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Crystal responses to general dark matter-electron interactions
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We develop a formalism to describe the scattering of dark matter (DM) particles by electrons bound in crystals
for a general form of the underlying DM-electron interaction. Such a description is relevant for direct-detection
experiments of DM particles lighter than a nucleon, which might be observed in operating DM experiments via
electron excitations in semiconductor crystal detectors. Our formalism is based on an effective theory approach
to general nonrelativistic DM-electron interactions, including the anapole, and magnetic and electric dipole
couplings, combined with crystal response functions defined in terms of electron wave function overlap integrals.
Our main finding is that, for the usual simplification of the velocity integral, the rate of DM-induced electronic
transitions in a semiconductor material depends on at most five independent crystal response functions four of
which are distinct from the usual scalar response. We identify these crystal responses and evaluate them using
density functional theory for crystalline silicon and germanium, which are used in operating DM direct-detection
experiments. Our calculations allow us to set 90% confidence level limits on the strength of DM-electron
interactions from data reported by the SENSEI and EDELWEISS experiments. The crystal response functions
discovered in this paper encode properties of crystalline solids that do not interact with conventional experimental
probes, suggesting the use of the DM wind as a probe to reveal new kinds of hidden order in materials.

DOI: 10.1103/PhysRevResearch.3.033149

I. INTRODUCTION

An invisible and unidentified mass component, dark matter
(DM) is the leading form of matter in galaxies, galaxy clus-
ters, and the large-scale structures we observe in the Cosmos
[1]. It is responsible for the bending of light emitted by distant
luminous sources and provides the seeds for the gravitational
collapse that modern cosmology predicts to be at the origin
of all objects we see in the Universe [2]. Yet, the nature of
this essential, but elusive cosmological component remains
unidentified. In the leading paradigm of astroparticle physics,
DM is made of hypothetical, as yet undetected particles that
the Standard Model of particle physics cannot account for
[3]. While different methods have been proposed in the past
decades to unveil the identity of DM, only a direct detection
of the hypothetical particles forming the Milky Way DM
component will likely prove the microscopic nature of DM
conclusively [4].
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DM direct-detection experiments play a central role in this
context [5,6]. Typically, they operate ultralow background
detectors located deep underground to search for signals of
interactions between DM particles from our galaxy and nuclei
forming the detector material [7]. So far, this experimental
technique has mostly focused on the search for nuclear recoils
induced by weakly interacting massive particles (WIMPs)—a
class of DM candidates with interactions at about the scale of
weak interactions and mass ranging from a few GeV to a few
hundreds of TeV [8]. The upper bound arises from the require-
ment that the WIMP annihilation cross section is unitary [9],
whereas the lower bound guarantees that the predicted density
of WIMPs in the present Universe matches that measured via
cosmic microwave background (CMB) observations [10]. The
possibility of explaining the present DM cosmological density
in terms of particle masses and coupling constants is one of
the defining features of the WIMP paradigm and is based
upon the so-called WIMP chemical decoupling mechanisms,
which occur when the rate of WIMP annihilations in the early
Universe equals the rate of expansion of the Universe [11].

In spite of about four decades of search in DM direct-
detection experiments, WIMPs have so far escaped detection
[12]. While WIMPs remain a central element of modern
cosmology, the fact that they have not been detected has re-
cently motivated a critical reconsideration of the assumptions
underlying the WIMP paradigm and, in particular, the DM
direct-detection technique [13]. One important example is the
restricted mass range within which the search for DM particles
has so far been performed. Indeed, DM particles of mass
smaller than about 1 GeV would be too light to induce an
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observable nuclear recoil, and this might explain why exper-
iments searching for WIMPs via nuclear recoils have so far
not been able to report an unambiguous discovery. On the
other hand, a DM particle of mass in the MeV to GeV range
might have enough kinetic energy to induce an observable
electronic transition in a target material—a possibility which
has recently attracted a great deal of attention [14].

From the experimental side, a number of different ap-
proaches have been pushed forward to search for sub-GeV
DM particles. These involve the use of dual-phase argon [15]
and xenon [16–18] targets, silicon and germanium semicon-
ductors [13,19–27], sodium iodide crystals [28], graphene
[29,30], three-dimensional (3D) Dirac materials [31,32], po-
lar crystals [33], scintillators [34,35], and superconductors
[36–38].

From the theoretical side, the search for sub-GeV DM
particles involves the modeling of DM-electron interactions in
detector materials (e.g., Refs. [13,21,39]). One generic feature
of models for DM-electron interactions is that they involve
a new mediator particle, in addition to the DM candidate
[14]. A new mediator is needed to reconcile the chemical de-
coupling mechanism with current observations of the present
DM density. In this context, the most extensively investigated
model extends the Standard Model by an additional U(1)
gauge group, under which only the DM particle is charged
[40]. The associated gauge boson is referred to as the “dark
photon.” Interactions between the DM particle and the elec-
trically charged particles in the Standard Model arise from a
“kinetic mixing” between ordinary and dark photons. While
this framework allows one to interpret the results of present
and future DM direct-detection experiments, it is also rather
restrictive, as it a priori excludes the possibility that the
amplitude for DM-electron scattering depends on momenta
different from the transferred momentum [41]. Scenarios in
which the amplitude for DM-electron scattering depends on
the initial electron momentum, in addition to the transferred
momentum, include models where the DM-electron interac-
tion is generated by an anapole moment or a magnetic and
electric dipole [42,43].

In this paper, we extend the formalism that we developed
in Ref. [41] for the scattering of DM particles by electrons,
without making any restrictive assumption on the form of
the underlying DM-electron interaction, to the case of elec-
trons bound in crystals used in operating DM direct-detection
experiments. Our formalism is based on an effective theory
approach to nonrelativistic DM-electron interactions, and a
set of crystal response functions defined in terms of electron
wave function overlap integrals. Effective theory methods
have previously been used in the scattering of DM particles
by nuclei [44,45], in modeling collective excitations in DM
direct-detection experiments [46], and in a study of the DM
scattering by bound electrons in isolated atomic systems [41].
This latter work introduced the notion of “atomic response”
to DM-electron interactions that we here extend to the case
of semiconductor crystals. By applying our formalism to the
study of DM-electron scattering in crystals, we discover that,
under standard assumptions for the local DM velocity dis-
tribution, the rate of DM-induced electronic transitions in a
semiconductor material depends on at most five independent
“crystal response” functions. We express these response func-

tions in terms of electron wave function overlap integrals and
evaluate them numerically using QEDARK-EFT [47], our exten-
sion of the QEDARK code [21], which relies on the integrated
suite of open-source computer codes, QUANTUM ESPRESSO

[48]. Leveraging on this finding, within our effective theory
framework we are able to set 90% confidence level exclu-
sion limits on the strength with which DM can couple to
electrons, for general models. As illustrative examples we
explicitly give the limits for specific DM models, including
the anapole, magnetic, and electric DM-electron interaction
models. From a practical point of view, the crystal response
functions computed in this paper can be used to compute the
rate of DM-induced electron excitations in virtually all DM
models where the free amplitude for DM-electron interac-
tions does not explicitly depend on the mass of the particle
that mediates the underlying interaction. By promoting the
coupling constant to a general function of the momentum
transfer, our formalism could in principle be applied to any
interaction model. At a more speculative level, the crystal
response functions discovered in this paper encode properties
of crystals that have so far remained hidden and that could be
revealed if it becomes possible to use the DM particles that
form our Milky Way as a probe in scattering experiments with
semiconductor targets.

This work is organized as follows. In Sec. II, we introduce
our formalism to model the scattering of DM particles by elec-
trons in semiconductor crystals. In Sec. III, we introduce and
numerically evaluate the crystal response functions that our
formalism predicts. In Sec. IV, we present the 90% confidence
level exclusion limits on the strength with which DM can cou-
ple to electrons, both within our effective theory framework
and within specific DM models. We summarize our results and
conclude in Sec. V. Finally, details underlying our analytical
and numerical calculations are presented in Appendixes A–D.

II. DARK MATTER-INDUCED ELECTRONIC
EXCITATIONS IN CRYSTALS

In this section, we extend the formalism of DM-electron
scattering in crystals to general nonrelativistic DM-electron
interactions, including the anapole and magnetic and electric
dipole couplings. We first introduce an expression for the rate
of DM-induced electronic excitations that applies to arbitrary
target materials and interactions (Sec. II A). Then, we narrow
it down to the case of crystals (Sec. II B) and general nonrela-
tivistic DM-electron interactions (Sec. II C).

A. General rate of electronic excitations

For a generic target material and arbitrary DM-electron
interactions, the rate of DM-induced electronic excitations
from an initial electron bound state |e1〉 to a final state |e2〉
is given by [41]

R1→2 = nχ

16m2
χm2

e

∫
d3q

(2π )3

∫
d3v fχ (v)(2π )δ(E f − Ei )

× |M1→2|2, (1)

where the initial and final states, |e1〉 and |e2〉, are energy,
not momentum eigenstates, and Ei (E f ) is the initial (final)
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energy of the DM-electron system. In Eq. (1), the squared
electron transition amplitude, |M1→2|2, is defined in terms of
the initial and final momentum-space electron wave functions,
ψ̃1 and ψ̃2, and of the amplitude for DM scattering by free
electrons, M, as

|M1→2|2 ≡
∣∣∣∣∫ d3�

(2π )3
ψ̃∗

2 (� + q)M(�, p, q)ψ̃1(�)

∣∣∣∣2

, (2)

where a bar denotes an average (sum) over initial (final) spin
states and we integrate over the electron momenta �. Here,
q = p − p′ is the momentum transferred, p′ is the outgoing
DM particle momentum, and p = mχv, where v is the initial
DM particle velocity, while mχ and me are the DM and elec-
tron mass, respectively. Equation (1) also depends on the DM
number density nχ and the local DM velocity distribution in
the detector rest frame, fχ . For the latter, we assume

fχ (v) = 1

Nescπ3/2v3
0

exp

[
− (v + v⊕)2

v2
0

]
�(vesc − |v + v⊕|),

(3)

where

Nesc ≡ erf (vesc/v0) − 2(vesc/v0) exp
(−v2

esc/v
2
0

)
/
√

π. (4)

With this definition for Nesc, fχ (v) is normalized to 1. In all
numerical applications, we set the most probable speed to
the value of the local standard of rest, v0 = 220 km/s [49],
the local galactic escape velocity to vesc = 544 km/s [50], the
speed of the Earth in the galactic reference frame (where the
mean DM particle velocity is zero) to v⊕ = 244 km/s, and the
local DM number density to nχ = 0.4 GeV cm−3 m−1

χ [51].

B. Rate of electronic excitations in crystals

In the case of crystalline materials, we label the initial
(final) electron state by a band index i (i′) and a wave vector
in the first Brillouin zone (BZ) k (k′), i.e., in the notation of
Eq. (1), 1 ≡ {ik} and 2 ≡ {i′k′}. Furthermore, we express the
initial electron position space wave function at x in the Bloch
form

ψik(x) = 1√
V

∑
G

ui(k + G)ei(k+G)·x, (5)

and similarly for ψi′k′ . Here, V = NcellVcell is the volume of
the crystal, Vcell is the volume of a single unit cell, Ncell =
Mtarget/Mcell is the number of unit cells in the crystal, Mtarget is
the detector target mass, and Mcell = 2mGe = 135.33 GeV for
germanium and Mcell = 2mSi = 52.33 GeV for silicon. The
ui coefficients in Eq. (5) fulfill

∑
G |ui(k + G)|2 = 1, where

the sum runs over reciprocal lattice vectors G. On evaluating
Eq. (1) using wave functions ψik and ψi′k′ of the type in
Eq. (5), we denote the corresponding rate of DM-induced
electronic excitation by Rik→i′k′ .

In the case of DM direct-detection experiments using semi-
conducting crystals such as silicon and germanium as target
materials, the observable quantity is the total rate of valence
to conduction band electron excitations in the whole crystal,

Rcrystal, which is given by

Rcrystal = 2
∑

ii′

∫
BZ

V d3k

(2π )3

∫
BZ

V d3k′

(2π )3
Rik→i′k′ . (6)

The factor of 2 is a result of the spin degeneracy and con-
sequent double occupation of each crystal orbital. In order
to evaluate Eq. (6), we expand the free scattering amplitude
M in the small electron-momentum-to-electron-mass ratio.
As we will see in detail below, this nonrelativistic expansion
allows us to identify the response of crystals to general DM-
electron interactions in a model-independent manner. Note
that, in principle, one should obtain this total rate by summing
Eq. (1) over all unfilled conduction bands and all filled valence
bands. However, in practical applications one has to truncate
the number of conduction bands included in the sum to a
manageable number, as we will see in Sec. III B.

C. Nonrelativistic expansion

Assuming that both initial and final electron and DM
particle move at a nonrelativistic speed, the free scattering
amplitude M can in general be expressed as a function of
two momenta only [45]: the transferred momentum q and the
transverse relative velocity v⊥

el , i.e., the component of v that
in the case of elastic DM-electron scattering is perpendicu-
lar to q. Namely, M = M(q, v⊥

el ), where v⊥
el = v − �/me −

q/(2μχe) and μχe is the DM-electron reduced mass. By ex-
panding M in the electron-momentum-to-electron-mass ratio,
|�|/me � 1, we find

M(q, v⊥
el ) �M(q, v⊥

el )�=0

+
(

�

me

)
· me∇�M(q, v⊥

el )�=0. (7)

While Eq. (7) applies to any model for DM-electron interac-
tions as a first-order expansion in |�|/me � 1, it is an exact
equation in the case of the so-called nonrelativistic effective
theory of DM-electron interactions, where the free scattering
amplitude is by construction expressed as a sum of interaction
operators in the DM and electron spin space that are at most
linear in v⊥

el ,

M(q, v⊥
el ) =

∑
i

(
cs

i + c�
i

q2
ref

|q|2
)

〈Oi〉, (8)

where the interaction operators Oi for spin-1/2 DM are de-
fined in Table I, qref is a reference momentum given by qref ≡
αme, and α is the fine-structure constant. Angle brackets in
Eq. (8) denote matrix elements between the two-component
spinors ξλ and ξ s (ξλ′

and ξ s′
) associated with the initial (final)

state electron and DM particle, respectively. For example,
〈O1〉 ≡ ξ s′

ξ sξλ′
ξλ. Finally, the dimensionless coefficients cs

i
and c�

i in Eq. (8) are the coupling constants of the interaction
operators in Table I. When cs

i �= 0 and c� = 0, we refer to the
interactions in Table I as being of contact type; we refer to
them as being of long-range type when cs

i = 0 and c� �= 0.
In the nonrelativistic limit, almost any model for DM-

electron interactions in crystals can be matched to the free
scattering amplitude in Eq. (8). By substituting Eq. (8) into
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TABLE I. Interaction operators defining the nonrelativistic effec-
tive theory of spin-1/2 DM-electron interactions [41,44,45]. Se (Sχ )
is the electron (DM) spin, v⊥

el = v − �/me − q/(2μχe), where μχe is
the DM-electron reduced mass, v⊥

el is the transverse relative velocity,
and 1χe is the identity in the DM-electron spin space.

Operators O1 to O8 Operators O9 to O15

O1 = 1χe O9 = iSχ · (Se × q
me

)

O3 = iSe · ( q
me

× v⊥
el ) O10 = iSe · q

me

O4 = Sχ · Se O11 = iSχ · q
me

O5 = iSχ · ( q
me

× v⊥
el ) O12 = Sχ · (Se × v⊥

el )

O6 = (Sχ · q
me

)(Se · q̂
me

) O13 = i(Sχ · v⊥
el )(Se · q

me
)

O7 = Se · v⊥
el O14 = i(Sχ · q

me
)(Se · v⊥

el )

O8 = Sχ · v⊥
el O15 = iO11[(Se × v⊥

el ) · q
me

]

Eq. (2), we find

|Mik→i′k′ |2 = |M|2�=0| fik→i′k′ |2

+ 2meRe[M fik→i′k′ (∇�M∗)�=0 · (fik→i′k′ )∗]

+ m2
e |(∇�M)�=0 · fik→i′k′ |2, (9)

where

fik→i′k′ (q) =
∫

d3x ψ∗
i′k′ (x) eix·q ψik(x), (10)

fik→i′k′ (q) =
∫

d3x ψ∗
i′k′ (x) eix·q i∇x

me
ψik(x) (11)

are electron wave function overlap integrals. The first one
[Eq. (10)] arises within the standard treatment of DM-electron
interactions in crystals [21]. The second one [Eq. (11)] is
responsible for the four generalised crystal responses we de-
fine below in Sec. III. An explicit calculation performed in
Appendix B shows that from each term in Eq. (9), we can
collect a Dirac delta function and rewrite Eq. (9) as follows:

|Mik→i′k′ |2 =
∑
�G

(2π )3δ3(k + q − k′ − �G)

V

× [|M|2| f ′
ik→i′,k′ |2

+ 2meRe[M f ′
ik→i′k′ (∇�M∗)�=0 · (f ′

ik→i′k′ )
∗]

+ m2
e |(∇�M)�=0 · f ′

ik→i′k′ |2], (12)

where �G ≡ G′ − G and

f ′
i,k→i′,k′ ≡

∑
G

u∗
i′ (k

′ + G + �G)ui(k + G), (13)

f ′
i,k→i′,k′ ≡ − 1

me

∑
G

u∗
i′ (k

′ + G + �G)(k + G)ui(k + G).

(14)

Consequently,

|Mik→i′k′ |2 ≡
∑
�G

(2π )3δ3(k + q − k′ − �G)

V

× |M′
ik→i′k′ |2, (15)

where |M′
ik→i′k′ |2 is defined through the comparison of

Eqs. (9) and (B9). In the nonrelativistic limit, the initial and
final DM-electron energies, Ei and E f , respectively, are given
by

Ei = mχ + me + mχ

2
v2 + Eik, (16)

E f = mχ + me + |mχv − q|2
2mχ

+ Ei′k′ , (17)

where v = |v| is the initial DM particle speed and Eik (Ei′k′) is
the energy of the initial (final) electron bound state. Defining
�Eik→i′k′ ≡ Ei′k′ − Eik allows us to write E f − Ei as follows:

E f − Ei = �Eik→i′k′ + q2

2mχ

− qv cos θ, (18)

where q = |q| and θ is the angle between the momentum
transfer q and the initial DM particle velocity v. By replacing
Eqs. (18), (15), (5), and (1) in Eq. (6), for the total rate we find

Rcrystal = 2nχV

16m2
χ m2

e

∫
d3q

∫
d3v fχ (v)

×
∑
�Gii′

∫
BZ

d3k

(2π )3

∫
BZ

d3k′

(2π )3

× δ3(k + q − k′ − �G)

× (2π )δ

(
�Eik→i′k′ + q2

2mχ

− qv cos θ

)
× |M′

i,k→i′,k′ |2. (19)

We can now use the Dirac delta function in Eq. (19) to
perform the integration over the polar angle θ in the velocity-
dependent part of the total excitation rate Rcrystal that we here
denote by

ii′
kk′ (q) =

∫
dvv2

∫ 2π

0
dφ

∫ +1

−1
d cos θ

fχ (v)

v

× δ(cos θ − ξ )|M′
i,k→i′,k′ |2, (20)

where

ξ = q

2mχv
+ �Eik→i′k′

qv
. (21)

We find

ii′
kk′ (q) �

∫
|v|�vmin

dv
v2 fχ (v)

v

×
∫ 2π

0
dφ |M′

i,k→i′,k′ |2cos θ=ξ

=
∫

|v|�vmin

dv
2πv2 fχ (v)

v
|M′

i,k→i′,k′ |2cos θ=ξ

� 1

2
η̂(q,�Eik→i′k′ )[|M′

i,k→i′,k′ |2cos θ=ξ
], (22)

where

vmin = q

2mχ

+ �Eik→i′k′

q
. (23)
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In the first step of Eq. (22) we follow Essig et al. [21] and use
the simplification fχ (v) = fχ (v), performing the integration
over θ by using the Dirac delta function. In the second step of
Eq. (22), we introduce the azimuthal-angle-averaged squared
transition amplitude, defined as

|M′
i,k→i′,k′ |2cos θ=ξ

≡ 1

2π

∫ 2π

0
dφ |M′

i,k→i′,k′ |2cos θ=ξ
. (24)

Again following Ref. [21], in the third step of Eq. (22) we re-
store the angular dependence of fχ (v) = fχ (v) and introduce
the linear operator η̂(q,�Eik→i′k′ ). Acting on Cg(v), where C
is a constant and g(v) is a function of the DM particle velocity
in the detector rest frame, it gives

η̂(q,�Eik→i′k′ )[Cg(v)]

= C
∫

|v|�vmin

d3v g(v)
fχ (v)

v
. (25)

In terms of η̂ and |M′
i,k→i′,k′ |2

θ=θ (q,�Eik→i′k′ )
, we can finally

express the total excitation rate in a crystal as

Rcrystal = πnχV

8m2
χm2

e

∑
�Gii′

∫
BZ

d3k

(2π )3

∫
BZ

d3k′

(2π )3

×
∫

d3q
1

q
η̂(q,�Eik→i′k′ )δ3(k + q − k′ − �G)

× |M′
i,k→i′,k′ |2cos θ=ξ

. (26)

An interesting class of models in the search for DM via
electronic excitations is that in which DM couples to electrons
via higher-order moments in the multipole expansion of the
electromagnetic field [41,43]. If χ (ψ) is a Majorana (Dirac)
spinor describing the DM particle, g is a dimensionless cou-
pling constant, and � is a mass scale, the anapole, magnetic
dipole, and electric dipole DM models are described by the
following interaction Lagrangians [41]:

Lanapole = g

2�2
χγ μγ 5χ ∂νFμν, (27)

Lmagnetic = g

�
ψσμνψ Fμν, (28)

Lelectric = g

�
iψσμνγ 5ψ Fμν, (29)

where Fμν = ∂μAν − ∂νAμ is the photon field strength ten-
sor and Aν is the photon field. In the nonrelativistic limit,
the free electron scattering amplitudes associated with the
Lagrangians in Eq. (29) are [41]

Manapole = 4eg

�2
mχme

{
2(v⊥

el · ξ †s′
Sχξ s)δλ′λ

+ ge(ξ †s′
Sχξ s) ·

(
i

q
me

× ξ †λ′
Seξ

λ

)}
, (30)

Mmagnetic = eg

�

{
4meδ

s′sδλ′λ

+ 16mχ me

q2
iq · (v⊥

el × ξ †s′
Sχξ s)δλ′λ

− 8gemχ

q2
[(q · ξ †s′

Sχξ s)(q · ξ †λ′
Seξ

λ)

− q2(ξ †s′
Sχξ s) · (ξ †λ′

Seξ
λ)]

}
, (31)

Melectric = eg

�

16mχ me

q2
iq · (ξ †s′

Sχξ s)δλ′λ. (32)

where ge � 2 is the electron g factor. From the free electron
scattering amplitude in Eq. (30), we find that, in the case of
anapole DM-electron interactions,

cs
8 = 8ememχ

g

�2
, (33a)

cs
9 = −8ememχ

g

�2
(33b)

are the only coupling constants different from zero. From
the amplitude in Eq. (31), we find that the only coupling
constants different from zero in the case of magnetic dipole
DM-electron interactions are

cs
1 = 4eme

g

�
, (34a)

cs
4 = 16emχ

g

�
, (34b)

c�
5 = 16em2

e mχ

q2
ref

g

�
, (34c)

c�
6 = −16em2

emχ

q2
ref

g

�
. (34d)

Finally, from the amplitude in Eq. (32), we find that in the
case of electric dipole DM-electron interactions, one coupling
constant only is different from zero,

c�
11 = 16emχ m2

e

q2
ref

g

�
. (35)

III. CRYSTAL RESPONSES

We now focus on the crystal responses that arise from the
electron wave function overlap integral in Eqs. (10) and (11).

A. Excitation rate and crystal response functions

As shown in Appendix B and C, the azimuthal-angle-
averaged squared transition amplitude can be expressed as the
sum of r products between a DM response function Rl (q, v)
and a crystal response function Wl (q,�E ), l = 1, . . . , r,
where �E is defined implicitly via Eq. (37) below. As a result,
the total electron excitation rate in crystals can be written as

Rcrystal = nχNcell

128πm2
χ m2

e

∫
d (ln �E )

∫
d3q

1

q
η̂(q,�E )

×
r∑

l=1

Re[R∗
l (q, v)Wl (q,�E )], (36)

where the DM response functions Rl (q, v) given in
Appendix C depend on the coupling constants cs

i and c�
i , in
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addition to v, q, and ξ , and

Wl (q,�E ) = (4π )2Vcell�E
∑
�Gii′

∫
BZ

d3k

(2π )3

∫
BZ

d3k′

(2π )3
Bl

× δ3(q − k′ − �G + k)δ(�E − Eik + Ei′k′ ).
(37)

Here,

B1 =| f ′
i,k→i′,k′ |2, (38)

B2 = q
me

· ( f ′
i,k→i′,k′ )(f ′

i,k→i′,k′ )∗, (39)

B3 =|f ′
i,k→i′,k′ |2, (40)

B4 =
∣∣∣ q
me

· f ′
i,k→i′,k′

∣∣∣2
, (41)

B5 = i
q

me
· [f ′

i,k→i′,k′ × (f ′
i,k→i′,k′ )∗]. (42)

This factorization into DM and crystal responses of the total
electron excitation rate in crystals is analogous to the fac-
torization of the total DM-induced ionization rate in atoms
that we found in Ref. [41]. In Appendix C 3, we show that
within our simplified treatment of the velocity integral the
two vectorial crystal responses, W6 and W7, arising from the
overlap integrals

B6 = f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗, (43)

B7 = q
me

× f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗ (44)

are zero. For this reason, they are not included in Eq. (37).
This is a good approximation for isotropic materials such as
silicon and germanium but will not suffice for anisotropic
materials such as graphene. For the rest of this paper we will
focus on the five responses relevant to silicon and germanium.

Because of the simplified treatment of the velocity integral
discussed in the previous section [21], we can now perform
the integral over the direction of the transfer momentum q,
finding

Rcrystal = nχNcell

128πm2
χ m2

e

∫
d (ln �E )

∫
dq q η̂(q,�E )

×
r∑

l=1

Re[R∗
l (q, v)W l (q,�E )], (45)

where

W l (q,�E ) =
∫

d�q Wl (q,�E )

= 1

q2

∫
d3q′ Wl (q′,�E )δ(|q′| − q). (46)

We can then use the Dirac delta function in Eq. (37) to perform
the integral over d3q′, obtaining

W l (q,�E ) = (4π )2Vcell
�E

q2

∑
�Gii′

∫
BZ

d3k

(2π )3

∫
BZ

d3k′

(2π )3
Bl

× δ(|k − �G − k′| − q)δ(�E − Eik + Ei′k′ ),
(47)

which is our final expression for the crystal responses to
general DM-electron interactions that we implement in the
following.

B. Numerical implementation

The numerical evaluation of the crystal responses was im-
plemented in QEDARK-EFT [47], an extension to the QEDARK

package [21], which interfaces with the plane-wave self-
consistent field (PWscf) density functional theory (DFT)
code, QUANTUM ESPRESSO v.5.1.2 [48,52,53].

For our self-consistent calculations for silicon and ger-
manium we use the Si.pbe-n-rrkjus_psl.0.1.UPF and
Ge.pbe-dn-rrkjus_psl.0.2.2.UPF pseudopotentials pro-
vided with the QUANTUM ESPRESSO package, which include
the 3s2 and 3p2 electrons for silicon and 4s2, 4p2, and 3d10

electrons for germanium in the valence configuration. The
electron-electron exchange and correlation are treated us-
ing the Perdew-Burke-Ernzerhof (PBE) functional [54]. We
sample reciprocal space using a 6 × 6 × 6 Monkhorst-Pack

FIG. 1. Density of states for germanium (top panel) and silicon
(bottom panel), with the U correction of 9.45 eV applied to Ge 3d
orbitals. The top of the valence band is set to 0 eV in both cases and
is shown with a dashed vertical line.
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k-point grid, supplemented with additional k points at and
close to  and halfway to the zone boundary to give a total
of 243 k points; this grid was shown in Ref. [21] to give
good convergence of the calculated scattering cross sections.
We take an energy cutoff Ecut of 120 Ry (1.6 keV) for sil-
icon and 100 Ry (1.4 keV) for germanium to expand the
plane-wave basis, as explained below. We perform our cal-
culations at the established experimental lattice constants of
aSi = 10.3305 a.u. and aGe = 10.8171 a.u. With the excep-
tion of Ecut, the above parameters are the same as those used
previously in Ref. [21]. Since the spurious self-interaction
within the PBE exchange-correlation functional causes the
Ge 3d bands to lie ∼5 eV higher than observed experimen-
tally [55], we apply a Hubbard U correction with a value of
Ueff = 9.45 eV to the Ge 3d orbitals using the approach of Co-

coccioni and de Gironcoli [56]. This has the effect of shifting
the narrow Ge 3d band rigidly down in energy by ∼Ueff

2 so that
its position below the Fermi level (∼30 eV) is consistent with
experimental observations. Our resulting densities of states
(Fig. 1) show the usual DFT underestimation of the band gaps,
which we correct in our response calculations using a scissors
correction to set the band gap of silicon (germanium) to the
experimental value of 1.2 eV (0.67 eV).

In order to numerically evaluate Eq. (47), we discretize it
by introducing binning in q and �E ,

W l (qn,�Em) =
∫ qn+ 1

2 δq

qn− 1
2 δq

dq′

δq

∫ �Em+ 1
2 δE

�Em− 1
2 δE

d�E ′

δE

× W l (q
′,�E ′), (48)

FIG. 2. Crystal response functions for silicon as a function of q and �E . Note that the color bars vary between the plots. W 2 and W 5

can take negative values, and we therefore show their absolute values. The region below the dashed line is kinematically inaccessible for
vesc = 544 km/s and vE = 244 km/s.
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where qn and �Em are the central values of the nth q bin
and mth �E bin, respectively. We use 2000 bins in q and
�E , letting q take values between 0 and 40.8 keV (37.3 keV)
for silicon (germanium), and �E take values between 0 and
85 eV. From Eq. (23) we see that the minimum velocity
required to cause excitation with these highest values of �E
and q is 625 km/s (684 km/s), well below the maximum dark
matter velocity, vesc + v⊕. As in Ref. [21], we replace the k
integral with a discrete mesh and numerically evaluate

W l (qn, Em) = 2VBZEm

πq2
nδEδq

∑
k,k′

∑
i,i′

∑
�G

wk

2

wk′

2
Bl

�

(
1 − ||k′ − k + �G| − qn|

1
2δq

)
�

(
1 − |Ei′,k′ − Ei,k − Em|

1
2δE

)
, (49)

where the k sums go over the 243 k-point grid mentioned
above, each with weight ωk, such that

∑
k ωk = 2. The lattice

vectors �G satisfy the cutoff relation

|k + G|2
2me

� Ecut, (50)

causing q to have a cutoff roughly at
√

2meEcut, where Ecut is
our plane-wave energy cutoff described above. Our values of
Ecut = 1.6 keV (Ecut = 1.4 keV) for silicon (germanium) cor-
respond to cutoffs in q of ∼41 keV (∼37 keV). Note that these
values are considerably larger than those used in Ref. [21],
which is necessary for two reasons: First, some of the in-
teractions that we consider here, in which the DM response
functions Rl (q, v) depend on positive powers of q, mean that
the integrand in the crystal excitation rate formula, Eq. (36),
is significantly different from zero for higher q values than in
the previously studied case of the dark photon model. Second,

FIG. 3. Crystal response functions for germanium. For �E > 30 eV and q > 10 keV we see the influence of the 3d electrons.

033149-8



CRYSTAL RESPONSES TO GENERAL DARK … PHYSICAL REVIEW RESEARCH 3, 033149 (2021)

FIG. 4. Rate contributions from operators O1 to O15 of Table I for silicon (blue) and germanium (red), with DM masses of 0.5 MeV (left
pairs of bars), 5 MeV (middle pairs of bars), and 50 MeV (right pairs of bars). For mχ = 0.5 MeV the expected excitation rate in silicon is 0
since the gravitationally bound dark matter particles have too low energy to overcome the larger band gap.

this is necessary because we cover a larger range of deposited
energies. The higher energy cutoffs require, in turn, inclusion
of a larger number of bands in our DFT calculation; we in-
clude 102 unoccupied bands, which again is almost twice as
many as in Ref. [21].

Note that, as in Ref. [21], our transition matrix elements are
calculated between the Kohn-Sham pseudo-wave-functions
for the occupied and empty states. It will be an interesting
future direction to evaluate the effect of the use of all-electron
wave functions rather than pseudo-wave-functions on the cal-
culated crystal excitation rates for our response functions, as
was recently done in Ref. [57] for the previously known W1

response.

IV. RESULTS

In this section, we numerically evaluate the five response
functions in Eq. (37) focusing on silicon and germanium
crystals. We then use these response functions to compute
the expected crystal excitation rates for the anapole, magnetic
dipole, and electric dipole DM interactions, as well as for
specific (linear combinations of) the interaction operators in
Table I. Finally, we apply our responses to set 90% exclusion
limits on the strength of such interactions from the null result
reported by the SENSEI [58] and EDELWEISS [59] experi-
mental collaborations.

A. Response functions for silicon and germanium crystals

We display our crystal response functions in the (q,�E )
plane, focusing on silicon in Fig. 2 and on germanium in
Fig. 3. In each panel of the two figures, the value of the
corresponding response function is given by the color bar,
with darker colors corresponding to higher values. As de-

scribed in Appendix D, our first response function, W 1, is
equal to 8�Eαm2

e/q3 times the crystal form factor introduced
by Essig et al. [21] [see our Eq. (D2)]. Taking into account
this q- and �E -dependent prefactor, our first crystal response
functions, W 1 (upper left panel in Figs. 2 and 3), are in broad
agreement with those given in Fig. 5 of Ref. [21]. There are,
however, some important differences between our calculations
and those in Ref. [21]. First, the corrected position of our Ge
3d levels means that the abrupt increase in W 1 as a function of
�E occurs at a �E value of 30 eV rather than 25 eV. Second,
the higher energy cutoffs that we used allow us to calculate
our response functions over a larger energy range.

We now focus on the remaining four response functions,
W 2, W 3, W 4, and W 5, which we compute here. Since W 2 is
a complex response function, we consider its real and imag-
inary part separately. Focusing on silicon crystals, the upper
right panel of Fig. 2 shows Re(W 2), while the middle left
panel reports the corresponding imaginary part, Im(W 2). In
the same figure, the middle right panel shows W 3, the lower
left panel displays W 4, and the lower right panel reports W 5.
Figure 3 shows the analogous crystal response functions for
germanium crystals. In all panels of Figs. 2 and 3, the points
below the dashed black line are kinematically inaccessible
for DM particles that are gravitationally bound to our galaxy,
given our assumptions for the Earth and local escape velocity.
Note the different color-bar scales in each case. In particular,
W 2 and W 5 have linear color bars since they can take both
positive and negative values. We find that Im(W 2) and W 5

are orders of magnitude smaller than the other responses and
are therefore expected to give a subleading contribution to the
total crystal excitation rate. In order to understand this result,
it is useful to compare our findings with the results of Ref. [41]
on DM-electron scattering in atoms.
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FIG. 5. Expected excitation rates R including the contributions from the individual nonzero responses in each case, as a function of number
of electron-hole pairs Q. Silicon (germanium) is shown on the left (right), and the excitation rates for the anapole, magnetic dipole, and electric
dipole interactions are shown in the top, middle, and bottom panels, respectively.

B. Comparison with atomic responses

Each of the response functions identified here has in prin-
ciple an atomic analog. Specifically, we find that our crystal
response functions can be mapped onto the atomic response
functions found in Ref. [41] if one replaces the crystal Bloch
wave functions in Eq. (5) with the wave functions of electrons
in atoms, and the summation or integration over lattice or
crystal momenta and the summation over band indices in
Eq. (37) with a summation over the atomic azimuthal and
magnetic quantum numbers {compare Eq. (37) with Eq. (41)
in Ref. [41]}. This comparison shows that the atomic re-

sponse functions associated with Im(W 2) and W 5 through
this mapping are exactly zero. This is the result of A′ ≡∑

mm′ f1→2f1→2 being real and (anti)parallel to q, where the
sum is over the initial and final electron magnetic quantum
numbers while “1” and “2” label the initial and final state
of the atomic electron; see Ref. [41]. Indeed, in the case of
atoms, A′ is expected to be proportional to q, q being the
only preferred direction in an otherwise spherically symmet-
ric system. Specifically, the electron wave function overlap
integral f1→2(q) (the analog of fi,k→i′,k′ ) is axially symmetric
around the direction of q. Similarly, f1→2(q), the analog of
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fi,k→i′,k′ , is spherically symmetric. In contrast, the spherical
symmetry of fi,k→i′,k′ and the axial symmetry of fi,k→i′,k′

are only approximate in the case of crystals. This explains
why, although W 2 is approximately real and W 5 is sub-
leading, for semiconductor crystals Im(W 2) and W 5 are not
exactly zero. We expect more dramatic departures from axial
symmetry in the case of anisotropic materials, such as 2D ma-
terials, or anisotropic 3D Dirac materials. For these systems,
we therefore expect larger values for the responses Im(W 2)
and W 5.

C. Predicted electron excitation rates

Once the crystal responses have been calculated, we can
insert them in Eq. (45) to obtain the expected excitation rates.
In Fig. 4 we show the expected excitation rates for the 14
nonrelativistic operators of Table I for DM masses of 0.5, 5,
and 50 MeV for long- and short-range interactions.

A notable difference between the predicted excitation rates
for silicon and germanium is that silicon has zero excitations
for mχ = 0.5 MeV, which is due to the band gap of silicon
being too large for galaxy-bound DM of this mass to cause
excitations. We also see that for most operators the excitation
rate is maximum for mχ = 5 MeV showing that both silicon
and germanium are well suited to probe DM masses at the
MeV scale.

Here, we focus on the predicted excitation rates for the
SENSEI [58] and EDELWEISS [59] experiments, which
employ targets made of silicon and germanium crystals,
respectively. Indeed, such experiments do not measure the
deposited energy but rather the number of electron-hole pairs
created by a DM-electron scattering event. In our calculations,
we assume a linear relation between the deposited energy
and the number of electron-hole pairs created in a scattering
event, i.e.,

Q(�E ) = 1 + �(�E − Egap)/ε�, (51)

where the floor function �x� rounds x down to the closest in-
teger. The reported values for Egap and ε vary somewhat in the
literature, and we use the values stated by SENSEI@MINOS
[58] (EDELWEISS [59]) for silicon (germanium). They are

ε = 3.8 eV (silicon), ε = 3.0 eV (germanium),

Egap = 1.2 eV (silicon),

Egap = 0.67 eV (germanium).

The band gap for germanium is considerably lower than that
for silicon, which allows germanium target experiments to
probe lower masses, as we discussed above.

Having specified the values of Egap and ε used in our
analysis, we can now calculate the expected crystal excitation
rate corresponding to a given number of electron-hole pairs
Q = 1, 2, . . ., and to a given target material by setting the
boundaries of the �E integration in Eq. (36) to the values
required by Eq. (51). In order to illustrate the contributions to
the excitation rate from the individual response functions, we
find it convenient to rewrite Eq. (45) as

Rcrystal =
5∑

l=1

Rl , (52)

where

Rl = nχNcell

128πm2
χ m2

e

∫
d (ln �E )

∫
dq q η̂(q,�Eik→i′k′ )

× Re[R∗
l (q, v)W l (q,�E )]. (53)

FIG. 6. Expected excitation rates in silicon and germanium for
mχ = 1 MeV, mχ = 10 MeV, and mχ = 100 MeV.
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FIG. 7. Expected excitation rates for cs
7 = 1 or c�

7 = 1 for silicon (left panels) and germanium (right panels). The contact interactions are
shown in the top panels, whereas the long-range interactions are shown in the bottom panels. Here, all rate contributions are positive, and we
see that R1, Re(R2), and R3 give important contributions to the total crystal excitation rate.

We start by computing the expected excitation rates for the
anapole, electric dipole, and magnetic dipole interactions us-
ing the relation between couplings and interaction scale �

that we derived in Eqs. (33a), (33b), (34a)–(34d), and (35).
For these interactions, Fig. 5 shows the expected excitation
rates as a function of Q for silicon and germanium crystals
and for mχ = 10 MeV. The black dash-dotted line gives the
total crystal excitation rate, while the solid colored lines give
contributions from the individual responses. The light blue,
light green, dark orange, and yellow lines correspond to R1,
Re(R2), R3, and R4, respectively. In order to illustrate the
dependence of our results on the DM particle mass, in Fig. 6
we plot the total excitation rate for 1, 10, and 100 MeV.
Focusing on events producing few electron-hole pairs, i.e.,
Q ∼ 1, we see that the excitation rate is maximum at around
10 MeV and falls off both for higher and for lower masses.
We also see a clear rise in the excitation rate for germanium
at Q = 10 for mχ = 100 MeV caused by the 3d electrons.
Without the Hubbard U correction implemented in our DFT
calculations, this peak would be located at Q = 9 (see
Appendix A).

Importantly, we find that the crystal excitation rate is not
necessarily dominated by the crystal response function W 1

(the crystal form factor of Essig et al. [21]). This is apparent
in the case of, e.g., magnetic dipole and anapole DM-electron
interactions, but it is also true for other combinations of the
nonrelativistic effective operators in Table I.

In Fig. 5, we can see the expected excitation rates for
different interaction types plotted against the number of
electron-hole pairs produced. As expected, we see that these
rates drop significantly for larger ionization signals since
those require larger energy transfers. We can see that differ-
ent responses are dominant for different interaction types.,
namely, that for the case of an anapole interaction, a com-
bination of R1 and R2 dominates; that for magnetic dipole
interaction at low electron-hole-pair production, R3 domi-
nates whereas R1 dominates elsewhere; and that the electric
dipole interaction is dominated by the R1 interaction.

Figures 7 and 8 show the crystal excitation rate as a
function of the number of excited electron-hole pairs Q
for two selected nonrelativistic effective operators with
coupling constants cs

7 = 1 or c�
7 = 1 and cs

15 = 1 or c�
15 = 1,

respectively, and with a DM mass of mχ = 10 MeV. In both
figures, the rate for silicon (germanium) is given in the left
(right) panels, and the results for short-range (long-range)
interactions are given in the top (bottom) panels. In Fig. 7 all
the nonzero response functions give positive contributions of
a similar magnitude, whereas in Fig. 8 the contribution from
R4 almost exactly cancels with that from R3, leading to a
total crystal excitation rate that is orders of magnitude smaller
than the excitation rate produced by R3 alone. In the case of
contact and long-range interactions of type O15 in germanium
crystals, we also find a peak at Q = 10 in the R3 and R4

contributions to the total excitation rate (see Fig. 8). This
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FIG. 8. Expected excitation rates in silicon (left panels) and germanium (right panels) for cs
15 = 1 or c�

15 = 1. The case of short-range
(long-range) interactions is reported in the top (bottom) panels. In the plot, −R4 is shown since R4 is negative, which causes it to cancel
with R3.

peak is due to the DM-induced excitation of 3d electrons.
Interestingly, the previously mentioned cancellation between
R3 and R4 washes out this peak, so it is not present in
the total excitation rate. Even in this case, however, the 3d
electrons have an impact on the total crystal excitation rate:
They slow down the decrease in the crystal excitation rate
for Q above about ten electron-hole pairs. In the case of
germanium crystals, we find a similar effect also for long- and
short-range interactions of type O7 (see Table I and Fig. 7).

D. Exclusion limits

Once the expected excitation rates have been computed,
we can compare them with the number of events measured
experimentally to place limits on the mass and couplings of
the DM particle. As anticipated, here we focus on the results
reported by the SENSEI@MINOS [58] and EDELWEISS
[59] experiments. The former operates silicon semiconductor
detectors, and the latter employs germanium targets. We com-
pare our theoretical predictions with the experimental data
by assuming that all events reported by the two experimental
collaborations are caused by DM-electron interactions in the

detector. By “event” we refer to the production of electron-
hole pairs as the result of DM-induced electron excitations
in the given semiconductor target. In order to compute the
expected number of events associated with a given value of
Q, we multiply the crystal excitation rate in Eq. (36) by
the effective experimental exposure corresponding to that Q
value. For the SENSEI@MINOS experiment, we restrict our
analysis to Q = (1, 2, 3, 4), and we take the different effective
exposures for the four Q values given by the experiment,
namely, (1.38, 2.09, 9.03, 9.10) g day. The observed number
of events in each of the four Q bins is (758,5,0,0), as reported
in Table 1 and explained at the end of p. 4 in Ref. [58]. For
EDELWEISS, we also consider Q = (1, 2, 3, 4) but assume
the effective exposures (0.04, 0.22, 1, 1) × 33.4 g × 58 h, re-
spectively. The observed number of events in each Q bin is in
this case (5814,44706,2718,227), as one can see by digitizing
Fig. 2 of Ref. [59].

For each experiment, we calculate 90% confidence level
(C.L.) exclusion limits on the strength of a given DM-electron
interaction by requiring that, in each of the four Q bins we
consider, the cumulative distribution function of a Poisson
probability density function of mean equal to the predicted
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FIG. 9. The 90% C.L. exclusion limits on the DM-electron
coupling from data reported by SENSEI@MINOS [58] and EDEL-
WEISS [59] and interpreted within the anapole (top panel), magnetic
dipole (middle panel), and electric dipole (bottom panel) DM mod-
els. For comparison, in each panel we also report the 90% C.L.
exclusion limits found in Ref. [41] from the null result of experiments
operating xenon (XENON10 and XENON1T) and argon (DarkSide-
50) detectors.

FIG. 10. Exclusion limits (90% C.L.) on (cs
7)2 and (c�

7)2 (top
panel) as well as on (cs

15)2 and (c�
15)2 (bottom panel).

number of events in that bin is at least equal to 0.1 if evaluated
at the observed number of signal events.

Figure 9 shows our 90% C.L. exclusion limits on the
strength of an anapole, magnetic dipole, and electric dipole
DM-electron interaction as a function of the DM particle
mass. For comparison, in the same figure we also display
the 90% C.L. exclusion limits on these coupling constants
from the null results of XENON10 [16,60], XENON1T [18],
and DarkSide-50 [15] as obtained in Ref. [41]. We find that
SENSEI@MINOS provides the strongest constraints on DM
masses below 5 MeV, with EDELWEISS taking over for sub-
MeV DM masses.

Using the same procedure, we also calculate the 90%
C.L. exclusion limits on the strength of the interactions O7

and O15 that we used as benchmarks in Sec. IV C. The
resulting constraints on cs

7 and c�
7, as well as on cs

15 and c�
15,

are given in Fig. 10. The dashed (solid) lines correspond
to short-range (long-range) interactions. The dark green line
gives the 90% C.L. exclusion limit from SENSEI@MINOS,
while the orange line gives the 90% C.L. exclusion limit from
EDELWEISS. Due to its larger exposure, SENSEI@MINOS

033149-14



CRYSTAL RESPONSES TO GENERAL DARK … PHYSICAL REVIEW RESEARCH 3, 033149 (2021)

generically produces the strongest constraints above about
1 MeV. Below this threshold, however, the lower band gap
of germanium implies that the strongest constraints arise from
EDELWEISS.

V. SUMMARY

We performed a comprehensive and model-independent
study of interactions between DM particles of our galac-
tic halo and electrons bound in crystals. By modeling the
DM-electron interactions in crystals using an effective the-
ory approach, we identified the most general amplitude
for DM-electron scatterings and the general responses by
the crystal to these interactions. Our effective approach al-
lows predictions of scattering rates in crystals for virtually
all DM models; it applies, e.g., to the anapole, magnetic
dipole, and electric dipole DM-electron interaction models. In
particular, our study focuses on short- and long-range DM-
electron interactions with silicon and germanium crystals,
which are currently used as targets in DM direct-detection
experiments.

This led us to discover that there are at most five ways a
crystal can respond to an external probe (not necessarily a DM
particle) in the limit of nonrelativistic short- and long-range
interactions of the most general type. We identified these five
independent crystal responses and expressed them in terms
of electron wave function overlap integrals. By performing
state-of-the-art DFT calculations, we evaluated the five re-
sponses, focusing on silicon and germanium crystals, as these
are used in operating DM direct-detection experiments such
as SENSEI and EDELWEISS.

We applied our crystal response functions to predict the
rate of DM-induced electron excitations in silicon and germa-
nium crystals. We performed this calculation for a set of 14
nonrelativistic interaction operators (of short- and long-range
type) and for specific models, such as the anapole, magnetic
dipole, and electric dipole models.

As a second important application of our crystal response
functions, we computed the 90% C.L. exclusion limits on
the strength with which DM can couple to electrons in crys-
tals by comparing our predicted crystal excitations rates with
data collected in the SENSEI@MINOS and EDELWEISS
experiments. We performed this calculation for the already
mentioned set of nonrelativistic DM-electron interactions,
as well as for the anapole, magnetic dipole, and electric
dipole DM models. We compared these limits with constraints
arising from different DM direct-detection experiments and
identified the range of masses where silicon or germanium
detectors are expected to set the most stringent bounds on
DM-electron interactions.

Within the field of DM direct detection, our generalised
crystal responses will enable the scientific community to per-
form predictions for any DM particle model. This is, for
example, the case for the anapole and magnetic dipole interac-
tion models. Furthermore, our crystal response functions will
allow the community to calculate at which statistical signifi-
cance a given DM-electron coupling is excluded by the null
result of a DM experiment using germanium or silicon semi-
conductor detectors. Finally, they will allow us to interpret
a discovery in a next-generation DM direct-detection exper-
iment within a range of DM models that cannot be covered by
the current most widely used approach to data analysis, which
is based on the use of a single crystal form factor.

On a more speculative level, our work paves the way for a
new line of research lying at the interface of astroparticle and
condensed matter physics: the study of yet hidden material
properties that are encoded in the response of materials to
external probes sharing the same interaction properties as the
elusive galactic DM component.
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APPENDIX A: HUBBARD U CORRECTION
FOR THE GERMANIUM 3d STATES

In this Appendix we illustrate the effect of the Hubbard
U correction. In Fig. 11 we see how W 4 is affected by the
Hubbard U correction. In particular, we see that the high value
region produced by the 3d electrons is shifted from 25 to
30 eV. In Fig. 12 we see the impact this has on the expected
excitation rate for the anapole, electric dipole, and magnetic
dipole interactions. For Q values of 9 and 10 the excitation
rate differs by orders of magnitude.

APPENDIX B: DERIVATION OF |M′
ik→i′k′ |2, f ′

ik→i′k′ , AND fik→i′k′

In this Appendix we cover the gap between Eqs. (9)–(11) and Eqs. (12)–(14). The electron wave function in a crystal is given
in Bloch form as

ψik(x) = 1√
V

∑
G

ui(k + G)ei(k+G)·x, (B1)
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FIG. 11. W 4 calculated with (left) and without (right) the Hubbard U correction applied to the germanium 3d states. The U correction
shifts the calculated position of the 3d bands from about 25 eV to about 30 eV below the Fermi energy, and we see a corresponding shift in
the increase in intensity onset of W 4 over the entire q range.

where V = NcellVcell is the volume of the crystal. Inserting this in Eqs. (10) and (11) gives

fi,k→i′,k′ = 1

V

∫
d3x

∑
G′

u∗
i′,k′e−i(k′+G′ )·xeix·q ∑

G

ui,kei(k+G)·x

=
∑
GG′

u∗
i′,k′ui,k

V

∫
d3xei(k+G+q−k′−G′ )·x =

∑
GG′

u∗
i′,k′ui,k

V
(2π )3δ3(k + G + q − k′ − G′) (B2)

and

fi,k→i′,k′ =
∫

d3xψ∗
2 (x)eix·q i∇x

me
ψ1(x)

= 1

V

∫
d3x

∑
G′

u∗
i′,k′e−i(k′+G′ )·xeix·q i∇x

me

∑
G

ui,kei(k+G)·x

=
∑
GG′

u∗
i′,k′ui,k

V

∫
d3xe−i(k′+G′ )·xeix·q i∇x

me
ei(k+G)·x

= −
∑
GG′

u∗
i′,k′ui,k

meV
(k + G)

∫
d3xei(k+G+q−k′−G′ )·x

= −
∑
GG′

u∗
i′,k′ui,k

meV
(k + G)(2π )3δ3(k + G + q − k′ − G′), (B3)

respectively, where ui,k ≡ ui(k + G) and ui′,k′ ≡ ui′ (k′ + G′). We now compute | fi,k→i′,k′ |2, fi,k→i′,k′f∗
i,k→i′,k′ , and (fi,k→i′,k′ ·

w)(f∗
i,k→i′,k′ · w′) with w and w′ being arbitrary 3-vectors. For | fi,k→i′,k′ |2 we find

| fi,k→i′,k′ |2 =
∑
FF′

u∗
i′,k′ui,k

V
(2π )3δ3(k + F + q − k′ − F′)

(∑
GG′

u∗
i′,k′ui,k

V
(2π )3δ3(k + G + q − k′ − G′)

)∗

=
∑

�F�G

(2π )6

V 2
δ3(k + q − k′ − �F)δ3(k + q − k′ − �G)

×
(∑

F

u∗
i′ (k

′ + F + �F)ui(k + F)

)(∑
G

u∗
i′ (k

′ + G + �G)ui(k + G)

)∗
, (B4)

where �G ≡ G′ − G and �F ≡ F′ − F. From the delta functions we see that the terms in the double sum are only nonzero when
�G = �F. The sums over F and G are identical except for the labeling, i.e.,

∑
G u∗

i′ (k
′ + G + �G)ui(k + G) = ∑

F u∗
i′ (k

′ +
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FIG. 12. Calculated crystal excitation rates for germanium with and without the Hubbard U correction applied to the 3d band. We see that,
in the absence of the correction, the lower binding energy, by ∼5 eV, of the 3d electrons leads to excitation rates that are orders of magnitude
larger for nine and ten electron-hole pairs.

F + �G)ui(k + F) ≡ f ′
i,k→i′,k′ . This yields

| fi,k→i′,k′ |2 =
∑
�G

(2π )3δ3(k + q − k′ − �G)

V
| f ′

i,k→i′,k′ |2. (B5)

The calculation for fi,k→i′,k′ f∗
i,k→i′,k′ is analogous and produces

fi,k→i′,k′f∗
i,k→i′,k′ =

(∑
FF′

u∗
i′,k′ui,k

V
(2π )3δ3(k + F + q − k′ − F′)

)(
−

∑
GG′

u∗
i′,k′ui,k

meV
(k + G)(2π )3δ3(k + G + q − k′ − G′)

)∗

=
∑
�G

(2π )3δ3(k + q − k′ − �G)

V

(∑
F

u∗
i′ (k

′ + F + �G)ui(k + F)

)

×
(

− 1

me

∑
G

u∗
i′ (k

′ + G + �G)(k + G)ui(k + G)

)∗

=
∑
�G

(2π )3δ3(k + q − k′ − �G)

V
( f ′

i,k→i′,k′ )(f ′
i,k→i′,k′ )∗, (B6)

where

f ′
i,k→i′,k′ ≡ − 1

me

∑
G

u∗
i′ (k

′ + G + �G)(k + G)ui(k + G). (B7)

Finally,

(fi,k→i′,k′ · w)(f∗
i,k→i′,k′ · w′) =

∑
�G

(2π )3δ3(k + q − k′ − �G)

V

(
−1

me

∑
F

u∗
i′ (k

′ + F + �G)(k + F)ui(k + F)

)
· w

×
(

−1

me

∑
G

u∗
i′ (k

′ + G + �G)(k + G)ui(k + G)

)∗
· w′

=
∑
�G

(2π )3δ3(k + q − k′ − �G)

V
[(f ′

i,k→i′,k′ ) · w][(f ′
i,k→i′,k′ )∗ · w′]. (B8)

Inserting Eqs. (B5), (B6), and (B8) in Eq. (9), and setting w = (∇�M)�=0 and w′ = (∇�M∗)�=0, we obtain our Eq. (15),

|Mi,k→i′,k′ |2 =|M|2| fi,k→i′,k′ |2 + 2meRe[M fi,k→i′,k′ (∇p1M∗)p1=0 · (fi,k→i′,k′ )∗] + m2
e |(∇p1M)p1=0 · fi,k→i′,k′ |2

=
∑
�G

(2π )3δ3(k + q − k′ − �G)

V
(|M|2| f ′

i,k→i′,k′ |2 + 2meRe[M f ′
i,k→i′,k′ (∇p1M∗)p1=0 · (f ′

i,k→i′,k′ )∗]

+ m2
e |(∇p1M)p1=0 · f ′

i,k→i′,k′ |2)

≡
∑
�G

(2π )3δ3(k + q − k′ − �G)

V
× |M′

i,k→i′,k′ |2. (B9)
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APPENDIX C: DARK MATTER AND RESPONSES

The first, third, and fourth dark matter responses are the same as in Ref. [41], and we will simply state them in this Appendix.

1. The first dark matter response

The first dark matter response is produced by the first term in Eq. (12) and is

R1(q, v) = |M(q, v⊥
el )|2

= c2
1 + c2

3

4

q2

m2
e

(v⊥
el )

2 − c2
3

4

(
q

me
· v⊥

el

)2

+ c2
7

4
(v⊥

el )
2 + c2

10

4

q2

m2
e

+ jχ ( jχ + 1)

12

{
3c2

4 + c2
6

q4

m4
e

+ (
4c2

8 + 2c2
12

)
(v⊥

el )
2 + (

2c2
9 + 4c2

11 + 2c4c6
) q2

m2
e

+ (
4c2

5 + c2
13 + c2

14 − 2c12c15
) q2

m2
e

(v⊥
el )

2 + c2
15

q4

m4
e

(v⊥
el )

2

− c2
15

q2

m2
e

(
v⊥

el · q
me

)2

+ (−4c2
5 + 2c13c14 + 2c12c15

)(
v⊥

el · q
me

)2}
. (C1)

2. Expansion of 2meRe[M∇kM∗ · A]

The second term of Eq. (12) requires more treatment. In Ref. [41] we expanded the second term and found

2meRe[M∇kM∗ · A] =
{ |c3|2

2

[(
q

me
· v⊥

el

)
q

me
− q2

m2
e

v⊥
el

]
− |c7|2

2
v⊥

el

}
· Re(A)

+ 1

2

(
q

me
× v⊥

el

)
· Im[(c3c∗

7 + c∗
3c7)A] + 1

2

q
me

· Im(c∗
7c10A)

+ jχ ( jχ + 1)

6

({(
4|c5|2 + |c15|2 q2

m2
e

)[( q
me

· v⊥
el

) q
me

− q2

m2
e

v⊥
el

]
−

(
4|c8|2 + 2|c12|2 + (|c13|2 + |c14|2)

q2

m2
e

)
v⊥

el

}
· Re(A) − q

me
· Im(c4c∗

13A)

− q
me

· Im(c4c∗
14A) + 4

(
q

me
× v⊥

el

)
· Im[(c5c∗

8 + c∗
5c8)A] − q2

m2
e

q
me

· Im(c6c∗
13A)

− q2

m2
e

q
me

· Im(c6c∗
14A) + 2

q
me

· Im(c9c∗
12A) + 4

q
me

· Im(c11c∗
8A)

−
(

q
me

× v⊥
el

)
· Im[(c12c∗

13 + c∗
12c13)A] +

(
q

me
× v⊥

el

)
· Im[(c12c∗

14 + c∗
12c14)A]

−
[(

q
me

· v⊥
el

)
q

me
− q2

m2
e

v⊥
el

]
· Re[(c12c∗

15 + c∗
12c15)A] −

(
q

me
· v⊥

el

)
q

me
· Re[(c13c∗

14 + c∗
13c14)A]

− q2

m2
e

(
q

me
× v⊥

el

)
· Im[(c14c∗

15 + c∗
14c15)A]

)
, (C2)

where A ≡ f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗ is a complex 3-vector. In the case of atoms we found that A is both real and antiparallel
to q. Neither of these simplifications apply to the crystal. In order to separate R(q, v, ci ) from W (q,�E ), we rewrite the
above equation by expressing it in terms of Re(A) and Im(A), so we use that Im(cA) = Im(c)Re(A) + Re(c)Im(A) and
Re(cA) = Re(c)Re(A) − Im(c)Im(A). We also rewrite the terms proportional to ( q

me
× v⊥

el ) · A = −v⊥
el · ( q

me
× A) yielding

2meRe[M∇kM∗ · A] =
{ |c3|2

2

[(
q

me
· v⊥

el

)
q

me
− q2

m2
e

v⊥
el

]
− |c7|2

2
v⊥

el

}
· Re(A)

− 1

2
v⊥

el ·
(

q
me

× [Im(c3c∗
7 + c∗

3c7)Re(A) + Re(c3c∗
7 + c∗

3c7)Im(A)]

)
+ 1

2

q
me

· [Im(c∗
7c10)Re(A) + Re(c∗

7c10)Im(A)]
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+ jχ ( jχ + 1)

6

({(
4|c5|2 + |c15|2 q2

m2
e

)[(
q

me
· v⊥

el

)
q

me
− q2

m2
e

v⊥
el

]
−

(
4|c8|2 + 2|c12|2 + (|c13|2 + |c14|2)

q2

m2
e

)
v⊥

el

}
· Re(A)

− q
me

· [Im(c4c∗
13)Re(A) + Re(c4c∗

13)Im(A)] − q
me

· [Im(c4c∗
14)Re(A) + Re(c4c∗

14)Im(A)]

− 4v⊥
el ·

(
q

me
× [Im(c5c∗

8 + c∗
5c8)Re(A) + Re(c5c∗

8 + c∗
5c8)Im(A)]

)
− q2

m2
e

q
me

· [Im(c6c∗
13)Re(A) + Re(c6c∗

13)Im(A)] − q2

m2
e

q
me

· [Im(c6c∗
14)Re(A) + Re(c6c∗

14)Im(A)]

+ 2
q

me
· [Im(c9c∗

12)Re(A) + Re(c9c∗
12)Im(A)] + 4

q
me

· [Im(c11c∗
8 )Re(A) + Re(c11c∗

8 )Im(A)]

+ v⊥
el ·

(
q

me
× [Im(c12c∗

13 + c∗
12c13)Re(A) + Re(c12c∗

13 + c∗
12c13)Im(A)]

)
− v⊥

el ·
(

q
me

× [Im(c12c∗
14 + c∗

12c14)Re(A) + Re(c12c∗
14 + c∗

12c14)Im(A)]

)
−

[(
q

me
· v⊥

el

)
q

me
− q2

m2
e

v⊥
el

]
· [Re(c12c∗

15 + c∗
12c15)Re(A) − Im(c12c∗

15 + c∗
12c15)Im(A)]

−
(

q
me

· v⊥
el

)
q

me
· [Re(c13c∗

14 + c∗
13c14)Re(A) − Im(c13c∗

14 + c∗
13c14)Im(A)]

+ q2

m2
e

v⊥
el ·

(
q

me
× [Im(c14c∗

15 + c∗
14c15)Re(A) + Re(c14c∗

15 + c∗
14c15)Im(A)]

))
. (C3)

For real couplings this reduces to

2meRe[M∇kM∗ · A] = q
me

· Re(A)

[
c2

3

2

(
q

me
· v⊥

el

)
+ jχ ( jχ + 1)

6

(
q

me
· v⊥

el

)(
4c2

5 − 2(c12c15 + c13c14) + c2
15

q2

m2
e

)]

+ q
me

· Im(A)

[
c7c10

2
+ jχ ( jχ + 1)

6

(
4c8c11 + 2c9c12 − c4c13 − c4c14 − (c6c13 + c6c14)

q2

m2
e

)]

+ v⊥
el · Re(A)

[
−c2

3

2

q2

m2
e

− c2
7

2
+ jχ ( jχ +1)

6

{
−c2

8 − c2
12+(−4c2

5+2c12c15 − c2
13 − c2

14

) q2

m2
e

− c2
15

q4

m4
e

}]

+ v⊥
el ·

(
q

me
× Im(A)

)[
−c3c7 + jχ ( jχ + 1)

6

{
− 8c5c8 + 2c12c13 − 2c12c14 + 2c14c15

q2

m2
e

}]
. (C4)

From this we can define the second scalar overlap integral as

B2 = q
me

· A = q
me

· f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗. (C5)

In addition to this we also find two complex vectorial overlap integrals, which we can call

B6 = A = f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗ (C6)

and

B7 = q
me

× A = q
me

× f ′
i,k→i′,k′ (f ′

i,k→i′,k′ )∗. (C7)

3. Velocity averaging of B6 and B7

For the scope of this paper we have treated the velocity distribution as isotropic, and we can use this to further simplify
Eq. (C4). We start by decomposing v and A into a component parallel to q and a component perpendicular to q,

v = (v · q)q
q2

+ |v × q|n̂⊥
v

q
(C8)

033149-19



RICCARDO CATENA et al. PHYSICAL REVIEW RESEARCH 3, 033149 (2021)

and

A = (A · q)q
q2

+ |A × q|n̂⊥
A

q
, (C9)

where n̂⊥
v and n̂⊥

A are unit vectors in the plane perpendicular to q. Inserting this decomposition in the terms proportional to v⊥
el · A

in Eq. (24), we find something proportional to

1

2π

∫ 2π

0
dφ v⊥

el · A

∣∣∣∣∣
cos θ=ξ

= 1

2π

∫ 2π

0
dφ v · A − me

2μ

q
me

· A

∣∣∣∣∣
cos θ=ξ

= 1

2π

∫ 2π

0
dφ

v cos θme

q

q
me

· A + |v × q||A × q|
q2

n̂⊥
v · n̂⊥

A − me

2μ

q
me

· A

∣∣∣∣∣
cos θ=ξ

. (C10)

Without loss of generality we can now choose our coordinates such that n̂⊥
v · n̂⊥

A = cos φ. We then have

1

2π

∫ 2π

0
dφ v⊥

el · A

∣∣∣∣∣
cos θ=ξ

= 1

2π

∫ 2π

0
dφ

v cos θme

q

q
me

· A + |v × q||A × q|
q2

cos φ − me

2μ

q
me

· A

∣∣∣∣∣
cos θ=ξ

= q
me

· A
[
vξme

q
− me

2μ

]
= q

me
· A

[
me

2mχ

+ me�E

q2
− me

2μ

]

= q
me

· A
[

me

2mχ

+ me�E

q2
− me + mχ

2mχ

]
= q

me
· A

[
me�E

q2
− 1

2

]
= q

me
· A

( q

me

)−2 q
me

· v⊥
el , (C11)

which is the same as what was found in the case of atoms. For q
me

× A we find

1

2π

∫ 2π

0
dφ v⊥

el ·
(

q
me

× A
)∣∣∣∣

cos θ=ξ

= 1

2π

∫ 2π

0
dφ v ·

(
q

me
× A

)
− me

2μ

q
me

·
(

q
me

× A
)∣∣∣∣

cos θ=ξ

= 1

2π

∫ 2π

0
dφ

v cos θme

q

q
me

·
(

q
me

× A
)

+ |v × q|
q

n̂⊥
v ·

(
q

me
× A

)∣∣∣∣
cos θ=ξ

= 1

2π

∫ 2π

0
dφ

|v × q|
q

∣∣∣∣ q
me

× A

∣∣∣∣ cos φ

∣∣∣∣
cos θ=ξ

.

= 0 (C12)

This result follows from our treatment of the velocity distribution as isotropic. Intuitively, one can understand our treatment as
not considering directionality. We expect directional effects such as a daily modulation to be small in silicon and germanium
crystals justifying our treatment of the velocity distribution. In less isotropic materials such as 2D materials we expect these
directional effects to be important, and we will not in these cases be able to absorb B6 and B7 (fully) in the other responses.

4. The second to fifth dark matter response

Having averaged over the azimuthal angle, we arrive at the same dark matter response as we obtained in Ref. [41] for R2,

Re(R2) =
(

�Eme

q2
− 1

2

)[
−c2

7

2
− jχ ( jχ + 1)

6

{(
4c2

8 + 2c2
12

) + (c13 + c14)2 q2

m2
e

}]
(C13)

and

Im(R2) = 1

2
c7c10 + jχ ( jχ + 1)

6

{
−c4c13 − c4c14 + 2c9c12 + 4c11c8 − (c6c13 + c6c14)

q2

m2
e

}
. (C14)

The third and fourth DM responses were found in Ref. [41] to be

R3(q, v) = c2
3

4

q2

m2
e

+ c2
7

4
+ jχ ( jχ + 1)

12

{
4c2

8 + 2c2
12 + (

4c2
5 + c2

13 + c2
14 − 2c12c15

) q2

m2
e

+ c2
15

q4

m4
e

}
, (C15)

R4(q, v) = −c2
3

4
+ jχ ( jχ + 1)

12

{
−4c2

5 − c2
15

q2

m2
e

+ 2c12c15 + 2c13c14

}
. (C16)
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Finally, we find the fifth response to be

R5(q, v) = jχ ( jχ + 1)

6

{
4c3c7 + 4c5c8 − c12c13 + c12c14 − 4c14c15

q2

m2
e

}
. (C17)

APPENDIX D: COMPARISON WITH THE CRYSTAL FORM FACTOR GIVEN BY ESSIG ET AL. [21]

In this Appendix we compare our first crystal response function with the crystal form factor of Ref. [21]. In our notation,
Eq. (3.17) in Ref. [21] reads

| fcrystal(q,�E )|2 = 2π2
(
αm2

eVcell
)−1

�E

∑
ii′

∫
BZ

Vcelld3 k

(2π )3

Vcelld3 k′

(2π )3
× �Eδ(�E − Eik + Ei′k′ )

×
∑
�G

qδ(|k − �G − k′| − q)| f ′
i,k→i′,k′ |2. (D1)

This can be compared with Eq. (47) to obtain

| fcrystal(q,�E )|2 = q3

8�Eαm2
e

W 1(q,�E ). (D2)
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