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Size dependence in flux-flow Hall effect using time-dependent Ginzburg-Landau equations
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We study the Hall effect in square, planar type-II superconductors using numerical simulations of time
dependent Ginzburg-Landau (TDGL) equations. The Hall field in some type-II superconductors displays sign-
change behavior at some magnetic fields due to the induced field of vortex flow when its contribution is
strong enough to reverse the field direction. In this paper, we use modified TDGL equations which couple an
externally applied current, and also incorporate normal-state and flux-flow Hall effects. We obtain the profile
of Hall angle as a function of applied magnetic field for six different sizes (l × l ) of the superconductor:
l/ξ ∈ {3, 5, 15, 20, 100, 200}. We obtain vastly different profiles for different size regimes, proving that size
is an important parameter that determines Hall behavior. We find that electric field dynamics provide an insight
into several anomalous features including a sign change of the Hall angle, and leads us to the precise transient
behavior of the order parameter responsible for them.
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I. INTRODUCTION

One of the most interesting aspects of superconducting
systems is the physics of vortices. Advances in experimental
methods have made it possible to probe type-II superconduc-
tors at small length scales where the behavior of individual
vortices becomes visible. Vortices have been imaged with
electron spins in diamonds [1,2], scanning superconducting
quantum-interference devices [3,4], and Hall-probe magne-
tometry [5,6]. The behavior of a superconducting system is
expected to vary significantly if its dimensions are reduced
to be comparable to the coherence length. In this paper, we
theoretically investigate the effect of finite size on the prop-
erties of vortices with numerical simulations of solutions of
the time-dependent Ginzburg-Landau (TDGL) equations. The
flux-flow Hall effect in square planar type-II superconductors
is studied for different sample sizes, given by l/ξ ratio of
3, 5, 15, 20, 100, and 200 (where l is the length of the
square and ξ is the superconducting coherence length). Sizes
l/ξ ∈ {100, 200} serve as representatives of the bulk regime.
It will be seen that the electric field and Hall angle profiles
under a unidirectional current are widely different depending
upon the dimension of the superconductor.

Hall effect in superconductors has been observed to display
anomalous properties below the critical temperature, most
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significant of which is the sign reversal of Hall voltage at
certain magnetic fields [7–9]. This could not be explained
by either the phenomenological models of vortex flow of the
time, namely, the Bardeen-Stephen (BS) model [10] and the
Nozières-Vinen model [11], or by microscopic theory [12]. It
was later proposed that the induced electric field of magnetic
vortex flow could contribute to the Hall field and cause anoma-
lous behavior [9]. Dorsey [12] and Kopnin et al. [13] proved,
using analytical approximations of a modified TDGL system,
that indeed sign reversal of Hall effect is possible under some
circumstances. These theories make use of microscopic quan-
tities (related to the electronic structure) to define the regimes
of sign reversal. Alternatively, one may numerically compute
the Hall effect in a superconducting sample governed by the
modified TDGL system of Dorsey [12] and Kopnin et al.
[13], and find the magnetic field regimes of sign reversal.
This could provide insights into Hall effect behavior of a
superconductor as a function of macroscopic quantities alone
(e.g., GL parameter κ , sample size, etc.).

In this paper, we follow the alternative numerical route
mentioned above, which is direct and does not resort to any
analytical approximations. We first use standard TDGL equa-
tions [14–16] to numerically compute the time-varying order
parameter of a planar superconductor in the vortex state. We
benchmark our simulations by comparing the numerically
obtained fluxoid value of each vortex against �0, the su-
perconducting flux quantum, as a rigorous test (Sec.III A).
With these benchmarks in hand, we simulate a modified
TDGL system that includes an externally applied current to
probe the Hall effect in these systems. Importantly, we go
beyond existing literature by incorporating the normal-state
Hall conductivity and flux-flow terms into the dynamical
equations that we numerically simulate. In this, we have taken
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inspiration from the analytical works of Dorsey [12] and Kop-
nin et al. [13] (Sec. III B). Next, in Sec. III C, we study the
resultant changes in flux flow and resultant induced electric
fields based on the numerical simulation of our modified
TDGL system. We compute the Hall angle profile for various
sizes of the superconductor and find vastly different profiles.
We find that transient electric fields and related order pa-
rameter behavior give us good insight into explaining the
anomalous Hall effect.

II. THEORETICAL MODEL

The TDGL equations are [14–16]
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where ψ is the complex-valued order parameter, α and β are
the phenomenological parameters of Ginzburg-Landau theory
[17,18], and φ, A are the electric and magnetic potentials,
respectively. ν is the normal-state conductivity and γ is a
relaxation constant for the order parameter. The charge and
mass of Cooper pairs are denoted by es = 2e and ms = 2me,
respectively. In the second equation above, which is basically
the Maxwell’s law ∇ × B = 1

c
∂E
∂t + 4π

c J, we have used the
standard approximation of ∂t E ∼ 0 because of the low char-
acteristic frequencies involved [16] in the vortex dynamics
responsible for the Hall effects.

A. Gauge invariance and normalization

For an arbitrary function χ (x, y, t ) with well-defined
spatial and time derivatives, the gauge invariance can be
expressed as (ψ → ψeiκχ , A → A + ∇χ , φ → φ − ∂χ

∂t ).
We choose the zero electric potential gauge (i.e., φ = 0)
[14,15,19]. The physical quantities in Eqs. (1) are renormal-
ized as follows:

x
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(2)

where Hc =
√

4πα2

β
and ξ is the GL coherence length [19].

In the chosen gauge, the resulting dimensionless equations
applicable over the superconducting domain are
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where κ is the GL parameter and σ is normalized normal-
state conductivity. When the sample is surrounded by vacuum
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FIG. 1. Schematic representation of our simulation domain when
an external current is applied – l × l square superconductor with
metallic contacts on the left and right, and vacuum at top and bottom.
Current Ja is applied along x̂ and magnetic field Hext along ẑ.

on all sides and no external current is passed, the following
boundary conditions (BCs) apply [14,19–21]:

∇ × A = Hext,

(
i∇ + 1

κ
A

)
ψ · n = 0, −σ

∂A
∂t

· n = 0

(4)

(where Hext is the externally applied magnetic field, perpen-
dicular to the sample). The first condition imposes continuity
of transverse magnetic field across the boundary, while the
second and third ensure that neither supercurrent nor normal
current crosses the boundary, respectively.

In the case of a thin film superconductor (in xy plane), the
electric field in the domain of the sample is of the form Exx̂ +
Eyŷ due to charge neutrality, and magnetic field is of the form
H ẑ. In principle, one also needs to solve Maxwell’s equation
∇ × ∇ × A = 0 (considering vacuum) in the surrounding do-
main [19]. However, in the case of two-dimensional samples
with perpendicularly applied magnetic field, as in our system,
solving the interior problem Eqs. (3) alone is sufficient to a
good approximation [15,22]. For reference, the full problem
and its BCs are discussed in Refs. [14] and [19,23].

B. Inclusion of externally applied current

Including an externally applied transport current in the
TDGL system entails two tasks: (a) accounting for the mag-
netic field induced by the transport current and (b) modifying
the BCs Eq. (4) to account for flow of normal current across
boundaries. The former can be achieved by modifying the first
BC to ∇ × A = Htot where Htot = Hext + Hc is the sum of
applied (Hext) and induced (Hc) magnetic fields [20]. Hc is
to be computed from the current profile (a function of ψ , A),
making the system self-consistent. However, an approxima-
tion is frequently used in literature [20,24–27] to simplify the
computation of Hc: the current profile is assumed to be a uni-
form band, which reduces Hc to a simple expression involving
Ja, the applied (uniform) current density. In this paper, Ja is
assumed to be in the +x̂ direction (Fig. 1), which gives us Hc
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along all four boundaries as Htop, bottom
c = ±W Ja/2 ẑ (where

W is the length of the sample along ŷ) and Hleft, right
c vary

linearly between the bottom and top edges.
Second, to account for flow of normal current across the

boundary, the vacuum-superconductor BCs Eq. (4) are now
replaced by metal-superconductor BCs Eq. (5b) [20,27] at the
left and right edges, while retaining the former BCs Eq. (5a)
at the top and bottom edges:

∇ × A = Htot,

(
i∇ + 1

κ
A

)
ψ · n = 0, −σ

∂A
∂t

· n = 0,

(5a)

∇ × A = Htot, ψ = 0, −σ
∂A
∂t

· n = Ja · n. (5b)

In Eq. (5b), the third BC accounts for flow of current across
the boundary, and the second condition ensures that the
density of superconducting electrons is zero at the edges.
This ensures that the injected normal current transitions to
supercurrent gradually, rather than abruptly, inside the super-
conductor.

C. Inclusion of Hall effect

Normal state Hall effect is a result of the conduction of
electrons transverse to applied electric field. This can be in-
corporated in the TDGL system Eqs. (3) and (5) by rewriting
the normal-state conductivity σ as a tensor:

σ =
(

σxx σxy

σyx σyy

)
(6)

We assume an isotropic sample (σxx = σyy) and by symmetry
σyx = −σxy. To determine σxx and σxy, we use the following
as the model for the normal-state conductivity [12,28]:

σxx = σ0
1

1 + ω2
cτ

2
, σxy = σ0

ωcτ

1 + ω2
cτ

2
(7)

where ωc is the cyclotron frequency es(∇ × A)/ms and τ is
the electron scattering time. Under typical conditions, we have
ωcτ � 1 (low-field limit) [12,28]. Thus, σxx ≈ σ0 and σxy ≈
ωcτσ0. Due to the spatially varying magnetic field, cyclotron
frequency ωc and, consequently, σxy are also spatially varying.
To enforce the low-field limit, we take ωcτ = 10−2(∇ × A),
where the prefactor of 10−2 ensures that ωcτ � 1.

Josephson [29] proved that, macroscopically, a vortex
moving at velocity vL gives rise to an induced electric field
E = − 1

c vL × H,where all the quantities are spatially and tem-
porally averaged [9,12,13]. In the BS model [10], under
an applied current Ja, vortices experience a Lorentz force
∼Ja × H [9,12]. This force gives rise to velocity vL along
Ja × H and in a system such as ours (Fig. 1), this results in
vortex motion along −ŷ. This velocity vL along −ŷ produces
a field E = − 1

c vL × H along x̂, the same direction as Ja,
thereby causing dissipation. However, if we were to have an
additional component of vL along x̂ (the same direction as Ja),
this would create a field contribution in the Hall direction.
Dorsey [12] and Kopnin et al. [13] proved that adding a
nonzero imaginary part to the relaxation parameter γ in the
TDGL system Eqs. (1) produces such flux-flow contribution
to the Hall field by lending the vortices a velocity component
parallel to the applied current. Thus, we write γ = γ1 + iγ2.

In the microscopic picture, the value of γ2/γ1 has been shown
to depend upon the electronic structure of the material [12,13].
The sign of γ2/γ1 determines whether vortices travel along Ja

or against, and therefore crucially affects the sign of flux-flow
contribution to Hall field. Kopnin et al. [13] proved that a sign
reversal in Hall effect would be observed for negative values
of γ2/γ1.

III. RESULTS AND DISCUSSION

We use COMSOL Multiphysics [30], a commercial finite
element tool to numerically simulate TDGL Eqs. (3)–(5).
Throughout the paper, we take GL parameter κ = 2 and nor-
malized normal-state conductivity σ0 = 1. In Sec. III A, we
obtain a vortex state solution and propose a procedure to rigor-
ously verify the solution to help identify any numerical errors
or artifacts. In Secs. III B–III C, we study a system with ex-
ternally applied current and Hall effect included. Throughout
these simulations, we apply an external current Ja = 0.04 x̂.
We consider six geometries: l × l square superconductors for
l/ξ ∈ {3, 5, 15, 20, 100, 200}. We apply an external magnetic
field Hext along ẑ, whose value is swept between 0 and Hc2 =
κ = 2 in steps of 0.05. For each combination of size l and
Hext, we solve the modified TDGL system Eqs. (3) and (5)
and compute the time-varying order parameter ψ (r, t ) and
vector potential A(r, t ). This gives us complete insight into
the dynamic vortex motion and electric fields Ex = −∂Ax/∂t
and Ey = −∂Ay/∂t , which form the basis for much of our
analysis.

Since we use normalized units throughout the paper, we
compute the order of magnitude for these units to understand
the typical physical values. We chose κ = 2, which broadly
corresponds to Niobium [31]. Using the physical parameters
of Nb, we compute the time units as ∼10−12 s [32], current
density units as ∼1 A m−1 [33,34], and the applied magnetic
field units as ∼1 kOe [34].

A. Vortex state and verification

We first solve TDGL Eqs. (3) on a 20ξ × 20ξ planar
sample (GL parameter κ = 2) with no applied current or
Hall effect enabled. Thus, in this case we use the vacuum-
superconductor BCs Eqs. (4) on all four sides, and observe
a vortex state solution at Hext = 0.9ẑ (Fig. 2). We perform
a thorough verification of our simulation as described in the
following. First, we confirm that the simulation results are
stable with respect to mesh size. We then sweep |Hext| widely
and observe the existence of both upper and lower critical
fields marked by the vanishing of vortices, as expected from
a type-II superconductor (κ > 1/

√
2). We also observe that

for the same κ , the number of vortices increases (decreases)
when the external field |Hext| is increased (decreased). This
is an expected qualitative behavior of the superconductor to
let more (less) incident flux pass through the superconduc-
tor. One of the hallmarks of superconducting vortices under
Ginzburg-Landau theory is fluxoid quantization. It states that
the fluxoid value �′ associated with each vortex is quantized
by �0 = hc

2e [18],

�′ = � + 4π

c

∮
λ2Js · dl, (8)
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FIG. 2. |ψ |2 at various instants of time, depicting major events
in the formation of a vortex state in the 20ξ × 20ξ sample. Applied
magnetic field is |Hext| = 0.9.

where � is the magnetic flux
∫

B · ds associated with the
vortex, and the integral term involving super current Js and
penetration depth λ is performed on a closed contour en-
closing the vortex. We compute the fluxoid value and obtain
�′ ≈ 0.96�0 for each vortex, confirming that our simulations
firmly uphold fluxoid quantization (Fig. 3).

B. Flux flow under applied current with Hall effect incorporated

In the BS model [10], magnetic vortices experience a
Lorentz force under applied external current along Ja × H
[9,12]. We apply an external current Ja = 0.04 x̂ and Hext

along +ẑ, and accordingly observe vortex flow along −ŷ with
vortices entering at the top edge and leaving at the bottom
(Fig. 4). Consistent with the BS model, we observe faster
(slower) motion of vortices with increased (decreased) magni-
tudes of Ja. Choosing a larger value of |Ja| would increase the
magnitude of current-induced magnetic field Hc, driving the
superconductor into normal state (after some time) for even

FIG. 3. We verify that the fluxoid value of each of our vortices is
≈ �0. To compute the fluxoid value, we take a circular area centered
at the vortex center defined by the local maxima in magnetic field,
with a radius 2.4ξ (shown with a dotted hatch on the top-left vortex).
Figure shown for |Hext| = 0.9.

FIG. 4. We observe vortex motion under an applied external cur-
rent in the transverse direction. Vortices enter at the top edge and
leave at the bottom. This motion is followed by the superconductor
being driven into normal state. (|Hext| = 0.5)

low values of applied field Hext. With our chosen value of
|Ja| = 0.04, we find that the system is ultimately driven into
normal state for all values of |Hext| � 0.35 in the case of sizes
l/ξ ∈ {15, 20}. For all other sizes, the system is driven into
normal state for all values of |Hext|.

For sizes l/ξ ∈ {15, 20, 100, 200}, we observe vortices and
their movement before the system eventually goes into normal
state (ψ (r) = 0), whereas for sizes l/ξ ∈ {3, 5}, we do not
observe vortices for any value of |Hext|. To understand further,
we solve the standard TDGL system Eqs. (3) and (4) (with
no applied current) for l/ξ ∈ {3, 5} and sweep the magnetic
field |Hext| as earlier. We do not find a vortex state solution for
any value of |Hext|. We conclude that this is a size effect: the
system is smaller than a critical size, forbidding the possibility
of a vortex state solution.

Next, we also enable normal-state and flux-flow Hall ef-
fects following the discussion in Sec. II C, with γ2/γ1 = 0.4
and −0.4 as separate cases. The choice of |γ2/γ1| was made
in such a way that the vortices gain a perceivable amount of
velocity in the direction of Ja, but not significantly enough,
so vortices still primarily move along −ŷ. With Hall effect
enabled, we observe complex vortex motion (Fig. 5). Vor-
tices enter the system at the top edge and traverse smooth
but irregular trajectories through the domain due to com-
plex vortex-vortex and vortex-boundary interactions. The key
difference is that they also obtain velocity in the ±x̂ direction,
unlike when Hall effect is not enabled. We seek to capture
the effect of this complex motion on the longitudinal and Hall
electric fields and explain the observed behavior.

C. Analysis of electric fields and Hall angle

We obtain the spatially averaged electric field by averaging
across the entire domain.We find that the so-obtained E pro-
files can be grouped into three distinct types (Fig. 6). In the
first type [Fig. 6(a)], the longitudinal field saturates to σ0Ja
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FIG. 5. Complex vortex flow under an applied external current
with Hall effect enabled. The setting in normal state from the right
edge starting at t = 1500 induces a gradual transient field largely
affecting Hall behavior (Fig. 8). (|Hext| = 0.5 and γ2/γ1 = 0.4.)

(normal state) with the observation of a series of spikes prior
to that. This spiking occurs due to vortex entry and exit, as
discussed in Ref. [24]. The Hall field Ey also exhibits similar
spiking as a result of the vortex velocity component in the
direction of Ja. Such behavior occurs for sizes l/ξ ∈ {15, 20}
at applied field |Hext| � 0.35 and for sizes l/ξ ∈ {100, 200}
at all applied fields. For fields lower than 0.35 in sizes l/ξ ∈
{15, 20}, the system rapidly evolves to the superconducting
Meissner state with Ex reaching zero as shown in Fig. 6(b),
which is the second type. Sizes l/ξ ∈ {3, 5} are always driven
into normal state with no vortex-related spikes. This results
in the third type, with Ex saturating to σ0Ja [Fig. 6(c)]. These
differences in electric field behavior produce significantly dif-
ferent Hall effect profiles, which we address next.

We characterize the Hall effect using Hall angle, the ratio
of effective transverse to longitudinal conductivity: tan θH =
σ ′

xy/σ
′
xx [12,13]. These macroscopic effective conductivities

are marked with a prime to distinguish them from the normal-
state quantities σxx and σxy Eqs. (7). From the macroscopic
equation Ja = σ ′ · E, we have(

Ja

0

)
=

(
σ ′

xx σ ′
xy

−σ ′
xy σ ′

xx

)
·
(

Ex

Ey

)
. (9)

Thus, we get tan θH = σ ′
xy/σ

′
xx = Ey/Ex, where the fields are

both spatially and temporally averaged [35]. We obtain the

FIG. 6. The three different types of electric field profiles ob-
served in our simulations across all sizes and magnitudes of applied
field |Hext|. (a) Saturates to σ0Ja, exhibits spiking behavior corre-
sponding to entry and exit of vortices from sample of size l/ξ = 20,
and |Hext| = 0.8. (b) Saturates to 0, of sample size l/ξ = 20, and
|Hext| = 0.2). (c) Saturates to σ0Ja, for sample size l/ξ = 5, and
|Hext| = 1.2.

tangent of Hall angle tan θH for each combination of applied
magnetic field |Hext| and size l/ξ ∈ {3, 5, 15, 20, 100, 200}
(Fig. 7). We first note that the Hall angle profiles resulting
from our choice of |γ2/γ1| closely resemble the experimen-
tal data with respect to orders of magnitude (tan θH ∼ 10−2)
[8,36].

We find that as |Hext| → Hc2, when the superconductor
is rapidly driven into normal state, Hall angle varies lin-
early with |Hext|, as in the case of normal metals. In this
regime, flux-flow contribution is negligible and all sizes l/ξ ∈
{3, 5, 15, 20, 100, 200} have the same profile. This is in agree-
ment with expected behavior because we do not have any
size effect for normal metals. When |Hext| ≈ 0, the Hall angle
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FIG. 7. (a) Hall angle profiles for γ2/γ1 = +0.4. (b) Hall angle
profiles for γ2/γ1 = −0.4. Evidently, size is an important param-
eter in determining Hall behavior, with the smallest size l/ξ = 3
behaving identical to a normal conductor. Sign reversal is only seen
for l/ξ = 20, in which case γ2/γ1 = 0.4 and −0.4 show opposite
behavior. Fields are averaged till t = 11000, starting after the initial
transient has subsided (Fig. 6).

approaches 0. At these low fields, sizes l/ξ ∈ {3, 5} are driven
to normal state. As normal metals, they have negligible Hall
fields at |Hext| ≈ 0 and, consequently, a very small Hall angle.
On the other hand, sizes l/ξ ∈ {15, 20} are in the supercon-
ducting state at these low fields and therefore have negligible
Ey and Ex. The bulk sizes l/ξ ∈ {100, 200} are in the vortex
state and both the normal Hall field, and flux-flow contribution
are small at low fields. Thus, although the Hall angle is small
for all groups of sizes at |Hext| ≈ 0, the underlying states are
different.

We see that the Hall angle profile is completely linear for
sizes l/ξ ∈ {3, 5}. This is a result of them behaving as normal
metals with no vortex state, and electric field Ex(t ) saturating
to σ0Ja for all values of |Hext| [third type shown in Fig. 6(c)].

We next look at sign reversal of Hall angle, a key anomaly
in the Hall behavior of some superconductors. For sizes l/ξ ∈
{15, 20}, we observe a region of sharp deviation from linear,
normal-conductor behavior for intermediate values of applied
field, i.e., around |Hext| ≈ 0.5 (Fig. 7). This is the region
where flux-flow contribution to the Hall effect is most sig-
nificant because for higher fields, normal state sets in rapidly,
and for lower fields, there are no vortices (Meissner state). We
find that strong, negative flux-flow contribution leads to sign
reversal for γ2/γ1 = −0.4, and positive contribution leads to
a peak for γ2/γ1 = 0.4, in agreement with Kopnin et al. [13].

FIG. 8. Ey fields for size l/ξ = 20 at |Hext| = 0.5 The gradual
transients starting at t ≈ 1500 are responsible for the vastly different
Hall angle for γ2/γ1 = 0.4 and −0.4. Similar transients are seen for
|Hext| ≈ 0.5, leading to the Hall angle profile in Fig. 7.

To understand the precise transient behavior leading to this
vast difference, we look at the spatially averaged fields Ex and
Ey as functions of time (for |Hext| = 0.5). First, we find that
for both γ2/γ1 = 0.4 and −0.4, Ex has an identical profile.
This is expected because γ2 only influences the motion of
vortices along Ja, thus affecting only Ey (Sec. II C). On the
other hand, we find significant differences in Ey(t ) profiles
(Fig. 8). It is evident that the difference in Hall behavior
between γ2/γ1 = 0.4 and −0.4 can be attributed almost en-
tirely to the transients starting at t ≈ 1500. Although spiking
behavior results in peaks in the opposite direction, they have
negligible contribution to the average. Instead, the gradual
transient starting at t ≈ 1500 leads to different profiles for
γ2/γ1 = 0.4 and −0.4, giving a strong positive and nega-
tive contribution to Hall field, respectively. We try to relate
this transient with order parameter (Fig. 5) to determine the
precise behavior causing such transients. We find that this
transient is the induced field resulting from variation in A dur-
ing the onset of normal state (Fig. 5). This onset occurs from
the right boundary for γ2/γ1 = 0.4 (as seen in Fig. 5), and
from the left for γ2/γ1 = −0.4 (Fig. 8). For both γ2/γ1 = 0.4
and −0.4, this transient leads ultimately to saturation of Ey

to the same, small positive value. This is the non-flux-flow,
or normal-state contribution to the Hall field. Interestingly,
we find that although size l/ξ = 15 exhibits vortex behavior
similar to l/ξ = 20, we do not find sign reversal in Hall
angle. This is due to the suppressed gradual transient fields in
l/ξ = 15, leading to a much weaker contribution of flux-flow
Hall effect.

Lastly, we look at the bulk sizes l/ξ ∈ {100, 200}, which
show a completely linear Hall profile. Although these sizes
are in the vortex state at every value of applied field, we
see negligible flux-flow contribution to Hall effect. We find
that these sizes have highly suppressed peaks in the elec-
tric field induced by vortex motion. This can be attributed
to the decreased effect of vortex entry/exit on the spatially
averaged electric fields due to the large superconductor area.
Further, the onset of normal state as described in the previous
paragraph occurs nearly equally from both the left and right
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boundaries, which can perhaps be attributed to the decreasing
role of the boundary as we move toward the bulk regime.
These two factors ensure that flux-flow contribution is neg-
ligible, resulting in a linear Hall angle profile. Therefore, it is
evident that along with γ2 (whose value depends on the elec-
tronic structure) and several other parameters, size influences
Hall behavior significantly, adding to the reasoning behind
the observation of a diverse variety of Hall angle profiles in
various materials.

Anomalous Hall effect in superconductors has been an
open theoretical problem and there exist alternate theories that
seek to explain this phenomenon, besides the one used in this
study. Recently, Auerbach and Arovas [37] proposed a model
based on moving vortex charge (MVC) and refuted the imag-
inary relaxation constant model. It was previously shown that
vortices could carry charge [38], and therefore their motion in
the Hall direction alone would create a contribution to the Hall
current. Thus, in a vortex imaging setup if we find that Hall
angle is reversed while vortices move strictly perpendicular
to the current, it would validate the MVC theory. How-
ever, if vortices move in both directions, the result would be
inconclusive.

In summary, we have simulated the anomalous Hall effect
using the modified TDGL equations in COMSOL Multiphysics
and shown that the solutions provide insights into the precise
temporal dynamics of transient fields and vortex behavior that
scale with the sample size. We have explored theoretically

how features of the anomalous Hall effect evolve with a
variation of the linear dimensions when the lengths are only
a few times the coherence length. The Hall effect behavior
predicted by these simulations may be probed with advanced
experimental techniques that have already been applied to
image vortices [1–6,39]. Transport experiments on supercon-
ducting nanowires with widths ranging from a few hundred
[40,41] to tens of nanometres (a few times the coherence
length) [42] have been reported. It is now practically feasible
to fabricate systems of small widths as discussed in our paper.
Such studies would be important for understanding finite-size
effects in superconductors and their evolution at microscopic
length scales.
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