2τQ

)β

η exp

{
−b

(
η

2τQ

)−β}} In(η)

η
. (B30)
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Splitting integral (B30) into an upper and lower part, while defining η = 2τQ(ξb/ ln(τQ))1/β to substitute in the upper contribu-
tion, while keeping the first contribution in terms of η for convenience, gives

n
∞∑

k=0

1

�(k + n + 1)k!

1

22k+n

∫ η( f (τQ ))

0
dηe−ηη2k+n−1 + n

β

1

2
√

πτQ

(
ln(τQ)

b

)1/2β

×
∫ ln(τQ )

b c

f (τQ )

dξ

ξ
1+ 1

2β

exp

{
−2Bξ

β

(
ξb

ln(τQ)

)1/β

τ
1− 1

ξ

Q

}
, (B31)

where we have defined c = (1 − Bb1/β

β
�(−1/β, b))β for convenience. Taking a cue from Ref. [10] and noting that the upper part

of the integral converges to zero for all ξ > 1, we find that its contribution can be replaced by

n

β

1

2
√

πτQ

(
ln(τQ)

b

)1/2β ∫ 1

f (τQ )

dξ

ξ
1+ 1

2β

. (B32)

Solving integral (B32) leads to the expression

n
1√
πτQ

(
ln(τQ)

b

) 1
2β

[
1

f (τQ)
1

2β

− 1

]
. (B33)

The condition implied by both expression (B33) to remove the
divergence and the expansion of the lower expression (B31) is
that

lim
τQ→∞

f (τQ)τβ
Q

ln(τQ)
= ∞, (B34)

while still limτQ→∞ f (τQ) = 0. Thus, we may pick f (τQ) =
ln(τQ)τ 1−β

Q , and find the final expression for exponential cool-
ing to be

Wn = 1 − n
1√
πτQ

(
ln(τQ)

b

) 1
2β

. (B35)

The density of defects is, therefore,

ρ(τQ) = κ1

N
= 1

2
√

πτQ

(
ln(τQ)

b

) 1
2β

. (B36)

APPENDIX C: COARSENING DYNAMICS OF 1D
ISING CHAIN

In this Appendix, we present Glauber dynamics simula-
tions of the coarsening phenomenon in a 1D Ising model.
Coarsening, or phase-ordering dynamics, underlies numerous
natural processes including phase separation, grain growth,
and biological pattern formation [61]. It is generally believed
that the ordering process following the quench of a system
from an initial state at high temperature to a final state below
the critical point obeys dynamic scaling in the asymptotic
time regime [61]. The intuitive argument for this dynamical
scaling is that at the late stage of phase ordering, the typical
domain size L(t ) is the only important length scale in the
system, and any time dependence takes place through L(t ).
The standard picture is that the growth of typical domain
size follows a power law L(t ) ∼ t1/z, where the dynamical
exponent z is usually independent of details of the system
and even the spatial dimensions. On the other hand, similar
to critical phenomena, the dynamical scaling of coarsening

can be classified into universality classes that depend on the
symmetry of the order parameters, whether the order param-
eter is conserved or not, and coupling to other dynamical
variables. For example, in dimensions greater than or equal
to two, coarsening of Ising-like domains is described by an
exponent z = 2 for nonconserved order parameters, and z = 3
for conserved ones.

In one dimension, since domains of ordered spins are sand-
wiched by two kinks, the typical domain size is related to
the density of kinks, or first cumulant, via L(t ) ∼ N/κ1(t ).
Consequently, if dynamical scaling also holds for quench to
the T = 0 critical point, we expect a power-law behavior for
the first cumulant, κ1(t ) ∼ t−1/z. Figure 11 shows the time
dependence of the first three cumulants after a sudden quench
to T = 0 obtained from our Glauber dynamics simulations.

10−4

10−3

10−2

10−1

102 103 104

κj/N

t

κ1/N

κ2/N

κ3/N

κ1(t)/N = 0.280t−0.499

κ2(t)/N = 0.160t−0.495

κ3(t)/N = 0.043t−0.525

FIG. 11. First three cumulants versus time after a sudden quench
to T = 0 of 1D Ising chain obtained from Glauber dynamics simu-
lations. The system size is N = 500. For all three cumulants, each
data point is obtained by averaging over M = 5 × 105 independent
simulations.
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It can be seen that not only κ1, but all three cumulants can
be well described by a scaling relation κ j ∼ t−1/2. This re-
sult seems to be consistent with the prediction that z = 2
for coarsening of a nonconserved Ising-type order parameter,
which is indeed the case for the Glauber dynamics. However,
the general L ∼ t1/2 scaling, also known as the Allen-Cahn
law in high dimensions, originates from a domain growth in
which the linear growth rate is proportional to the curvature

of the interface. For a 1D Ising chain the z = 2 exponent, on
the other hand, comes from the random walks of kinks. It is
worth noting that at T = 0, a kink can move to either the left
or right lattice points with equal probability in the Glauber
simulation. Since the root-mean-square displacement of such
a random walker is 〈��〉 ∼ √

t , two kinks within this dis-
tance will be annihilated, thus increasing the size of ordered
domains.
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